Synergistic Coupling of NiTe Nanoarrays with FeOOH Nanosheets for Highly Efficient Oxygen Evolution Reaction
Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of elect...
Saved in:
Published in | ChemElectroChem Vol. 8; no. 19; pp. 3643 - 3650 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of electrocatalysts with excellent performance are vital to prompt the application of OER. Due to the unique electronic properties of NiTe and strong synergistic interaction between NiTe and FeOOH, NiTe@FeOOH hybrid nanorods were successfully fabricated on Ni foams (NF) by a hydrothermal reaction step and another in‐situ growth step for the first time without consuming any extra energy. The 3D structure of the NiTe@FeOOH/NF was confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS) mapping technologies. Electrochemical measurements showed that the as‐prepared NiTe@FeOOH/NF needs only an overpotential of 241 mV to achieve a current density of 10 mA cm−2 in 1.0 M KOH and requires 1.341 V to drive 10 mA cm−2 in 1 M KOH with a 0.33 M urea, showing excellent long‐term stability. The NiTe@FeOOH/NF as the bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.50 V at 10 mA cm−2. This work can provide a new efficient method to construct highly active and cost‐effective OER catalysts.
Dual purpose: A FeOOH@NiTe hybrid nanorod arrays on Ni foam was synthesized as electrocatalyst for the oxygen evolution reaction, exhibiting excellent OER activity and long‐term stability. The synthesized NiTe@FeOOH/NF also shows enhanced catalytic performance for the urea oxidation reaction. |
---|---|
AbstractList | Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of electrocatalysts with excellent performance are vital to prompt the application of OER. Due to the unique electronic properties of NiTe and strong synergistic interaction between NiTe and FeOOH, NiTe@FeOOH hybrid nanorods were successfully fabricated on Ni foams (NF) by a hydrothermal reaction step and another in‐situ growth step for the first time without consuming any extra energy. The 3D structure of the NiTe@FeOOH/NF was confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS) mapping technologies. Electrochemical measurements showed that the as‐prepared NiTe@FeOOH/NF needs only an overpotential of 241 mV to achieve a current density of 10 mA cm−2 in 1.0 M KOH and requires 1.341 V to drive 10 mA cm−2 in 1 M KOH with a 0.33 M urea, showing excellent long‐term stability. The NiTe@FeOOH/NF as the bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.50 V at 10 mA cm−2. This work can provide a new efficient method to construct highly active and cost‐effective OER catalysts. Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of electrocatalysts with excellent performance are vital to prompt the application of OER. Due to the unique electronic properties of NiTe and strong synergistic interaction between NiTe and FeOOH, NiTe@FeOOH hybrid nanorods were successfully fabricated on Ni foams (NF) by a hydrothermal reaction step and another in‐situ growth step for the first time without consuming any extra energy. The 3D structure of the NiTe@FeOOH/NF was confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS) mapping technologies. Electrochemical measurements showed that the as‐prepared NiTe@FeOOH/NF needs only an overpotential of 241 mV to achieve a current density of 10 mA cm−2 in 1.0 M KOH and requires 1.341 V to drive 10 mA cm−2 in 1 M KOH with a 0.33 M urea, showing excellent long‐term stability. The NiTe@FeOOH/NF as the bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.50 V at 10 mA cm−2. This work can provide a new efficient method to construct highly active and cost‐effective OER catalysts. Dual purpose: A FeOOH@NiTe hybrid nanorod arrays on Ni foam was synthesized as electrocatalyst for the oxygen evolution reaction, exhibiting excellent OER activity and long‐term stability. The synthesized NiTe@FeOOH/NF also shows enhanced catalytic performance for the urea oxidation reaction. Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The oxygen evolution reaction (OER) is the essential half‐reaction in electrochemical water splitting, and thus development and exploration of electrocatalysts with excellent performance are vital to prompt the application of OER. Due to the unique electronic properties of NiTe and strong synergistic interaction between NiTe and FeOOH, NiTe@FeOOH hybrid nanorods were successfully fabricated on Ni foams (NF) by a hydrothermal reaction step and another in‐situ growth step for the first time without consuming any extra energy. The 3D structure of the NiTe@FeOOH/NF was confirmed by powder X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS) mapping technologies. Electrochemical measurements showed that the as‐prepared NiTe@FeOOH/NF needs only an overpotential of 241 mV to achieve a current density of 10 mA cm −2 in 1.0 M KOH and requires 1.341 V to drive 10 mA cm −2 in 1 M KOH with a 0.33 M urea, showing excellent long‐term stability. The NiTe@FeOOH/NF as the bifunctional electrocatalyst in an electrolyzer shows high efficiency with a cell voltage of 1.50 V at 10 mA cm −2 . This work can provide a new efficient method to construct highly active and cost‐effective OER catalysts. |
Author | Li, Yadong Zhang, Huaming Habibi‐Yangjeh, Aziz Gao, Jing Sun, Huachuan Chen, Baojin Wang, Chundong |
Author_xml | – sequence: 1 givenname: Yadong surname: Li fullname: Li, Yadong organization: Nanchang Hangkong University – sequence: 2 givenname: Baojin surname: Chen fullname: Chen, Baojin organization: Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province – sequence: 3 givenname: Huaming orcidid: 0000-0003-3189-3190 surname: Zhang fullname: Zhang, Huaming email: 70451@nchu.edu.cn organization: Key Laboratory of Opto-Electronic Information Science and Technology of Jiangxi Province – sequence: 4 givenname: Jing surname: Gao fullname: Gao, Jing organization: Huazhong University of Science and Technology – sequence: 5 givenname: Huachuan surname: Sun fullname: Sun, Huachuan organization: Huazhong University of Science and Technology – sequence: 6 givenname: Aziz surname: Habibi‐Yangjeh fullname: Habibi‐Yangjeh, Aziz organization: University of Mohaghegh Ardabili – sequence: 7 givenname: Chundong surname: Wang fullname: Wang, Chundong email: apcdwang@hust.edu.cn organization: Huazhong University of Science and Technology |
BookMark | eNqFkEtLAzEUhYMoWGu3rgOup-bReS1lmFqhtKB1PaSZmzZlTGqSWuffO7WiIoir--B893DPBTo11gBCV5QMKSHsRkIjh4ywbkgJP0E9RvMk6ubk9Ed_jgbebwghlJKYZ0kPNY-tAbfSPmiJC7vbNtqssFV4pheAZ8JY4ZxoPd7rsMZjmM8nH1u_BggeK-vwRK_WTYtLpbTUYAKev7UrMLh8tc0uaGvwAwh5aC7RmRKNh8Fn7aOncbkoJtF0fndf3E4jyWnKI8lSInKWZDGtBcsZSznERMESuMw4jGouVJrVsoalgLgWtcghSaiSeZolqgbeR9fHu1tnX3bgQ7WxO2c6y4rFGe20jGSdanhUSWe9d6CqrdPPwrUVJdUh1OoQavUVageMfgFSB3F4LDihm7-x_IjtdQPtPyZVUU6Lb_YddwWPfw |
CitedBy_id | crossref_primary_10_1007_s12598_025_03258_2 crossref_primary_10_1002_ente_202300177 crossref_primary_10_1016_j_fuel_2024_132445 crossref_primary_10_1002_adfm_202300557 crossref_primary_10_1002_anie_202413932 crossref_primary_10_1016_j_cej_2023_145568 crossref_primary_10_1016_j_jallcom_2022_166779 crossref_primary_10_1016_j_ijhydene_2024_02_202 crossref_primary_10_1016_j_isci_2023_108736 crossref_primary_10_1039_D3QI02551A crossref_primary_10_1016_j_coelec_2022_101031 crossref_primary_10_1016_j_ijhydene_2022_07_135 crossref_primary_10_1002_ange_202413932 crossref_primary_10_1016_j_ijhydene_2024_03_275 crossref_primary_10_1002_asia_202300362 crossref_primary_10_3390_membranes13010113 crossref_primary_10_1016_j_cej_2023_144660 crossref_primary_10_1016_j_ijhydene_2021_12_258 |
Cites_doi | 10.1016/j.apcatb.2020.119014 10.1002/adma.201701687 10.1016/j.nanoen.2020.105230 10.1021/acscatal.5b01551 10.1038/s41467-019-13051-2 10.1039/c0ee00705f 10.1021/jacs.7b06587 10.1002/adfm.201801554 10.1039/D0EE00666A 10.1002/cssc.201800781 10.1021/acsenergylett.7b00835 10.1007/s41061-018-0219-y 10.1039/C7CC07962A 10.1039/C6TA08206H 10.1016/j.apsusc.2017.03.285 10.1039/C6TA08075H 10.1002/celc.202000136 10.1021/acscatal.9b03876 10.1021/acsami.6b15461 10.1002/adma.201900862 10.1016/j.ensm.2017.11.006 10.1038/ncomms8261 10.1002/aenm.201803693 10.1039/C8TA02608D 10.1016/j.jcis.2019.09.012 10.1016/j.jcis.2020.06.065 10.1021/acsami.9b04528 10.1002/celc.201900897 10.1002/anie.201701477 10.1002/admi.202000310 10.1002/adma.201900430 10.1002/ange.201511447 10.1021/acsami.7b08917 10.1002/celc.201701304 10.1016/j.jallcom.2018.10.358 10.1039/C8TA04325F 10.1039/C7NR04327A 10.1039/D0NR05216G 10.1016/j.apcatb.2020.118600 10.1002/adma.202000872 10.1021/acssuschemeng.7b04663 10.1021/acsami.7b03033 10.1039/C7TA10048E 10.1002/ange.201706610 10.1016/j.jpowsour.2019.227585 10.1002/adma.201901139 10.1021/acscatal.9b01637 10.1002/smtd.201900113 10.1002/aenm.201600621 10.1016/j.nanoen.2017.01.056 10.1021/acsami.8b19052 10.1039/D0NR01516D 10.1021/acsami.6b02491 10.1016/j.nanoen.2017.05.022 10.1002/anie.201511447 10.1021/acsami.8b08547 10.1016/j.ijhydene.2020.07.022 10.1016/j.apcatb.2020.118988 10.12693/APhysPolA.127.534 10.1039/C8TA10985K 10.1021/acsenergylett.6b00303 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.202100703 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | 3650 |
ExternalDocumentID | 10_1002_celc_202100703 CELC202100703 |
Genre | article |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2017YFE0120500 – fundername: National Natural Science Foundation of China funderid: 11764028; 51972129 – fundername: South Xinjiang Innovation and Development Program of Key Industries of Xinjiang Production and Construction Corps funderid: 2020DB002 – fundername: Key Research and Development Program of Hubei funderid: 2020BAB079 – fundername: Fundamental Research Funds for the Central Universities funderid: 200KFYYXJJ051; 2019KFYXMBZ076 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJCF ABJNI ACCMX ADMLS AFKRA ARAPS BBNVY BENPR BGLVJ BHPHI CCPQU CITATION EJD GROUPED_DOAJ HCIFZ KB. M7P PDBOC PHGZM PHGZT 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3173-c270a926851da292273e50febe3c83e4d3af78dcdebae5dada9e661fc9786fde3 |
ISSN | 2196-0216 |
IngestDate | Fri Jul 25 11:54:40 EDT 2025 Thu Apr 24 22:51:23 EDT 2025 Tue Jul 01 01:11:08 EDT 2025 Sat Aug 24 00:59:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3173-c270a926851da292273e50febe3c83e4d3af78dcdebae5dada9e661fc9786fde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3189-3190 |
PQID | 2581661208 |
PQPubID | 2034587 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2581661208 crossref_primary_10_1002_celc_202100703 crossref_citationtrail_10_1002_celc_202100703 wiley_primary_10_1002_celc_202100703_CELC202100703 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 1, 2021 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 1, 2021 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 5 2017; 2 2019; 11 2019; 10 2020; 13 2020; 12 2017; 9 2020; 449 2020; 7 2018; 6 2018; 5 2017; 37 2017; 33 2018; 376 2020; 579 2020; 45 2019; 557 2017; 129 2019; 7 2019; 9 2018; 28 2015; 6 2015; 5 2019; 3 2019; 6 2019; 31 2015; 127 2020; 269 2017; 29 2020; 78 2020; 32 2011; 4 2017; 413 2017; 139 2016; 4 2016; 5 2016; 6 2017; 53 2015; 25 2016 2016; 55 128 2016; 1 2020; 273 2020; 272 2017; 56 2019; 776 2018; 12 2018; 11 2018; 10 2016; 8 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Li Y. B. (e_1_2_7_52_1) 2020; 13 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Yu Q. (e_1_2_7_56_1) 2015; 25 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 11 start-page: 2643 year: 2018 end-page: 2653 publication-title: ChemSusChem – volume: 4 start-page: 17587 year: 2016 end-page: 17603 publication-title: J. Mater. Chem. A – volume: 6 start-page: 7261 year: 2015 publication-title: Nat. Commun. – volume: 11 start-page: 27667 year: 2019 end-page: 27676 publication-title: ACS Appl. Mater. Interfaces – volume: 449 year: 2020 publication-title: J. Power Sources – volume: 9 start-page: 10705 year: 2019 end-page: 10711 publication-title: ACS Catal. – volume: 413 start-page: 360 year: 2017 end-page: 365 publication-title: Appl. Surf. Sci. – volume: 272 year: 2020 publication-title: Appl. Catal. B – volume: 9 start-page: 33833 year: 2017 end-page: 33840 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1805 year: 2020 end-page: 1824 publication-title: ChemElectroChem – volume: 376 start-page: 42 year: 2018 publication-title: Top. Curr. Chem. – volume: 9 start-page: 15397 year: 2017 end-page: 15406 publication-title: Nanoscale – volume: 5 start-page: 1035 year: 2016 end-page: 1042 publication-title: J. Mater. Chem. A – volume: 2 start-page: 2498 year: 2017 end-page: 2505 publication-title: ACS Energy Lett. – volume: 6 start-page: 16950 year: 2018 end-page: 16958 publication-title: J. Mater. Chem. A – volume: 5 start-page: 12340 year: 2017 end-page: 12347 publication-title: ACS Appl. Mater. Interfaces – volume: 55 128 start-page: 3694 3758 year: 2016 2016 end-page: 3698 3762 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 557 start-page: 10 year: 2019 end-page: 17 publication-title: J. Colloid Interface Sci. – volume: 53 start-page: 13237 year: 2017 end-page: 13240 publication-title: Chem. Commun. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 579 start-page: 340 year: 2020 end-page: 346 publication-title: J. Colloid Interface Sci. – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 10 start-page: 29521 year: 2018 end-page: 29531 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 13168 year: 2019 end-page: 13175 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 9581 year: 2020 end-page: 9589 publication-title: Nanoscale – volume: 776 start-page: 993 year: 2019 end-page: 1001 publication-title: J. Alloys Compd. – volume: 1 start-page: 624 year: 2016 end-page: 632 publication-title: ACS Energy Lett. – volume: 56 start-page: 5867 year: 2017 end-page: 5871 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 3697 year: 2019 end-page: 3703 publication-title: J. Mater. Chem. A – volume: 9 start-page: 9332 year: 2019 end-page: 9338 publication-title: ACS Catal. – volume: 5 start-page: 659 year: 2018 end-page: 664 publication-title: ChemElectroChem – volume: 45 start-page: 28566 year: 2020 end-page: 28575 publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 5048 year: 2019 publication-title: Nat. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 13 start-page: 1799 year: 2020 end-page: 1807 publication-title: Energy Environ. Sci. – volume: 6 start-page: 3684 year: 2019 end-page: 3689 publication-title: ChemElectroChem – volume: 127 start-page: 534 year: 2015 end-page: 536 publication-title: Acta Phys. Pol. A – volume: 6 start-page: 5011 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 273 year: 2020 publication-title: Appl. Catal. B – volume: 12 start-page: 44 year: 2018 end-page: 53 publication-title: Energy Storage Mater. – volume: 12 start-page: 19404 year: 2020 end-page: 19412 publication-title: Nanoscale – volume: 13 start-page: 1977 year: 2020 end-page: 1807 publication-title: Energy Environ. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 129 start-page: 12740 year: 2017 end-page: 12744 publication-title: Angew. Chem. Int. Ed. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 25 start-page: 2686 year: 2015 end-page: 2692 publication-title: Adv. Mater. – volume: 33 start-page: 522 year: 2017 end-page: 531 publication-title: Nano Energy – volume: 8 start-page: 12176 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Small Methods – volume: 6 start-page: 10243 year: 2018 end-page: 10252 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1216 year: 2011 end-page: 1224 publication-title: Energy Environ. Sci. – volume: 5 start-page: 6680 year: 2015 end-page: 6689 publication-title: ACS Catal. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 37 start-page: 136 year: 2017 end-page: 157 publication-title: Nano Energy – volume: 269 year: 2020 publication-title: Appl. Catal. B – volume: 9 start-page: 19807 year: 2017 end-page: 19814 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 2067 year: 2018 end-page: 2072 publication-title: J. Mater. Chem. A – volume: 139 start-page: 12133 year: 2017 end-page: 12136 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_32_1 doi: 10.1016/j.apcatb.2020.119014 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201701687 – ident: e_1_2_7_38_1 doi: 10.1016/j.nanoen.2020.105230 – ident: e_1_2_7_13_1 doi: 10.1021/acscatal.5b01551 – ident: e_1_2_7_60_1 doi: 10.1038/s41467-019-13051-2 – ident: e_1_2_7_10_1 doi: 10.1039/c0ee00705f – ident: e_1_2_7_17_1 doi: 10.1021/jacs.7b06587 – ident: e_1_2_7_59_1 doi: 10.1002/adfm.201801554 – ident: e_1_2_7_43_1 doi: 10.1039/D0EE00666A – ident: e_1_2_7_8_1 doi: 10.1002/cssc.201800781 – ident: e_1_2_7_41_1 doi: 10.1021/acsenergylett.7b00835 – ident: e_1_2_7_9_1 doi: 10.1007/s41061-018-0219-y – ident: e_1_2_7_14_1 doi: 10.1039/C7CC07962A – ident: e_1_2_7_50_1 doi: 10.1039/C6TA08206H – ident: e_1_2_7_7_1 doi: 10.1016/j.apsusc.2017.03.285 – ident: e_1_2_7_12_1 doi: 10.1039/C6TA08075H – ident: e_1_2_7_19_1 doi: 10.1002/celc.202000136 – ident: e_1_2_7_40_1 doi: 10.1021/acscatal.9b03876 – ident: e_1_2_7_20_1 doi: 10.1021/acsami.6b15461 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201900862 – ident: e_1_2_7_25_1 doi: 10.1016/j.ensm.2017.11.006 – ident: e_1_2_7_11_1 doi: 10.1038/ncomms8261 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201803693 – ident: e_1_2_7_55_1 doi: 10.1039/C8TA02608D – ident: e_1_2_7_65_1 doi: 10.1016/j.jcis.2019.09.012 – volume: 13 start-page: 1977 year: 2020 ident: e_1_2_7_52_1 publication-title: Energy Environ. Sci. – ident: e_1_2_7_45_1 doi: 10.1016/j.jcis.2020.06.065 – ident: e_1_2_7_24_1 doi: 10.1021/acsami.9b04528 – ident: e_1_2_7_21_1 doi: 10.1002/celc.201900897 – ident: e_1_2_7_57_1 doi: 10.1002/anie.201701477 – ident: e_1_2_7_31_1 doi: 10.1002/admi.202000310 – volume: 25 start-page: 2686 year: 2015 ident: e_1_2_7_56_1 publication-title: Adv. Mater. – ident: e_1_2_7_49_1 doi: 10.1002/adma.201900430 – ident: e_1_2_7_35_2 doi: 10.1002/ange.201511447 – ident: e_1_2_7_58_1 doi: 10.1021/acsami.7b08917 – ident: e_1_2_7_28_1 doi: 10.1002/celc.201701304 – ident: e_1_2_7_51_1 doi: 10.1016/j.jallcom.2018.10.358 – ident: e_1_2_7_54_1 doi: 10.1039/C8TA04325F – ident: e_1_2_7_15_1 doi: 10.1039/C7NR04327A – ident: e_1_2_7_39_1 doi: 10.1039/D0NR05216G – ident: e_1_2_7_44_1 doi: 10.1016/j.apcatb.2020.118600 – ident: e_1_2_7_30_1 doi: 10.1002/adma.202000872 – ident: e_1_2_7_4_1 doi: 10.1039/C6TA08075H – ident: e_1_2_7_29_1 doi: 10.1021/acssuschemeng.7b04663 – ident: e_1_2_7_18_1 doi: 10.1021/acsami.7b03033 – ident: e_1_2_7_22_1 doi: 10.1039/C7TA10048E – ident: e_1_2_7_16_1 doi: 10.1002/ange.201706610 – ident: e_1_2_7_36_1 doi: 10.1016/j.jpowsour.2019.227585 – ident: e_1_2_7_61_1 doi: 10.1002/adma.201901139 – ident: e_1_2_7_23_1 doi: 10.1021/acscatal.9b01637 – ident: e_1_2_7_37_1 doi: 10.1002/smtd.201900113 – ident: e_1_2_7_5_1 doi: 10.1002/aenm.201600621 – ident: e_1_2_7_48_1 doi: 10.1016/j.nanoen.2017.01.056 – ident: e_1_2_7_27_1 doi: 10.1021/acsami.8b19052 – ident: e_1_2_7_63_1 doi: 10.1039/D0NR01516D – ident: e_1_2_7_26_1 doi: 10.1021/acsami.6b02491 – ident: e_1_2_7_6_1 doi: 10.1016/j.nanoen.2017.05.022 – ident: e_1_2_7_35_1 doi: 10.1002/anie.201511447 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201900430 – ident: e_1_2_7_62_1 doi: 10.1021/acsami.8b08547 – ident: e_1_2_7_46_1 doi: 10.1016/j.ijhydene.2020.07.022 – ident: e_1_2_7_42_1 doi: 10.1016/j.apcatb.2020.118988 – ident: e_1_2_7_47_1 doi: 10.12693/APhysPolA.127.534 – ident: e_1_2_7_64_1 doi: 10.1039/C8TA10985K – ident: e_1_2_7_53_1 doi: 10.1021/acsenergylett.6b00303 – ident: e_1_2_7_3_1 doi: 10.1038/ncomms8261 |
SSID | ssj0001105386 |
Score | 2.3397686 |
Snippet | Hydrogen is the most promising alternative energy source in the face of energy crisis, and water splitting is a green strategy for hydrogen generation. The... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3643 |
SubjectTerms | electrocatalysis Electrocatalysts Electron microscopy Hydrogen production Hydrothermal reactions Microscopy Nanorods Nanosheets NiTe@FeOOH oxygen evolution reaction Oxygen evolution reactions Photoelectrons synergistic effect urea oxidation reaction Water splitting X ray photoelectron spectroscopy |
Title | Synergistic Coupling of NiTe Nanoarrays with FeOOH Nanosheets for Highly Efficient Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202100703 https://www.proquest.com/docview/2581661208 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gAXxFMUCvIBiUMVSOw4j2NZtqxQ2z10K5VT5NiOuijdVNvdqssf4G8zfsRJYRGFS5S1nDjZ-TIztme-QegtGBXKaB4HVSxhgpJnScDLKAnKOK3ytCKUM50ofHScjE_jL2fsbDD40YtaWi3L9-L7xryS_5EqtIFcdZbsP0jW3xQa4BzkC0eQMBzvJOOTtc7cM1TLOrn8snYhzMezqdJ6s-GLBV-7BLYDNZmMTevVuVJLw8Ngwjzqta6vPDOZkXuTmzUMtze6dg-uo-yFF15LaXCuLka2fo4-9UE9JjLgK5eNM4cmbMDqtY-8-TbzQPTL1OMVv5h1vT9zuxHUNrnlCBL5wDantUAD6qjmyPFbb2hzajfroyvv6VCaWOImZ49pYplpf9P1ljtWqFozURId7RHSzqq1O_m_GDsfgmjpmkmhry_89ffQNoH5BijM7f1PR4cn3XId-KHU1A31L9NSgIbkw-2HuO3idPOW_uzHuC_TR-ihm3fgfQuix2ig5k_Q_WFb7u8pqntgwi2YcFNhDSbcgQlrMGEDJtyBCQOYsAUT9mDCFkzYgwm3YHqGTg9G0-E4cKU4AgEOJg0ESUOekwT8c8lJTsDpVSysQANQkVEVS8qrNJNCqpIrJrnkuQLPrxJ5miWVVPQ52po3c_UC4ZRJVmZMME7DOCr1RnsaEimjMFe0jLMdFLT_XiEcT70ul1IXm0W2g975_peWoeWPPXdbYRTuK74qCNM75xEJYWBiBPSXuxTD0eHQ_3p559FfoQfd97KLtpaLlXoNDu2yfOPA9hMMIpzl |
linkProvider | EBSCOhost |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAuVXmJlgJ7AHGyau96_ThwqEyilKaJBAmquJi1d1yQogTFKa1_Vv8hM34k9ICQkHr0yl7bszM7387ufAPwhpyK0ir2ncK3tECJo8AxmRc4mR8WcVhIZTQnCp-PgsHU_3ihL7bgtsuFafgh1gE3tox6vmYD54D08YY1NMcZcxBK3ud3u_rVZ1hd06qtfH_6gYb4rZT93iQZOG1hAScnd6mcXIauiWVAaMMaGUty4ajdgv5H5ZFC3ypThJHNLWYGtTXWxEh-rMhpyRUUFhX1-wB2GEqRIe2cfJl-nW4CO4RYVF1hkiYDPuDrBR1ZpCuP7370XWe4Qbh_4uTa0fX3Ya9FqOKkUalHsIXzx7CbdIXhnsDsc8UJgzXDs0gWV5zTeykWhRj9mKCg6XphlktTlYJjvKKP4_Ggbi2_I65KQShZ8OmSWSV6NX8FuT0xvqlIk0XvV2sJ4hM2GRdPYXovsn0G2_PFHJ-DCLXVWaRzbZTrexlvyYautNZzY1SZHx2A00kvzVtGcy6sMUsbLmaZsrTTtbQP4N36_p8Nl8df7zzqBiNtbbpMpeY9Vk-69GJZD9A_ekmT3jBZXx3-z0OvYXcwOR-mw9PR2Qt4yO3NScIj2F4tr_AlIaJV9qrVQQHf7lvtfwN7uBio |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcUHmphdL6AOIU1bHjPA4cqnRXW1p2EXRRxSU48RiQVrvVZgvNv-pPZJzHbntASEg9xnKceDzjb_yYbwBeE6hIJZPAs4GhBUoSh57O_dDLg8gmkRVSKxco_GEUDifB-3N1vgHXXSxMww-x2nBzllHP187AL4w9WJOGFjh1FITCHfPzLn31CVa_adFWvjs-ohF-I8Sgf5YOvTavgFcQWkqvEBHXiQjJ2TBaJIIQHBW31B1ZxBIDI7WNYlMYzDUqo41OkGDMFrTiCq1BSe3eg01FUMh7sHn4ZfJ1st7XIYdF1gkmaS5w93v9sOOK5OLg9k_fxsK1g3vTTa5xbrAFj1oHlR02GvUYNnD2BB6kXV64pzD9XLl4wZrgmaXzSxfS-53NLRv9PENGs_VcLxa6Kpnb4mUDHI-HdWn5A3FZMnKSmbtcMq1Yv6avINRj46uKFJn1f7WGwD5hE3DxDCZ3Itvn0JvNZ7gNLFJG5bEqlJY88HN3IhtxYYzPE5R5EO-A10kvK1pCc5dXY5o1VMwic9LOVtLegber-hcNlcdfa-52g5G1Jl1mQrkjVl9w-rCoB-gfrWRp_zRdPb34n5f24f7Ho0F2ejw6eQkPXXFzj3AXesvFJb4if2iZ77UqyODbXWv9H3DCF8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Coupling+of+NiTe+Nanoarrays+with+FeOOH+Nanosheets+for+Highly+Efficient+Oxygen+Evolution+Reaction&rft.jtitle=ChemElectroChem&rft.au=Li%2C+Yadong&rft.au=Chen%2C+Baojin&rft.au=Zhang%2C+Huaming&rft.au=Gao%2C+Jing&rft.date=2021-10-01&rft.issn=2196-0216&rft.eissn=2196-0216&rft.volume=8&rft.issue=19&rft.spage=3643&rft.epage=3650&rft_id=info:doi/10.1002%2Fcelc.202100703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_celc_202100703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |