Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in Front Sub‐Cell
The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is dev...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 29 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub‐cell in such TOSCs can be reduced by increasing the proportion of a non‐fullerene acceptor in the active layer. The non‐fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub‐cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub‐cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine‐turning of the composition in the front sub‐cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained.
An effective strategy to simultaneously obtain high photocurrent and fill factor in tandem organic solar cells is presented. By increasing the proportion of the non‐fullerene acceptor with strong absorption in the front sub‐cell, maximum photocurrent can be obtained without significantly increasing the thickness of the front sub‐cell, thus ensuring a high fill factor and high photocurrent in device, with a power conversion efficiency over 18%. |
---|---|
AbstractList | The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub‐cell in such TOSCs can be reduced by increasing the proportion of a non‐fullerene acceptor in the active layer. The non‐fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub‐cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub‐cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine‐turning of the composition in the front sub‐cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained. The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination enhancement of such devices and compromises their power conversion efficiency (PCE). In this work, an efficient interconnecting layer (ICL) is developed, with the structure ZnO NPs:PEI/PEI/PEDOT:PSS, which enables TOSCs with very good reproducibility. Then, it is discovered that the optimal thickness of the front sub‐cell in such TOSCs can be reduced by increasing the proportion of a non‐fullerene acceptor in the active layer. The non‐fullerene acceptor used in this work has a much larger absorption coefficient than the donor in the front sub‐cell, and the absorption reduction of donor can be well complemented by that of the acceptor when increasing the acceptor proportion, thus leading to a significant overall absorption enhancement even with a thinner film. As a result, the optimal thickness of the front sub‐cell is reduced and its charge recombination is suppressed. Ultimately, the use of this ICL combined with fine‐turning of the composition in the front sub‐cell enables an efficient TOSC with a very high fill factor of 78% and an excellent PCE of 18.71% (certified by an accredited institute to be 18.09%) to be obtained. An effective strategy to simultaneously obtain high photocurrent and fill factor in tandem organic solar cells is presented. By increasing the proportion of the non‐fullerene acceptor with strong absorption in the front sub‐cell, maximum photocurrent can be obtained without significantly increasing the thickness of the front sub‐cell, thus ensuring a high fill factor and high photocurrent in device, with a power conversion efficiency over 18%. |
Author | Huang, Qiri Liu, Xiang Xia, Ruoxi Hu, Zhicheng Liu, Gongchu Huang, Fei Jia, Tao Yip, Hin‐Lap Zhang, Kai |
Author_xml | – sequence: 1 givenname: Gongchu surname: Liu fullname: Liu, Gongchu organization: South China University of Technology – sequence: 2 givenname: Ruoxi surname: Xia fullname: Xia, Ruoxi organization: South China University of Technology – sequence: 3 givenname: Qiri surname: Huang fullname: Huang, Qiri organization: South China University of Technology – sequence: 4 givenname: Kai surname: Zhang fullname: Zhang, Kai email: mszhangk@scut.edu.cn organization: South China University of Technology – sequence: 5 givenname: Zhicheng surname: Hu fullname: Hu, Zhicheng organization: South China University of Technology – sequence: 6 givenname: Tao surname: Jia fullname: Jia, Tao organization: South China University of Technology – sequence: 7 givenname: Xiang surname: Liu fullname: Liu, Xiang organization: South China University of Technology – sequence: 8 givenname: Hin‐Lap surname: Yip fullname: Yip, Hin‐Lap organization: South China University of Technology – sequence: 9 givenname: Fei orcidid: 0000-0001-9665-6642 surname: Huang fullname: Huang, Fei email: msfhuang@scut.edu.cn organization: South China University of Technology |
BookMark | eNqFkMtKw0AUhgepYFvduh4Ql4lzSXNZltiqUCnYCu7CTGbSTklm4kxKyc5H8Bl9ElMrFQRxdS783_k5_wD0tNESgEuMfIwQuWGiqHyCCEaUxPQE9HGIQ48iEveOPX45AwPnNgjhKKJBHzRLpoWs4NyumFY5XJiSWZjKsnRwp5o1xLEfXcNJUahcSZ23cKIZL6WAvIWLbV1b6ZzSK9isJUzXzK4kfJK5qbjSrFFGQ6Xh1BrddGr-8fa-P30OTgtWOnnxXYfgeTpZpvfebH73kI5nXk5xRD0R50nACS04Id0GUY4jMSLdGKCEIM4CUiQxi0QUxYLTkHGJqRCBlBxhnlA6BFeHu7U1r1vpmmxjtlZ3lhkZjbqgQhTiTuUfVLk1zllZZLVVFbNthlG2TzbbJ5sdk-2A4BeQq-br2cYyVf6NJQdsp0rZ_mOSjW-njz_sJ4tCkDM |
CitedBy_id | crossref_primary_10_1007_s12274_023_6293_7 crossref_primary_10_3389_fphot_2022_891565 crossref_primary_10_1002_solr_202300728 crossref_primary_10_1007_s10854_023_10944_3 crossref_primary_10_1002_adma_202110155 crossref_primary_10_1021_acsenergylett_1c01482 crossref_primary_10_1021_acsaem_2c02395 crossref_primary_10_1039_D2TA02139K crossref_primary_10_3390_en16165868 crossref_primary_10_1021_acsenergylett_1c01289 crossref_primary_10_1021_acsami_2c21776 crossref_primary_10_3390_en14227604 crossref_primary_10_1002_adfm_202212260 crossref_primary_10_1016_j_cej_2024_156887 crossref_primary_10_1002_chem_202102252 crossref_primary_10_3390_ma17081875 crossref_primary_10_1002_aesr_202200179 crossref_primary_10_1016_j_joule_2021_12_017 crossref_primary_10_1016_j_nanoen_2022_107187 crossref_primary_10_1039_D1TA10707K crossref_primary_10_1002_smtd_202201255 crossref_primary_10_1021_acs_chemrev_1c00955 crossref_primary_10_1039_D1TC04981J crossref_primary_10_1039_D3NJ00283G crossref_primary_10_1007_s10118_022_2803_4 crossref_primary_10_1002_adfm_202106735 crossref_primary_10_1007_s11426_022_1479_x crossref_primary_10_1039_D1TC03793E crossref_primary_10_1002_smll_202405925 crossref_primary_10_1002_solr_202100868 crossref_primary_10_1021_acsami_2c06760 crossref_primary_10_1002_aenm_202202503 crossref_primary_10_1021_acsenergylett_2c02153 crossref_primary_10_1002_solr_202100705 crossref_primary_10_1002_adfm_202108797 crossref_primary_10_1002_adma_202501653 crossref_primary_10_1002_adma_202200361 crossref_primary_10_1021_acsaem_1c02067 crossref_primary_10_1021_acs_macromol_2c00300 crossref_primary_10_1039_D1TA05697B crossref_primary_10_1021_acsami_2c12154 crossref_primary_10_1002_smll_202104623 crossref_primary_10_1021_acs_langmuir_2c01952 crossref_primary_10_1016_j_orgel_2022_106633 crossref_primary_10_1002_adma_202109516 crossref_primary_10_1063_5_0187765 crossref_primary_10_1021_acsomega_2c05141 crossref_primary_10_1021_acsami_1c12028 crossref_primary_10_1016_j_orgel_2021_106340 crossref_primary_10_3390_en14144200 crossref_primary_10_3390_molecules27061800 crossref_primary_10_1039_D1TC03110D crossref_primary_10_1515_ijcre_2023_0117 crossref_primary_10_1016_j_solener_2021_12_009 crossref_primary_10_1002_adfm_202200807 crossref_primary_10_26599_EMD_2024_9370033 crossref_primary_10_1039_D3TA04901A crossref_primary_10_1002_advs_202410826 crossref_primary_10_1021_acsami_1c11332 crossref_primary_10_1002_adfm_202211385 crossref_primary_10_1002_adfm_202213324 crossref_primary_10_1002_adma_202108090 crossref_primary_10_1021_acsaem_4c00854 crossref_primary_10_1021_acsenergylett_4c01252 crossref_primary_10_1007_s00339_023_06533_0 crossref_primary_10_1039_D1TC04224F crossref_primary_10_1021_acsaem_1c02277 crossref_primary_10_1002_adfm_202204720 crossref_primary_10_1039_D1TC03409J crossref_primary_10_1002_aenm_202304477 crossref_primary_10_1038_s41467_021_26995_1 crossref_primary_10_1002_adma_202107476 crossref_primary_10_1021_acs_macromol_4c02123 crossref_primary_10_1002_adfm_202400131 crossref_primary_10_1002_adfm_202306471 crossref_primary_10_1002_qua_27344 crossref_primary_10_1039_D3EE00294B crossref_primary_10_1002_solr_202100806 crossref_primary_10_1002_advs_202200445 crossref_primary_10_1088_1674_4926_42_11_110201 crossref_primary_10_1002_cjoc_202200662 crossref_primary_10_1088_2752_5724_acd6ab crossref_primary_10_1021_acs_accounts_1c00749 crossref_primary_10_1021_acsami_1c22784 crossref_primary_10_1016_j_ijleo_2022_169730 crossref_primary_10_1039_D2TA06706D crossref_primary_10_1002_aelm_202101316 crossref_primary_10_1002_solr_202300642 crossref_primary_10_1007_s12613_024_2903_y crossref_primary_10_1039_D1EE03673D crossref_primary_10_1039_D2EE03134E crossref_primary_10_1021_acsami_1c23196 crossref_primary_10_1021_acsnano_4c11888 crossref_primary_10_1002_adma_202212236 crossref_primary_10_1016_j_orgel_2022_106532 |
Cites_doi | 10.1002/admi.201700776 10.1038/s41560-019-0448-5 10.1016/j.scib.2017.11.003 10.1002/aenm.202001203 10.1002/aenm.201601959 10.1002/anie.201610944 10.1126/science.aat2612 10.1021/acs.accounts.0c00157 10.1002/advs.201802028 10.1016/j.solener.2020.01.042 10.1063/1.2719668 10.1002/adma.201906129 10.1021/acsphotonics.7b01096 10.1038/nphoton.2012.11 10.1002/solr.201700169 10.1039/C4EE03048F 10.1016/j.joule.2020.07.028 10.1021/acsami.0c09909 10.1002/advs.201500362 10.1039/C5EE02145F 10.1016/j.solener.2020.02.035 10.1126/science.1141711 10.1016/j.scib.2017.10.017 10.1039/C5EE02871J 10.1002/adma.201600373 10.1038/s41560-018-0134-z 10.1021/jacs.7b01493 10.1002/aenm.201703180 10.1002/adfm.201907570 10.1002/sstr.202000016 10.1002/aenm.202000746 10.1002/adma.202002315 10.1021/acs.chemmater.9b03694 10.1038/ncomms2411 10.1002/smll.201902598 10.1002/adma.201606340 10.1039/C7TA06631G 10.1016/j.joule.2018.11.011 10.1016/j.joule.2017.09.020 10.1007/s11426-016-9008-1 10.1002/adma.201703973 10.1021/jacs.5b12664 10.1002/solr.202000255 10.1038/ncomms8083 10.1002/aenm.201801609 10.1021/jp050745x 10.1002/adma.201402782 10.1002/adma.201704051 10.1002/aenm.201903800 10.1038/s41467-019-12132-6 10.1038/s41467-019-10351-5 10.1002/adma.201903441 10.1039/D0TC00161A 10.1002/aenm.201803657 10.1021/ja506265h 10.1038/nphoton.2016.240 10.1002/adma.201806499 10.1002/adma.201506270 10.1021/nl401758g 10.1002/adma.201706816 10.1002/adma.201402072 10.1002/adma.201908205 10.1038/s41467-020-20431-6 10.1002/aenm.202000823 10.1002/adfm.200305049 10.1016/j.joule.2019.01.004 10.1002/adma.201707508 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202103283 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202103283 ADFM202103283 |
Genre | article |
GrantInformation_xml | – fundername: Distinguished Young Scientists Program of Guangdong Province funderid: 2019B151502021 – fundername: Natural Science Foundation of China funderid: 21875073 – fundername: National Key Research and Development Program of China funderid: 2019YFA0705900 – fundername: Basic and Applied Basic Research Major Program of Guangdong Province funderid: 2019B030302007 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3173-d8c94b23fb22c3103b17d52fb240920ba42f98a7d778db36abe13dd4eeb01b933 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:09:47 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Tue Jul 01 04:12:30 EDT 2025 Wed Jan 22 16:28:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3173-d8c94b23fb22c3103b17d52fb240920ba42f98a7d778db36abe13dd4eeb01b933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9665-6642 |
PQID | 2552106061 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2552106061 crossref_primary_10_1002_adfm_202103283 crossref_citationtrail_10_1002_adfm_202103283 wiley_primary_10_1002_adfm_202103283_ADFM202103283 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018 2016 2018 2020; 30 9 2 4 2017; 62 2016 2014; 28 26 2018 2017; 30 29 2017 2017; 29 5 2019 2013 2017; 31 4 139 2019 2018; 10 8 2007; 90 2020 2019 2019 2014 2017 2017 2021; 32 4 9 136 56 62 12 2020; 32 2017 2016; 60 3 2017 2020; 4 8 2020 2018 2020 2020 2018 2017; 12 361 10 198 30 11 2019 2020; 3 10 2018; 8 2018; 3 2007; 317 2015 2014; 8 26 2005; 109 2020 2020 2019 2019 2020 2015 2019 2020; 53 32 3 10 30 6 6 10 2016; 138 2015 2016 2017 2017 2020; 8 28 4 7 10 2012 2019 2018 2019 2020; 6 31 2 15 4 2020 2020; 201 1 2004 2013; 14 13 e_1_2_8_24_1 e_1_2_8_24_2 e_1_2_8_26_1 e_1_2_8_3_8 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_1_5 e_1_2_8_3_3 e_1_2_8_5_1 e_1_2_8_1_4 e_1_2_8_3_2 e_1_2_8_3_5 e_1_2_8_5_3 e_1_2_8_7_1 e_1_2_8_3_4 e_1_2_8_5_2 e_1_2_8_3_7 e_1_2_8_9_1 e_1_2_8_3_6 e_1_2_8_20_1 e_1_2_8_20_2 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_15_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_25_1 e_1_2_8_8_4 e_1_2_8_6_5 e_1_2_8_8_3 e_1_2_8_8_6 e_1_2_8_8_5 e_1_2_8_8_7 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_2_4 e_1_2_8_4_2 e_1_2_8_2_3 e_1_2_8_4_1 e_1_2_8_4_4 e_1_2_8_6_2 e_1_2_8_4_3 e_1_2_8_6_1 e_1_2_8_4_6 e_1_2_8_6_4 e_1_2_8_8_2 e_1_2_8_4_5 e_1_2_8_6_3 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_14_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_10_2 e_1_2_8_12_1 |
References_xml | – volume: 12 361 10 198 30 11 start-page: 1094 160 85 year: 2020 2018 2020 2020 2018 2017 publication-title: ACS Appl. Mater. Interfaces Science Adv. Energy Mater. Sol. Energy Adv. Mater. Nat. Photonics – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 62 start-page: 1562 year: 2017 publication-title: Sci. Bull. – volume: 10 8 start-page: 4100 year: 2019 2018 publication-title: Nat. Commun. Adv. Energy Mater. – volume: 6 31 2 15 4 start-page: 153 2004 year: 2012 2019 2018 2019 2020 publication-title: Nat. Photonics Adv. Mater. Sol. RRL Small Joule – volume: 29 5 year: 2017 2017 publication-title: Adv. Mater. J. Mater. Chem. A – volume: 53 32 3 10 30 6 6 10 start-page: 1218 1140 2515 7083 year: 2020 2020 2019 2019 2020 2015 2019 2020 publication-title: Acc. Chem. Res. Adv. Mater. Joule Nat. Commun. Adv. Funct. Mater. Nat. Commun. Adv. Sci. Adv. Energy Mater. – volume: 109 start-page: 9505 year: 2005 publication-title: J. Phys. Chem. B – volume: 138 start-page: 2004 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 201 1 start-page: 28 year: 2020 2020 publication-title: Sol. Energy Small Struct. – volume: 3 10 start-page: 432 year: 2019 2020 publication-title: Joule Adv. Energy Mater. – volume: 31 4 139 start-page: 1446 7302 year: 2019 2013 2017 publication-title: Adv. Mater. Nat. Commun. J. Am. Chem. Soc. – volume: 3 start-page: 422 year: 2018 publication-title: Nat. Energy – volume: 8 26 start-page: 303 5670 year: 2015 2014 publication-title: Energy Environ. Sci. Adv. Mater. – volume: 8 28 4 7 10 start-page: 2902 4817 year: 2015 2016 2017 2017 2020 publication-title: Energy Environ. Sci. Adv. Mater. Adv. Mater. Interfaces Adv. Energy Mater. Adv. Energy Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 32 start-page: 1022 year: 2020 publication-title: Chem. Mater. – volume: 28 26 start-page: 5133 6778 year: 2016 2014 publication-title: Adv. Mater. Adv. Mater. – volume: 317 start-page: 222 year: 2007 publication-title: Science – volume: 30 9 2 4 start-page: 391 25 year: 2018 2016 2018 2020 publication-title: Adv. Mater. Energy Environ. Sci. Joule Sol. RRL – volume: 30 29 year: 2018 2017 publication-title: Adv. Mater. Adv. Mater. – volume: 32 4 9 136 56 62 12 start-page: 768 3045 1494 178 year: 2020 2019 2019 2014 2017 2017 2021 publication-title: Adv. Mater. Nat. Energy Adv. Energy Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Sci. Bull. Nat. Commun. – volume: 14 13 start-page: 425 3796 year: 2004 2013 publication-title: Adv. Funct. Mater. Nano Lett. – volume: 4 8 start-page: 2952 year: 2017 2020 publication-title: ACS Photonics J. Mater. Chem. C – volume: 60 3 start-page: 460 year: 2017 2016 publication-title: Sci. China Chem. Adv. Sci. – ident: e_1_2_8_6_3 doi: 10.1002/admi.201700776 – ident: e_1_2_8_8_2 doi: 10.1038/s41560-019-0448-5 – ident: e_1_2_8_16_1 doi: 10.1016/j.scib.2017.11.003 – ident: e_1_2_8_3_8 doi: 10.1002/aenm.202001203 – ident: e_1_2_8_6_4 doi: 10.1002/aenm.201601959 – ident: e_1_2_8_8_5 doi: 10.1002/anie.201610944 – ident: e_1_2_8_4_2 doi: 10.1126/science.aat2612 – ident: e_1_2_8_3_1 doi: 10.1021/acs.accounts.0c00157 – ident: e_1_2_8_3_7 doi: 10.1002/advs.201802028 – ident: e_1_2_8_4_4 doi: 10.1016/j.solener.2020.01.042 – ident: e_1_2_8_19_1 doi: 10.1063/1.2719668 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201906129 – ident: e_1_2_8_18_1 doi: 10.1021/acsphotonics.7b01096 – ident: e_1_2_8_1_1 doi: 10.1038/nphoton.2012.11 – ident: e_1_2_8_1_3 doi: 10.1002/solr.201700169 – ident: e_1_2_8_20_1 doi: 10.1039/C4EE03048F – ident: e_1_2_8_1_5 doi: 10.1016/j.joule.2020.07.028 – ident: e_1_2_8_4_1 doi: 10.1021/acsami.0c09909 – ident: e_1_2_8_17_2 doi: 10.1002/advs.201500362 – ident: e_1_2_8_6_1 doi: 10.1039/C5EE02145F – ident: e_1_2_8_10_1 doi: 10.1016/j.solener.2020.02.035 – ident: e_1_2_8_23_1 doi: 10.1126/science.1141711 – ident: e_1_2_8_8_6 doi: 10.1016/j.scib.2017.10.017 – ident: e_1_2_8_2_2 doi: 10.1039/C5EE02871J – ident: e_1_2_8_12_1 doi: 10.1002/adma.201600373 – ident: e_1_2_8_14_1 doi: 10.1038/s41560-018-0134-z – ident: e_1_2_8_5_3 doi: 10.1021/jacs.7b01493 – ident: e_1_2_8_13_1 doi: 10.1002/aenm.201703180 – ident: e_1_2_8_3_5 doi: 10.1002/adfm.201907570 – ident: e_1_2_8_10_2 doi: 10.1002/sstr.202000016 – ident: e_1_2_8_4_3 doi: 10.1002/aenm.202000746 – ident: e_1_2_8_7_1 doi: 10.1002/adma.202002315 – ident: e_1_2_8_15_1 doi: 10.1021/acs.chemmater.9b03694 – ident: e_1_2_8_5_2 doi: 10.1038/ncomms2411 – ident: e_1_2_8_1_4 doi: 10.1002/smll.201902598 – ident: e_1_2_8_9_2 doi: 10.1002/adma.201606340 – ident: e_1_2_8_24_2 doi: 10.1039/C7TA06631G – ident: e_1_2_8_11_1 doi: 10.1016/j.joule.2018.11.011 – ident: e_1_2_8_2_3 doi: 10.1016/j.joule.2017.09.020 – ident: e_1_2_8_17_1 doi: 10.1007/s11426-016-9008-1 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201703973 – ident: e_1_2_8_25_1 doi: 10.1021/jacs.5b12664 – ident: e_1_2_8_2_4 doi: 10.1002/solr.202000255 – ident: e_1_2_8_3_6 doi: 10.1038/ncomms8083 – ident: e_1_2_8_22_2 doi: 10.1002/aenm.201801609 – ident: e_1_2_8_26_1 doi: 10.1021/jp050745x – ident: e_1_2_8_12_2 doi: 10.1002/adma.201402782 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201704051 – ident: e_1_2_8_6_5 doi: 10.1002/aenm.201903800 – ident: e_1_2_8_22_1 doi: 10.1038/s41467-019-12132-6 – ident: e_1_2_8_3_4 doi: 10.1038/s41467-019-10351-5 – ident: e_1_2_8_1_2 doi: 10.1002/adma.201903441 – ident: e_1_2_8_18_2 doi: 10.1039/D0TC00161A – ident: e_1_2_8_8_3 doi: 10.1002/aenm.201803657 – ident: e_1_2_8_8_4 doi: 10.1021/ja506265h – ident: e_1_2_8_4_6 doi: 10.1038/nphoton.2016.240 – ident: e_1_2_8_5_1 doi: 10.1002/adma.201806499 – ident: e_1_2_8_6_2 doi: 10.1002/adma.201506270 – ident: e_1_2_8_21_2 doi: 10.1021/nl401758g – ident: e_1_2_8_2_1 doi: 10.1002/adma.201706816 – ident: e_1_2_8_20_2 doi: 10.1002/adma.201402072 – ident: e_1_2_8_3_2 doi: 10.1002/adma.201908205 – ident: e_1_2_8_8_7 doi: 10.1038/s41467-020-20431-6 – ident: e_1_2_8_11_2 doi: 10.1002/aenm.202000823 – ident: e_1_2_8_21_1 doi: 10.1002/adfm.200305049 – ident: e_1_2_8_3_3 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_8_4_5 doi: 10.1002/adma.201707508 |
SSID | ssj0017734 |
Score | 2.6239133 |
Snippet | The maximum photocurrent in tandem organic solar cells (TOSCs) is often obtained by increasing the thicknesses of sub‐cells, which leads to recombination... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Absorptivity charge recombination Energy conversion efficiency fill factor Fullerenes high efficiency interconnecting layers Materials science Photoelectric effect Photoelectric emission Photovoltaic cells Solar cells tandem devices Thickness Zinc oxide |
Title | Tandem Organic Solar Cells with 18.7% Efficiency Enabled by Suppressing the Charge Recombination in Front Sub‐Cell |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202103283 https://www.proquest.com/docview/2552106061 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQLDDwjyh_8gBiSptc0jgZK9oKIcoArdQt8sVOhSgB0TLAxCPwjDwJPqdNCxJCgi1WbCv2nePv7LvvGDtGnYFW6DvSTaUThK7vRFIGDpHFIfgyRMt407kKz3vBRb_en4viL_ghygM3Whn2f00LXOKoNiMNlSqjSHKwjHBE90kOW4SKrkv-KE-I4lo59MjBy-tPWRtdqH1t_nVXmkHNecBqd5z2GpPTby0cTe6qz2Ospq_faBz_M5h1tjqBo7xR6M8GW9D5JluZIyncYuMunTPf8yJqM-U3ZAzzMz0cjjid4nIvqooT3rJcFBTIyVs2HktxfOGUNNR62uYDbqAmp9v9geZk9N4bm9yqBb_NeZt4FExt_Hh7p663Wa_d6p6dO5NcDU5qEIjvqCiNAyPcDAFSyl2GnlB1MEVjQIKLMoAsjqRQQkRGNUKJ2vOVCrRG18PY93fYYv6Q613GETIFISgUWRxAmsWxBgNs6pEAlYXarzBnKqsknRCZUz6NYVJQMENCs5mUs1lhp2X9x4LC48eaB1PRJ5OlPEqMzWVeGzvPqzCwMvyll6TRbHfK0t5fGu2zZXou3IIP2OL46VkfGvAzxiO21Gh2Lm-OrKJ_AviA_QI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB5V5QAc-EekFNgDFSen9tjx2gcOVZMopU0PkEq5mR3vuqpIDSKpqnLqI_RVeBUegSdhZzd2WySEhNQDx7XHq_2Z2Z0Zz3wD8JpMhUZTHKiwVEGShnGQKZUEDBZHGKuUHOLNeD8dHSTvpr3pCnxvcmE8PkTrcGPJcOc1Czg7pDcvUUOVrjiVHB0kXFO_etecnVqrbf52p2-3eANxOJhsj4JlYYGgtNdlHOiszBM7kooQSy60RZHUPbRNa-1gSCrBKs-U1FJmdh6pIhPFWifGUBhRzj5Qe-rf4jLiDNfff98iVkVS-h_ZacQhZdG0wYkMcfP6eK_fg5fK7VUV2d1xw_vwo1kdH9ryqXuyoG757TfgyP9q-R7AvaXGLba8iDyEFVM_grtXcBgfw2LCrvRj4RNTS_GB7X2xbWazuWBHtYiyrtwQAwe3wbmqYuBSzrSgM8F1UV0wcX0orDYtOIDh0Ai264_pyDtbxVEthgwVYanp5_kFd_0EDm5k2k9htf5cm2cgCCuNKWqSVZ5gWeW5Qau79TKJukpN3IGgYY6iXGK1c8mQWeFRprHg3Sva3evAm5b-i0cp-SPlesNrxfK0mhfWrLSvrSkbdQAd0_yll2KrPxy3rbV_-egV3B5NxnvF3s7-7nO4w899FPQ6rC6-npgXVtdb0EsnXQI-3jQ__gIVjFmG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4hKqH2QAttxba0-FDUU5Zkko2TAwfEbgSloKoFaW-pHdsIsaSou6iiJx6BR-FV-gp9knrsTfiRqkqVOHB04lgee8aemcx8A_BOaoNayTgQYSWCJA3jIBMiCQgsTmIsUukQb3b30q2D5MOwN5yBqyYXxuNDtA43kgx3XpOAnyqzdg0aKpShTHJ0iHBN-eodff7DGm3j9e2-3eFVxGKwv7kVTOsKBJW9LeNAZVWe2IkYiVhRnS0ZcdVD27TGDoZSJGjyTHDFeWbJSIXUUaxUorUMI5mTC9Qe-o8sYTkVi-h_bgGrIs79f-w0ooiyaNjARIa4dnu-t6_Ba932pobsrrjiKfxqFsdHthx3zyayW_28gxv5kFbvGcxP9W224QVkAWZ0vQhPbqAwPofJPjnST5hPS63YF7L22aYejcaM3NQsyrp8lQ0c2AZlqrKBSzhTTJ4zqorqQonrQ2Z1aUbhC4eakVV_Io-8q5Ud1awgoAjbW_6-uKShX8DBvZD9Embrb7VeAibRKExRSW7yBCuT5xqt5tbLOCqT6rgDQcMbZTVFaqeCIaPSY0xjSbtXtrvXgfdt_1OPUfLXnssNq5XTs2pcWqPSvraGbNQBdDzzj1HKjX6x27Ze_c9HKzD3qV-UH7f3dl7DY3rsQ6CXYXby_Uy_sYreRL51ssXg632z4x-MfFg1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tandem+Organic+Solar+Cells+with+18.7%25+Efficiency+Enabled+by+Suppressing+the+Charge+Recombination+in+Front+Sub%E2%80%90Cell&rft.jtitle=Advanced+functional+materials&rft.au=Liu%2C+Gongchu&rft.au=Xia%2C+Ruoxi&rft.au=Huang%2C+Qiri&rft.au=Zhang%2C+Kai&rft.date=2021-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=29&rft_id=info:doi/10.1002%2Fadfm.202103283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202103283 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |