Electrolyte Modification for Long‐Life Zn Ion Batteries: Achieved by Methanol Additive

Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 9; no. 4
Main Authors Lin, Xian‐Sen, Wang, Zi‐Rui, Ge, Lin‐Heng, Xu, Jun‐Wei, Ma, Wen‐Qing, Ren, Man‐Man, Liu, Wei‐Liang, Yao, Jin‐Shui, Zhang, Chang‐Bin
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 24.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn2+‐containing electrolyte for long‐life Zn ion batteries, was developed. Methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions. As a result, Zn/Zn symmetric cell shows a long‐term stability for over 480 h at 1 mA cm−2 with 1 mAh cm−2. In addition, full battery based on the MnO2 cathode exhibits an improved capacity retention after 100 cycles at 0.1 A g−1 and an excellent electrochemical performance at low temperature. Easy electrolyte modification: Methanol is first employed as additive for Zn2+‐containing electrolyte for long‐life Zn ion batteries. Here, methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions.
AbstractList Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn2+‐containing electrolyte for long‐life Zn ion batteries, was developed. Methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions. As a result, Zn/Zn symmetric cell shows a long‐term stability for over 480 h at 1 mA cm−2 with 1 mAh cm−2. In addition, full battery based on the MnO2 cathode exhibits an improved capacity retention after 100 cycles at 0.1 A g−1 and an excellent electrochemical performance at low temperature. Easy electrolyte modification: Methanol is first employed as additive for Zn2+‐containing electrolyte for long‐life Zn ion batteries. Here, methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions.
Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn2+‐containing electrolyte for long‐life Zn ion batteries, was developed. Methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn2+ ion in a manner of forming the [Zn(OH2)x(CH3OH)y]2+ cations. The interaction between Zn2+, methanol and water can effectively suppress the side reactions. As a result, Zn/Zn symmetric cell shows a long‐term stability for over 480 h at 1 mA cm−2 with 1 mAh cm−2. In addition, full battery based on the MnO2 cathode exhibits an improved capacity retention after 100 cycles at 0.1 A g−1 and an excellent electrochemical performance at low temperature.
Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their development. Here, inspired by the idea of electrolyte modification, a simple and low‐cost approach, that methanol is used as additive into Zn 2+ ‐containing electrolyte for long‐life Zn ion batteries, was developed. Methanol can mix with water in any ratio through the formation of hydrogen bonds, which participates in the solvation shell of Zn 2+ ion in a manner of forming the [Zn(OH 2 ) x (CH 3 OH) y ] 2+ cations. The interaction between Zn 2+ , methanol and water can effectively suppress the side reactions. As a result, Zn/Zn symmetric cell shows a long‐term stability for over 480 h at 1 mA cm −2 with 1 mAh cm −2 . In addition, full battery based on the MnO 2 cathode exhibits an improved capacity retention after 100 cycles at 0.1 A g −1 and an excellent electrochemical performance at low temperature.
