Electrolyte Modification for Long‐Life Zn Ion Batteries: Achieved by Methanol Additive
Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn...
Saved in:
Published in | ChemElectroChem Vol. 9; no. 4 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
24.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn2+‐containing electrolyte for long‐life Zn ion batteries, was developed. Methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions. As a result, Zn/Zn symmetric cell shows a long‐term stability for over 480 h at 1 mA cm−2 with 1 mAh cm−2. In addition, full battery based on the MnO2 cathode exhibits an improved capacity retention after 100 cycles at 0.1 A g−1 and an excellent electrochemical performance at low temperature.
Easy electrolyte modification: Methanol is first employed as additive for Zn2+‐containing electrolyte for long‐life Zn ion batteries. Here, methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions. |
---|---|
AbstractList | Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn2+‐containing electrolyte for long‐life Zn ion batteries, was developed. Methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions. As a result, Zn/Zn symmetric cell shows a long‐term stability for over 480 h at 1 mA cm−2 with 1 mAh cm−2. In addition, full battery based on the MnO2 cathode exhibits an improved capacity retention after 100 cycles at 0.1 A g−1 and an excellent electrochemical performance at low temperature.
Easy electrolyte modification: Methanol is first employed as additive for Zn2+‐containing electrolyte for long‐life Zn ion batteries. Here, methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions. Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn2+‐containing electrolyte for long‐life Zn ion batteries, was developed. Methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions. As a result, Zn/Zn symmetric cell shows a long‐term stability for over 480 h at 1 mA cm−2 with 1 mAh cm−2. In addition, full battery based on the MnO2 cathode exhibits an improved capacity retention after 100 cycles at 0.1 A g−1 and an excellent electrochemical performance at low temperature. Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn 2+ ‐containing electrolyte for long‐life Zn ion batteries, was developed. Methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn 2+ ion in a manner of forming the [Zn(OH 2 ) x (CH 3 OH) y ] 2+ cations. The interaction between Zn 2+ , methanol and water can effectively suppress the side reactions. As a result, Zn/Zn symmetric cell shows a long‐term stability for over 480 h at 1 mA cm −2 with 1 mAh cm −2 . In addition, full battery based on the MnO 2 cathode exhibits an improved capacity retention after 100 cycles at 0.1 A g −1 and an excellent electrochemical performance at low temperature. |
Author | Xu, Jun‐Wei Zhang, Chang‐Bin Yao, Jin‐Shui Ren, Man‐Man Wang, Zi‐Rui Ma, Wen‐Qing Liu, Wei‐Liang Ge, Lin‐Heng Lin, Xian‐Sen |
Author_xml | – sequence: 1 givenname: Xian‐Sen surname: Lin fullname: Lin, Xian‐Sen organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 2 givenname: Zi‐Rui surname: Wang fullname: Wang, Zi‐Rui organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 3 givenname: Lin‐Heng surname: Ge fullname: Ge, Lin‐Heng organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 4 givenname: Jun‐Wei surname: Xu fullname: Xu, Jun‐Wei organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 5 givenname: Wen‐Qing surname: Ma fullname: Ma, Wen‐Qing organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 6 givenname: Man‐Man surname: Ren fullname: Ren, Man‐Man organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 7 givenname: Wei‐Liang surname: Liu fullname: Liu, Wei‐Liang email: wlliu@sdu.edu.cn organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 8 givenname: Jin‐Shui surname: Yao fullname: Yao, Jin‐Shui organization: Qilu University of Technology (Shandong Academy of Sciences) – sequence: 9 givenname: Chang‐Bin surname: Zhang fullname: Zhang, Chang‐Bin organization: Chinese Academy of Sciences |
BookMark | eNqFkM9LwzAUx4NMcM5dPQc8dyZp0qzeZpk66PCiIF5CkqYuozYzzSa9-Sf4N_qX2DlREcR3eT94n_flfQ9Br3a1AeAYoxFGiJxqU-kRQQQjzAndA32C0yTq-qT3oz4Aw6ZZIoQwRiweJ31wN62MDt5VbTBw7gpbWi2DdTUsnYe5qx_eXl5zWxp4X8NZNz6XIRhvTXMGJ3phzcYUULVwbsJC1q6Ck6KwwW7MEdgvZdWY4WcegNuL6U12FeXXl7Nskkc6xpxGWGHJUhRLykuFFEuZKqXSmiOaoJQVilOKx6nGjBdJYSiniHKNWMJU3P1A4wE42d1defe0Nk0QS7f2dScpSBITTNIuuq3Rbkt71zTelGLl7aP0rcBIbA0UWwPFl4EdQH8B2oYPY4KXtvobS3fYs61M-4-IyKZ59s2-A6OFhn8 |
CitedBy_id | crossref_primary_10_1007_s12598_024_02705_w crossref_primary_10_1016_j_scriptamat_2023_115520 crossref_primary_10_1002_aenm_202203708 crossref_primary_10_1002_adfm_202402014 crossref_primary_10_1002_aenm_202405767 crossref_primary_10_1039_D3TA05809C crossref_primary_10_1002_adma_202406093 crossref_primary_10_1016_j_cej_2023_141305 crossref_primary_10_1016_j_jcis_2022_10_127 crossref_primary_10_1016_j_nxmate_2024_100124 crossref_primary_10_1002_cnl2_183 crossref_primary_10_1039_D4TA02316A crossref_primary_10_1002_aenm_202401407 crossref_primary_10_1002_tcr_202400142 crossref_primary_10_1016_j_nanoms_2022_10_004 crossref_primary_10_1021_acsnano_3c10469 crossref_primary_10_1016_j_ssi_2025_116790 crossref_primary_10_1021_acssuschemeng_3c04018 crossref_primary_10_1039_D2SC06276C crossref_primary_10_1016_j_heliyon_2023_e18638 crossref_primary_10_3390_batteries8100153 crossref_primary_10_1007_s12598_023_02561_0 crossref_primary_10_1360_SSC_2024_0011 crossref_primary_10_1002_adfm_202209028 |
Cites_doi | 10.1021/acs.chemrev.0c00767 10.1016/j.electacta.2017.12.041 10.1002/anie.202001844 10.1021/acsenergylett.0c01792 10.1002/celc.201800572 10.1038/ncomms11801 10.1021/jacs.0c09794 10.1016/j.jelechem.2021.115214 10.1002/anie.201907830 10.1021/cm504717p 10.1016/j.matchemphys.2017.12.017 10.1002/celc.202000253 10.1002/aenm.202003065 10.1039/D1TA03967A 10.1016/j.electacta.2020.135642 10.1002/cssc.201801657 10.1002/ange.202010828 10.1016/j.nanoen.2019.05.042 10.1002/ange.202012322 10.1002/adma.202003021 10.1002/ange.201907830 10.1002/anie.201904174 10.1016/j.joule.2019.02.012 10.1002/aenm.202001310 10.1002/advs.202100309 10.1002/aenm.202001599 10.1038/s41467-020-18284-0 10.1002/ange.202005472 10.1039/D0EE00723D 10.1038/s41467-020-17752-x 10.1002/anie.202010828 10.1002/anie.202012322 10.1021/acsami.8b04085 10.1021/acsami.6b16560 10.1039/D0TA00748J 10.1002/smll.201804760 10.1002/ange.201904174 10.1039/C9EE00596J 10.1039/C9EE03545A 10.1002/anie.202005472 10.1126/sciadv.aba4098 10.1038/s41467-020-15478-4 10.1002/adma.201300226 10.1016/j.electacta.2019.134565 10.1002/ange.202001844 10.1039/D0EE02079F 10.1002/smll.202001323 10.1016/j.joule.2020.05.018 10.1002/anie.202105756 10.1002/eem2.12067 10.1039/D0EE01538E |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.202101724 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | n/a |
ExternalDocumentID | 10_1002_celc_202101724 CELC202101724 |
Genre | article |
GrantInformation_xml | – fundername: Scientific Research Foundation for the Returned Overseas Scholars funderid: 20100406 – fundername: National Training Program of Innovation and Entrepreneurship for Undergraduates funderid: 202110431012; S202010431012 – fundername: National Natural Science Foundations of China funderid: 31971605; 31570566; 31500489; 51403111; 51503107 – fundername: Qilu University of Technology – fundername: Shandong Province Natural Science Foundation funderid: ZR2020QE012; ZR2020MC156; ZR2020ME078; ZR2018MEM012; ZZ20210121; ZZ20190107 – fundername: State Key Laboratory of Biobased Material and Green Papermaking – fundername: Development Fund for Institutes and Universities funderid: 2020GXRC027 – fundername: Shandong Provincial Key R&D Program funderid: 2019GGX102066 – fundername: Qilu University of Technology International Cooperation Fund funderid: QLUTGJHZ2018025 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS CITATION 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3174-1b1a5903a47fb0b595bfabcc7046095db744189c157d6de474047c0565b310543 |
ISSN | 2196-0216 |
IngestDate | Fri Jul 25 12:01:40 EDT 2025 Thu Apr 24 22:51:32 EDT 2025 Tue Jul 01 01:11:10 EDT 2025 Sat Aug 24 00:57:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3174-1b1a5903a47fb0b595bfabcc7046095db744189c157d6de474047c0565b310543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2632129999 |
PQPubID | 2034587 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2632129999 crossref_primary_10_1002_celc_202101724 crossref_citationtrail_10_1002_celc_202101724 wiley_primary_10_1002_celc_202101724_CELC202101724 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 24, 2022 |
PublicationDateYYYYMMDD | 2022-02-24 |
PublicationDate_xml | – month: 02 year: 2022 text: February 24, 2022 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2021; 9 2021; 8 2019; 3 2013; 25 2018; 260 2020; 142 2018; 206 2019; 12 2019; 15 2021; 888 2020 2020; 59 132 2020; 17 2020; 16 2020; 13 2020; 11 2020; 10 2021; 121 2020; 32 2017; 9 2019; 320 2019 2019; 58 131 2020; 18 2020; 8 2020; 7 2020; 6 2016; 7 2020; 5 2020; 4 2020; 3 2015; 27 2018; 5 2019; 62 2021; 11 2021 2021; 60 133 2020; 335 2021; 60 2018; 11 2018; 10 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_15_2 Huang J. (e_1_2_8_44_1) 2020; 17 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_30_1 e_1_2_8_27_2 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 Bi S. (e_1_2_8_43_1) 2020; 18 (e_1_2_8_7_2) 2020; 132 e_1_2_8_2_1 e_1_2_8_4_2 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_16_2 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – volume: 60 133 start-page: 274 278 year: 2021 2021 end-page: 280 284 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 11 start-page: 4463 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 2839 year: 2020 end-page: 2848 publication-title: Energy Environ. Sci. – volume: 11 start-page: 3961 year: 2020 publication-title: Nat. Commun. – volume: 3 start-page: 1289 year: 2019 end-page: 1300 publication-title: Joule – volume: 58 131 start-page: 7823 7905 year: 2019 2019 end-page: 7828 7910 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 60 133 start-page: 2861 2897 year: 2021 2021 end-page: 2865 2901 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 7836 year: 2020 end-page: 7846 publication-title: J. Mater. Chem. A – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 335 year: 2020 publication-title: Electrochim. Acta – volume: 5 start-page: 2409 year: 2018 end-page: 2418 publication-title: Chemelectrochem – volume: 11 start-page: 3996 year: 2018 end-page: 4006 publication-title: ChemSusChem – volume: 62 start-page: 275 year: 2019 end-page: 281 publication-title: Nano Energy – volume: 9 start-page: 9681 year: 2017 end-page: 9687 publication-title: ACS Appl. Mater. Interfaces – volume: 320 year: 2019 publication-title: Electrochim. Acta – volume: 60 start-page: 18247 year: 2021 end-page: 18255 publication-title: Angew. Chem. Int. Ed. – volume: 121 start-page: 1623 year: 2021 end-page: 1669 publication-title: Chem. Rev. – volume: 260 start-page: 246 year: 2018 end-page: 253 publication-title: Electrochim. Acta – volume: 15 year: 2019 publication-title: Small – volume: 12 start-page: 1938 year: 2019 end-page: 1949 publication-title: Energy Environ. Sci. – volume: 18 year: 2020 publication-title: Mater. Today – volume: 13 start-page: 503 year: 2020 end-page: 510 publication-title: Energy Environ. Sci. – volume: 4 start-page: 1557 year: 2020 end-page: 1574 publication-title: Joule – volume: 888 year: 2021 publication-title: J. Electroanal. Chem. – volume: 25 start-page: 2577 year: 2013 end-page: 2582 publication-title: Adv. Mater. – volume: 13 start-page: 3330 year: 2020 end-page: 3360 publication-title: Energy Environ. Sci. – volume: 27 start-page: 3609 year: 2015 end-page: 3620 publication-title: Chem. Mater. – volume: 16 year: 2020 publication-title: Small – volume: 59 132 start-page: 16594 16737 year: 2020 2020 end-page: 16601 16744 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 142 start-page: 21404 year: 2020 end-page: 21409 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 16814 year: 2021 end-page: 16823 publication-title: J. Mater. Chem. A – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 3 start-page: 146 year: 2020 end-page: 159 publication-title: Energy Environ. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 13 start-page: 3527 year: 2020 end-page: 3535 publication-title: Energy Environ. Sci. – volume: 17 year: 2020 publication-title: Mater. Today – volume: 58 131 start-page: 15841 15988 year: 2019 2019 end-page: 15847 15994 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 206 start-page: 232 year: 2018 end-page: 242 publication-title: Mater. Chem. Phys. – volume: 59 132 start-page: 9377 9463 year: 2020 2020 end-page: 9381 9467 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 11 start-page: 1634 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 2762 year: 2020 end-page: 2770 publication-title: Chemelectrochem – volume: 10 start-page: 22059 year: 2018 end-page: 22066 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 3012 year: 2020 end-page: 3020 publication-title: ACS Energy Lett. – volume: 7 start-page: 11801 year: 2016 publication-title: Nat. Commun. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.0c00767 – ident: e_1_2_8_31_1 doi: 10.1016/j.electacta.2017.12.041 – ident: e_1_2_8_16_1 doi: 10.1002/anie.202001844 – ident: e_1_2_8_22_1 doi: 10.1021/acsenergylett.0c01792 – ident: e_1_2_8_8_1 doi: 10.1002/celc.201800572 – ident: e_1_2_8_11_1 doi: 10.1038/ncomms11801 – ident: e_1_2_8_25_1 doi: 10.1021/jacs.0c09794 – ident: e_1_2_8_47_1 doi: 10.1016/j.jelechem.2021.115214 – ident: e_1_2_8_28_1 doi: 10.1002/anie.201907830 – ident: e_1_2_8_45_1 doi: 10.1021/cm504717p – ident: e_1_2_8_38_1 doi: 10.1016/j.matchemphys.2017.12.017 – ident: e_1_2_8_9_1 doi: 10.1002/celc.202000253 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.202003065 – ident: e_1_2_8_41_1 doi: 10.1039/D1TA03967A – ident: e_1_2_8_46_1 doi: 10.1016/j.electacta.2020.135642 – volume: 17 start-page: 100475 year: 2020 ident: e_1_2_8_44_1 publication-title: Mater. Today – ident: e_1_2_8_37_1 doi: 10.1002/cssc.201801657 – ident: e_1_2_8_27_2 doi: 10.1002/ange.202010828 – ident: e_1_2_8_26_1 doi: 10.1016/j.nanoen.2019.05.042 – ident: e_1_2_8_15_2 doi: 10.1002/ange.202012322 – ident: e_1_2_8_14_1 doi: 10.1002/adma.202003021 – ident: e_1_2_8_28_2 doi: 10.1002/ange.201907830 – ident: e_1_2_8_4_1 doi: 10.1002/anie.201904174 – ident: e_1_2_8_21_1 doi: 10.1016/j.joule.2019.02.012 – ident: e_1_2_8_1_1 doi: 10.1002/aenm.202001310 – ident: e_1_2_8_42_1 doi: 10.1002/advs.202100309 – ident: e_1_2_8_13_1 doi: 10.1002/aenm.202001599 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-020-18284-0 – volume: 132 start-page: 16737 year: 2020 ident: e_1_2_8_7_2 publication-title: Angew. Chem. doi: 10.1002/ange.202005472 – ident: e_1_2_8_18_1 doi: 10.1039/D0EE00723D – ident: e_1_2_8_6_1 doi: 10.1038/s41467-020-17752-x – ident: e_1_2_8_27_1 doi: 10.1002/anie.202010828 – ident: e_1_2_8_15_1 doi: 10.1002/anie.202012322 – ident: e_1_2_8_17_1 doi: 10.1021/acsami.8b04085 – ident: e_1_2_8_33_1 doi: 10.1021/acsami.6b16560 – ident: e_1_2_8_32_1 doi: 10.1039/D0TA00748J – ident: e_1_2_8_36_1 doi: 10.1002/smll.201804760 – ident: e_1_2_8_4_2 doi: 10.1002/ange.201904174 – ident: e_1_2_8_40_1 doi: 10.1039/C9EE00596J – ident: e_1_2_8_5_1 doi: 10.1039/C9EE03545A – ident: e_1_2_8_7_1 doi: 10.1002/anie.202005472 – volume: 18 start-page: 100548 year: 2020 ident: e_1_2_8_43_1 publication-title: Mater. Today – ident: e_1_2_8_3_1 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_8_19_1 doi: 10.1038/s41467-020-15478-4 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201300226 – ident: e_1_2_8_39_1 doi: 10.1016/j.electacta.2019.134565 – ident: e_1_2_8_16_2 doi: 10.1002/ange.202001844 – ident: e_1_2_8_12_1 doi: 10.1039/D0EE02079F – ident: e_1_2_8_20_1 doi: 10.1002/smll.202001323 – ident: e_1_2_8_24_1 doi: 10.1016/j.joule.2020.05.018 – ident: e_1_2_8_23_1 doi: 10.1002/anie.202105756 – ident: e_1_2_8_35_1 doi: 10.1002/eem2.12067 – ident: e_1_2_8_30_1 doi: 10.1039/D0EE01538E |
SSID | ssj0001105386 |
Score | 2.3884015 |
Snippet | Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anode Aqueous zinc-ion batteries Corrosion Dendritic structure Electrochemical analysis Electrolytes Hydrogen bonds Lithium-ion batteries Low temperature Manganese dioxide Methanol Rechargeable batteries Solvation Zinc |
Title | Electrolyte Modification for Long‐Life Zn Ion Batteries: Achieved by Methanol Additive |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202101724 https://www.proquest.com/docview/2632129999 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4AL4ikKC_IBiUMVSBM7abhVpauySheJbbXRXqz4EW2kbhZBi7Sc-An8Rn4JM03spFJ55mClcWpLni_ON5N5EPJCF8r4Kog9BYDwGDa5DH0PuIA2owhLFmLs8Pwkmi3Zccaz1t12G12ylq_U171xJf8jVbgGcsUo2X-QrBsULsA5yBdakDC0fyXjaV3DZnW9xodTo9dP6zuYorOtdWVIy8IMzqvBO-isU2qWtTPcWF2U5ktNQ-cG7ehXIDOtSxt-6dIYXJjLZj48tYLKAF5ullNToZLvjNGl6_mwKQdnefOWRP-fsv3XzKANzAHseNN2nZlykG26lglQajHSu7VM7nH96fp3mu0mBxsmOkHX8ZZ2R046wGN79_k6b6wyK8xCGeC20ky8k1D75L04WqapWEyzxU1yEIAmEfTIwfjtPD1tDXHAMMNRZBN6-sHr3WF3CUurhXR1mS0ZWdwldxotgo5rSNwjN0x1n9ya2OJ9D0jWgQbtQoMCNChC48e37wgKel5RAAV1oHhDLSSovKYWEtRC4iFZHk0Xk5nXFNHwFFBD5g3lMOeJH-YsLqQvecJlkUulYvwinnAtYyDEo0QNeawjbVjMfBYroMVcAvPnLHxEetVVZR4TGulREfGhjIuEMxlIiWFeOQ9z0OFloXifeHalhGoyzGOhk5Woc2MHAldWuJXtk5fu_o91bpVf3nloF140z99ngZUGgK3C0SfBVhh_GEVMpunE_Xry-zGfktstpg9Jb_1pY54B_1zL5w2CfgJ58H8q |
linkProvider | EBSCOhost |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PdSL-MRq1T0InkLz2E0ab6W0VE17aqX0ErKPaKEkolXozZ_gb_SXuJNHaw8imEMgYbOB2Z3st5OZ7wO4krFQprA9Q-gJYVA8RdwxDY0FpGq5KFmItcODodsf07sJK7MJsRYm54dYBdzQM7LvNTo4BqSba9ZQoebIQWjjpLLpNlQR2rQqUG0_jKfjdaBFIwgnU3zUzokJt5ZbkjeadnOzk83FaY04f-LWbOHp7cFugRhJOx_ifdhSyQHUOqVQ2yFMurmUzXy5UGSQSkz-yexNNCAlQZo8fn18BrNYkWlCbvXtnFNTb5FvSFs8zdS7koQvyUBhGD3Vr5Iyyyg6gnGvO-r0jUIwwRAaBlDD4lbEfNOJqBdzkzOf8TjiQnj499Nnknsa_LR8YTFPulJRj5rUExoCMa5RHqPOMVSSNFEnQFzZil1mcS_2GeU251jSEzEn0vs1HgtWB6O0VCgKNnEUtZiHOQ-yHaJlw5Vl63C9av-c82j82rJRGj4s_Ok1RFZ5jUz0UQc7G4w_egk73aCzujr9z0OXUOuPBkEY3A7vz2DHxroHrGWnDagsXt7UuUYjC35RzLdv6GzUfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60BfUiPrFadQ-Cp9A8dpPGW6ktrbbFg5XSS8g-ooWSFK1Cb_4Ef6O_xJkkfR1EMIdAwmYDszPZbyc730fIlYqkNqXtGRIcwmB4CoVjGoAFlK66KFmItcPdntvqs7sBH6xU8Wf8EIuEG0ZG-r3GAJ-oqLIkDZV6jBSENvqUzTZJEanywK-Ltaf-sL_MswCAcFLBR4hN3G9ruXPuRtOurHeyPjctAecqbE3nneYe2c0BI61lI7xPNnR8QLbrc522QzJoZEo249lU026icO9Pam4KeJR2kvj5-_OrM4o0Hca0DbczSk1YId_QmnwZ6Q-tqJjRrsYsegKvUirdUHRE-s3GY71l5HoJhgQUwAxLWCH3TSdkXiRMwX0uolBI6eHPT58r4QH2qfrS4p5ylWYeM5knAQFxASCPM-eYFOIk1ieEuqoaudwSXuRzJmwhsKIn5E4IyzURSV4ixtxSgczJxFHTYhxkNMh2gJYNFpYtketF-0lGo_Fry_Lc8EEeTm8BksoDMIGjROx0MP7oJag3OvXF1el_HrokWw-3zaDT7t2fkR0bqx6wkp2VSWH6-q7PAYtMxUXubj-zW9Om |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrolyte+Modification+for+Long%E2%80%90Life+Zn+Ion+Batteries%3A+Achieved+by+Methanol+Additive&rft.jtitle=ChemElectroChem&rft.au=Xian%E2%80%90Sen+Lin&rft.au=Zi%E2%80%90Rui+Wang&rft.au=Lin%E2%80%90Heng+Ge&rft.au=Jun%E2%80%90Wei+Xu&rft.date=2022-02-24&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1002%2Fcelc.202101724&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |