Dynamics of heat transport in flow of non‐linear Oldroyd‐B fluid subject to non‐Fourier's theory
To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat ge...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Mechanik Vol. 103; no. 8 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-2267 1521-4001 |
DOI | 10.1002/zamm.202100393 |
Cover
Abstract | To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential. The analytical series solutions are obtained through the use of a homotopic approach. The graphical upshots are conducted for velocity fields, temperature, and concentration distributions. In addition, energy transport analysis is performed for two kinds of surface heating mechanisms, namely the prescribed surface temperature (PST) and constant wall temperature (CWT). The outcomes of the current investigation revealed that a higher rate of heat transfer is observed in the case of CWT as compared to PST. Moreover, the increasing values of thermal and solutal relaxation time parameters reduce the heat and mass transport in the fluid flow, respectively.
To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential.… |
---|---|
AbstractList | To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential. The analytical series solutions are obtained through the use of a homotopic approach. The graphical upshots are conducted for velocity fields, temperature, and concentration distributions. In addition, energy transport analysis is performed for two kinds of surface heating mechanisms, namely the prescribed surface temperature (PST) and constant wall temperature (CWT). The outcomes of the current investigation revealed that a higher rate of heat transfer is observed in the case of CWT as compared to PST. Moreover, the increasing values of thermal and solutal relaxation time parameters reduce the heat and mass transport in the fluid flow, respectively. To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential. The analytical series solutions are obtained through the use of a homotopic approach. The graphical upshots are conducted for velocity fields, temperature, and concentration distributions. In addition, energy transport analysis is performed for two kinds of surface heating mechanisms, namely the prescribed surface temperature (PST) and constant wall temperature (CWT). The outcomes of the current investigation revealed that a higher rate of heat transfer is observed in the case of CWT as compared to PST. Moreover, the increasing values of thermal and solutal relaxation time parameters reduce the heat and mass transport in the fluid flow, respectively. To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat flux model is used in this investigation. Further, as the controlling agents for thermal and solutal transport in the fluid flow, the heat generation/absorption source and chemical reaction are also considered. The formulations of a such physical phenomenon are going to form the PDEs. Through appropriate similarity variables, these governing partial differential equations for flow and energy transport are converted into the ordinary differential.… |
Author | Yasir, Muhammad Khan, Masood |
Author_xml | – sequence: 1 givenname: Muhammad orcidid: 0000-0001-5335-1072 surname: Yasir fullname: Yasir, Muhammad email: myasir@math.qau.edu.pk organization: Quaid‐i‐Azam University – sequence: 2 givenname: Masood surname: Khan fullname: Khan, Masood organization: Quaid‐i‐Azam University |
BookMark | eNqFkMtKAzEUhoNUsFa3rgMuXE3NZW5Z1mpVaOlGN25CJpPQlJlJTWYo48pH8Bl9ElNaFARxFXLO9-Wc_Kdg0NhGAXCB0RgjRK7fRF2PCSLhQhk9AkOcEBzFCOEBGCIUxxEhaXYCTr1fo1BlmA6Bvu0bURvpodVwpUQLWycav7GuhaaBurLbXSeM-nz_qEyjhIPLqnS2L0PhJgCdKaHvirWSwbUHcmY7Z5S78rBdKev6M3CsReXV-eEcgefZ3dP0IZov7x-nk3kkKc5oJFlKGCOxTpMiEYmOiSyzvAy7Ip1ogjNCJaFFXiAqNZGM6TRVuRZFrGQpipKOwOX-3Y2zr53yLV-HTZowkpM8znDKcIICFe8p6az3TmkuTStaY5vweVNxjPguUb5LlH8nGrTxL23jTC1c_7fA9sLWVKr_h-Yvk8Xix_0CCQ2Pbw |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2023_e19004 crossref_primary_10_1080_10407782_2023_2251082 crossref_primary_10_1016_j_aej_2023_05_065 crossref_primary_10_1007_s41939_024_00700_3 crossref_primary_10_1007_s41939_024_00586_1 crossref_primary_10_1080_10407790_2024_2383984 crossref_primary_10_1108_MMMS_07_2024_0179 crossref_primary_10_1002_zamm_202300302 crossref_primary_10_1140_epjp_s13360_024_05626_w |
Cites_doi | 10.4208/aamm.OA-2017-0196 10.1088/1402-4896/ab18c8 10.1007/s00521-017-2992-x 10.1016/j.csite.2022.102048 10.1016/j.cjph.2021.12.008 10.1143/JPSJ.63.2443 10.1007/s10973-020-09865-8 10.1007/s10973-021-10976-z 10.1016/j.apt.2015.01.003 10.1016/j.compfluid.2015.01.005 10.2174/1386207324666210903144447 10.1007/s13369-020-04724-y 10.1177/09544089211064116 10.1016/j.cnsns.2009.06.008 10.1016/j.rinp.2017.12.043 10.1115/1.4051671 10.1080/17455030.2021.2021316 10.1080/00986440903359087 10.1016/j.csite.2021.100975 10.1016/j.molliq.2015.12.110 10.3390/mi12040374 10.1016/j.physa.2019.123063 10.1371/journal.pone.0221302 10.1016/j.icheatmasstransfer.2021.105710 10.3390/mi13030368 10.1088/1674-1056/25/1/014701 10.1007/s13204-018-0794-9 10.1016/j.physleta.2018.10.035 10.1088/1402-4896/ac3b67 10.1016/j.jppr.2018.07.005 10.1016/j.physa.2019.123975 10.1016/j.ijheatmasstransfer.2019.118781 10.1016/j.asej.2022.101825 10.1016/j.cnsns.2008.04.013 10.1016/j.asej.2021.10.005 10.1007/BF01587695 10.1016/j.amc.2021.126883 10.1016/j.ijheatmasstransfer.2012.10.006 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/zamm.202100393 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1521-4001 |
EndPage | n/a |
ExternalDocumentID | 10_1002_zamm_202100393 ZAMM202100393 |
Genre | article |
GroupedDBID | -~X .3N .DC .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 41~ 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCQX ABCUV ABEML ABIJN ACAHQ ACBWZ ACCZN ACGFS ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMVHM AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 FEDTE FSPIC G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6L MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RJQFR RX1 SAMSI TN5 UB1 V2E VOH W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION 7SC 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3173-c9629924f65b5a5f42cd78d0190f5f21723c23b8b03cf2c99f66e8fab4ecdabd3 |
IEDL.DBID | DR2 |
ISSN | 0044-2267 |
IngestDate | Fri Jul 25 10:42:58 EDT 2025 Tue Jul 01 00:21:15 EDT 2025 Thu Apr 24 22:58:46 EDT 2025 Wed Jun 11 08:26:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3173-c9629924f65b5a5f42cd78d0190f5f21723c23b8b03cf2c99f66e8fab4ecdabd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5335-1072 |
PQID | 2847169150 |
PQPubID | 2032056 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2847169150 crossref_citationtrail_10_1002_zamm_202100393 crossref_primary_10_1002_zamm_202100393 wiley_primary_10_1002_zamm_202100393_ZAMM202100393 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2023 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Zeitschrift für angewandte Mathematik und Mechanik |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 26 2010; 15 2016; 19 2019; 94 2019; 31 2006; 11 2021; 129 2019; 14 2022; 25 2020; 540 2021; 143 2022; 419 2019; 383 2021; 96 1994; 63 2019; 145 2018; 7 2015; 26 2009; 36 2009; 14 2018; 8 2015; 25 2021; 12 2022 2013; 57 2015; 111 1948; 3 1822 2022; 34 2022; 13 1970; 21 2022; 14 2010; 197 2016; 215 2020; 551 2020; 45 2022; 77 2018; 10 2022; 147 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 Fourier J.B.J. (e_1_2_8_19_1) 1822 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Sharidan S. (e_1_2_8_43_1) 2006; 11 Raju C.S.K. (e_1_2_8_6_1) 2016; 19 Cattaneo C. (e_1_2_8_20_1) 1948; 3 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 Christov C.I. (e_1_2_8_21_1) 2009; 36 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 10 start-page: 925 issue: 4 year: 2018 end-page: 947 article-title: Convergence accelerating in the homotopy analysis method: a new approach publication-title: Adv. Appl. Math. Mech. – volume: 419 year: 2022 article-title: Combined impact of Cattaneo‐Christov double diffusion and radiative heat flux on bio‐convective flow of Maxwell liquid configured by a stretched nano‐material surface publication-title: Appl. Math. Comput. – volume: 57 start-page: 82 issue: 1 year: 2013 end-page: 88 article-title: Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid publication-title: Int. J. Heat Mass Transf. – volume: 143 start-page: 2379 issue: 3 year: 2021 end-page: 2393 article-title: Numerical spectral examination of EMHD mixed convective flow of second‐grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno's nanofluid model publication-title: J. Therm. Anal. Calorim. – volume: 14 start-page: 983 issue: 4 year: 2009 end-page: 997 article-title: Notes on the homotopy analysis method: some definitions and theorems publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 7 start-page: 247 issue: 3 year: 2018 end-page: 256 article-title: Unsteady time‐dependent incompressible Newtonian fluid flow between two parallel plates by homotopy analysis method (HAM), homotopy perturbation method (HPM) and collocation method (CM) publication-title: Propuls. Power Res. – volume: 26 start-page: 542 issue: 2 year: 2015 end-page: 552 article-title: Analytical modeling of entropy generation for Casson nano‐fluid flow induced by a stretching surface publication-title: Adv. Powder Technol. – volume: 15 start-page: 1421 issue: 6 year: 2010 end-page: 1431 article-title: On the relationship between the homotopy analysis method and Euler transform publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 215 start-page: 549 year: 2016 end-page: 554 article-title: Effect of magnetic dipole on viscous ferro‐fluid past a stretching surface with thermal radiation publication-title: J. Mol. Liq. – volume: 13 start-page: 368 issue: 3 year: 2022 article-title: Significance of Rosseland's radiative process on reactive Maxwell nanofluid flows over an isothermally heated stretching sheet in the presence of Darcy–Forchheimer and Lorentz forces: towards a new perspective on Buongiorno's model publication-title: Micromachines – volume: 8 start-page: 621 year: 2018 end-page: 627 article-title: Hydromagnetic mixed convective flow over a wall with variable thickness and Cattaneo‐Christov heat flux model: OHAM analysis publication-title: Results Phys. – volume: 45 start-page: 9439 issue: 11 year: 2020 end-page: 9447 article-title: Mixed convection in unsteady stagnation point flow of Maxwell fluid subject to modified Fourier's law publication-title: Arab. J. Sci. Eng. – volume: 383 start-page: 276 issue: 2‐3 year: 2019 end-page: 281 article-title: Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model publication-title: Physics letters. A – volume: 26 year: 2021 article-title: Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface publication-title: Case Stud. Therm. Eng. – volume: 551 year: 2020 article-title: Hybrid dusty fluid flow through a Cattaneo–Christov heat flux model publication-title: Phys. A: Stat. Mech. Appl. – volume: 11 start-page: 647 issue: 3 year: 2006 end-page: 654 article-title: Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet publication-title: App. Mecm. Eng. – volume: 21 start-page: 645 issue: 4 year: 1970 end-page: 647 article-title: Flow past a stretching plate publication-title: Z. fur Angew. Math. Phys. – volume: 36 start-page: 481 issue: 4 year: 2009 end-page: 486 article-title: On frame indifferent formulation of the Maxwell–Cattaneo model of finite‐speed heat conduction publication-title: Mech. – volume: 14 issue: 8 year: 2019 article-title: Darcy‐Forchheimer nanofluidic flow manifested with Cattaneo‐Christov theory of heat and mass flux over non‐linearly stretching surface publication-title: PLoS One – volume: 145 year: 2019 article-title: Homogeneous‐heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface publication-title: Int. J. Heat Mass Transf. – start-page: 1 year: 2022 end-page: 18 article-title: Study on time‐dependent Oldroyd‐B fluid flow over a convectively heated surface with Cattaneo‐Christov theory publication-title: Waves Random Complex Media – volume: 63 start-page: 2443 issue: 6 year: 1994 end-page: 2444 article-title: Stagnation‐point flow towards a stretching plate publication-title: J. Phys. Soc. Japan – volume: 31 start-page: 207 issue: 1 year: 2019 end-page: 217 article-title: Thermal radiation and slip effects on MHD stagnation point flow of non‐Newtonian nanofluid over a convective stretching surface publication-title: Neural. Comput. Appl. – start-page: 499 year: 1822 end-page: 508 – volume: 25 start-page: 2485 issue: 14 year: 2022 end-page: 2497 article-title: Optimal Homotopic Exploration of features of Cattaneo‐Christov model in Second Grade Nanofluid flow via Darcy‐Forchheimer medium subject to Viscous Dissipation and Thermal Radiation publication-title: Comb. Chem. High Throughput Screen. – volume: 14 issue: 1 year: 2022 article-title: Mathematical modelling of unsteady Oldroyd‐B fluid flow due to stretchable cylindrical surface with energy transport publication-title: Ain Shams Eng. J. – volume: 8 start-page: 369 issue: 3 year: 2018 end-page: 378 article-title: Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study publication-title: Appl. Nanosci. – volume: 12 start-page: 374 issue: 4 year: 2021 article-title: Numerical scrutinization of Darcy‐Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by nonlinear stretching surface in the perspective of heat and mass transfer publication-title: Micromachines – volume: 147 start-page: 6901 issue: 12 year: 2022 end-page: 6912 article-title: Numerical investigation of the stagnation point flow of radiative magnetomicropolar liquid past a heated porous stretching sheet publication-title: J. Therm. Anal. Calorim. – volume: 34 year: 2022 article-title: Effects of Cattaneo‐Christov heat flux and nonlinear thermal radiation on MHD Maxwell nanofluid with Arrhenius activation energy publication-title: Case Stud. Therm. Eng. – volume: 13 issue: 3 year: 2022 article-title: Variable heat source in stagnation‐point unsteady flow of magnetized Oldroyd‐B fluid with cubic autocatalysis chemical reaction publication-title: Ain Shams Eng. J. – volume: 96 issue: 12 year: 2021 article-title: Convective transport of thermal and solutal energy in unsteady MHD Oldroyd‐B nanofluid flow publication-title: Phys. Scr. – volume: 143 issue: 9 year: 2021 article-title: Heat transfer enhancement feature of the Non‐Fourier Cattaneo–Christov heat flux model publication-title: J. Heat Transf. – volume: 77 start-page: 1963 year: 2022 end-page: 1975 article-title: Analysis of bio‐convective MHD Blasius and Sakiadis flow with Cattaneo‐Christov heat flux model and chemical reaction publication-title: Chin. J. Phys. – volume: 25 issue: 1 year: 2015 article-title: Analytical study of Cattaneo–Christov heat flux model for a boundary layer flow of Oldroyd‐B fluid publication-title: Chin. Phys. B – volume: 197 start-page: 846 issue: 6 year: 2010 end-page: 858 article-title: Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects publication-title: Chem. Eng. Commun. – volume: 19 start-page: 45 issue: 1 year: 2016 end-page: 52 article-title: Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface publication-title: Eng. Sci. Technol. – year: 2022 article-title: Impact of ohmic heating on energy transport in double diffusive Oldroyd‐B nanofluid flow induced by stretchable cylindrical surface publication-title: Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. – volume: 94 issue: 10 year: 2019 article-title: Magnetohydrodynamic Darcy–Forchheimer nanofluid flow over a nonlinear stretching sheet publication-title: Phys. Scr. – volume: 540 year: 2020 article-title: Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species publication-title: Phys. A: Stat. Mech. Appl. – volume: 129 year: 2021 article-title: Thermal and solutal performance of Cu/CuO nanoparticles on a non‐linear radially stretching surface with heat source/sink and varying chemical reaction effects publication-title: Int. Commun. Heat Mass Transf. – volume: 111 start-page: 69 year: 2015 end-page: 75 article-title: Application of the HAM‐based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano‐fluid publication-title: Comput. fluids – volume: 3 start-page: 83 year: 1948 end-page: 101 article-title: Sulla conduzione del calore publication-title: Atti Sem. Mat. Fis. Univ. Modena – ident: e_1_2_8_41_1 doi: 10.4208/aamm.OA-2017-0196 – ident: e_1_2_8_9_1 doi: 10.1088/1402-4896/ab18c8 – ident: e_1_2_8_16_1 doi: 10.1007/s00521-017-2992-x – ident: e_1_2_8_32_1 doi: 10.1016/j.csite.2022.102048 – volume: 19 start-page: 45 issue: 1 year: 2016 ident: e_1_2_8_6_1 article-title: Heat and mass transfer in magnetohydrodynamic Casson fluid over an exponentially permeable stretching surface publication-title: Eng. Sci. Technol. – ident: e_1_2_8_29_1 doi: 10.1016/j.cjph.2021.12.008 – ident: e_1_2_8_3_1 doi: 10.1143/JPSJ.63.2443 – ident: e_1_2_8_12_1 doi: 10.1007/s10973-020-09865-8 – ident: e_1_2_8_17_1 doi: 10.1007/s10973-021-10976-z – ident: e_1_2_8_4_1 doi: 10.1016/j.apt.2015.01.003 – start-page: 499 volume-title: Theorie analytique de la chaleur year: 1822 ident: e_1_2_8_19_1 – ident: e_1_2_8_39_1 doi: 10.1016/j.compfluid.2015.01.005 – ident: e_1_2_8_27_1 doi: 10.2174/1386207324666210903144447 – volume: 36 start-page: 481 issue: 4 year: 2009 ident: e_1_2_8_21_1 article-title: On frame indifferent formulation of the Maxwell–Cattaneo model of finite‐speed heat conduction publication-title: Mech. – ident: e_1_2_8_34_1 doi: 10.1007/s13369-020-04724-y – ident: e_1_2_8_28_1 doi: 10.1177/09544089211064116 – ident: e_1_2_8_37_1 doi: 10.1016/j.cnsns.2009.06.008 – volume: 3 start-page: 83 year: 1948 ident: e_1_2_8_20_1 article-title: Sulla conduzione del calore publication-title: Atti Sem. Mat. Fis. Univ. Modena – ident: e_1_2_8_22_1 doi: 10.1016/j.rinp.2017.12.043 – ident: e_1_2_8_26_1 doi: 10.1115/1.4051671 – ident: e_1_2_8_30_1 doi: 10.1080/17455030.2021.2021316 – ident: e_1_2_8_44_1 doi: 10.1080/00986440903359087 – ident: e_1_2_8_11_1 doi: 10.1016/j.csite.2021.100975 – ident: e_1_2_8_5_1 doi: 10.1016/j.molliq.2015.12.110 – ident: e_1_2_8_14_1 doi: 10.3390/mi12040374 – ident: e_1_2_8_10_1 doi: 10.1016/j.physa.2019.123063 – ident: e_1_2_8_24_1 doi: 10.1371/journal.pone.0221302 – ident: e_1_2_8_13_1 doi: 10.1016/j.icheatmasstransfer.2021.105710 – ident: e_1_2_8_15_1 doi: 10.3390/mi13030368 – ident: e_1_2_8_42_1 doi: 10.1088/1674-1056/25/1/014701 – ident: e_1_2_8_7_1 doi: 10.1007/s13204-018-0794-9 – ident: e_1_2_8_23_1 doi: 10.1016/j.physleta.2018.10.035 – ident: e_1_2_8_35_1 doi: 10.1088/1402-4896/ac3b67 – ident: e_1_2_8_40_1 doi: 10.1016/j.jppr.2018.07.005 – ident: e_1_2_8_25_1 doi: 10.1016/j.physa.2019.123975 – ident: e_1_2_8_8_1 doi: 10.1016/j.ijheatmasstransfer.2019.118781 – ident: e_1_2_8_33_1 doi: 10.1016/j.asej.2022.101825 – ident: e_1_2_8_36_1 doi: 10.1016/j.cnsns.2008.04.013 – volume: 11 start-page: 647 issue: 3 year: 2006 ident: e_1_2_8_43_1 article-title: Similarity solutions for the unsteady boundary layer flow and heat transfer due to a stretching sheet publication-title: App. Mecm. Eng. – ident: e_1_2_8_18_1 doi: 10.1016/j.asej.2021.10.005 – ident: e_1_2_8_2_1 doi: 10.1007/BF01587695 – ident: e_1_2_8_31_1 doi: 10.1016/j.amc.2021.126883 – ident: e_1_2_8_38_1 doi: 10.1016/j.ijheatmasstransfer.2012.10.006 |
SSID | ssj0001913 |
Score | 2.386443 |
Snippet | To study non‐Fourier heat and mass transport in the stagnation point flow of magnetized Oldroyd‐B fluid due to stretching cylinder, the Cattaneo–Christov heat... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chemical reactions Energy transfer Fluid flow Heat Heat flux Heat generation Heat transfer Mass transport Partial differential equations Relaxation time Stagnation point Velocity distribution Wall temperature |
Title | Dynamics of heat transport in flow of non‐linear Oldroyd‐B fluid subject to non‐Fourier's theory |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fzamm.202100393 https://www.proquest.com/docview/2847169150 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iSQ9-i9MpOQg7ZeuSpluP0zmGUAVxMLyU5guGs5W1RbaTf4J_o3-JSb-2CSLoMe1LmuYl77285P0eAJeMmuMfJZCwFEc2xTbSMtBCnAocUEokz1wX3p0zHNm3YzpeieLP8SEqh5tZGZm8Ngs8YHFrCRq6CF5MJLnespjwUi2E28Qx4Pn9hyV-lN6MFEfMNtJ2RqdEbbRwa736ulZampqrBmumcQa7ICj7ml80eW6mCWvyxTcYx__8zB7YKcxR2Mvnzz7YkOEB2F4BKdQlr0J2jQ-B6ucp7GMYKWgEOUxKeHQ4CaGaRm_mTRiFn-8fpl_BDN5PxSyaC_3gShOkEwHjlBn_D0yignKQp85rxDCLrJwfgdHg5vF6iIpcDYhrC4QgzVKt2LCtHMpoQJWNueh0hYlUV1SZLFiEY8K6zCJcYe66ynFkVwXMllwETJBjsKk_KE8AdKVscyUo6XBmtxnXPJSccaLbthRmrAZQySufF0DmJp_G1M8hmLFvRtOvRrMGGhX9aw7h8SNlvWS9Xyzl2M_0t-Nqw7kGcMbDX1rxn3qeV5VO_1LpDGyZtPb5RcM62ExmqTzXxk_CLrIJ_gXIdQAi |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RcCgcKBSqBgr4gJSTk63X3iTHQhoF6BYJJVLVy2r9kqKmWZTdCCUnfkJ_Y38Jnn0lQUJI9OjdsdfrsT2fH_MNwAcp8PjHaqo9qygXjFM3B3pUCc1iIXyj8q2L8DIYTfiXK1HdJkRfmIIfot5ww5GRz9c4wHFDurNhDV3Ht-hK7tYs6F-6B4-5Qxu4_hp83zBIueVIecjMqUMa3Yq30WOd3fy7dmkDNrcha25zhgcgq9oWV01u2stMttX6DyLHB_3Oc3hWIlJyVnShF_DIzA_h6RZPoUuFNblr-hLsoIhin5LEEpzLSVYxpJPpnNhZ8hPfzJP5_a87rFi8IN9mepGstHvw0Qksp5qkS4lbQCRLSslhET2vlZLcuXL1CibD8_GnES3DNVDlQIhPnVadbWPcBkKKWFjOlO72NDqrW2ExEJavmC970vOVZarft0FgejaW3CgdS-0fQcN90BwD6RtzqqwWfldJfiqVU6JRUvmubM8yKZtAK2VFquQyx5Aas6hgYWYRtmZUt2YTWrX8j4LF46-SJ5Xuo3I0p1FuwoO-w85NYLkS_1FKdH0WhnXq9f9keg_7o3F4EV18vvz6Bp5glPvi3uEJNLLF0rx1WCiT7_Le_hvI-ARB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oBdGDu1jXHARP0TGTTNujWktdWkUUxMsw2UCsHelMEXvyJ_gb_SUms7UVRNBjZl4ymbwk78vyvgewy5k9_tESS0cLTBmh2MyBDhZMkoAxV4lk66LV9pp39Pye3Y948af8EMWGmx0ZyXxtB_iL1AdD0tBB8Gw9yc2SxbqXTsIU9QycsLDoZkggZVYj2RkzxQZoVHLaRoccjOcfN0tDrDmKWBOT05iHIK9setPkab8f830x-Mbj-J-_WYC5DI-io7QDLcKE6i7B7AhLoUm1CmrXaBl0PY1hH6FQIzuTozjnR0ePXaQ74at90w27n-8ftl5BD111ZC98k-bBsRHoP0oU9bndAEJxmEk20th5exFKXCvfVuCucXp70sRZsAYsDARxsdGpsWyEao9xFjBNiZCVqrSu6pppGwbLFcTlVe64QhNRq2nPU1UdcKqEDLh0V6FkPqjWANWUOhRaMrciOD3kwuhQCS5cU7ajCedlwLmufJExmduAGh0_5WAmvm1Nv2jNMuwV8i8ph8ePkpu56v1sLEd-YsC9mkHOZSCJDn8pxX84arWK1PpfMu3A9HW94V-etS82YMaGuE8vHW5CKe711ZYBQjHfTvr6F8AmAvA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+heat+transport+in+flow+of+non%E2%80%90linear+Oldroyd%E2%80%90B+fluid+subject+to+non%E2%80%90Fourier%27s+theory&rft.jtitle=Zeitschrift+f%C3%BCr+angewandte+Mathematik+und+Mechanik&rft.au=Yasir%2C+Muhammad&rft.au=Khan%2C+Masood&rft.date=2023-08-01&rft.issn=0044-2267&rft.eissn=1521-4001&rft.volume=103&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fzamm.202100393&rft.externalDBID=10.1002%252Fzamm.202100393&rft.externalDocID=ZAMM202100393 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-2267&client=summon |