Author Xu, Jun‐Wei
Zhang, Chang‐Bin
Yao, Jin‐Shui
Ren, Man‐Man
Wang, Zi‐Rui
Ma, Wen‐Qing
Liu, Wei‐Liang
Ge, Lin‐Heng
Lin, Xian‐Sen
Author_xml – sequence: 1
  givenname: Xian‐Sen
  surname: Lin
  fullname: Lin, Xian‐Sen
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 2
  givenname: Zi‐Rui
  surname: Wang
  fullname: Wang, Zi‐Rui
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 3
  givenname: Lin‐Heng
  surname: Ge
  fullname: Ge, Lin‐Heng
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 4
  givenname: Jun‐Wei
  surname: Xu
  fullname: Xu, Jun‐Wei
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 5
  givenname: Wen‐Qing
  surname: Ma
  fullname: Ma, Wen‐Qing
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 6
  givenname: Man‐Man
  surname: Ren
  fullname: Ren, Man‐Man
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 7
  givenname: Wei‐Liang
  surname: Liu
  fullname: Liu, Wei‐Liang
  email: wlliu@sdu.edu.cn
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 8
  givenname: Jin‐Shui
  surname: Yao
  fullname: Yao, Jin‐Shui
  organization: Qilu University of Technology (Shandong Academy of Sciences)
– sequence: 9
  givenname: Chang‐Bin
  surname: Zhang
  fullname: Zhang, Chang‐Bin
  organization: Chinese Academy of Sciences
BookMark eNqFkM9LwzAUx4NMcM5dPQc8dyZp0qzeZpk66PCiIF5CkqYuozYzzSa9-Sf4N_qX2DlREcR3eT94n_flfQ9Br3a1AeAYoxFGiJxqU-kRQQQjzAndA32C0yTq-qT3oz4Aw6ZZIoQwRiweJ31wN62MDt5VbTBw7gpbWi2DdTUsnYe5qx_eXl5zWxp4X8NZNz6XIRhvTXMGJ3phzcYUULVwbsJC1q6Ck6KwwW7MEdgvZdWY4WcegNuL6U12FeXXl7Nskkc6xpxGWGHJUhRLykuFFEuZKqXSmiOaoJQVilOKx6nGjBdJYSiniHKNWMJU3P1A4wE42d1defe0Nk0QS7f2dScpSBITTNIuuq3Rbkt71zTelGLl7aP0rcBIbA0UWwPFl4EdQH8B2oYPY4KXtvobS3fYs61M-4-IyKZ59s2-A6OFhn8
CitedBy_id crossref_primary_10_1007_s12598_024_02705_w
crossref_primary_10_1016_j_scriptamat_2023_115520
crossref_primary_10_1002_aenm_202203708
crossref_primary_10_1002_adfm_202402014
crossref_primary_10_1002_aenm_202405767
crossref_primary_10_1039_D3TA05809C
crossref_primary_10_1002_adma_202406093
crossref_primary_10_1016_j_cej_2023_141305
crossref_primary_10_1016_j_jcis_2022_10_127
crossref_primary_10_1016_j_nxmate_2024_100124
crossref_primary_10_1002_cnl2_183
crossref_primary_10_1039_D4TA02316A
crossref_primary_10_1002_aenm_202401407
crossref_primary_10_1002_tcr_202400142
crossref_primary_10_1016_j_nanoms_2022_10_004
crossref_primary_10_1021_acsnano_3c10469
crossref_primary_10_1016_j_ssi_2025_116790
crossref_primary_10_1021_acssuschemeng_3c04018
crossref_primary_10_1039_D2SC06276C
crossref_primary_10_1016_j_heliyon_2023_e18638
crossref_primary_10_3390_batteries8100153
crossref_primary_10_1007_s12598_023_02561_0
crossref_primary_10_1360_SSC_2024_0011
crossref_primary_10_1002_adfm_202209028
Cites_doi 10.1021/acs.chemrev.0c00767
10.1016/j.electacta.2017.12.041
10.1002/anie.202001844
10.1021/acsenergylett.0c01792
10.1002/celc.201800572
10.1038/ncomms11801
10.1021/jacs.0c09794
10.1016/j.jelechem.2021.115214
10.1002/anie.201907830
10.1021/cm504717p
10.1016/j.matchemphys.2017.12.017
10.1002/celc.202000253
10.1002/aenm.202003065
10.1039/D1TA03967A
10.1016/j.electacta.2020.135642
10.1002/cssc.201801657
10.1002/ange.202010828
10.1016/j.nanoen.2019.05.042
10.1002/ange.202012322
10.1002/adma.202003021
10.1002/ange.201907830
10.1002/anie.201904174
10.1016/j.joule.2019.02.012
10.1002/aenm.202001310
10.1002/advs.202100309
10.1002/aenm.202001599
10.1038/s41467-020-18284-0
10.1002/ange.202005472
10.1039/D0EE00723D
10.1038/s41467-020-17752-x
10.1002/anie.202010828
10.1002/anie.202012322
10.1021/acsami.8b04085
10.1021/acsami.6b16560
10.1039/D0TA00748J
10.1002/smll.201804760
10.1002/ange.201904174
10.1039/C9EE00596J
10.1039/C9EE03545A
10.1002/anie.202005472
10.1126/sciadv.aba4098
10.1038/s41467-020-15478-4
10.1002/adma.201300226
10.1016/j.electacta.2019.134565
10.1002/ange.202001844
10.1039/D0EE02079F
10.1002/smll.202001323
10.1016/j.joule.2020.05.018
10.1002/anie.202105756
10.1002/eem2.12067
10.1039/D0EE01538E
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.202101724
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage n/a
ExternalDocumentID 10_1002_celc_202101724
CELC202101724
Genre article
GrantInformation_xml – fundername: Scientific Research Foundation for the Returned Overseas Scholars
  funderid: 20100406
– fundername: National Training Program of Innovation and Entrepreneurship for Undergraduates
  funderid: 202110431012; S202010431012
– fundername: National Natural Science Foundations of China
  funderid: 31971605; 31570566; 31500489; 51403111; 51503107
– fundername: Qilu University of Technology
– fundername: Shandong Province Natural Science Foundation
  funderid: ZR2020QE012; ZR2020MC156; ZR2020ME078; ZR2018MEM012; ZZ20210121; ZZ20190107
– fundername: State Key Laboratory of Biobased Material and Green Papermaking
– fundername: Development Fund for Institutes and Universities
  funderid: 2020GXRC027
– fundername: Shandong Provincial Key R&D Program
  funderid: 2019GGX102066
– fundername: Qilu University of Technology International Cooperation Fund
  funderid: QLUTGJHZ2018025
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
CITATION
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3174-1b1a5903a47fb0b595bfabcc7046095db744189c157d6de474047c0565b310543
ISSN 2196-0216
IngestDate Fri Jul 25 12:01:40 EDT 2025
Thu Apr 24 22:51:32 EDT 2025
Tue Jul 01 01:11:10 EDT 2025
Sat Aug 24 00:57:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3174-1b1a5903a47fb0b595bfabcc7046095db744189c157d6de474047c0565b310543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2632129999
PQPubID 2034587
PageCount 8
ParticipantIDs proquest_journals_2632129999
crossref_primary_10_1002_celc_202101724
crossref_citationtrail_10_1002_celc_202101724
wiley_primary_10_1002_celc_202101724_CELC202101724
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 24, 2022
PublicationDateYYYYMMDD 2022-02-24
PublicationDate_xml – month: 02
  year: 2022
  text: February 24, 2022
  day: 24
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 9
2021; 8
2019; 3
2013; 25
2018; 260
2020; 142
2018; 206
2019; 12
2019; 15
2021; 888
2020 2020; 59 132
2020; 17
2020; 16
2020; 13
2020; 11
2020; 10
2021; 121
2020; 32
2017; 9
2019; 320
2019 2019; 58 131
2020; 18
2020; 8
2020; 7
2020; 6
2016; 7
2020; 5
2020; 4
2020; 3
2015; 27
2018; 5
2019; 62
2021; 11
2021 2021; 60 133
2020; 335
2021; 60
2018; 11
2018; 10
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_15_2
Huang J. (e_1_2_8_44_1) 2020; 17
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_27_2
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
Bi S. (e_1_2_8_43_1) 2020; 18
(e_1_2_8_7_2) 2020; 132
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_16_2
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 60 133
  start-page: 274 278
  year: 2021 2021
  end-page: 280 284
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 4463
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2839
  year: 2020
  end-page: 2848
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 3961
  year: 2020
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1289
  year: 2019
  end-page: 1300
  publication-title: Joule
– volume: 58 131
  start-page: 7823 7905
  year: 2019 2019
  end-page: 7828 7910
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 60 133
  start-page: 2861 2897
  year: 2021 2021
  end-page: 2865 2901
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 7836
  year: 2020
  end-page: 7846
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 335
  year: 2020
  publication-title: Electrochim. Acta
– volume: 5
  start-page: 2409
  year: 2018
  end-page: 2418
  publication-title: Chemelectrochem
– volume: 11
  start-page: 3996
  year: 2018
  end-page: 4006
  publication-title: ChemSusChem
– volume: 62
  start-page: 275
  year: 2019
  end-page: 281
  publication-title: Nano Energy
– volume: 9
  start-page: 9681
  year: 2017
  end-page: 9687
  publication-title: ACS Appl. Mater. Interfaces
– volume: 320
  year: 2019
  publication-title: Electrochim. Acta
– volume: 60
  start-page: 18247
  year: 2021
  end-page: 18255
  publication-title: Angew. Chem. Int. Ed.
– volume: 121
  start-page: 1623
  year: 2021
  end-page: 1669
  publication-title: Chem. Rev.
– volume: 260
  start-page: 246
  year: 2018
  end-page: 253
  publication-title: Electrochim. Acta
– volume: 15
  year: 2019
  publication-title: Small
– volume: 12
  start-page: 1938
  year: 2019
  end-page: 1949
  publication-title: Energy Environ. Sci.
– volume: 18
  year: 2020
  publication-title: Mater. Today
– volume: 13
  start-page: 503
  year: 2020
  end-page: 510
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 1557
  year: 2020
  end-page: 1574
  publication-title: Joule
– volume: 888
  year: 2021
  publication-title: J. Electroanal. Chem.
– volume: 25
  start-page: 2577
  year: 2013
  end-page: 2582
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3330
  year: 2020
  end-page: 3360
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 3609
  year: 2015
  end-page: 3620
  publication-title: Chem. Mater.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 59 132
  start-page: 16594 16737
  year: 2020 2020
  end-page: 16601 16744
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 142
  start-page: 21404
  year: 2020
  end-page: 21409
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 16814
  year: 2021
  end-page: 16823
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 146
  year: 2020
  end-page: 159
  publication-title: Energy Environ. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 13
  start-page: 3527
  year: 2020
  end-page: 3535
  publication-title: Energy Environ. Sci.
– volume: 17
  year: 2020
  publication-title: Mater. Today
– volume: 58 131
  start-page: 15841 15988
  year: 2019 2019
  end-page: 15847 15994
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 206
  start-page: 232
  year: 2018
  end-page: 242
  publication-title: Mater. Chem. Phys.
– volume: 59 132
  start-page: 9377 9463
  year: 2020 2020
  end-page: 9381 9467
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 11
  start-page: 1634
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2762
  year: 2020
  end-page: 2770
  publication-title: Chemelectrochem
– volume: 10
  start-page: 22059
  year: 2018
  end-page: 22066
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 3012
  year: 2020
  end-page: 3020
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 11801
  year: 2016
  publication-title: Nat. Commun.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.0c00767
– ident: e_1_2_8_31_1
  doi: 10.1016/j.electacta.2017.12.041
– ident: e_1_2_8_16_1
  doi: 10.1002/anie.202001844
– ident: e_1_2_8_22_1
  doi: 10.1021/acsenergylett.0c01792
– ident: e_1_2_8_8_1
  doi: 10.1002/celc.201800572
– ident: e_1_2_8_11_1
  doi: 10.1038/ncomms11801
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.0c09794
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jelechem.2021.115214
– ident: e_1_2_8_28_1
  doi: 10.1002/anie.201907830
– ident: e_1_2_8_45_1
  doi: 10.1021/cm504717p
– ident: e_1_2_8_38_1
  doi: 10.1016/j.matchemphys.2017.12.017
– ident: e_1_2_8_9_1
  doi: 10.1002/celc.202000253
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.202003065
– ident: e_1_2_8_41_1
  doi: 10.1039/D1TA03967A
– ident: e_1_2_8_46_1
  doi: 10.1016/j.electacta.2020.135642
– volume: 17
  start-page: 100475
  year: 2020
  ident: e_1_2_8_44_1
  publication-title: Mater. Today
– ident: e_1_2_8_37_1
  doi: 10.1002/cssc.201801657
– ident: e_1_2_8_27_2
  doi: 10.1002/ange.202010828
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nanoen.2019.05.042
– ident: e_1_2_8_15_2
  doi: 10.1002/ange.202012322
– ident: e_1_2_8_14_1
  doi: 10.1002/adma.202003021
– ident: e_1_2_8_28_2
  doi: 10.1002/ange.201907830
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.201904174
– ident: e_1_2_8_21_1
  doi: 10.1016/j.joule.2019.02.012
– ident: e_1_2_8_1_1
  doi: 10.1002/aenm.202001310
– ident: e_1_2_8_42_1
  doi: 10.1002/advs.202100309
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.202001599
– ident: e_1_2_8_29_1
  doi: 10.1038/s41467-020-18284-0
– volume: 132
  start-page: 16737
  year: 2020
  ident: e_1_2_8_7_2
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202005472
– ident: e_1_2_8_18_1
  doi: 10.1039/D0EE00723D
– ident: e_1_2_8_6_1
  doi: 10.1038/s41467-020-17752-x
– ident: e_1_2_8_27_1
  doi: 10.1002/anie.202010828
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.202012322
– ident: e_1_2_8_17_1
  doi: 10.1021/acsami.8b04085
– ident: e_1_2_8_33_1
  doi: 10.1021/acsami.6b16560
– ident: e_1_2_8_32_1
  doi: 10.1039/D0TA00748J
– ident: e_1_2_8_36_1
  doi: 10.1002/smll.201804760
– ident: e_1_2_8_4_2
  doi: 10.1002/ange.201904174
– ident: e_1_2_8_40_1
  doi: 10.1039/C9EE00596J
– ident: e_1_2_8_5_1
  doi: 10.1039/C9EE03545A
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.202005472
– volume: 18
  start-page: 100548
  year: 2020
  ident: e_1_2_8_43_1
  publication-title: Mater. Today
– ident: e_1_2_8_3_1
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-020-15478-4
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201300226
– ident: e_1_2_8_39_1
  doi: 10.1016/j.electacta.2019.134565
– ident: e_1_2_8_16_2
  doi: 10.1002/ange.202001844
– ident: e_1_2_8_12_1
  doi: 10.1039/D0EE02079F
– ident: e_1_2_8_20_1
  doi: 10.1002/smll.202001323
– ident: e_1_2_8_24_1
  doi: 10.1016/j.joule.2020.05.018
– ident: e_1_2_8_23_1
  doi: 10.1002/anie.202105756
– ident: e_1_2_8_35_1
  doi: 10.1002/eem2.12067
– ident: e_1_2_8_30_1
  doi: 10.1039/D0EE01538E
SSID ssj0001105386
Score 2.3884015
Snippet Although zinc‐ion batteries are regarded as important alternatives for Li‐ion batteries, the dendrite issues and side reactions are major obstacles for their...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anode
Aqueous zinc-ion batteries
Corrosion
Dendritic structure
Electrochemical analysis
Electrolytes
Hydrogen bonds
Lithium-ion batteries
Low temperature
Manganese dioxide
Methanol
Rechargeable batteries
Solvation
Zinc
Title Electrolyte Modification for Long‐Life Zn Ion Batteries: Achieved by Methanol Additive
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202101724
https://www.proquest.com/docview/2632129999
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4AL4ikKC_IBiUMVSBM7abhVpauySheJbbXRXqz4EW2kbhZBi7Sc-An8Rn4JM03spFJ55mClcWpLni_ON5N5EPJCF8r4Kog9BYDwGDa5DH0PuIA2owhLFmLs8Pwkmi3Zccaz1t12G12ylq_U171xJf8jVbgGcsUo2X-QrBsULsA5yBdakDC0fyXjaV3DZnW9xodTo9dP6zuYorOtdWVIy8IMzqvBO-isU2qWtTPcWF2U5ktNQ-cG7ehXIDOtSxt-6dIYXJjLZj48tYLKAF5ullNToZLvjNGl6_mwKQdnefOWRP-fsv3XzKANzAHseNN2nZlykG26lglQajHSu7VM7nH96fp3mu0mBxsmOkHX8ZZ2R046wGN79_k6b6wyK8xCGeC20ky8k1D75L04WqapWEyzxU1yEIAmEfTIwfjtPD1tDXHAMMNRZBN6-sHr3WF3CUurhXR1mS0ZWdwldxotgo5rSNwjN0x1n9ya2OJ9D0jWgQbtQoMCNChC48e37wgKel5RAAV1oHhDLSSovKYWEtRC4iFZHk0Xk5nXFNHwFFBD5g3lMOeJH-YsLqQvecJlkUulYvwinnAtYyDEo0QNeawjbVjMfBYroMVcAvPnLHxEetVVZR4TGulREfGhjIuEMxlIiWFeOQ9z0OFloXifeHalhGoyzGOhk5Woc2MHAldWuJXtk5fu_o91bpVf3nloF140z99ngZUGgK3C0SfBVhh_GEVMpunE_Xry-zGfktstpg9Jb_1pY54B_1zL5w2CfgJ58H8q
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PdSL-MRq1T0InkLz2E0ab6W0VE17aqX0ErKPaKEkolXozZ_gb_SXuJNHaw8imEMgYbOB2Z3st5OZ7wO4krFQprA9Q-gJYVA8RdwxDY0FpGq5KFmItcODodsf07sJK7MJsRYm54dYBdzQM7LvNTo4BqSba9ZQoebIQWjjpLLpNlQR2rQqUG0_jKfjdaBFIwgnU3zUzokJt5ZbkjeadnOzk83FaY04f-LWbOHp7cFugRhJOx_ifdhSyQHUOqVQ2yFMurmUzXy5UGSQSkz-yexNNCAlQZo8fn18BrNYkWlCbvXtnFNTb5FvSFs8zdS7koQvyUBhGD3Vr5Iyyyg6gnGvO-r0jUIwwRAaBlDD4lbEfNOJqBdzkzOf8TjiQnj499Nnknsa_LR8YTFPulJRj5rUExoCMa5RHqPOMVSSNFEnQFzZil1mcS_2GeU251jSEzEn0vs1HgtWB6O0VCgKNnEUtZiHOQ-yHaJlw5Vl63C9av-c82j82rJRGj4s_Ok1RFZ5jUz0UQc7G4w_egk73aCzujr9z0OXUOuPBkEY3A7vz2DHxroHrGWnDagsXt7UuUYjC35RzLdv6GzUfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60BfUiPrFadQ-Cp9A8dpPGW6ktrbbFg5XSS8g-ooWSFK1Cb_4Ef6O_xJkkfR1EMIdAwmYDszPZbyc730fIlYqkNqXtGRIcwmB4CoVjGoAFlK66KFmItcPdntvqs7sBH6xU8Wf8EIuEG0ZG-r3GAJ-oqLIkDZV6jBSENvqUzTZJEanywK-Ltaf-sL_MswCAcFLBR4hN3G9ruXPuRtOurHeyPjctAecqbE3nneYe2c0BI61lI7xPNnR8QLbrc522QzJoZEo249lU026icO9Pam4KeJR2kvj5-_OrM4o0Hca0DbczSk1YId_QmnwZ6Q-tqJjRrsYsegKvUirdUHRE-s3GY71l5HoJhgQUwAxLWCH3TSdkXiRMwX0uolBI6eHPT58r4QH2qfrS4p5ylWYeM5knAQFxASCPM-eYFOIk1ieEuqoaudwSXuRzJmwhsKIn5E4IyzURSV4ixtxSgczJxFHTYhxkNMh2gJYNFpYtketF-0lGo_Fry_Lc8EEeTm8BksoDMIGjROx0MP7oJag3OvXF1el_HrokWw-3zaDT7t2fkR0bqx6wkp2VSWH6-q7PAYtMxUXubj-zW9Om
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrolyte+Modification+for+Long%E2%80%90Life+Zn+Ion+Batteries%3A+Achieved+by+Methanol+Additive&rft.jtitle=ChemElectroChem&rft.au=Xian%E2%80%90Sen+Lin&rft.au=Zi%E2%80%90Rui+Wang&rft.au=Lin%E2%80%90Heng+Ge&rft.au=Jun%E2%80%90Wei+Xu&rft.date=2022-02-24&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=9&rft.issue=4&rft_id=info:doi/10.1002%2Fcelc.202101724&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon