Single‐Electron Effects for Probing Local Electrical Polarization Changes and Charge Hopping

Employing single‐electron effects very sensitive charge or local electrostatic potential monitoring can be accomplished. This is typically realized by single‐electron transistors operating at low temperatures. Single‐electron effects can also be used to probe local changes of the dielectric environm...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b) Vol. 256; no. 9
Main Authors Huth, Michael, Gruszka, Peter, Grossmüller, Christian, Hanefeld, Marc, Keller, Lukas
Format Journal Article
LanguageEnglish
Published 01.09.2019
Subjects
Online AccessGet full text
ISSN0370-1972
1521-3951
DOI10.1002/pssb.201900253

Cover

Loading…
Abstract Employing single‐electron effects very sensitive charge or local electrostatic potential monitoring can be accomplished. This is typically realized by single‐electron transistors operating at low temperatures. Single‐electron effects can also be used to probe local changes of the dielectric environment next to a single‐electron device. Conversely, by controlling the dielectric environment of a nanostructure subject to single‐electron effects, the electronic properties of the nanostructure can be manipulated. Here, the use of nano‐island arrays is suggested for locally probing charge, potential or dielectric changes. The authors consider small arrays for which the capacitive coupling to larger electrodes nearby causes partial screening on some of the nano‐islands. Monte Carlo simulations based on tunneling rates between next‐neighbor nano‐islands are used. This analysis is exemplarily applied to different scenarios. It is shown how surface oxidation of nano‐islands strongly influences Coulomb blockade effects. It is demonstrated how nano‐island arrays may be used to probe the dynamics of charged domain walls in the charge transfer salt tetrathiafulvalene‐chloranil. It is discussed how nano‐island arrays can be used to sense dielectric changes, e.g., in nano‐porous metal‐organic frameworks under analyte exposure. It is also discussed how the presented Monte Carlo approach can be extended from the elastic tunneling to the activated transport regime. Single‐electron charging dominating charge transport in metallic nano‐particle arrays is employed for probing electrical polarization changes and movement of charged domain walls in dielectric materials nearby.
AbstractList Employing single‐electron effects very sensitive charge or local electrostatic potential monitoring can be accomplished. This is typically realized by single‐electron transistors operating at low temperatures. Single‐electron effects can also be used to probe local changes of the dielectric environment next to a single‐electron device. Conversely, by controlling the dielectric environment of a nanostructure subject to single‐electron effects, the electronic properties of the nanostructure can be manipulated. Here, the use of nano‐island arrays is suggested for locally probing charge, potential or dielectric changes. The authors consider small arrays for which the capacitive coupling to larger electrodes nearby causes partial screening on some of the nano‐islands. Monte Carlo simulations based on tunneling rates between next‐neighbor nano‐islands are used. This analysis is exemplarily applied to different scenarios. It is shown how surface oxidation of nano‐islands strongly influences Coulomb blockade effects. It is demonstrated how nano‐island arrays may be used to probe the dynamics of charged domain walls in the charge transfer salt tetrathiafulvalene‐chloranil. It is discussed how nano‐island arrays can be used to sense dielectric changes, e.g., in nano‐porous metal‐organic frameworks under analyte exposure. It is also discussed how the presented Monte Carlo approach can be extended from the elastic tunneling to the activated transport regime. Single‐electron charging dominating charge transport in metallic nano‐particle arrays is employed for probing electrical polarization changes and movement of charged domain walls in dielectric materials nearby.
Author Keller, Lukas
Huth, Michael
Gruszka, Peter
Hanefeld, Marc
Grossmüller, Christian
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0001-7415-465X
  surname: Huth
  fullname: Huth, Michael
  email: michael.huth@physik.uni-frankfurt.de
  organization: Institute of Physics, Goethe University
– sequence: 2
  givenname: Peter
  surname: Gruszka
  fullname: Gruszka, Peter
  organization: Institute of Physics, Goethe University
– sequence: 3
  givenname: Christian
  surname: Grossmüller
  fullname: Grossmüller, Christian
  organization: Institute of Physics, Goethe University
– sequence: 4
  givenname: Marc
  surname: Hanefeld
  fullname: Hanefeld, Marc
  organization: Institute of Physics, Goethe University
– sequence: 5
  givenname: Lukas
  surname: Keller
  fullname: Keller, Lukas
  organization: Institute of Physics, Goethe University
BookMark eNqFkMFKAzEQhoNUsK1ePecFtiaZ7m72qKVaYcFC9eqSzSY1EjdLsiD15CP4jD6JWSsKgniaf4b_m2H-CRq1rlUInVIyo4Swsy6EesYILWKTwgEa05TRBIqUjtCYQE4SWuTsCE1CeCSE5BToGN1vTLu16v31bWmV7L1r8VLrqALWzuO1d3U04NJJYfHeYga5dlZ48yJ6E4nFg2i3KmDRNoP2W4VXrusieIwOtbBBnXzVKbq7XN4uVkl5c3W9OC8TCTSHpOH5HIq6gayQMq-10ozXkGlJmOR101DOKXAigEuS0jhLIRNMaCVUA0pmMEWz_V7pXQhe6arz5kn4XUVJNaRTDelU3-lEYP4LkKb__Kb3wti_sWKPPRurdv8cqdabzcUP-wGetH74
CitedBy_id crossref_primary_10_1038_s41598_021_94575_w
crossref_primary_10_1016_j_jallcom_2024_174976
Cites_doi 10.1103/PhysRevB.80.195416
10.1063/1.1714397
10.1063/1.115637
10.1103/PhysRevB.72.125121
10.1103/PhysRevB.98.054103
10.1103/PhysRevLett.104.227602
10.1016/j.mee.2017.10.012
10.1038/s41598-017-06497-1
10.1103/PhysRevB.70.205120
10.1038/ncomms12487
10.1109/81.199892
10.1016/0038-1098(86)90134-1
10.1088/2053-1591/1/4/046303
10.3390/cryst7050132
10.1103/PhysRevB.77.245422
10.1007/s00339-014-8631-9
10.1103/RevModPhys.79.469
10.3390/s101109847
10.1103/PhysRevLett.118.107602
10.1088/0957-4484/24/30/305501
10.3390/nano9030330
10.1103/PhysRevB.75.085325
10.1103/PhysRevB.89.054203
10.1038/s41598-018-24431-x
10.1246/cl.130840
10.3390/cryst7010017
10.1103/PhysRevLett.107.206803
10.1063/1.3443437
10.1088/0957-4484/26/47/475701
10.1002/cphc.201000814
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/pssb.201900253
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1521-3951
EndPage n/a
ExternalDocumentID 10_1002_pssb_201900253
PSSB201900253
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
GroupedDBID .GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FEDTE
G.N
GNP
GODZA
GYQRN
H.T
H.X
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
SAMSI
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c3173-d87439bd369cc7bfef28b36fc02c8bdd1881380a38c0512c8536a2afeaed3ec63
IEDL.DBID DR2
ISSN 0370-1972
IngestDate Tue Jul 01 00:57:58 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Wed Jan 22 16:38:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3173-d87439bd369cc7bfef28b36fc02c8bdd1881380a38c0512c8536a2afeaed3ec63
ORCID 0000-0001-7415-465X
PageCount 7
ParticipantIDs crossref_primary_10_1002_pssb_201900253
crossref_citationtrail_10_1002_pssb_201900253
wiley_primary_10_1002_pssb_201900253_PSSB201900253
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationTitle physica status solidi (b)
PublicationYear 2019
References 2010; 10
2017; 7
2014; 117
2019; 9
1965; 36
2010; 107
2018; 185–186
2009; 80
2013; 24
2010; 104
1986; 57
1992; 39
2008; 77
2011; 12
2007; 75
2007; 79
2014; 89
2014; 43
2017; 118
2014; 1
2015; 26
2016; 7
2018; 8
2004; 70
2011; 107
2005; 72
1996; 68
2018; 98
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 1
  start-page: 046303
  year: 2014
  publication-title: Mater. Res. Express
– volume: 8
  start-page: 6160
  year: 2018
  publication-title: Sci. Rep
– volume: 7
  start-page: 17
  year: 2017
  publication-title: Crystals
– volume: 75
  start-page: 085325
  year: 2007
  publication-title: Phys. Rev. B
– volume: 89
  start-page: 054203
  year: 2014
  publication-title: Phys. Rev. B
– volume: 80
  start-page: 195416
  year: 2009
  publication-title: Phys. Rev. B
– volume: 43
  start-page: 26
  year: 2014
  publication-title: Chem. Lett
– volume: 117
  start-page: 1689
  year: 2014
  publication-title: Appl. Phys. A
– volume: 98
  start-page: 054103
  year: 2018
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 330
  year: 2019
  publication-title: Nanomaterials
– volume: 104
  start-page: 227602
  year: 2010
  publication-title: Phys. Rev. Lett
– volume: 39
  start-page: 946
  year: 1992
  publication-title: IEEE Trans. Circuits Systems I: Fundam. Theory Appl
– volume: 12
  start-page: 1222
  year: 2011
  publication-title: ChemPhysChem
– volume: 77
  start-page: 245422
  year: 2008
  publication-title: Phys. Rev. B
– volume: 185–186
  start-page: 9
  year: 2018
  publication-title: Microelectron. Eng
– volume: 10
  start-page: 9847
  year: 2010
  publication-title: Sensors
– volume: 7
  start-page: 132
  year: 2017
  publication-title: Crystals
– volume: 36
  start-page: 2031
  year: 1965
  publication-title: J. Appl. Phys
– volume: 72
  start-page: 125121
  year: 2005
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 475701
  year: 2015
  publication-title: Nanotechnology
– volume: 7
  start-page: 12487EP
  year: 2016
  publication-title: Nature Commun
– volume: 7
  start-page: 7071
  year: 2017
  publication-title: Sci. Rep
– volume: 68
  start-page: 1954
  year: 1996
  publication-title: Appl. Phys. Lett
– volume: 57
  start-page: 179
  year: 1986
  publication-title: Solid State Commun
– volume: 70
  start-page: 205120
  year: 2004
  publication-title: Phys. Rev. B
– volume: 107
  start-page: 206803
  year: 2011
  publication-title: Phys. Rev. Lett
– volume: 24
  start-page: 305501
  year: 2013
  publication-title: Nanotechnology
– volume: 107
  start-page: 113709
  year: 2010
  publication-title: J. Appl. Phys
– volume: 79
  start-page: 469
  year: 2007
  publication-title: Rev. Mod. Phys
– volume: 118
  start-page: 107602
  year: 2017
  publication-title: Phys. Rev. Lett
– ident: e_1_2_8_31_1
  doi: 10.1103/PhysRevB.80.195416
– ident: e_1_2_8_18_1
  doi: 10.1063/1.1714397
– ident: e_1_2_8_2_1
  doi: 10.1063/1.115637
– ident: e_1_2_8_6_1
  doi: 10.1103/PhysRevB.72.125121
– ident: e_1_2_8_12_1
  doi: 10.1103/PhysRevB.98.054103
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevLett.104.227602
– ident: e_1_2_8_13_1
  doi: 10.1016/j.mee.2017.10.012
– ident: e_1_2_8_29_1
  doi: 10.1038/s41598-017-06497-1
– ident: e_1_2_8_4_1
  doi: 10.1103/PhysRevB.70.205120
– ident: e_1_2_8_9_1
  doi: 10.1038/ncomms12487
– ident: e_1_2_8_16_1
  doi: 10.1109/81.199892
– ident: e_1_2_8_21_1
  doi: 10.1016/0038-1098(86)90134-1
– ident: e_1_2_8_10_1
  doi: 10.1088/2053-1591/1/4/046303
– ident: e_1_2_8_23_1
  doi: 10.3390/cryst7050132
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevB.77.245422
– ident: e_1_2_8_11_1
  doi: 10.1007/s00339-014-8631-9
– ident: e_1_2_8_3_1
  doi: 10.1103/RevModPhys.79.469
– ident: e_1_2_8_8_1
  doi: 10.3390/s101109847
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevLett.118.107602
– ident: e_1_2_8_26_1
  doi: 10.1088/0957-4484/24/30/305501
– ident: e_1_2_8_27_1
  doi: 10.3390/nano9030330
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevB.75.085325
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevB.89.054203
– ident: e_1_2_8_17_1
  doi: 10.1038/s41598-018-24431-x
– ident: e_1_2_8_19_1
  doi: 10.1246/cl.130840
– ident: e_1_2_8_22_1
  doi: 10.3390/cryst7010017
– ident: e_1_2_8_5_1
  doi: 10.1103/PhysRevLett.107.206803
– ident: e_1_2_8_7_1
  doi: 10.1063/1.3443437
– ident: e_1_2_8_14_1
  doi: 10.1088/0957-4484/26/47/475701
– ident: e_1_2_8_25_1
  doi: 10.1002/cphc.201000814
SSID ssj0007131
ssj0047196
Score 2.2606618
Snippet Employing single‐electron effects very sensitive charge or local electrostatic potential monitoring can be accomplished. This is typically realized by...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms ferroelectricity
granular metals
organic thin films
single‐electron effects
Title Single‐Electron Effects for Probing Local Electrical Polarization Changes and Charge Hopping
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssb.201900253
Volume 256
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YjIkX30Z8kD2YeCqUbinbIyqEGDBEJOFks08OkkIoXDz5E_yN_hJ3uqWAiTHR27aZbtqd3Z1vtjPfIHTNJPWUAAYA4fqOr6q-Qz1WdYwtETIwELtWh2zk7mPQHvgPw9pwLYvf8kPkB26wMtL9GhY440llRRo6TRIOoVkhmG2g-4SALUBFTyv-KOOB5QEfZhcO7Z_LuutAsa0lhaPrVTb72jBR65A1tTmtfcSWb2tDTV7Lizkvi7dvRI7_-ZwDtJcBUtywM-gQban4CO2kgaEiOUYvfWPbxurz_aOZFczBlvA4wQbu4h7QOMUj3AGTiK0IqB33wGXOcjyxTWFIMIsltGcjhdsTIIYYnaBBq_l813aymgyOMEiDOJKCB8MlCUIh6lwr7VFOAi1cT1AuZZXSKqEuI1SY5W7u1UjAPKYVU5IoEZBTVIgnsTpDmGqiFRGEBTL0pdGOJopo0y3RxOfaLyJnqYZIZITlUDdjHFmqZS-CMYvyMSuim1x-aqk6fpT0UlX8Ihb1-v3b_Or8Lw9doF1o26C0S1SYzxbqyqCYOS-h7cZ9t9MvpTP2C0pU66I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oxujFtxGfezDxVCjdUpajGkhVIEQg8WTTfXGQFELh4smf4G_0l7jTbYuYGBO9tZvppt3Z3W9mO_MNQpehoI7kwADAbddyZcW1qBNWLI0lXHjaxK7WIBu53fH8gXv_VM2iCSEXxvBD5AdusDKS_RoWOBxIlxesoZM4ZhCbVQfcJqtoDcp6J17V44JBSvtgeciH3ofr5t9lzbag3FZG4mg75eXOlkDqq9GaoE5zG7HsfU2wyUtpPmMl_vqNyvFfH7SDtlKbFF-bSbSLVmS0h9aT2FAe76Pnnoa3kfx4e2-kNXOw4TyOsbZ4cReYnKIhbgEqYiMCmsdd8JrTNE9sshhiHEYCrqdDif0xcEMMD9Cg2ejf-lZalsHi2tgglqDgxDBBvDrnNaakcigjnuK2wykTokJphVA7JJTrFa_bqsQLnVDJUAoiuUcOUSEaR_IIYaqIkoST0BN1V2j1KCKJ0t0SRVym3CKyMj0EPOUsh9IZo8CwLTsBjFmQj1kRXeXyE8PW8aOkk-jiF7Gg2-vd5HfHf3noAm34_XYraN11Hk7QJrSbGLVTVJhN5_JMGzUzdp5M20-aSO4p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oRuPFtxGfezDxVGi7pSxHFQgqEiKScLLZ7oODpBAKF0_-BH-jv8SdbilgYkz01m6mm3ZnZmdmO_MNQpdMUFdyQADgtmd50vEs6jLH0raEC1-72KUyVCM_tvxG17vvlXoLVfwGHyI7cAPNSPZrUPCRUMU5aOgojkNIzaqA2SaraM3zbQpyXX2aA0jpECzL-NDbcMX8uizbFnTbmmE42m5xebIlG7XosyZGp76N2Ox1Ta7Ja2E6CQv87RuS43--ZwdtpR4pvjYitItWZLSH1pPMUB7vo5eONm4D-fn-UUs75mCDeBxj7e_iNuA4RX3cBJuIDQnwHbchZk6LPLGpYYgxiwRcj_sSN4aADNE_QN167fm2YaVNGSyuXQ1iCQohTCiIX-G8HCqpXBoSX3Hb5TQUwqHUIdRmhHKt73qsRHzmMiWZFERynxyiXDSM5BHCVBElCSfMFxVPaO4oIonS0xJFvFB5eWTN2BDwFLEcGmcMAoO17AawZkG2Znl0ldGPDFbHj5RuwopfyIJ2p3OT3R3_5aELtNGu1oPmXevhBG3CsElQO0W5yXgqz7RHMwnPE6H9Avbk7OE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single%E2%80%90Electron+Effects+for+Probing+Local+Electrical+Polarization+Changes+and+Charge+Hopping&rft.jtitle=physica+status+solidi+%28b%29&rft.au=Huth%2C+Michael&rft.au=Gruszka%2C+Peter&rft.au=Grossm%C3%BCller%2C+Christian&rft.au=Hanefeld%2C+Marc&rft.date=2019-09-01&rft.issn=0370-1972&rft.eissn=1521-3951&rft.volume=256&rft.issue=9&rft_id=info:doi/10.1002%2Fpssb.201900253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pssb_201900253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-1972&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-1972&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-1972&client=summon