Dynamics of heat transport in flow of non‐linear Oldroyd‐B fluid subject to non‐Fourier's theory

To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat ge...

Full description

Saved in:
Bibliographic Details
Published inZeitschrift für angewandte Mathematik und Mechanik Vol. 103; no. 8
Main Authors Yasir, Muhammad, Khan, Masood
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text
ISSN0044-2267
1521-4001
DOI10.1002/zamm.202100393

Cover

Abstract To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential. The analytical series solutions are obtained through the use of a homotopic approach. The graphical upshots are conducted for velocity fields, temperature, and concentration distributions. In addition, energy transport analysis is performed for two kinds of surface heating mechanisms, namely the prescribed surface temperature (PST) and constant wall temperature (CWT). The outcomes of the current investigation revealed that a higher rate of heat transfer is observed in the case of CWT as compared to PST. Moreover, the increasing values of thermal and solutal relaxation time parameters reduce the heat and mass transport in the fluid flow, respectively. To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential.…
AbstractList To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential. The analytical series solutions are obtained through the use of a homotopic approach. The graphical upshots are conducted for velocity fields, temperature, and concentration distributions. In addition, energy transport analysis is performed for two kinds of surface heating mechanisms, namely the prescribed surface temperature (PST) and constant wall temperature (CWT). The outcomes of the current investigation revealed that a higher rate of heat transfer is observed in the case of CWT as compared to PST. Moreover, the increasing values of thermal and solutal relaxation time parameters reduce the heat and mass transport in the fluid flow, respectively.
To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential. The analytical series solutions are obtained through the use of a homotopic approach. The graphical upshots are conducted for velocity fields, temperature, and concentration distributions. In addition, energy transport analysis is performed for two kinds of surface heating mechanisms, namely the prescribed surface temperature (PST) and constant wall temperature (CWT). The outcomes of the current investigation revealed that a higher rate of heat transfer is observed in the case of CWT as compared to PST. Moreover, the increasing values of thermal and solutal relaxation time parameters reduce the heat and mass transport in the fluid flow, respectively. To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential.…
Author Yasir, Muhammad
Khan, Masood
Author_xml – sequence: 1
  givenname: Muhammad
  orcidid: 0000-0001-5335-1072
  surname: Yasir
  fullname: Yasir, Muhammad
  email: myasir@math.qau.edu.pk
  organization: Quaid‐i‐Azam University
– sequence: 2
  givenname: Masood
  surname: Khan
  fullname: Khan, Masood
  organization: Quaid‐i‐Azam University
BookMark eNqFkMtKAzEUhoNUsFa3rgMuXE3NZW5Z1mpVaOlGN25CJpPQlJlJTWYo48pH8Bl9ElNaFARxFXLO9-Wc_Kdg0NhGAXCB0RgjRK7fRF2PCSLhQhk9AkOcEBzFCOEBGCIUxxEhaXYCTr1fo1BlmA6Bvu0bURvpodVwpUQLWycav7GuhaaBurLbXSeM-nz_qEyjhIPLqnS2L0PhJgCdKaHvirWSwbUHcmY7Z5S78rBdKev6M3CsReXV-eEcgefZ3dP0IZov7x-nk3kkKc5oJFlKGCOxTpMiEYmOiSyzvAy7Ip1ogjNCJaFFXiAqNZGM6TRVuRZFrGQpipKOwOX-3Y2zr53yLV-HTZowkpM8znDKcIICFe8p6az3TmkuTStaY5vweVNxjPguUb5LlH8nGrTxL23jTC1c_7fA9sLWVKr_h-Yvk8Xix_0CCQ2Pbw
CitedBy_id crossref_primary_10_1016_j_heliyon_2023_e19004
crossref_primary_10_1080_10407782_2023_2251082
crossref_primary_10_1016_j_aej_2023_05_065
crossref_primary_10_1007_s41939_024_00700_3
crossref_primary_10_1007_s41939_024_00586_1
crossref_primary_10_1080_10407790_2024_2383984
crossref_primary_10_1108_MMMS_07_2024_0179
crossref_primary_10_1002_zamm_202300302
crossref_primary_10_1140_epjp_s13360_024_05626_w
Cites_doi 10.4208/aamm.OA-2017-0196
10.1088/1402-4896/ab18c8
10.1007/s00521-017-2992-x
10.1016/j.csite.2022.102048
10.1016/j.cjph.2021.12.008
10.1143/JPSJ.63.2443
10.1007/s10973-020-09865-8
10.1007/s10973-021-10976-z
10.1016/j.apt.2015.01.003
10.1016/j.compfluid.2015.01.005
10.2174/1386207324666210903144447
10.1007/s13369-020-04724-y
10.1177/09544089211064116
10.1016/j.cnsns.2009.06.008
10.1016/j.rinp.2017.12.043
10.1115/1.4051671
10.1080/17455030.2021.2021316
10.1080/00986440903359087
10.1016/j.csite.2021.100975
10.1016/j.molliq.2015.12.110
10.3390/mi12040374
10.1016/j.physa.2019.123063
10.1371/journal.pone.0221302
10.1016/j.icheatmasstransfer.2021.105710
10.3390/mi13030368
10.1088/1674-1056/25/1/014701
10.1007/s13204-018-0794-9
10.1016/j.physleta.2018.10.035
10.1088/1402-4896/ac3b67
10.1016/j.jppr.2018.07.005
10.1016/j.physa.2019.123975
10.1016/j.ijheatmasstransfer.2019.118781
10.1016/j.asej.2022.101825
10.1016/j.cnsns.2008.04.013
10.1016/j.asej.2021.10.005
10.1007/BF01587695
10.1016/j.amc.2021.126883
10.1016/j.ijheatmasstransfer.2012.10.006
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/zamm.202100393
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1521-4001
EndPage n/a
ExternalDocumentID 10_1002_zamm_202100393
ZAMM202100393
Genre article
GroupedDBID -~X
.3N
.DC
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
41~
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCQX
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
FEDTE
FSPIC
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6L
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RJQFR
RX1
SAMSI
TN5
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
7SC
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3173-c9629924f65b5a5f42cd78d0190f5f21723c23b8b03cf2c99f66e8fab4ecdabd3
IEDL.DBID DR2
ISSN 0044-2267
IngestDate Fri Jul 25 10:42:58 EDT 2025
Tue Jul 01 00:21:15 EDT 2025
Thu Apr 24 22:58:46 EDT 2025
Wed Jun 11 08:26:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3173-c9629924f65b5a5f42cd78d0190f5f21723c23b8b03cf2c99f66e8fab4ecdabd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5335-1072
PQID 2847169150
PQPubID 2032056
PageCount 12
ParticipantIDs proquest_journals_2847169150
crossref_citationtrail_10_1002_zamm_202100393
crossref_primary_10_1002_zamm_202100393
wiley_primary_10_1002_zamm_202100393_ZAMM202100393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Zeitschrift für angewandte Mathematik und Mechanik
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 26
2010; 15
2016; 19
2019; 94
2019; 31
2006; 11
2021; 129
2019; 14
2022; 25
2020; 540
2021; 143
2022; 419
2019; 383
2021; 96
1994; 63
2019; 145
2018; 7
2015; 26
2009; 36
2009; 14
2018; 8
2015; 25
2021; 12
2022
2013; 57
2015; 111
1948; 3
1822
2022; 34
2022; 13
1970; 21
2022; 14
2010; 197
2016; 215
2020; 551
2020; 45
2022; 77
2018; 10
2022; 147
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Fourier J.B.J. (e_1_2_8_19_1) 1822
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Sharidan S. (e_1_2_8_43_1) 2006; 11
Raju C.S.K. (e_1_2_8_6_1) 2016; 19
Cattaneo C. (e_1_2_8_20_1) 1948; 3
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
Christov C.I. (e_1_2_8_21_1) 2009; 36
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 10
  start-page: 925
  issue: 4
  year: 2018
  end-page: 947
  article-title: Convergence accelerating in the homotopy analysis method: a new approach
  publication-title: Adv. Appl. Math. Mech.
– volume: 419
  year: 2022
  article-title: Combined impact of Cattaneo‐Christov double diffusion and radiative heat flux on bio‐convective flow of Maxwell liquid configured by a stretched nano‐material surface
  publication-title: Appl. Math. Comput.
– volume: 57
  start-page: 82
  issue: 1
  year: 2013
  end-page: 88
  article-title: Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid
  publication-title: Int. J. Heat Mass Transf.
– volume: 143
  start-page: 2379
  issue: 3
  year: 2021
  end-page: 2393
  article-title: Numerical spectral examination of EMHD mixed convective flow of second‐grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model
  publication-title: J. Therm. Anal. Calorim.
– volume: 14
  start-page: 983
  issue: 4
  year: 2009
  end-page: 997
  article-title: Notes on the homotopy analysis method: some definitions and theorems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 7
  start-page: 247
  issue: 3
  year: 2018
  end-page: 256
  article-title: Unsteady time‐dependent incompressible Newtonian fluid flow between two parallel plates by homotopy analysis method (HAM), homotopy perturbation method (HPM) and collocation method (CM)
  publication-title: Propuls. Power Res.
– volume: 26
  start-page: 542
  issue: 2
  year: 2015
  end-page: 552
  article-title: Analytical modeling of entropy generation for Casson nano‐fluid flow induced by a stretching surface
  publication-title: Adv. Powder Technol.
– volume: 15
  start-page: 1421
  issue: 6
  year: 2010
  end-page: 1431
  article-title: On the relationship between the homotopy analysis method and Euler transform
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 215
  start-page: 549
  year: 2016
  end-page: 554
  article-title: Effect of magnetic dipole on viscous ferro‐fluid past a stretching surface with thermal radiation
  publication-title: J. Mol. Liq.
– volume: 13
  start-page: 368
  issue: 3
  year: 2022
  article-title: Significance of Rosseland's radiative process on reactive Maxwell nanofluid flows over an isothermally heated stretching sheet in the presence of Darcy–Forchheimer and Lorentz forces: towards a new perspective on Buongiorno's model
  publication-title: Micromachines
– volume: 8
  start-page: 621
  year: 2018
  end-page: 627
  article-title: Hydromagnetic mixed convective flow over a wall with variable thickness and Cattaneo‐Christov heat flux model: OHAM analysis
  publication-title: Results Phys.
– volume: 45
  start-page: 9439
  issue: 11
  year: 2020
  end-page: 9447
  article-title: Mixed convection in unsteady stagnation point flow of Maxwell fluid subject to modified Fourier's law
  publication-title: Arab. J. Sci. Eng.
– volume: 383
  start-page: 276
  issue: 2‐3
  year: 2019
  end-page: 281
  article-title: Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model
  publication-title: Physics letters. A
– volume: 26
  year: 2021
  article-title: Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface
  publication-title: Case Stud. Therm. Eng.
– volume: 551
  year: 2020
  article-title: Hybrid dusty fluid flow through a Cattaneo–Christov heat flux model
  publication-title: Phys. A: Stat. Mech. Appl.
– volume: 11
  start-page: 647
  issue: 3
  year: 2006
  end-page: 654
  article-title: Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet
  publication-title: App. Mecm. Eng.
– volume: 21
  start-page: 645
  issue: 4
  year: 1970
  end-page: 647
  article-title: Flow past a stretching plate
  publication-title: Z. fur Angew. Math. Phys.
– volume: 36
  start-page: 481
  issue: 4
  year: 2009
  end-page: 486
  article-title: On frame indifferent formulation of the Maxwell–Cattaneo model of finite‐speed heat conduction
  publication-title: Mech.
– volume: 14
  issue: 8
  year: 2019
  article-title: Darcy‐Forchheimer nanofluidic flow manifested with Cattaneo‐Christov theory of heat and mass flux over non‐linearly stretching surface
  publication-title: PLoS One
– volume: 145
  year: 2019
  article-title: Homogeneous‐heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface
  publication-title: Int. J. Heat Mass Transf.
– start-page: 1
  year: 2022
  end-page: 18
  article-title: Study on time‐dependent Oldroyd‐B fluid flow over a convectively heated surface with Cattaneo‐Christov theory
  publication-title: Waves Random Complex Media
– volume: 63
  start-page: 2443
  issue: 6
  year: 1994
  end-page: 2444
  article-title: Stagnation‐point flow towards a stretching plate
  publication-title: J. Phys. Soc. Japan
– volume: 31
  start-page: 207
  issue: 1
  year: 2019
  end-page: 217
  article-title: Thermal radiation and slip effects on MHD stagnation point flow of non‐Newtonian nanofluid over a convective stretching surface
  publication-title: Neural. Comput. Appl.
– start-page: 499
  year: 1822
  end-page: 508
– volume: 25
  start-page: 2485
  issue: 14
  year: 2022
  end-page: 2497
  article-title: Optimal Homotopic Exploration of features of Cattaneo‐Christov model in Second Grade Nanofluid flow via Darcy‐Forchheimer medium subject to Viscous Dissipation and Thermal Radiation
  publication-title: Comb. Chem. High Throughput Screen.
– volume: 14
  issue: 1
  year: 2022
  article-title: Mathematical modelling of unsteady Oldroyd‐B fluid flow due to stretchable cylindrical surface with energy transport
  publication-title: Ain Shams Eng. J.
– volume: 8
  start-page: 369
  issue: 3
  year: 2018
  end-page: 378
  article-title: Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study
  publication-title: Appl. Nanosci.
– volume: 12
  start-page: 374
  issue: 4
  year: 2021
  article-title: Numerical scrutinization of Darcy‐Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by nonlinear stretching surface in the perspective of heat and mass transfer
  publication-title: Micromachines
– volume: 147
  start-page: 6901
  issue: 12
  year: 2022
  end-page: 6912
  article-title: Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet
  publication-title: J. Therm. Anal. Calorim.
– volume: 34
  year: 2022
  article-title: Effects of Cattaneo‐Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy
  publication-title: Case Stud. Therm. Eng.
– volume: 13
  issue: 3
  year: 2022
  article-title: Variable heat source in stagnation‐point unsteady flow of magnetized Oldroyd‐B fluid with cubic autocatalysis chemical reaction
  publication-title: Ain Shams Eng. J.
– volume: 96
  issue: 12
  year: 2021
  article-title: Convective transport of thermal and solutal energy in unsteady MHD Oldroyd‐B nanofluid flow
  publication-title: Phys. Scr.
– volume: 143
  issue: 9
  year: 2021
  article-title: Heat transfer enhancement feature of the Non‐Fourier Cattaneo–Christov heat flux model
  publication-title: J. Heat Transf.
– volume: 77
  start-page: 1963
  year: 2022
  end-page: 1975
  article-title: Analysis of bio‐convective MHD Blasius and Sakiadis flow with Cattaneo‐Christov heat flux model and chemical reaction
  publication-title: Chin. J. Phys.
– volume: 25
  issue: 1
  year: 2015
  article-title: Analytical study of Cattaneo–Christov heat flux model for a boundary layer flow of Oldroyd‐B fluid
  publication-title: Chin. Phys. B
– volume: 197
  start-page: 846
  issue: 6
  year: 2010
  end-page: 858
  article-title: Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects
  publication-title: Chem. Eng. Commun.
– volume: 19
  start-page: 45
  issue: 1
  year: 2016
  end-page: 52
  article-title: Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface
  publication-title: Eng. Sci. Technol.
– year: 2022
  article-title: Impact of ohmic heating on energy transport in double diffusive Oldroyd‐B nanofluid flow induced by stretchable cylindrical surface
  publication-title: Proc. Inst. Mech. Eng. E: J. Process Mech. Eng.
– volume: 94
  issue: 10
  year: 2019
  article-title: Magnetohydrodynamic Darcy–Forchheimer nanofluid flow over a nonlinear stretching sheet
  publication-title: Phys. Scr.
– volume: 540
  year: 2020
  article-title: Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species
  publication-title: Phys. A: Stat. Mech. Appl.
– volume: 129
  year: 2021
  article-title: Thermal and solutal performance of Cu/CuO nanoparticles on a non‐linear radially stretching surface with heat source/sink and varying chemical reaction effects
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 111
  start-page: 69
  year: 2015
  end-page: 75
  article-title: Application of the HAM‐based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano‐fluid
  publication-title: Comput. fluids
– volume: 3
  start-page: 83
  year: 1948
  end-page: 101
  article-title: Sulla conduzione del calore
  publication-title: Atti Sem. Mat. Fis. Univ. Modena
– ident: e_1_2_8_41_1
  doi: 10.4208/aamm.OA-2017-0196
– ident: e_1_2_8_9_1
  doi: 10.1088/1402-4896/ab18c8
– ident: e_1_2_8_16_1
  doi: 10.1007/s00521-017-2992-x
– ident: e_1_2_8_32_1
  doi: 10.1016/j.csite.2022.102048
– volume: 19
  start-page: 45
  issue: 1
  year: 2016
  ident: e_1_2_8_6_1
  article-title: Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface
  publication-title: Eng. Sci. Technol.
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cjph.2021.12.008
– ident: e_1_2_8_3_1
  doi: 10.1143/JPSJ.63.2443
– ident: e_1_2_8_12_1
  doi: 10.1007/s10973-020-09865-8
– ident: e_1_2_8_17_1
  doi: 10.1007/s10973-021-10976-z
– ident: e_1_2_8_4_1
  doi: 10.1016/j.apt.2015.01.003
– start-page: 499
  volume-title: Theorie analytique de la chaleur
  year: 1822
  ident: e_1_2_8_19_1
– ident: e_1_2_8_39_1
  doi: 10.1016/j.compfluid.2015.01.005
– ident: e_1_2_8_27_1
  doi: 10.2174/1386207324666210903144447
– volume: 36
  start-page: 481
  issue: 4
  year: 2009
  ident: e_1_2_8_21_1
  article-title: On frame indifferent formulation of the Maxwell–Cattaneo model of finite‐speed heat conduction
  publication-title: Mech.
– ident: e_1_2_8_34_1
  doi: 10.1007/s13369-020-04724-y
– ident: e_1_2_8_28_1
  doi: 10.1177/09544089211064116
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cnsns.2009.06.008
– volume: 3
  start-page: 83
  year: 1948
  ident: e_1_2_8_20_1
  article-title: Sulla conduzione del calore
  publication-title: Atti Sem. Mat. Fis. Univ. Modena
– ident: e_1_2_8_22_1
  doi: 10.1016/j.rinp.2017.12.043
– ident: e_1_2_8_26_1
  doi: 10.1115/1.4051671
– ident: e_1_2_8_30_1
  doi: 10.1080/17455030.2021.2021316
– ident: e_1_2_8_44_1
  doi: 10.1080/00986440903359087
– ident: e_1_2_8_11_1
  doi: 10.1016/j.csite.2021.100975
– ident: e_1_2_8_5_1
  doi: 10.1016/j.molliq.2015.12.110
– ident: e_1_2_8_14_1
  doi: 10.3390/mi12040374
– ident: e_1_2_8_10_1
  doi: 10.1016/j.physa.2019.123063
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pone.0221302
– ident: e_1_2_8_13_1
  doi: 10.1016/j.icheatmasstransfer.2021.105710
– ident: e_1_2_8_15_1
  doi: 10.3390/mi13030368
– ident: e_1_2_8_42_1
  doi: 10.1088/1674-1056/25/1/014701
– ident: e_1_2_8_7_1
  doi: 10.1007/s13204-018-0794-9
– ident: e_1_2_8_23_1
  doi: 10.1016/j.physleta.2018.10.035
– ident: e_1_2_8_35_1
  doi: 10.1088/1402-4896/ac3b67
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jppr.2018.07.005
– ident: e_1_2_8_25_1
  doi: 10.1016/j.physa.2019.123975
– ident: e_1_2_8_8_1
  doi: 10.1016/j.ijheatmasstransfer.2019.118781
– ident: e_1_2_8_33_1
  doi: 10.1016/j.asej.2022.101825
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cnsns.2008.04.013
– volume: 11
  start-page: 647
  issue: 3
  year: 2006
  ident: e_1_2_8_43_1
  article-title: Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet
  publication-title: App. Mecm. Eng.
– ident: e_1_2_8_18_1
  doi: 10.1016/j.asej.2021.10.005
– ident: e_1_2_8_2_1
  doi: 10.1007/BF01587695
– ident: e_1_2_8_31_1
  doi: 10.1016/j.amc.2021.126883
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ijheatmasstransfer.2012.10.006
SSID ssj0001913
Score 2.386443
Snippet To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chemical reactions
Energy transfer
Fluid flow
Heat
Heat flux
Heat generation
Heat transfer
Mass transport
Partial differential equations
Relaxation time
Stagnation point
Velocity distribution
Wall temperature
Title Dynamics of heat transport in flow of non‐linear Oldroyd‐B fluid subject to non‐Fourier's theory
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.202100393
https://www.proquest.com/docview/2847169150
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iSQ9-i9MpOQg7ZeuSpluP0zmGUAVxMLyU5guGs5W1RbaTf4J_o3-JSb-2CSLoMe1LmuYl77285P0eAJeMmuMfJZCwFEc2xTbSMtBCnAocUEokz1wX3p0zHNm3YzpeieLP8SEqh5tZGZm8Ngs8YHFrCRq6CF5MJLnespjwUi2E28Qx4Pn9hyV-lN6MFEfMNtJ2RqdEbbRwa736ulZampqrBmumcQa7ICj7ml80eW6mCWvyxTcYx__8zB7YKcxR2Mvnzz7YkOEB2F4BKdQlr0J2jQ-B6ucp7GMYKWgEOUxKeHQ4CaGaRm_mTRiFn-8fpl_BDN5PxSyaC_3gShOkEwHjlBn_D0yignKQp85rxDCLrJwfgdHg5vF6iIpcDYhrC4QgzVKt2LCtHMpoQJWNueh0hYlUV1SZLFiEY8K6zCJcYe66ynFkVwXMllwETJBjsKk_KE8AdKVscyUo6XBmtxnXPJSccaLbthRmrAZQySufF0DmJp_G1M8hmLFvRtOvRrMGGhX9aw7h8SNlvWS9Xyzl2M_0t-Nqw7kGcMbDX1rxn3qeV5VO_1LpDGyZtPb5RcM62ExmqTzXxk_CLrIJ_gXIdQAi
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RcCgcKBSqBgr4gJSTk63X3iTHQhoF6BYJJVLVy2r9kqKmWZTdCCUnfkJ_Y38Jnn0lQUJI9OjdsdfrsT2fH_MNwAcp8PjHaqo9qygXjFM3B3pUCc1iIXyj8q2L8DIYTfiXK1HdJkRfmIIfot5ww5GRz9c4wHFDurNhDV3Ht-hK7tYs6F-6B4-5Qxu4_hp83zBIueVIecjMqUMa3Yq30WOd3fy7dmkDNrcha25zhgcgq9oWV01u2stMttX6DyLHB_3Oc3hWIlJyVnShF_DIzA_h6RZPoUuFNblr-hLsoIhin5LEEpzLSVYxpJPpnNhZ8hPfzJP5_a87rFi8IN9mepGstHvw0Qksp5qkS4lbQCRLSslhET2vlZLcuXL1CibD8_GnES3DNVDlQIhPnVadbWPcBkKKWFjOlO72NDqrW2ExEJavmC970vOVZarft0FgejaW3CgdS-0fQcN90BwD6RtzqqwWfldJfiqVU6JRUvmubM8yKZtAK2VFquQyx5Aas6hgYWYRtmZUt2YTWrX8j4LF46-SJ5Xuo3I0p1FuwoO-w85NYLkS_1FKdH0WhnXq9f9keg_7o3F4EV18vvz6Bp5glPvi3uEJNLLF0rx1WCiT7_Le_hvI-ARB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oBdGDu1jXHARP0TGTTNujWktdWkUUxMsw2UCsHelMEXvyJ_gb_SUms7UVRNBjZl4ymbwk78vyvgewy5k9_tESS0cLTBmh2MyBDhZMkoAxV4lk66LV9pp39Pye3Y948af8EMWGmx0ZyXxtB_iL1AdD0tBB8Gw9yc2SxbqXTsIU9QycsLDoZkggZVYj2RkzxQZoVHLaRoccjOcfN0tDrDmKWBOT05iHIK9setPkab8f830x-Mbj-J-_WYC5DI-io7QDLcKE6i7B7AhLoUm1CmrXaBl0PY1hH6FQIzuTozjnR0ePXaQ74at90w27n-8ftl5BD111ZC98k-bBsRHoP0oU9bndAEJxmEk20th5exFKXCvfVuCucXp70sRZsAYsDARxsdGpsWyEao9xFjBNiZCVqrSu6pppGwbLFcTlVe64QhNRq2nPU1UdcKqEDLh0V6FkPqjWANWUOhRaMrciOD3kwuhQCS5cU7ajCedlwLmufJExmduAGh0_5WAmvm1Nv2jNMuwV8i8ph8ePkpu56v1sLEd-YsC9mkHOZSCJDn8pxX84arWK1PpfMu3A9HW94V-etS82YMaGuE8vHW5CKe711ZYBQjHfTvr6F8AmAvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+heat+transport+in+flow+of+non%E2%80%90linear+Oldroyd%E2%80%90B+fluid+subject+to+non%E2%80%90Fourier%27s+theory&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Yasir%2C+Muhammad&rft.au=Khan%2C+Masood&rft.date=2023-08-01&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=103&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fzamm.202100393&rft.externalDBID=10.1002%252Fzamm.202100393&rft.externalDocID=ZAMM202100393
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon