Synergistic Coupling of NiTe Nanoarrays with FeOOH Nanosheets for Highly Efficient Oxygen Evolution Reaction

Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of elect...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 8; no. 19; pp. 3643 - 3650
Main Authors Li, Yadong, Chen, Baojin, Zhang, Huaming, Gao, Jing, Sun, Huachuan, Habibi‐Yangjeh, Aziz, Wang, Chundong
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of electrocatalysts with excellent performance are vital to prompt the application of OER. Due to the unique electronic properties of NiTe and strong synergistic interaction between NiTe and FeOOH, NiTe@FeOOH hybrid nanorods were successfully fabricated on Ni foams (NF) by a hydrothermal reaction step and another in‐situ growth step for the first time without consuming any extra energy. The 3D structure of the NiTe@FeOOH/NF was confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS) mapping technologies. Electrochemical measurements showed that the as‐prepared NiTe@FeOOH/NF needs only an overpotential of 241 mV to achieve a current density of 10 mA cm−2 in 1.0 M KOH and requires 1.341 V to drive 10 mA cm−2 in 1 M KOH with a 0.33 M urea, showing excellent long‐term stability. The NiTe@FeOOH/NF as the bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.50 V at 10 mA cm−2. This work can provide a new efficient method to construct highly active and cost‐effective OER catalysts. Dual purpose: A FeOOH@NiTe hybrid nanorod arrays on Ni foam was synthesized as electrocatalyst for the oxygen evolution reaction, exhibiting excellent OER activity and long‐term stability. The synthesized NiTe@FeOOH/NF also shows enhanced catalytic performance for the urea oxidation reaction.
AbstractList Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of electrocatalysts with excellent performance are vital to prompt the application of OER. Due to the unique electronic properties of NiTe and strong synergistic interaction between NiTe and FeOOH, NiTe@FeOOH hybrid nanorods were successfully fabricated on Ni foams (NF) by a hydrothermal reaction step and another in‐situ growth step for the first time without consuming any extra energy. The 3D structure of the NiTe@FeOOH/NF was confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS) mapping technologies. Electrochemical measurements showed that the as‐prepared NiTe@FeOOH/NF needs only an overpotential of 241 mV to achieve a current density of 10 mA cm−2 in 1.0 M KOH and requires 1.341 V to drive 10 mA cm−2 in 1 M KOH with a 0.33 M urea, showing excellent long‐term stability. The NiTe@FeOOH/NF as the bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.50 V at 10 mA cm−2. This work can provide a new efficient method to construct highly active and cost‐effective OER catalysts.
Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of electrocatalysts with excellent performance are vital to prompt the application of OER. Due to the unique electronic properties of NiTe and strong synergistic interaction between NiTe and FeOOH, NiTe@FeOOH hybrid nanorods were successfully fabricated on Ni foams (NF) by a hydrothermal reaction step and another in‐situ growth step for the first time without consuming any extra energy. The 3D structure of the NiTe@FeOOH/NF was confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS) mapping technologies. Electrochemical measurements showed that the as‐prepared NiTe@FeOOH/NF needs only an overpotential of 241 mV to achieve a current density of 10 mA cm−2 in 1.0 M KOH and requires 1.341 V to drive 10 mA cm−2 in 1 M KOH with a 0.33 M urea, showing excellent long‐term stability. The NiTe@FeOOH/NF as the bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.50 V at 10 mA cm−2. This work can provide a new efficient method to construct highly active and cost‐effective OER catalysts. Dual purpose: A FeOOH@NiTe hybrid nanorod arrays on Ni foam was synthesized as electrocatalyst for the oxygen evolution reaction, exhibiting excellent OER activity and long‐term stability. The synthesized NiTe@FeOOH/NF also shows enhanced catalytic performance for the urea oxidation reaction.
Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of electrocatalysts with excellent performance are vital to prompt the application of OER. Due to the unique electronic properties of NiTe and strong synergistic interaction between NiTe and FeOOH, NiTe@FeOOH hybrid nanorods were successfully fabricated on Ni foams (NF) by a hydrothermal reaction step and another in‐situ growth step for the first time without consuming any extra energy. The 3D structure of the NiTe@FeOOH/NF was confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS) mapping technologies. Electrochemical measurements showed that the as‐prepared NiTe@FeOOH/NF needs only an overpotential of 241 mV to achieve a current density of 10 mA cm −2 in 1.0 M KOH and requires 1.341 V to drive 10 mA cm −2 in 1 M KOH with a 0.33 M urea, showing excellent long‐term stability. The NiTe@FeOOH/NF as the bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.50 V at 10 mA cm −2 . This work can provide a new efficient method to construct highly active and cost‐effective OER catalysts.
Author Li, Yadong
Zhang, Huaming
Habibi‐Yangjeh, Aziz
Gao, Jing
Sun, Huachuan
Chen, Baojin
Wang, Chundong
Author_xml – sequence: 1
  givenname: Yadong
  surname: Li
  fullname: Li, Yadong
  organization: Nanchang Hangkong University
– sequence: 2
  givenname: Baojin
  surname: Chen
  fullname: Chen, Baojin
  organization: Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province
– sequence: 3
  givenname: Huaming
  orcidid: 0000-0003-3189-3190
  surname: Zhang
  fullname: Zhang, Huaming
  email: 70451@nchu.edu.cn
  organization: Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province
– sequence: 4
  givenname: Jing
  surname: Gao
  fullname: Gao, Jing
  organization: Huazhong University of Science and Technology
– sequence: 5
  givenname: Huachuan
  surname: Sun
  fullname: Sun, Huachuan
  organization: Huazhong University of Science and Technology
– sequence: 6
  givenname: Aziz
  surname: Habibi‐Yangjeh
  fullname: Habibi‐Yangjeh, Aziz
  organization: University of Mohaghegh Ardabili
– sequence: 7
  givenname: Chundong
  surname: Wang
  fullname: Wang, Chundong
  email: apcdwang@hust.edu.cn
  organization: Huazhong University of Science and Technology
BookMark eNqFkEtLAzEUhYMoWGu3rgOup-bReS1lmFqhtKB1PaSZmzZlTGqSWuffO7WiIoir--B893DPBTo11gBCV5QMKSHsRkIjh4ywbkgJP0E9RvMk6ubk9Ed_jgbebwghlJKYZ0kPNY-tAbfSPmiJC7vbNtqssFV4pheAZ8JY4ZxoPd7rsMZjmM8nH1u_BggeK-vwRK_WTYtLpbTUYAKev7UrMLh8tc0uaGvwAwh5aC7RmRKNh8Fn7aOncbkoJtF0fndf3E4jyWnKI8lSInKWZDGtBcsZSznERMESuMw4jGouVJrVsoalgLgWtcghSaiSeZolqgbeR9fHu1tnX3bgQ7WxO2c6y4rFGe20jGSdanhUSWe9d6CqrdPPwrUVJdUh1OoQavUVageMfgFSB3F4LDihm7-x_IjtdQPtPyZVUU6Lb_YddwWPfw
CitedBy_id crossref_primary_10_1007_s12598_025_03258_2
crossref_primary_10_1002_ente_202300177
crossref_primary_10_1016_j_fuel_2024_132445
crossref_primary_10_1002_adfm_202300557
crossref_primary_10_1002_anie_202413932
crossref_primary_10_1016_j_cej_2023_145568
crossref_primary_10_1016_j_jallcom_2022_166779
crossref_primary_10_1016_j_ijhydene_2024_02_202
crossref_primary_10_1016_j_isci_2023_108736
crossref_primary_10_1039_D3QI02551A
crossref_primary_10_1016_j_coelec_2022_101031
crossref_primary_10_1016_j_ijhydene_2022_07_135
crossref_primary_10_1002_ange_202413932
crossref_primary_10_1016_j_ijhydene_2024_03_275
crossref_primary_10_1002_asia_202300362
crossref_primary_10_3390_membranes13010113
crossref_primary_10_1016_j_cej_2023_144660
crossref_primary_10_1016_j_ijhydene_2021_12_258
Cites_doi 10.1016/j.apcatb.2020.119014
10.1002/adma.201701687
10.1016/j.nanoen.2020.105230
10.1021/acscatal.5b01551
10.1038/s41467-019-13051-2
10.1039/c0ee00705f
10.1021/jacs.7b06587
10.1002/adfm.201801554
10.1039/D0EE00666A
10.1002/cssc.201800781
10.1021/acsenergylett.7b00835
10.1007/s41061-018-0219-y
10.1039/C7CC07962A
10.1039/C6TA08206H
10.1016/j.apsusc.2017.03.285
10.1039/C6TA08075H
10.1002/celc.202000136
10.1021/acscatal.9b03876
10.1021/acsami.6b15461
10.1002/adma.201900862
10.1016/j.ensm.2017.11.006
10.1038/ncomms8261
10.1002/aenm.201803693
10.1039/C8TA02608D
10.1016/j.jcis.2019.09.012
10.1016/j.jcis.2020.06.065
10.1021/acsami.9b04528
10.1002/celc.201900897
10.1002/anie.201701477
10.1002/admi.202000310
10.1002/adma.201900430
10.1002/ange.201511447
10.1021/acsami.7b08917
10.1002/celc.201701304
10.1016/j.jallcom.2018.10.358
10.1039/C8TA04325F
10.1039/C7NR04327A
10.1039/D0NR05216G
10.1016/j.apcatb.2020.118600
10.1002/adma.202000872
10.1021/acssuschemeng.7b04663
10.1021/acsami.7b03033
10.1039/C7TA10048E
10.1002/ange.201706610
10.1016/j.jpowsour.2019.227585
10.1002/adma.201901139
10.1021/acscatal.9b01637
10.1002/smtd.201900113
10.1002/aenm.201600621
10.1016/j.nanoen.2017.01.056
10.1021/acsami.8b19052
10.1039/D0NR01516D
10.1021/acsami.6b02491
10.1016/j.nanoen.2017.05.022
10.1002/anie.201511447
10.1021/acsami.8b08547
10.1016/j.ijhydene.2020.07.022
10.1016/j.apcatb.2020.118988
10.12693/APhysPolA.127.534
10.1039/C8TA10985K
10.1021/acsenergylett.6b00303
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.202100703
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage 3650
ExternalDocumentID 10_1002_celc_202100703
CELC202100703
Genre article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2017YFE0120500
– fundername: National Natural Science Foundation of China
  funderid: 11764028; 51972129
– fundername: South Xinjiang Innovation and Development Program of Key Industries of Xinjiang Production and Construction Corps
  funderid: 2020DB002
– fundername: Key Research and Development Program of Hubei
  funderid: 2020BAB079
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 200KFYYXJJ051; 2019KFYXMBZ076
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJCF
ABJNI
ACCMX
ADMLS
AFKRA
ARAPS
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EJD
GROUPED_DOAJ
HCIFZ
KB.
M7P
PDBOC
PHGZM
PHGZT
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3173-c270a926851da292273e50febe3c83e4d3af78dcdebae5dada9e661fc9786fde3
ISSN 2196-0216
IngestDate Fri Jul 25 11:54:40 EDT 2025
Thu Apr 24 22:51:23 EDT 2025
Tue Jul 01 01:11:08 EDT 2025
Sat Aug 24 00:59:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3173-c270a926851da292273e50febe3c83e4d3af78dcdebae5dada9e661fc9786fde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3189-3190
PQID 2581661208
PQPubID 2034587
PageCount 8
ParticipantIDs proquest_journals_2581661208
crossref_primary_10_1002_celc_202100703
crossref_citationtrail_10_1002_celc_202100703
wiley_primary_10_1002_celc_202100703_CELC202100703
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 1, 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 5
2017; 2
2019; 11
2019; 10
2020; 13
2020; 12
2017; 9
2020; 449
2020; 7
2018; 6
2018; 5
2017; 37
2017; 33
2018; 376
2020; 579
2020; 45
2019; 557
2017; 129
2019; 7
2019; 9
2018; 28
2015; 6
2015; 5
2019; 3
2019; 6
2019; 31
2015; 127
2020; 269
2017; 29
2020; 78
2020; 32
2011; 4
2017; 413
2017; 139
2016; 4
2016; 5
2016; 6
2017; 53
2015; 25
2016 2016; 55 128
2016; 1
2020; 273
2020; 272
2017; 56
2019; 776
2018; 12
2018; 11
2018; 10
2016; 8
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Li Y. B. (e_1_2_7_52_1) 2020; 13
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Yu Q. (e_1_2_7_56_1) 2015; 25
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 11
  start-page: 2643
  year: 2018
  end-page: 2653
  publication-title: ChemSusChem
– volume: 4
  start-page: 17587
  year: 2016
  end-page: 17603
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7261
  year: 2015
  publication-title: Nat. Commun.
– volume: 11
  start-page: 27667
  year: 2019
  end-page: 27676
  publication-title: ACS Appl. Mater. Interfaces
– volume: 449
  year: 2020
  publication-title: J. Power Sources
– volume: 9
  start-page: 10705
  year: 2019
  end-page: 10711
  publication-title: ACS Catal.
– volume: 413
  start-page: 360
  year: 2017
  end-page: 365
  publication-title: Appl. Surf. Sci.
– volume: 272
  year: 2020
  publication-title: Appl. Catal. B
– volume: 9
  start-page: 33833
  year: 2017
  end-page: 33840
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1805
  year: 2020
  end-page: 1824
  publication-title: ChemElectroChem
– volume: 376
  start-page: 42
  year: 2018
  publication-title: Top. Curr. Chem.
– volume: 9
  start-page: 15397
  year: 2017
  end-page: 15406
  publication-title: Nanoscale
– volume: 5
  start-page: 1035
  year: 2016
  end-page: 1042
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 2498
  year: 2017
  end-page: 2505
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 16950
  year: 2018
  end-page: 16958
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 12340
  year: 2017
  end-page: 12347
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55 128
  start-page: 3694 3758
  year: 2016 2016
  end-page: 3698 3762
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 557
  start-page: 10
  year: 2019
  end-page: 17
  publication-title: J. Colloid Interface Sci.
– volume: 53
  start-page: 13237
  year: 2017
  end-page: 13240
  publication-title: Chem. Commun.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 579
  start-page: 340
  year: 2020
  end-page: 346
  publication-title: J. Colloid Interface Sci.
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 10
  start-page: 29521
  year: 2018
  end-page: 29531
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 13168
  year: 2019
  end-page: 13175
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 9581
  year: 2020
  end-page: 9589
  publication-title: Nanoscale
– volume: 776
  start-page: 993
  year: 2019
  end-page: 1001
  publication-title: J. Alloys Compd.
– volume: 1
  start-page: 624
  year: 2016
  end-page: 632
  publication-title: ACS Energy Lett.
– volume: 56
  start-page: 5867
  year: 2017
  end-page: 5871
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 3697
  year: 2019
  end-page: 3703
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 9332
  year: 2019
  end-page: 9338
  publication-title: ACS Catal.
– volume: 5
  start-page: 659
  year: 2018
  end-page: 664
  publication-title: ChemElectroChem
– volume: 45
  start-page: 28566
  year: 2020
  end-page: 28575
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 5048
  year: 2019
  publication-title: Nat. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1799
  year: 2020
  end-page: 1807
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 3684
  year: 2019
  end-page: 3689
  publication-title: ChemElectroChem
– volume: 127
  start-page: 534
  year: 2015
  end-page: 536
  publication-title: Acta Phys. Pol. A
– volume: 6
  start-page: 5011
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 273
  year: 2020
  publication-title: Appl. Catal. B
– volume: 12
  start-page: 44
  year: 2018
  end-page: 53
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 19404
  year: 2020
  end-page: 19412
  publication-title: Nanoscale
– volume: 13
  start-page: 1977
  year: 2020
  end-page: 1807
  publication-title: Energy Environ. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 129
  start-page: 12740
  year: 2017
  end-page: 12744
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 25
  start-page: 2686
  year: 2015
  end-page: 2692
  publication-title: Adv. Mater.
– volume: 33
  start-page: 522
  year: 2017
  end-page: 531
  publication-title: Nano Energy
– volume: 8
  start-page: 12176
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 6
  start-page: 10243
  year: 2018
  end-page: 10252
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1216
  year: 2011
  end-page: 1224
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 6680
  year: 2015
  end-page: 6689
  publication-title: ACS Catal.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 37
  start-page: 136
  year: 2017
  end-page: 157
  publication-title: Nano Energy
– volume: 269
  year: 2020
  publication-title: Appl. Catal. B
– volume: 9
  start-page: 19807
  year: 2017
  end-page: 19814
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 2067
  year: 2018
  end-page: 2072
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 12133
  year: 2017
  end-page: 12136
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_32_1
  doi: 10.1016/j.apcatb.2020.119014
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201701687
– ident: e_1_2_7_38_1
  doi: 10.1016/j.nanoen.2020.105230
– ident: e_1_2_7_13_1
  doi: 10.1021/acscatal.5b01551
– ident: e_1_2_7_60_1
  doi: 10.1038/s41467-019-13051-2
– ident: e_1_2_7_10_1
  doi: 10.1039/c0ee00705f
– ident: e_1_2_7_17_1
  doi: 10.1021/jacs.7b06587
– ident: e_1_2_7_59_1
  doi: 10.1002/adfm.201801554
– ident: e_1_2_7_43_1
  doi: 10.1039/D0EE00666A
– ident: e_1_2_7_8_1
  doi: 10.1002/cssc.201800781
– ident: e_1_2_7_41_1
  doi: 10.1021/acsenergylett.7b00835
– ident: e_1_2_7_9_1
  doi: 10.1007/s41061-018-0219-y
– ident: e_1_2_7_14_1
  doi: 10.1039/C7CC07962A
– ident: e_1_2_7_50_1
  doi: 10.1039/C6TA08206H
– ident: e_1_2_7_7_1
  doi: 10.1016/j.apsusc.2017.03.285
– ident: e_1_2_7_12_1
  doi: 10.1039/C6TA08075H
– ident: e_1_2_7_19_1
  doi: 10.1002/celc.202000136
– ident: e_1_2_7_40_1
  doi: 10.1021/acscatal.9b03876
– ident: e_1_2_7_20_1
  doi: 10.1021/acsami.6b15461
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201900862
– ident: e_1_2_7_25_1
  doi: 10.1016/j.ensm.2017.11.006
– ident: e_1_2_7_11_1
  doi: 10.1038/ncomms8261
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201803693
– ident: e_1_2_7_55_1
  doi: 10.1039/C8TA02608D
– ident: e_1_2_7_65_1
  doi: 10.1016/j.jcis.2019.09.012
– volume: 13
  start-page: 1977
  year: 2020
  ident: e_1_2_7_52_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_45_1
  doi: 10.1016/j.jcis.2020.06.065
– ident: e_1_2_7_24_1
  doi: 10.1021/acsami.9b04528
– ident: e_1_2_7_21_1
  doi: 10.1002/celc.201900897
– ident: e_1_2_7_57_1
  doi: 10.1002/anie.201701477
– ident: e_1_2_7_31_1
  doi: 10.1002/admi.202000310
– volume: 25
  start-page: 2686
  year: 2015
  ident: e_1_2_7_56_1
  publication-title: Adv. Mater.
– ident: e_1_2_7_49_1
  doi: 10.1002/adma.201900430
– ident: e_1_2_7_35_2
  doi: 10.1002/ange.201511447
– ident: e_1_2_7_58_1
  doi: 10.1021/acsami.7b08917
– ident: e_1_2_7_28_1
  doi: 10.1002/celc.201701304
– ident: e_1_2_7_51_1
  doi: 10.1016/j.jallcom.2018.10.358
– ident: e_1_2_7_54_1
  doi: 10.1039/C8TA04325F
– ident: e_1_2_7_15_1
  doi: 10.1039/C7NR04327A
– ident: e_1_2_7_39_1
  doi: 10.1039/D0NR05216G
– ident: e_1_2_7_44_1
  doi: 10.1016/j.apcatb.2020.118600
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.202000872
– ident: e_1_2_7_4_1
  doi: 10.1039/C6TA08075H
– ident: e_1_2_7_29_1
  doi: 10.1021/acssuschemeng.7b04663
– ident: e_1_2_7_18_1
  doi: 10.1021/acsami.7b03033
– ident: e_1_2_7_22_1
  doi: 10.1039/C7TA10048E
– ident: e_1_2_7_16_1
  doi: 10.1002/ange.201706610
– ident: e_1_2_7_36_1
  doi: 10.1016/j.jpowsour.2019.227585
– ident: e_1_2_7_61_1
  doi: 10.1002/adma.201901139
– ident: e_1_2_7_23_1
  doi: 10.1021/acscatal.9b01637
– ident: e_1_2_7_37_1
  doi: 10.1002/smtd.201900113
– ident: e_1_2_7_5_1
  doi: 10.1002/aenm.201600621
– ident: e_1_2_7_48_1
  doi: 10.1016/j.nanoen.2017.01.056
– ident: e_1_2_7_27_1
  doi: 10.1021/acsami.8b19052
– ident: e_1_2_7_63_1
  doi: 10.1039/D0NR01516D
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.6b02491
– ident: e_1_2_7_6_1
  doi: 10.1016/j.nanoen.2017.05.022
– ident: e_1_2_7_35_1
  doi: 10.1002/anie.201511447
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201900430
– ident: e_1_2_7_62_1
  doi: 10.1021/acsami.8b08547
– ident: e_1_2_7_46_1
  doi: 10.1016/j.ijhydene.2020.07.022
– ident: e_1_2_7_42_1
  doi: 10.1016/j.apcatb.2020.118988
– ident: e_1_2_7_47_1
  doi: 10.12693/APhysPolA.127.534
– ident: e_1_2_7_64_1
  doi: 10.1039/C8TA10985K
– ident: e_1_2_7_53_1
  doi: 10.1021/acsenergylett.6b00303
– ident: e_1_2_7_3_1
  doi: 10.1038/ncomms8261
SSID ssj0001105386
Score 2.3397686
Snippet Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3643
SubjectTerms electrocatalysis
Electrocatalysts
Electron microscopy
Hydrogen production
Hydrothermal reactions
Microscopy
Nanorods
Nanosheets
NiTe@FeOOH
oxygen evolution reaction
Oxygen evolution reactions
Photoelectrons
synergistic effect
urea oxidation reaction
Water splitting
X ray photoelectron spectroscopy
Title Synergistic Coupling of NiTe Nanoarrays with FeOOH Nanosheets for Highly Efficient Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202100703
https://www.proquest.com/docview/2581661208
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gAXxFMUCvIBiUMVSOw4j2NZtqxQ2z10K5VT5NiOuijdVNvdqssf4G8zfsRJYRGFS5S1nDjZ-TIztme-QegtGBXKaB4HVSxhgpJnScDLKAnKOK3ytCKUM50ofHScjE_jL2fsbDD40YtaWi3L9-L7xryS_5EqtIFcdZbsP0jW3xQa4BzkC0eQMBzvJOOTtc7cM1TLOrn8snYhzMezqdJ6s-GLBV-7BLYDNZmMTevVuVJLw8Ngwjzqta6vPDOZkXuTmzUMtze6dg-uo-yFF15LaXCuLka2fo4-9UE9JjLgK5eNM4cmbMDqtY-8-TbzQPTL1OMVv5h1vT9zuxHUNrnlCBL5wDantUAD6qjmyPFbb2hzajfroyvv6VCaWOImZ49pYplpf9P1ljtWqFozURId7RHSzqq1O_m_GDsfgmjpmkmhry_89ffQNoH5BijM7f1PR4cn3XId-KHU1A31L9NSgIbkw-2HuO3idPOW_uzHuC_TR-ihm3fgfQuix2ig5k_Q_WFb7u8pqntgwi2YcFNhDSbcgQlrMGEDJtyBCQOYsAUT9mDCFkzYgwm3YHqGTg9G0-E4cKU4AgEOJg0ESUOekwT8c8lJTsDpVSysQANQkVEVS8qrNJNCqpIrJrnkuQLPrxJ5miWVVPQ52po3c_UC4ZRJVmZMME7DOCr1RnsaEimjMFe0jLMdFLT_XiEcT70ul1IXm0W2g975_peWoeWPPXdbYRTuK74qCNM75xEJYWBiBPSXuxTD0eHQ_3p559FfoQfd97KLtpaLlXoNDu2yfOPA9hMMIpzl
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAuVXmJlgJ7AHGyau96_ThwqEyilKaJBAmquJi1d1yQogTFKa1_Vv8hM34k9ICQkHr0yl7bszM7387ufAPwhpyK0ir2ncK3tECJo8AxmRc4mR8WcVhIZTQnCp-PgsHU_3ihL7bgtsuFafgh1gE3tox6vmYD54D08YY1NMcZcxBK3ud3u_rVZ1hd06qtfH_6gYb4rZT93iQZOG1hAScnd6mcXIauiWVAaMMaGUty4ajdgv5H5ZFC3ypThJHNLWYGtTXWxEh-rMhpyRUUFhX1-wB2GEqRIe2cfJl-nW4CO4RYVF1hkiYDPuDrBR1ZpCuP7370XWe4Qbh_4uTa0fX3Ya9FqOKkUalHsIXzx7CbdIXhnsDsc8UJgzXDs0gWV5zTeykWhRj9mKCg6XphlktTlYJjvKKP4_Ggbi2_I65KQShZ8OmSWSV6NX8FuT0xvqlIk0XvV2sJ4hM2GRdPYXovsn0G2_PFHJ-DCLXVWaRzbZTrexlvyYautNZzY1SZHx2A00kvzVtGcy6sMUsbLmaZsrTTtbQP4N36_p8Nl8df7zzqBiNtbbpMpeY9Vk-69GJZD9A_ekmT3jBZXx3-z0OvYXcwOR-mw9PR2Qt4yO3NScIj2F4tr_AlIaJV9qrVQQHf7lvtfwN7uBio
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcUHmphdL6AOIU1bHjPA4cqnRXW1p2EXRRxSU48RiQVrvVZgvNv-pPZJzHbntASEg9xnKceDzjb_yYbwBeE6hIJZPAs4GhBUoSh57O_dDLg8gmkRVSKxco_GEUDifB-3N1vgHXXSxMww-x2nBzllHP187AL4w9WJOGFjh1FITCHfPzLn31CVa_adFWvjs-ohF-I8Sgf5YOvTavgFcQWkqvEBHXiQjJ2TBaJIIQHBW31B1ZxBIDI7WNYlMYzDUqo41OkGDMFrTiCq1BSe3eg01FUMh7sHn4ZfJ1st7XIYdF1gkmaS5w93v9sOOK5OLg9k_fxsK1g3vTTa5xbrAFj1oHlR02GvUYNnD2BB6kXV64pzD9XLl4wZrgmaXzSxfS-53NLRv9PENGs_VcLxa6Kpnb4mUDHI-HdWn5A3FZMnKSmbtcMq1Yv6avINRj46uKFJn1f7WGwD5hE3DxDCZ3Itvn0JvNZ7gNLFJG5bEqlJY88HN3IhtxYYzPE5R5EO-A10kvK1pCc5dXY5o1VMwic9LOVtLegber-hcNlcdfa-52g5G1Jl1mQrkjVl9w-rCoB-gfrWRp_zRdPb34n5f24f7Ho0F2ejw6eQkPXXFzj3AXesvFJb4if2iZ77UqyODbXWv9H3DCF8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Coupling+of+NiTe+Nanoarrays+with+FeOOH+Nanosheets+for+Highly+Efficient+Oxygen+Evolution+Reaction&rft.jtitle=ChemElectroChem&rft.au=Li%2C+Yadong&rft.au=Chen%2C+Baojin&rft.au=Zhang%2C+Huaming&rft.au=Gao%2C+Jing&rft.date=2021-10-01&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=8&rft.issue=19&rft.spage=3643&rft.epage=3650&rft_id=info:doi/10.1002%2Fcelc.202100703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_celc_202100703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon