Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in Front Sub‐Cell

The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is dev...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 29
Main Authors Liu, Gongchu, Xia, Ruoxi, Huang, Qiri, Zhang, Kai, Hu, Zhicheng, Jia, Tao, Liu, Xiang, Yip, Hin‐Lap, Huang, Fei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub‐cell in such TOSCs can be reduced by increasing the proportion of a non‐fullerene acceptor in the active layer. The non‐fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub‐cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub‐cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine‐turning of the composition in the front sub‐cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained. An effective strategy to simultaneously obtain high photocurrent and fill factor in tandem organic solar cells is presented. By increasing the proportion of the non‐fullerene acceptor with strong absorption in the front sub‐cell, maximum photocurrent can be obtained without significantly increasing the thickness of the front sub‐cell, thus ensuring a high fill factor and high photocurrent in device, with a power conversion efficiency over 18%.
AbstractList The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub‐cell in such TOSCs can be reduced by increasing the proportion of a non‐fullerene acceptor in the active layer. The non‐fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub‐cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub‐cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine‐turning of the composition in the front sub‐cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained.
The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub‐cell in such TOSCs can be reduced by increasing the proportion of a non‐fullerene acceptor in the active layer. The non‐fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub‐cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub‐cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine‐turning of the composition in the front sub‐cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained. An effective strategy to simultaneously obtain high photocurrent and fill factor in tandem organic solar cells is presented. By increasing the proportion of the non‐fullerene acceptor with strong absorption in the front sub‐cell, maximum photocurrent can be obtained without significantly increasing the thickness of the front sub‐cell, thus ensuring a high fill factor and high photocurrent in device, with a power conversion efficiency over 18%.
Author Huang, Qiri
Liu, Xiang
Xia, Ruoxi
Hu, Zhicheng
Liu, Gongchu
Huang, Fei
Jia, Tao
Yip, Hin‐Lap
Zhang, Kai
Author_xml – sequence: 1
  givenname: Gongchu
  surname: Liu
  fullname: Liu, Gongchu
  organization: South China University of Technology
– sequence: 2
  givenname: Ruoxi
  surname: Xia
  fullname: Xia, Ruoxi
  organization: South China University of Technology
– sequence: 3
  givenname: Qiri
  surname: Huang
  fullname: Huang, Qiri
  organization: South China University of Technology
– sequence: 4
  givenname: Kai
  surname: Zhang
  fullname: Zhang, Kai
  email: mszhangk@scut.edu.cn
  organization: South China University of Technology
– sequence: 5
  givenname: Zhicheng
  surname: Hu
  fullname: Hu, Zhicheng
  organization: South China University of Technology
– sequence: 6
  givenname: Tao
  surname: Jia
  fullname: Jia, Tao
  organization: South China University of Technology
– sequence: 7
  givenname: Xiang
  surname: Liu
  fullname: Liu, Xiang
  organization: South China University of Technology
– sequence: 8
  givenname: Hin‐Lap
  surname: Yip
  fullname: Yip, Hin‐Lap
  organization: South China University of Technology
– sequence: 9
  givenname: Fei
  orcidid: 0000-0001-9665-6642
  surname: Huang
  fullname: Huang, Fei
  email: msfhuang@scut.edu.cn
  organization: South China University of Technology
BookMark eNqFkMtKw0AUhgepYFvduh4Ql4lzSXNZltiqUCnYCu7CTGbSTklm4kxKyc5H8Bl9ElMrFQRxdS783_k5_wD0tNESgEuMfIwQuWGiqHyCCEaUxPQE9HGIQ48iEveOPX45AwPnNgjhKKJBHzRLpoWs4NyumFY5XJiSWZjKsnRwp5o1xLEfXcNJUahcSZ23cKIZL6WAvIWLbV1b6ZzSK9isJUzXzK4kfJK5qbjSrFFGQ6Xh1BrddGr-8fa-P30OTgtWOnnxXYfgeTpZpvfebH73kI5nXk5xRD0R50nACS04Id0GUY4jMSLdGKCEIM4CUiQxi0QUxYLTkHGJqRCBlBxhnlA6BFeHu7U1r1vpmmxjtlZ3lhkZjbqgQhTiTuUfVLk1zllZZLVVFbNthlG2TzbbJ5sdk-2A4BeQq-br2cYyVf6NJQdsp0rZ_mOSjW-njz_sJ4tCkDM
CitedBy_id crossref_primary_10_1007_s12274_023_6293_7
crossref_primary_10_3389_fphot_2022_891565
crossref_primary_10_1002_solr_202300728
crossref_primary_10_1007_s10854_023_10944_3
crossref_primary_10_1002_adma_202110155
crossref_primary_10_1021_acsenergylett_1c01482
crossref_primary_10_1021_acsaem_2c02395
crossref_primary_10_1039_D2TA02139K
crossref_primary_10_3390_en16165868
crossref_primary_10_1021_acsenergylett_1c01289
crossref_primary_10_1021_acsami_2c21776
crossref_primary_10_3390_en14227604
crossref_primary_10_1002_adfm_202212260
crossref_primary_10_1016_j_cej_2024_156887
crossref_primary_10_1002_chem_202102252
crossref_primary_10_3390_ma17081875
crossref_primary_10_1002_aesr_202200179
crossref_primary_10_1016_j_joule_2021_12_017
crossref_primary_10_1016_j_nanoen_2022_107187
crossref_primary_10_1039_D1TA10707K
crossref_primary_10_1002_smtd_202201255
crossref_primary_10_1021_acs_chemrev_1c00955
crossref_primary_10_1039_D1TC04981J
crossref_primary_10_1039_D3NJ00283G
crossref_primary_10_1007_s10118_022_2803_4
crossref_primary_10_1002_adfm_202106735
crossref_primary_10_1007_s11426_022_1479_x
crossref_primary_10_1039_D1TC03793E
crossref_primary_10_1002_smll_202405925
crossref_primary_10_1002_solr_202100868
crossref_primary_10_1021_acsami_2c06760
crossref_primary_10_1002_aenm_202202503
crossref_primary_10_1021_acsenergylett_2c02153
crossref_primary_10_1002_solr_202100705
crossref_primary_10_1002_adfm_202108797
crossref_primary_10_1002_adma_202501653
crossref_primary_10_1002_adma_202200361
crossref_primary_10_1021_acsaem_1c02067
crossref_primary_10_1021_acs_macromol_2c00300
crossref_primary_10_1039_D1TA05697B
crossref_primary_10_1021_acsami_2c12154
crossref_primary_10_1002_smll_202104623
crossref_primary_10_1021_acs_langmuir_2c01952
crossref_primary_10_1016_j_orgel_2022_106633
crossref_primary_10_1002_adma_202109516
crossref_primary_10_1063_5_0187765
crossref_primary_10_1021_acsomega_2c05141
crossref_primary_10_1021_acsami_1c12028
crossref_primary_10_1016_j_orgel_2021_106340
crossref_primary_10_3390_en14144200
crossref_primary_10_3390_molecules27061800
crossref_primary_10_1039_D1TC03110D
crossref_primary_10_1515_ijcre_2023_0117
crossref_primary_10_1016_j_solener_2021_12_009
crossref_primary_10_1002_adfm_202200807
crossref_primary_10_26599_EMD_2024_9370033
crossref_primary_10_1039_D3TA04901A
crossref_primary_10_1002_advs_202410826
crossref_primary_10_1021_acsami_1c11332
crossref_primary_10_1002_adfm_202211385
crossref_primary_10_1002_adfm_202213324
crossref_primary_10_1002_adma_202108090
crossref_primary_10_1021_acsaem_4c00854
crossref_primary_10_1021_acsenergylett_4c01252
crossref_primary_10_1007_s00339_023_06533_0
crossref_primary_10_1039_D1TC04224F
crossref_primary_10_1021_acsaem_1c02277
crossref_primary_10_1002_adfm_202204720
crossref_primary_10_1039_D1TC03409J
crossref_primary_10_1002_aenm_202304477
crossref_primary_10_1038_s41467_021_26995_1
crossref_primary_10_1002_adma_202107476
crossref_primary_10_1021_acs_macromol_4c02123
crossref_primary_10_1002_adfm_202400131
crossref_primary_10_1002_adfm_202306471
crossref_primary_10_1002_qua_27344
crossref_primary_10_1039_D3EE00294B
crossref_primary_10_1002_solr_202100806
crossref_primary_10_1002_advs_202200445
crossref_primary_10_1088_1674_4926_42_11_110201
crossref_primary_10_1002_cjoc_202200662
crossref_primary_10_1088_2752_5724_acd6ab
crossref_primary_10_1021_acs_accounts_1c00749
crossref_primary_10_1021_acsami_1c22784
crossref_primary_10_1016_j_ijleo_2022_169730
crossref_primary_10_1039_D2TA06706D
crossref_primary_10_1002_aelm_202101316
crossref_primary_10_1002_solr_202300642
crossref_primary_10_1007_s12613_024_2903_y
crossref_primary_10_1039_D1EE03673D
crossref_primary_10_1039_D2EE03134E
crossref_primary_10_1021_acsami_1c23196
crossref_primary_10_1021_acsnano_4c11888
crossref_primary_10_1002_adma_202212236
crossref_primary_10_1016_j_orgel_2022_106532
Cites_doi 10.1002/admi.201700776
10.1038/s41560-019-0448-5
10.1016/j.scib.2017.11.003
10.1002/aenm.202001203
10.1002/aenm.201601959
10.1002/anie.201610944
10.1126/science.aat2612
10.1021/acs.accounts.0c00157
10.1002/advs.201802028
10.1016/j.solener.2020.01.042
10.1063/1.2719668
10.1002/adma.201906129
10.1021/acsphotonics.7b01096
10.1038/nphoton.2012.11
10.1002/solr.201700169
10.1039/C4EE03048F
10.1016/j.joule.2020.07.028
10.1021/acsami.0c09909
10.1002/advs.201500362
10.1039/C5EE02145F
10.1016/j.solener.2020.02.035
10.1126/science.1141711
10.1016/j.scib.2017.10.017
10.1039/C5EE02871J
10.1002/adma.201600373
10.1038/s41560-018-0134-z
10.1021/jacs.7b01493
10.1002/aenm.201703180
10.1002/adfm.201907570
10.1002/sstr.202000016
10.1002/aenm.202000746
10.1002/adma.202002315
10.1021/acs.chemmater.9b03694
10.1038/ncomms2411
10.1002/smll.201902598
10.1002/adma.201606340
10.1039/C7TA06631G
10.1016/j.joule.2018.11.011
10.1016/j.joule.2017.09.020
10.1007/s11426-016-9008-1
10.1002/adma.201703973
10.1021/jacs.5b12664
10.1002/solr.202000255
10.1038/ncomms8083
10.1002/aenm.201801609
10.1021/jp050745x
10.1002/adma.201402782
10.1002/adma.201704051
10.1002/aenm.201903800
10.1038/s41467-019-12132-6
10.1038/s41467-019-10351-5
10.1002/adma.201903441
10.1039/D0TC00161A
10.1002/aenm.201803657
10.1021/ja506265h
10.1038/nphoton.2016.240
10.1002/adma.201806499
10.1002/adma.201506270
10.1021/nl401758g
10.1002/adma.201706816
10.1002/adma.201402072
10.1002/adma.201908205
10.1038/s41467-020-20431-6
10.1002/aenm.202000823
10.1002/adfm.200305049
10.1016/j.joule.2019.01.004
10.1002/adma.201707508
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202103283
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202103283
ADFM202103283
Genre article
GrantInformation_xml – fundername: Distinguished Young Scientists Program of Guangdong Province
  funderid: 2019B151502021
– fundername: Natural Science Foundation of China
  funderid: 21875073
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0705900
– fundername: Basic and Applied Basic Research Major Program of Guangdong Province
  funderid: 2019B030302007
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3173-d8c94b23fb22c3103b17d52fb240920ba42f98a7d778db36abe13dd4eeb01b933
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:09:47 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 04:12:30 EDT 2025
Wed Jan 22 16:28:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3173-d8c94b23fb22c3103b17d52fb240920ba42f98a7d778db36abe13dd4eeb01b933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9665-6642
PQID 2552106061
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2552106061
crossref_primary_10_1002_adfm_202103283
crossref_citationtrail_10_1002_adfm_202103283
wiley_primary_10_1002_adfm_202103283_ADFM202103283
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018 2016 2018 2020; 30 9 2 4
2017; 62
2016 2014; 28 26
2018 2017; 30 29
2017 2017; 29 5
2019 2013 2017; 31 4 139
2019 2018; 10 8
2007; 90
2020 2019 2019 2014 2017 2017 2021; 32 4 9 136 56 62 12
2020; 32
2017 2016; 60 3
2017 2020; 4 8
2020 2018 2020 2020 2018 2017; 12 361 10 198 30 11
2019 2020; 3 10
2018; 8
2018; 3
2007; 317
2015 2014; 8 26
2005; 109
2020 2020 2019 2019 2020 2015 2019 2020; 53 32 3 10 30 6 6 10
2016; 138
2015 2016 2017 2017 2020; 8 28 4 7 10
2012 2019 2018 2019 2020; 6 31 2 15 4
2020 2020; 201 1
2004 2013; 14 13
e_1_2_8_24_1
e_1_2_8_24_2
e_1_2_8_26_1
e_1_2_8_3_8
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_1_5
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_3_5
e_1_2_8_5_3
e_1_2_8_7_1
e_1_2_8_3_4
e_1_2_8_5_2
e_1_2_8_3_7
e_1_2_8_9_1
e_1_2_8_3_6
e_1_2_8_20_1
e_1_2_8_20_2
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_17_2
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_11_1
e_1_2_8_11_2
e_1_2_8_25_1
e_1_2_8_8_4
e_1_2_8_6_5
e_1_2_8_8_3
e_1_2_8_8_6
e_1_2_8_8_5
e_1_2_8_8_7
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_4_6
e_1_2_8_6_4
e_1_2_8_8_2
e_1_2_8_4_5
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_18_1
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_12_1
References_xml – volume: 12 361 10 198 30 11
  start-page: 1094 160 85
  year: 2020 2018 2020 2020 2018 2017
  publication-title: ACS Appl. Mater. Interfaces Science Adv. Energy Mater. Sol. Energy Adv. Mater. Nat. Photonics
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 62
  start-page: 1562
  year: 2017
  publication-title: Sci. Bull.
– volume: 10 8
  start-page: 4100
  year: 2019 2018
  publication-title: Nat. Commun. Adv. Energy Mater.
– volume: 6 31 2 15 4
  start-page: 153 2004
  year: 2012 2019 2018 2019 2020
  publication-title: Nat. Photonics Adv. Mater. Sol. RRL Small Joule
– volume: 29 5
  year: 2017 2017
  publication-title: Adv. Mater. J. Mater. Chem. A
– volume: 53 32 3 10 30 6 6 10
  start-page: 1218 1140 2515 7083
  year: 2020 2020 2019 2019 2020 2015 2019 2020
  publication-title: Acc. Chem. Res. Adv. Mater. Joule Nat. Commun. Adv. Funct. Mater. Nat. Commun. Adv. Sci. Adv. Energy Mater.
– volume: 109
  start-page: 9505
  year: 2005
  publication-title: J. Phys. Chem. B
– volume: 138
  start-page: 2004
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 201 1
  start-page: 28
  year: 2020 2020
  publication-title: Sol. Energy Small Struct.
– volume: 3 10
  start-page: 432
  year: 2019 2020
  publication-title: Joule Adv. Energy Mater.
– volume: 31 4 139
  start-page: 1446 7302
  year: 2019 2013 2017
  publication-title: Adv. Mater. Nat. Commun. J. Am. Chem. Soc.
– volume: 3
  start-page: 422
  year: 2018
  publication-title: Nat. Energy
– volume: 8 26
  start-page: 303 5670
  year: 2015 2014
  publication-title: Energy Environ. Sci. Adv. Mater.
– volume: 8 28 4 7 10
  start-page: 2902 4817
  year: 2015 2016 2017 2017 2020
  publication-title: Energy Environ. Sci. Adv. Mater. Adv. Mater. Interfaces Adv. Energy Mater. Adv. Energy Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 32
  start-page: 1022
  year: 2020
  publication-title: Chem. Mater.
– volume: 28 26
  start-page: 5133 6778
  year: 2016 2014
  publication-title: Adv. Mater. Adv. Mater.
– volume: 317
  start-page: 222
  year: 2007
  publication-title: Science
– volume: 30 9 2 4
  start-page: 391 25
  year: 2018 2016 2018 2020
  publication-title: Adv. Mater. Energy Environ. Sci. Joule Sol. RRL
– volume: 30 29
  year: 2018 2017
  publication-title: Adv. Mater. Adv. Mater.
– volume: 32 4 9 136 56 62 12
  start-page: 768 3045 1494 178
  year: 2020 2019 2019 2014 2017 2017 2021
  publication-title: Adv. Mater. Nat. Energy Adv. Energy Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Sci. Bull. Nat. Commun.
– volume: 14 13
  start-page: 425 3796
  year: 2004 2013
  publication-title: Adv. Funct. Mater. Nano Lett.
– volume: 4 8
  start-page: 2952
  year: 2017 2020
  publication-title: ACS Photonics J. Mater. Chem. C
– volume: 60 3
  start-page: 460
  year: 2017 2016
  publication-title: Sci. China Chem. Adv. Sci.
– ident: e_1_2_8_6_3
  doi: 10.1002/admi.201700776
– ident: e_1_2_8_8_2
  doi: 10.1038/s41560-019-0448-5
– ident: e_1_2_8_16_1
  doi: 10.1016/j.scib.2017.11.003
– ident: e_1_2_8_3_8
  doi: 10.1002/aenm.202001203
– ident: e_1_2_8_6_4
  doi: 10.1002/aenm.201601959
– ident: e_1_2_8_8_5
  doi: 10.1002/anie.201610944
– ident: e_1_2_8_4_2
  doi: 10.1126/science.aat2612
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.accounts.0c00157
– ident: e_1_2_8_3_7
  doi: 10.1002/advs.201802028
– ident: e_1_2_8_4_4
  doi: 10.1016/j.solener.2020.01.042
– ident: e_1_2_8_19_1
  doi: 10.1063/1.2719668
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201906129
– ident: e_1_2_8_18_1
  doi: 10.1021/acsphotonics.7b01096
– ident: e_1_2_8_1_1
  doi: 10.1038/nphoton.2012.11
– ident: e_1_2_8_1_3
  doi: 10.1002/solr.201700169
– ident: e_1_2_8_20_1
  doi: 10.1039/C4EE03048F
– ident: e_1_2_8_1_5
  doi: 10.1016/j.joule.2020.07.028
– ident: e_1_2_8_4_1
  doi: 10.1021/acsami.0c09909
– ident: e_1_2_8_17_2
  doi: 10.1002/advs.201500362
– ident: e_1_2_8_6_1
  doi: 10.1039/C5EE02145F
– ident: e_1_2_8_10_1
  doi: 10.1016/j.solener.2020.02.035
– ident: e_1_2_8_23_1
  doi: 10.1126/science.1141711
– ident: e_1_2_8_8_6
  doi: 10.1016/j.scib.2017.10.017
– ident: e_1_2_8_2_2
  doi: 10.1039/C5EE02871J
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201600373
– ident: e_1_2_8_14_1
  doi: 10.1038/s41560-018-0134-z
– ident: e_1_2_8_5_3
  doi: 10.1021/jacs.7b01493
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.201703180
– ident: e_1_2_8_3_5
  doi: 10.1002/adfm.201907570
– ident: e_1_2_8_10_2
  doi: 10.1002/sstr.202000016
– ident: e_1_2_8_4_3
  doi: 10.1002/aenm.202000746
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202002315
– ident: e_1_2_8_15_1
  doi: 10.1021/acs.chemmater.9b03694
– ident: e_1_2_8_5_2
  doi: 10.1038/ncomms2411
– ident: e_1_2_8_1_4
  doi: 10.1002/smll.201902598
– ident: e_1_2_8_9_2
  doi: 10.1002/adma.201606340
– ident: e_1_2_8_24_2
  doi: 10.1039/C7TA06631G
– ident: e_1_2_8_11_1
  doi: 10.1016/j.joule.2018.11.011
– ident: e_1_2_8_2_3
  doi: 10.1016/j.joule.2017.09.020
– ident: e_1_2_8_17_1
  doi: 10.1007/s11426-016-9008-1
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201703973
– ident: e_1_2_8_25_1
  doi: 10.1021/jacs.5b12664
– ident: e_1_2_8_2_4
  doi: 10.1002/solr.202000255
– ident: e_1_2_8_3_6
  doi: 10.1038/ncomms8083
– ident: e_1_2_8_22_2
  doi: 10.1002/aenm.201801609
– ident: e_1_2_8_26_1
  doi: 10.1021/jp050745x
– ident: e_1_2_8_12_2
  doi: 10.1002/adma.201402782
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201704051
– ident: e_1_2_8_6_5
  doi: 10.1002/aenm.201903800
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-019-12132-6
– ident: e_1_2_8_3_4
  doi: 10.1038/s41467-019-10351-5
– ident: e_1_2_8_1_2
  doi: 10.1002/adma.201903441
– ident: e_1_2_8_18_2
  doi: 10.1039/D0TC00161A
– ident: e_1_2_8_8_3
  doi: 10.1002/aenm.201803657
– ident: e_1_2_8_8_4
  doi: 10.1021/ja506265h
– ident: e_1_2_8_4_6
  doi: 10.1038/nphoton.2016.240
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.201806499
– ident: e_1_2_8_6_2
  doi: 10.1002/adma.201506270
– ident: e_1_2_8_21_2
  doi: 10.1021/nl401758g
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201706816
– ident: e_1_2_8_20_2
  doi: 10.1002/adma.201402072
– ident: e_1_2_8_3_2
  doi: 10.1002/adma.201908205
– ident: e_1_2_8_8_7
  doi: 10.1038/s41467-020-20431-6
– ident: e_1_2_8_11_2
  doi: 10.1002/aenm.202000823
– ident: e_1_2_8_21_1
  doi: 10.1002/adfm.200305049
– ident: e_1_2_8_3_3
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_8_4_5
  doi: 10.1002/adma.201707508
SSID ssj0017734
Score 2.6239133
Snippet The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorptivity
charge recombination
Energy conversion efficiency
fill factor
Fullerenes
high efficiency
interconnecting layers
Materials science
Photoelectric effect
Photoelectric emission
Photovoltaic cells
Solar cells
tandem devices
Thickness
Zinc oxide
Title Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in Front Sub‐Cell
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202103283
https://www.proquest.com/docview/2552106061
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQLDDwjyh_8gBiSptc0jgZK9oKIcoArdQt8sVOhSgB0TLAxCPwjDwJPqdNCxJCgi1WbCv2nePv7LvvGDtGnYFW6DvSTaUThK7vRFIGDpHFIfgyRMt407kKz3vBRb_en4viL_ghygM3Whn2f00LXOKoNiMNlSqjSHKwjHBE90kOW4SKrkv-KE-I4lo59MjBy-tPWRtdqH1t_nVXmkHNecBqd5z2GpPTby0cTe6qz2Ospq_faBz_M5h1tjqBo7xR6M8GW9D5JluZIyncYuMunTPf8yJqM-U3ZAzzMz0cjjid4nIvqooT3rJcFBTIyVs2HktxfOGUNNR62uYDbqAmp9v9geZk9N4bm9yqBb_NeZt4FExt_Hh7p663Wa_d6p6dO5NcDU5qEIjvqCiNAyPcDAFSyl2GnlB1MEVjQIKLMoAsjqRQQkRGNUKJ2vOVCrRG18PY93fYYv6Q613GETIFISgUWRxAmsWxBgNs6pEAlYXarzBnKqsknRCZUz6NYVJQMENCs5mUs1lhp2X9x4LC48eaB1PRJ5OlPEqMzWVeGzvPqzCwMvyll6TRbHfK0t5fGu2zZXou3IIP2OL46VkfGvAzxiO21Gh2Lm-OrKJ_AviA_QI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAc-EekFNgDFSen9tjx2gcOVZMopU0PkEq5mR3vuqpIDSKpqnLqI_RVeBUegSdhZzd2WySEhNQDx7XHq_2Z2Z0Zz3wD8JpMhUZTHKiwVEGShnGQKZUEDBZHGKuUHOLNeD8dHSTvpr3pCnxvcmE8PkTrcGPJcOc1Czg7pDcvUUOVrjiVHB0kXFO_etecnVqrbf52p2-3eANxOJhsj4JlYYGgtNdlHOiszBM7kooQSy60RZHUPbRNa-1gSCrBKs-U1FJmdh6pIhPFWifGUBhRzj5Qe-rf4jLiDNfff98iVkVS-h_ZacQhZdG0wYkMcfP6eK_fg5fK7VUV2d1xw_vwo1kdH9ryqXuyoG757TfgyP9q-R7AvaXGLba8iDyEFVM_grtXcBgfw2LCrvRj4RNTS_GB7X2xbWazuWBHtYiyrtwQAwe3wbmqYuBSzrSgM8F1UV0wcX0orDYtOIDh0Ai264_pyDtbxVEthgwVYanp5_kFd_0EDm5k2k9htf5cm2cgCCuNKWqSVZ5gWeW5Qau79TKJukpN3IGgYY6iXGK1c8mQWeFRprHg3Sva3evAm5b-i0cp-SPlesNrxfK0mhfWrLSvrSkbdQAd0_yll2KrPxy3rbV_-egV3B5NxnvF3s7-7nO4w899FPQ6rC6-npgXVtdb0EsnXQI-3jQ__gIVjFmG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4hKqH2QAttxba0-FDUU5Zkko2TAwfEbgSloKoFaW-pHdsIsaSou6iiJx6BR-FV-gp9knrsTfiRqkqVOHB04lgee8aemcx8A_BOaoNayTgQYSWCJA3jIBMiCQgsTmIsUukQb3b30q2D5MOwN5yBqyYXxuNDtA43kgx3XpOAnyqzdg0aKpShTHJ0iHBN-eodff7DGm3j9e2-3eFVxGKwv7kVTOsKBJW9LeNAZVWe2IkYiVhRnS0ZcdVD27TGDoZSJGjyTHDFeWbJSIXUUaxUorUMI5mTC9Qe-o8sYTkVi-h_bgGrIs79f-w0ooiyaNjARIa4dnu-t6_Ba932pobsrrjiKfxqFsdHthx3zyayW_28gxv5kFbvGcxP9W224QVkAWZ0vQhPbqAwPofJPjnST5hPS63YF7L22aYejcaM3NQsyrp8lQ0c2AZlqrKBSzhTTJ4zqorqQonrQ2Z1aUbhC4eakVV_Io-8q5Ud1awgoAjbW_6-uKShX8DBvZD9Embrb7VeAibRKExRSW7yBCuT5xqt5tbLOCqT6rgDQcMbZTVFaqeCIaPSY0xjSbtXtrvXgfdt_1OPUfLXnssNq5XTs2pcWqPSvraGbNQBdDzzj1HKjX6x27Ze_c9HKzD3qV-UH7f3dl7DY3rsQ6CXYXby_Uy_sYreRL51ssXg632z4x-MfFg1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tandem+Organic+Solar+Cells+with+18.7%25+Efficiency+Enabled+by+Suppressing+the+Charge+Recombination+in+Front+Sub%E2%80%90Cell&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Gongchu&rft.au=Xia%2C+Ruoxi&rft.au=Huang%2C+Qiri&rft.au=Zhang%2C+Kai&rft.date=2021-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=29&rft_id=info:doi/10.1002%2Fadfm.202103283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202103283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon