Living ROMP Synthesis and Redox Properties of Triblock Metallocopolymers Containing Side‐Chain Iron and Cobalt Sandwich Complexes
Metalloblock copolymers are intensively researched because of their multifunctionalities and potential applications in biomedicine and materials science. In addition, metal fragments with redox stabilities are of interest toward conductors, sensors, and batteries. Here, Grubb’s third‐generation meta...
Saved in:
Published in | Macromolecular chemistry and physics Vol. 219; no. 22 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metalloblock copolymers are intensively researched because of their multifunctionalities and potential applications in biomedicine and materials science. In addition, metal fragments with redox stabilities are of interest toward conductors, sensors, and batteries. Here, Grubb’s third‐generation metathesis catalyst is efficiently used in ring‐opening metathesis polymerization (ROMP) reactions leading to the synthesis of two triblock metallopolymers in which each block contains a redox‐reversible iron or cobalt sandwich site. For each metallocopolymer, among six possibilities, only one involving a precise order of introduction of blocks is efficient with the completion of 25 units per block. Cyclic voltammetry measurements show the respective ability of the metal centers to exchange electrons with the electrode, with some electron transfer paths being marred by the positive charges and ligand bulk. Overall, these systems provide a cascade of chemically reversible electron transfers, their number being reasonably estimated using the empirical Bard–Anson model within approximately 20% of the number of redox sites determined by 1H NMR.
Living ROMP synthesis of two triblock metallopolymers is efficient only if the correct order of block introduction is chosen. Heterogeneous electron transfer (ET) studies indicate, besides full chemical reversibility of redox cascades, how ETs are perturbed by the positive charges and ligand bulk. |
---|---|
AbstractList | Abstract
Metalloblock copolymers are intensively researched because of their multifunctionalities and potential applications in biomedicine and materials science. In addition, metal fragments with redox stabilities are of interest toward conductors, sensors, and batteries. Here, Grubb’s third‐generation metathesis catalyst is efficiently used in ring‐opening metathesis polymerization (ROMP) reactions leading to the synthesis of two triblock metallopolymers in which each block contains a redox‐reversible iron or cobalt sandwich site. For each metallocopolymer, among six possibilities, only one involving a precise order of introduction of blocks is efficient with the completion of 25 units per block. Cyclic voltammetry measurements show the respective ability of the metal centers to exchange electrons with the electrode, with some electron transfer paths being marred by the positive charges and ligand bulk. Overall, these systems provide a cascade of chemically reversible electron transfers, their number being reasonably estimated using the empirical Bard–Anson model within approximately 20% of the number of redox sites determined by
1
H NMR. Metalloblock copolymers are intensively researched because of their multifunctionalities and potential applications in biomedicine and materials science. In addition, metal fragments with redox stabilities are of interest toward conductors, sensors, and batteries. Here, Grubb’s third‐generation metathesis catalyst is efficiently used in ring‐opening metathesis polymerization (ROMP) reactions leading to the synthesis of two triblock metallopolymers in which each block contains a redox‐reversible iron or cobalt sandwich site. For each metallocopolymer, among six possibilities, only one involving a precise order of introduction of blocks is efficient with the completion of 25 units per block. Cyclic voltammetry measurements show the respective ability of the metal centers to exchange electrons with the electrode, with some electron transfer paths being marred by the positive charges and ligand bulk. Overall, these systems provide a cascade of chemically reversible electron transfers, their number being reasonably estimated using the empirical Bard–Anson model within approximately 20% of the number of redox sites determined by 1H NMR. Living ROMP synthesis of two triblock metallopolymers is efficient only if the correct order of block introduction is chosen. Heterogeneous electron transfer (ET) studies indicate, besides full chemical reversibility of redox cascades, how ETs are perturbed by the positive charges and ligand bulk. Metalloblock copolymers are intensively researched because of their multifunctionalities and potential applications in biomedicine and materials science. In addition, metal fragments with redox stabilities are of interest toward conductors, sensors, and batteries. Here, Grubb’s third‐generation metathesis catalyst is efficiently used in ring‐opening metathesis polymerization (ROMP) reactions leading to the synthesis of two triblock metallopolymers in which each block contains a redox‐reversible iron or cobalt sandwich site. For each metallocopolymer, among six possibilities, only one involving a precise order of introduction of blocks is efficient with the completion of 25 units per block. Cyclic voltammetry measurements show the respective ability of the metal centers to exchange electrons with the electrode, with some electron transfer paths being marred by the positive charges and ligand bulk. Overall, these systems provide a cascade of chemically reversible electron transfers, their number being reasonably estimated using the empirical Bard–Anson model within approximately 20% of the number of redox sites determined by 1H NMR. |
Author | Ruiz, Jaime Gu, Haibin Ciganda, Roberto Astruc, Didier Castel, Patricia |
Author_xml | – sequence: 1 givenname: Haibin surname: Gu fullname: Gu, Haibin organization: Sichuan University – sequence: 2 givenname: Roberto surname: Ciganda fullname: Ciganda, Roberto organization: University of Bordeaux – sequence: 3 givenname: Patricia surname: Castel fullname: Castel, Patricia organization: University of Bordeaux – sequence: 4 givenname: Jaime surname: Ruiz fullname: Ruiz, Jaime organization: University of Bordeaux – sequence: 5 givenname: Didier surname: Astruc fullname: Astruc, Didier email: didier.astruc@u-bordeaux.fr organization: University of Bordeaux |
BookMark | eNqFUE1LAzEUDKKgVq-eA563viTdZvcoi1_QYrG9L-nmrY1ukzVZrb0J_gF_o7_E1IoevbyZgZl5MIdk1zqLhJww6DMAfrZUVdvnwDIAkQ12yAFLOUtELtLdyIHzhImU75PDEB4AIINcHpD3kXkx9p7e3Y4ndLq23QKDCVRZTe9Qu1c68a5F3xkM1NV05s28cdUjHWOnmshc65r1En2ghbOdMnZTNjUaP98-ikXU9MY7-91XuLlqOjqNfGWqRdTLtsFXDEdkr1ZNwOMf7JHZ5cWsuE5Gt1c3xfkoqQSTg2TAlZRCguKoUynEkEkQaV2DEKilYHOmKzHUWuaZriVWIOtapFU21BzjFT1yuq1tvXt6xtCVD-7Z2_ix5HEZyEUWsUf6W1flXQge67L1Zqn8umRQbnYuNzuXvzvHQL4NrEyD63_c5fi8mPxlvwAxVYWt |
CitedBy_id | crossref_primary_10_1016_j_ccr_2023_215544 crossref_primary_10_1002_aoc_4908 crossref_primary_10_1080_15583724_2023_2209159 crossref_primary_10_1016_j_ccr_2019_213051 crossref_primary_10_1039_C9PY00332K crossref_primary_10_1080_15685551_2020_1812832 crossref_primary_10_1016_j_reactfunctpolym_2019_104325 crossref_primary_10_1080_15583724_2020_1723022 crossref_primary_10_1002_app_48653 crossref_primary_10_1016_j_polymer_2019_02_047 crossref_primary_10_1021_acs_macromol_9b01370 crossref_primary_10_1007_s10904_019_01412_9 crossref_primary_10_1186_s42825_020_00026_z |
Cites_doi | 10.1016/j.biomaterials.2016.12.002 10.1021/ar500139s 10.1039/C39930000333 10.1002/anie.201403062 10.1002/macp.201500393 10.1002/1521-3927(20020901)23:13<743::AID-MARC743>3.0.CO;2-K 10.1016/j.ccr.2016.02.010 10.1016/j.progpolymsci.2006.08.006 10.1002/marc.200290003 10.1016/j.ccr.2017.02.009 10.1139/v05-262 10.1021/acs.macromol.6b01046 10.1021/acs.chemrev.6b00314 10.1021/om700558k 10.1021/ma5007864 10.1002/chem.201503248 10.1007/s10904-004-2384-4 10.1002/adma.201103420 10.1002/macp.200390019 10.1002/chem.201403085 10.1002/marc.201500566 10.1016/j.progpolymsci.2014.03.002 10.1039/C6CS00155F 10.1038/nchem.2584 10.1021/ja00037a017 10.1021/jo00108a012 10.1002/marc.201500105 10.3762/bjoc.11.296 10.1021/cr960113u 10.1021/jp991381 10.1039/C6CS00196C 10.1021/om5006897 10.1002/marc.201600205 10.1021/jo00835a014 10.1021/cr940053x 10.1039/C1SC00783A 10.1021/ja00512a071 10.1007/s10904-006-9095-y 10.1016/0022-328X(84)80485-4 10.1002/marc.201500679 10.1039/c0cc05470d 10.1021/ja983173l 10.1021/jacs.6b11784 10.1002/marc.201100732 10.1021/cr2000724 10.1002/anie.200503406 10.1016/j.progpolymsci.2006.11.002 10.1021/om010599r 10.1039/b601574n 10.1002/pola.21412 10.1002/ejic.201300682 10.1002/anie.201712945 10.1039/C6PY00202A 10.1201/b11824-5 10.1021/acscatal.8b02338 10.1016/S1251-8069(97)86255-0 10.1023/B:JOIP.0000048031.82464.ac 10.3390/molecules21020198 10.1002/marc.201300826 10.1021/ma500106x 10.1039/C6CS00182C 10.1021/ja00481a040 10.1002/9781118711613.ch7 10.1021/ja00815a062 10.1002/ejic.201600983 10.1021/ja046931i 10.1016/j.progpolymsci.2010.01.004 10.1007/s10904-012-9766-9 10.1021/acs.chemrev.5b00393 10.1021/ja8062343 10.1016/B978-0-444-53349-4.00093-5 10.1021/ma051645s 10.1021/cr9002424 10.1002/pola.1249 10.1038/nmat2966 10.1021/acs.macromol.5b01603 10.1016/j.polymer.2012.08.024 10.1021/ja312318d 10.1002/marc.201000395 10.1016/j.polymer.2012.11.057 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
DOI | 10.1002/macp.201800384 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3935 |
EndPage | n/a |
ExternalDocumentID | 10_1002_macp_201800384 MACP201800384 |
Genre | article |
GrantInformation_xml | – fundername: Gobierno Basco – fundername: University of Sichuan at Chengdu – fundername: Fundamental Research Fund for the Central Universities of China – fundername: Centre National de la Recherche Scientifique – fundername: University of Bordeaux (FR) |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION 7SR 7U5 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3174-42a77370a2ed5733617035ff033ed731b1dc36dd798df7ec07ff35c86d2ec863 |
IEDL.DBID | DR2 |
ISSN | 1022-1352 |
IngestDate | Thu Oct 10 20:33:00 EDT 2024 Fri Aug 23 02:06:26 EDT 2024 Sat Aug 24 01:09:11 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3174-42a77370a2ed5733617035ff033ed731b1dc36dd798df7ec07ff35c86d2ec863 |
Notes | This article is dedicated to our distinguished friend and colleague Prof. George R. Newkome, an outstanding chemist and teacher, on the occasion of his 80th birthday. |
PQID | 2135093821 |
PQPubID | 2034252 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2135093821 crossref_primary_10_1002_macp_201800384 wiley_primary_10_1002_macp_201800384_MACP201800384 |
PublicationCentury | 2000 |
PublicationDate | November 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November 2018 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular chemistry and physics |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 36 1979; 101 1974; 96 2013; 23 1999; 121 2011; 10 2007; 32 2016; 37 2001; 47 2012; 53 2011; 111 2007; 36 2017; 117 2017; 118 1970; 35 2014; 20 2015; 48 2018; 8 1995; 60 2003; 204 1984; 272 2013; 54 2016; 316 1992; 114 2010; 110 1999; 99 1978; 100 2016; 116 2012; 24 2005; 38 2016; 49 2016; 45 2007; 26 2014; 53 2007; 17 2010; 31 2010; 35 2012 2017; 2017 2015; 11 2014; 47 1996; 96 1995 1999; 103 1993 2009; 131 2012; 33 2017; 139 2017; 337 2001; 20 2016; 7 2012; 3 2006; 84 2006; 45 2013; 32 2016; 217 2006; 44 2002; 23 2004; 14 2005; 127 2015; 21 2016; 21 2014; 35 2013; 135 2014 2001; 39 1998; 1 2014; 39 2013 2011; 47 2005; 15 2012; 4 2016; 8 2014; 33 2018; 57 e_1_2_6_74_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_70_1 e_1_2_6_30_1 Hudson R. D. A. (e_1_2_6_27_1) 2001; 47 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 Grubbs R. H. (e_1_2_6_50_1) 2012 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 Galei M. (e_1_2_6_32_1) 2013; 32 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_71_1 e_1_2_6_14_1 e_1_2_6_35_1 Casado C. M. (e_1_2_6_12_1) 2012 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_80_1 Astruc D. (e_1_2_6_72_1) 1995 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 Deraedt C. (e_1_2_6_51_1) 2013 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_46_1 e_1_2_6_69_1 |
References_xml | – volume: 121 start-page: 462 year: 1999 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 714 year: 2010 publication-title: Prog. Polym. Sci. – volume: 3 start-page: 580 year: 2012 publication-title: Chem. Sci. – volume: 118 start-page: 27 year: 2017 publication-title: Biomaterials – volume: 35 start-page: 3245 year: 1970 publication-title: J. Org. Chem. – volume: 47 start-page: 2457 year: 2014 publication-title: Acc. Chem. Res. – start-page: 333 year: 1993 publication-title: J. Chem. Soc., Chem. Commun. – volume: 101 start-page: 5445 year: 1979 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 8445 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 37 start-page: 630 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 7 start-page: 2358 year: 2016 publication-title: Polym. Chem. – volume: 32 start-page: 5873 year: 2013 publication-title: Macromol. Rapid. Commun. – volume: 11 start-page: 2747 year: 2015 publication-title: Beilstein J. Org. Chem. – volume: 23 start-page: 995 year: 2002 publication-title: Macromol. Rapid Commun. – volume: 15 start-page: 157 year: 2005 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 57 start-page: 2204 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 45 start-page: 5311 year: 2016 publication-title: Chem. Soc. Rev. – volume: 35 start-page: 513 year: 2014 publication-title: Macromol. Rapid Commun. – volume: 37 start-page: 105 year: 2016 publication-title: Macromol. Rapid Commun. – start-page: 269 year: 2014 – volume: 139 start-page: 3012 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 21 year: 2012 – volume: 38 start-page: 9411 year: 2005 publication-title: Macromolecules – volume: 53 start-page: 4879 year: 2012 publication-title: Polymer – start-page: 219 year: 2012 – volume: 36 start-page: 729 year: 2007 publication-title: Chem. Soc. Rev. – volume: 23 start-page: 158 year: 2013 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 17 start-page: 19 year: 2007 publication-title: J. Inorg. Organomet. Polym. Mater. – volume: 20 start-page: 5314 year: 2001 publication-title: Organometallics – volume: 337 start-page: 34 year: 2017 publication-title: Coord. Chem. Rev. – volume: 39 start-page: 1742 year: 2014 publication-title: Prog. Polym. Sci. – start-page: 4881 year: 2013 publication-title: Eur. J. Inorg. Chem. – volume: 45 start-page: 726 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 131 start-page: 590 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 1746 year: 2010 publication-title: Chem. Rev. – volume: 84 start-page: 288 year: 2006 publication-title: Can. J. Chem. – volume: 45 start-page: 5358 year: 2016 publication-title: Chem. Soc. Rev. – volume: 20 start-page: 11176 year: 2014 publication-title: Chem. ‐ Eur. J. – volume: 48 start-page: 6071 year: 2015 publication-title: Macromolecules – volume: 47 start-page: 3767 year: 2014 publication-title: Macromolecules – volume: 44 start-page: 3053 year: 2006 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 103 start-page: 6713 year: 1999 publication-title: J. Phys. Chem. B – volume: 26 start-page: 5738 year: 2007 publication-title: Organometallics – volume: 32 start-page: 93 year: 2007 publication-title: Prog. Polym. Sci. – volume: 14 start-page: 269 year: 2004 publication-title: J. Inorg. Organomet. Polym. – volume: 33 start-page: 4323 year: 2014 publication-title: Organometallics – volume: 21 start-page: 18177 year: 2015 publication-title: Chem. ‐ Eur. J. – volume: 39 start-page: 2716 year: 2001 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 8 start-page: 8100 year: 2018 publication-title: ACS Catal. – volume: 2017 start-page: 6 year: 2017 publication-title: Eur. J. Inorg. Chem. – volume: 1 start-page: 21 year: 1998 publication-title: C. R. Acad. Sci., Ser. IIc: Chim. – volume: 10 start-page: 176 year: 2011 publication-title: Nat. Mater. – volume: 135 start-page: 2455 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 217 start-page: 149 year: 2016 publication-title: Macromol. Chem. Phys. – volume: 47 start-page: 637 year: 2001 publication-title: J. Organomet. Chem. – volume: 114 start-page: 4150 year: 1992 publication-title: J. Am. Chem. Soc. – volume: 37 start-page: 1482 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 204 start-page: 555 year: 2003 publication-title: Macromol. Chem. Phys. – volume: 272 start-page: 417 year: 1984 publication-title: J. Organomet. Chem. – volume: 45 start-page: 5216 year: 2016 publication-title: Chem. Soc. Rev. – volume: 36 start-page: 585 year: 2015 publication-title: Macromol. Rapid Commun. – year: 2012 – volume: 117 start-page: 1105 year: 2017 publication-title: Chem. Rev. – volume: 24 start-page: 332 year: 2012 publication-title: Adv. Mater. – volume: 99 start-page: 1515 year: 1999 publication-title: Chem. Rev. – volume: 47 start-page: 3529 year: 2014 publication-title: Macromolecules – volume: 21 start-page: 198 year: 2016 publication-title: Molecules – volume: 32 start-page: 1 year: 2007 publication-title: Prog. Polym. Sci. – volume: 116 start-page: 1950 year: 2016 publication-title: Chem. Rev. – volume: 33 start-page: 510 year: 2012 publication-title: Macromol. Rapid Commun. – volume: 8 start-page: 819 year: 2016 publication-title: Nat. Chem. – volume: 23 start-page: 743 year: 2002 publication-title: Macromol. Rapid Commun. – volume: 60 start-page: 532 year: 1995 publication-title: J. Org. Chem. – year: 1995 – volume: 96 start-page: 2632 year: 1974 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1992 year: 2010 publication-title: Macromol. Rapid Commun. – volume: 100 start-page: 4248 year: 1978 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 1269 year: 2013 publication-title: Polymer – volume: 127 start-page: 1170 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 4763 year: 2016 publication-title: Macromolecules – volume: 96 start-page: 877 year: 1996 publication-title: Chem. Rev. – volume: 47 start-page: 3078 year: 2011 publication-title: Chem. Commun. – volume: 111 start-page: 5301 year: 2011 publication-title: Chem. Rev. – volume: 316 start-page: 1 year: 2016 publication-title: Coord. Chem. Rev. – ident: e_1_2_6_4_1 doi: 10.1016/j.biomaterials.2016.12.002 – ident: e_1_2_6_65_1 doi: 10.1021/ar500139s – ident: e_1_2_6_84_1 doi: 10.1039/C39930000333 – ident: e_1_2_6_34_1 doi: 10.1002/anie.201403062 – ident: e_1_2_6_25_1 doi: 10.1002/macp.201500393 – ident: e_1_2_6_58_1 doi: 10.1002/1521-3927(20020901)23:13<743::AID-MARC743>3.0.CO;2-K – ident: e_1_2_6_46_1 doi: 10.1016/j.ccr.2016.02.010 – ident: e_1_2_6_49_1 doi: 10.1016/j.progpolymsci.2006.08.006 – ident: e_1_2_6_57_1 doi: 10.1002/marc.200290003 – ident: e_1_2_6_39_1 doi: 10.1016/j.ccr.2017.02.009 – volume-title: Electron‐Transfer and Radical Processes in Transition‐Metal Chemistry year: 1995 ident: e_1_2_6_72_1 contributor: fullname: Astruc D. – ident: e_1_2_6_78_1 doi: 10.1139/v05-262 – ident: e_1_2_6_70_1 doi: 10.1021/acs.macromol.6b01046 – ident: e_1_2_6_19_1 doi: 10.1021/acs.chemrev.6b00314 – ident: e_1_2_6_81_1 doi: 10.1021/om700558k – ident: e_1_2_6_44_1 doi: 10.1021/ma5007864 – ident: e_1_2_6_47_1 doi: 10.1002/chem.201503248 – ident: e_1_2_6_28_1 doi: 10.1007/s10904-004-2384-4 – ident: e_1_2_6_9_1 doi: 10.1002/adma.201103420 – ident: e_1_2_6_59_1 doi: 10.1002/macp.200390019 – ident: e_1_2_6_45_1 doi: 10.1002/chem.201403085 – ident: e_1_2_6_41_1 doi: 10.1002/marc.201500566 – ident: e_1_2_6_21_1 doi: 10.1016/j.progpolymsci.2014.03.002 – ident: e_1_2_6_17_1 doi: 10.1039/C6CS00155F – ident: e_1_2_6_24_1 doi: 10.1038/nchem.2584 – ident: e_1_2_6_53_1 doi: 10.1021/ja00037a017 – ident: e_1_2_6_85_1 doi: 10.1021/jo00108a012 – ident: e_1_2_6_1_1 doi: 10.1002/marc.201500105 – ident: e_1_2_6_14_1 doi: 10.3762/bjoc.11.296 – ident: e_1_2_6_26_1 doi: 10.1021/cr960113u – ident: e_1_2_6_77_1 doi: 10.1021/jp991381 – ident: e_1_2_6_31_1 doi: 10.1039/C6CS00196C – ident: e_1_2_6_35_1 doi: 10.1021/om5006897 – ident: e_1_2_6_22_1 doi: 10.1002/marc.201600205 – ident: e_1_2_6_37_1 doi: 10.1021/jo00835a014 – ident: e_1_2_6_80_1 doi: 10.1021/cr940053x – ident: e_1_2_6_40_1 doi: 10.1039/C1SC00783A – ident: e_1_2_6_71_1 doi: 10.1021/ja00512a071 – ident: e_1_2_6_29_1 doi: 10.1007/s10904-006-9095-y – ident: e_1_2_6_82_1 doi: 10.1016/0022-328X(84)80485-4 – ident: e_1_2_6_42_1 doi: 10.1002/marc.201500679 – ident: e_1_2_6_83_1 doi: 10.1039/c0cc05470d – ident: e_1_2_6_5_1 doi: 10.1039/C6CS00155F – ident: e_1_2_6_54_1 doi: 10.1021/ja983173l – ident: e_1_2_6_2_1 doi: 10.1021/jacs.6b11784 – ident: e_1_2_6_43_1 doi: 10.1002/marc.201100732 – ident: e_1_2_6_11_1 doi: 10.1021/cr2000724 – ident: e_1_2_6_64_1 doi: 10.1002/anie.200503406 – ident: e_1_2_6_16_1 doi: 10.1016/j.progpolymsci.2006.11.002 – ident: e_1_2_6_66_1 doi: 10.1021/om010599r – ident: e_1_2_6_15_1 doi: 10.1039/b601574n – ident: e_1_2_6_62_1 doi: 10.1002/pola.21412 – start-page: 4881 year: 2013 ident: e_1_2_6_51_1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201300682 contributor: fullname: Deraedt C. – ident: e_1_2_6_69_1 doi: 10.1002/anie.201712945 – ident: e_1_2_6_75_1 doi: 10.1039/C6PY00202A – ident: e_1_2_6_30_1 doi: 10.1201/b11824-5 – ident: e_1_2_6_38_1 doi: 10.1021/acscatal.8b02338 – ident: e_1_2_6_76_1 doi: 10.1016/S1251-8069(97)86255-0 – ident: e_1_2_6_60_1 doi: 10.1023/B:JOIP.0000048031.82464.ac – ident: e_1_2_6_68_1 doi: 10.3390/molecules21020198 – ident: e_1_2_6_20_1 doi: 10.1002/marc.201300826 – volume: 32 start-page: 5873 year: 2013 ident: e_1_2_6_32_1 publication-title: Macromol. Rapid. Commun. contributor: fullname: Galei M. – ident: e_1_2_6_7_1 doi: 10.1021/ma500106x – ident: e_1_2_6_3_1 doi: 10.1039/C6CS00182C – start-page: 219 volume-title: Designing Dendrimers year: 2012 ident: e_1_2_6_12_1 contributor: fullname: Casado C. M. – ident: e_1_2_6_74_1 doi: 10.1021/ja00481a040 – ident: e_1_2_6_52_1 doi: 10.1002/9781118711613.ch7 – ident: e_1_2_6_79_1 doi: 10.1021/ja00815a062 – ident: e_1_2_6_36_1 doi: 10.1002/ejic.201600983 – ident: e_1_2_6_55_1 doi: 10.1021/ja046931i – ident: e_1_2_6_10_1 doi: 10.1016/j.progpolymsci.2010.01.004 – ident: e_1_2_6_13_1 doi: 10.1007/s10904-012-9766-9 – ident: e_1_2_6_18_1 doi: 10.1021/acs.chemrev.5b00393 – ident: e_1_2_6_73_1 doi: 10.1021/ja8062343 – start-page: 21 volume-title: Polymer Science: A Comprehensive Reference, year: 2012 ident: e_1_2_6_50_1 doi: 10.1016/B978-0-444-53349-4.00093-5 contributor: fullname: Grubbs R. H. – ident: e_1_2_6_61_1 doi: 10.1021/ma051645s – ident: e_1_2_6_67_1 doi: 10.1021/cr9002424 – ident: e_1_2_6_56_1 doi: 10.1002/pola.1249 – ident: e_1_2_6_6_1 doi: 10.1038/nmat2966 – ident: e_1_2_6_48_1 doi: 10.1021/acs.macromol.5b01603 – ident: e_1_2_6_8_1 doi: 10.1016/j.polymer.2012.08.024 – ident: e_1_2_6_33_1 doi: 10.1021/ja312318d – ident: e_1_2_6_63_1 doi: 10.1002/marc.201000395 – ident: e_1_2_6_23_1 doi: 10.1016/j.polymer.2012.11.057 – volume: 47 start-page: 637 year: 2001 ident: e_1_2_6_27_1 publication-title: J. Organomet. Chem. contributor: fullname: Hudson R. D. A. |
SSID | ssj0008097 |
Score | 2.3529985 |
Snippet | Metalloblock copolymers are intensively researched because of their multifunctionalities and potential applications in biomedicine and materials science. In... Abstract Metalloblock copolymers are intensively researched because of their multifunctionalities and potential applications in biomedicine and materials... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Chemical synthesis Cobalt Conductors Coordination compounds Electron transfer Grubbs catalysts Iron Materials science metallocenes Metathesis NMR Nuclear magnetic resonance Organic chemistry reversible electron transfer ROMP triblock metallocopolymers |
Title | Living ROMP Synthesis and Redox Properties of Triblock Metallocopolymers Containing Side‐Chain Iron and Cobalt Sandwich Complexes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmacp.201800384 https://www.proquest.com/docview/2135093821 |
Volume | 219 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMctxAUuYzAmymDyYdJOAcdOaveIAlWHVqhakLhFjv0sKiBFTdBgp0n7B_gb-UvwS5oWuEwal8g52Er8472vnu3PI-Sbd3JKGR4FoQETRM62gw6LVQAqEw6klKzibPdP2r3z6Pgivnhxi7_mQ8wDbrgyKnuNC1xnxf4CGnqjDfImQ4WbWwgEDYXEM12HwwU_SrE6uwoeWQ-91GiojYzvv67-2istpOZLwVp5nO4a0c231gdNrvbuymzP_H6DcXzPz3wkH2ZylB7U82edLEG-QVaSJgvcJ_L35xhDDnR42h_Q0UPu9WIxLqjOLR2CndzTAUbzp4hlpRNHEUTi3eMV7UOJW_oGczA8YGycIgerTkdBR2MLT38ek0v_Tn9MJ3nVXoJokpKOfPnX2FxSNFXXcA_FJjnrHp0lvWCWuCEwXo5EQcS1lEIyzcFWvMXQ25XYOSYEWCnCLLRGtK2VHWWdBMOkcyI2qm05-Kf4TJbzSQ5bhKo4s8bZTGuhvZYwWjHwgsS5LJLgLXOLfG_GLb2t8RxpDWLmKfZpOu_TFtlphjWdLdMi5X5SsI5QPGwRXo3PP1pJ-wfJYP62_T-VvpBVLNf3GXfIcjm9g10vbMrsazV5nwFFKfLQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3Pb9MwFMefYDuMC2P8EIUBPiBxyubYSe0ep4ypg2ZUbZG4RYn9rFWDFLWZ2HZC4h_Y37i_ZH5J0zIuSHCJkki2Etvv-atn-_MA3vpJTmsjoiA0aILI2W7Q47EOUBfSoVKK15zt9KTb_xx9-BK3uwnpLEzDh1gF3Mgyan9NBk4B6f01NfRbbgg4GWpa3Yruw6a3eUnZGw5Ha4KU5k1-Fdq0Hnqx0XIbudi_W_7uvLQWm79L1nrOOdqGov3aZqvJ2d55VeyZqz9Ajv_1O4_g4VKRsoNmCO3APSwfw1bSJoJ7Ar8GU4o6sNGndMjGl6WXjIvpguWlZSO0sws2pID-nMisbOYYsUj8DHnGUqxoVd9QGoZLCo8zQmE1GSnYeGrx5ud1cuqf2fF8Vtb1JUQnqdjY3_-YmlNG3uorXuDiKUyO3k-SfrDM3RAYr0iiIBK5UlLxXKCtkYuhdy2xc1xKtEqGRWiN7Fqreto6hYYr52RsdNcK9Ff5DDbKWYnPgem4sMbZIs9l7uWEyTVHr0mcKyKF3jl34F3bcdn3htCRNSxmkVGbZqs27cBu26_Z0lIXmfCjgvekFmEHRN1Bf6klSw-S4erpxb8UegNb_Uk6yAbHJx9fwgN63xxv3IWNan6Or7zOqYrX9Ui-BWbr9ug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHUCTgwnfFQgEfkDildewk9h6rwKqFblntFqm3yLHH6qqQrXZT0XJC4gV4Rp4ET7LZbbkgwSVKItlK_DHz19j-DcDr4OS0tiKJYos2SrzLoj5PdYS6lB6VUrzhbA8Ps71Pyfvj9PjKKf6WD7EKuNHMaOw1TfAz53fW0NAvxhJvMta0uJXchFtJFuQvyaLxGiCleZtehfasx0FrdNhGLnaul7_ultZa86pibVzO4D6Y7mPbnSan2-d1uW2__cFx_J-_eQD3lnqU7bYD6CHcwOoR3Mm7NHCP4cfBlGIObPxxOGKTyyoIxsV0wUzl2Bjd7IKNKJw_Jy4rm3lGJJLgH0_ZEGta07eUhOGSguOMQFhtPgo2mTr89f1nfhKe2f58VjX15cQmqdkk3H-d2hNGtuozXuDiCRwN3h3le9Eyc0Nkgx5JokQYpaTiRqBrgItxMCyp91xKdErGZeyszJxTfe28QsuV9zK1OnMCw1VuwkY1q_ApMJ2WznpXGiNNEBPWaI5BkXhfJgqDae7Bm67firOWz1G0JGZRUJsWqzbtwVbXrcVyni4KEQYF70st4h6Ipn_-Uksx3M1Hq6dn_1LoFdwevR0UB_uHH57DXXrdnm3cgo16fo4vgsipy5fNOP4Njif1lw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Living+ROMP+Synthesis+and+Redox+Properties+of+Triblock+Metallocopolymers+Containing+Side%E2%80%90Chain+Iron+and+Cobalt+Sandwich+Complexes&rft.jtitle=Macromolecular+chemistry+and+physics&rft.au=Gu%2C+Haibin&rft.au=Ciganda%2C+Roberto&rft.au=Castel%2C+Patricia&rft.au=Ruiz%2C+Jaime&rft.date=2018-11-01&rft.issn=1022-1352&rft.eissn=1521-3935&rft.volume=219&rft.issue=22&rft_id=info:doi/10.1002%2Fmacp.201800384&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_macp_201800384 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1352&client=summon |