Engineering 2D Multifunctional Ultrathin Bismuthene for Multiple Photonic Nanomedicine
2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has acquired massive research interest due to its unique optical performance, high biocompatibility, stability, and relatively low cost. However, t...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 6 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has acquired massive research interest due to its unique optical performance, high biocompatibility, stability, and relatively low cost. However, the utilization of 2D bismuthene in nanomedicine has not been achieved because of the difficulty in engineering bismuthene with crucial structural/compositional characteristics for satisfying strict biomedical requirements. Herein, to address this Gordian knot, a facile strategy to intercalate and delaminate Bi bulk for generating mass few‐layered 2D bismuthene with high yield by employing a water molecule mediated freezing–thawing process and sodium borohydride‐triggered reduction treatment is proposed. The resulting 2D bismuthene displays good optical performance in the near‐infrared (NIR) biowindow and can be excited via red light for reactive oxygen species generation, enabling applications in multiple photonic cancer nanomedicine settings, including photothermal hyperthermia and photodynamic therapy. Utilizing the intrinsic desirable optical absorbance and strong X‐ray attenuation of bismuthene, dual photonic therapy can be conducted under the supervision of photoacoustic/computed tomography guided multimodal imaging. This research not only offers a potential mass‐production ready, cost‐effective, and eco‐efficient methodology for engineering 2D Xenes, but also exploits an innovative 2D bismuthene based photonic cancer nanomedicine.
To capture the potential biomedical application of 2D bismuthene, herein, a facile methodology to intercalate and delaminate Bi bulk for generating mass few‐layered 2D multifunctional ultrathin bismuthene is proposed, which enables applications in multiple photonic oncological nanomedicine settings, including photothermal hyperthermia and photodynamic therapy. |
---|---|
AbstractList | 2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has acquired massive research interest due to its unique optical performance, high biocompatibility, stability, and relatively low cost. However, the utilization of 2D bismuthene in nanomedicine has not been achieved because of the difficulty in engineering bismuthene with crucial structural/compositional characteristics for satisfying strict biomedical requirements. Herein, to address this Gordian knot, a facile strategy to intercalate and delaminate Bi bulk for generating mass few‐layered 2D bismuthene with high yield by employing a water molecule mediated freezing–thawing process and sodium borohydride‐triggered reduction treatment is proposed. The resulting 2D bismuthene displays good optical performance in the near‐infrared (NIR) biowindow and can be excited via red light for reactive oxygen species generation, enabling applications in multiple photonic cancer nanomedicine settings, including photothermal hyperthermia and photodynamic therapy. Utilizing the intrinsic desirable optical absorbance and strong X‐ray attenuation of bismuthene, dual photonic therapy can be conducted under the supervision of photoacoustic/computed tomography guided multimodal imaging. This research not only offers a potential mass‐production ready, cost‐effective, and eco‐efficient methodology for engineering 2D Xenes, but also exploits an innovative 2D bismuthene based photonic cancer nanomedicine.
To capture the potential biomedical application of 2D bismuthene, herein, a facile methodology to intercalate and delaminate Bi bulk for generating mass few‐layered 2D multifunctional ultrathin bismuthene is proposed, which enables applications in multiple photonic oncological nanomedicine settings, including photothermal hyperthermia and photodynamic therapy. 2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has acquired massive research interest due to its unique optical performance, high biocompatibility, stability, and relatively low cost. However, the utilization of 2D bismuthene in nanomedicine has not been achieved because of the difficulty in engineering bismuthene with crucial structural/compositional characteristics for satisfying strict biomedical requirements. Herein, to address this Gordian knot, a facile strategy to intercalate and delaminate Bi bulk for generating mass few‐layered 2D bismuthene with high yield by employing a water molecule mediated freezing–thawing process and sodium borohydride‐triggered reduction treatment is proposed. The resulting 2D bismuthene displays good optical performance in the near‐infrared (NIR) biowindow and can be excited via red light for reactive oxygen species generation, enabling applications in multiple photonic cancer nanomedicine settings, including photothermal hyperthermia and photodynamic therapy. Utilizing the intrinsic desirable optical absorbance and strong X‐ray attenuation of bismuthene, dual photonic therapy can be conducted under the supervision of photoacoustic/computed tomography guided multimodal imaging. This research not only offers a potential mass‐production ready, cost‐effective, and eco‐efficient methodology for engineering 2D Xenes, but also exploits an innovative 2D bismuthene based photonic cancer nanomedicine. |
Author | Shi, Jianlin Guo, Yuedong Yu, Luodan Chang, Meiqi Feng, Wei Yang, Jiacai Wang, Yuemei Huang, Hui Ding, Li Chen, Yu |
Author_xml | – sequence: 1 givenname: Yuemei surname: Wang fullname: Wang, Yuemei organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Wei surname: Feng fullname: Feng, Wei organization: Chinese Academy of Sciences – sequence: 3 givenname: Meiqi surname: Chang fullname: Chang, Meiqi organization: Chinese Academy of Sciences – sequence: 4 givenname: Jiacai surname: Yang fullname: Yang, Jiacai organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Yuedong surname: Guo fullname: Guo, Yuedong organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Li surname: Ding fullname: Ding, Li organization: Chinese Academy of Sciences – sequence: 7 givenname: Luodan surname: Yu fullname: Yu, Luodan organization: Chinese Academy of Sciences – sequence: 8 givenname: Hui surname: Huang fullname: Huang, Hui organization: Chinese Academy of Sciences – sequence: 9 givenname: Yu orcidid: 0000-0002-8206-3325 surname: Chen fullname: Chen, Yu email: chenyuedu@shu.edu.cn organization: University of Chinese Academy of Sciences – sequence: 10 givenname: Jianlin surname: Shi fullname: Shi, Jianlin organization: University of Chinese Academy of Sciences |
BookMark | eNqFkM9LwzAUx4NMcJtePRc8b-ZX2-Q490OFTT048RbSNN0y2mSmKbL_3o7KBEE8vQfv-3nv8RmAnnVWA3CN4BhBiG9lXlRjDDGEMeTkDPRRgpIRgZj1Tj16vwCDut5BiNKU0D54m9uNsVp7YzcRnkWrpgymaKwKxllZRusyeBm2xkZ3pq6asNVWR4XzXXBf6uhl64KzRkVP0rpK50a1-y7BeSHLWl991yFYL-av04fR8vn-cTpZjhRBKRnJnGeUF4owyRkkitFMZkzliSJZTCWTWaxRmscZbIecFxlKlaSYpxLlOJExGYKbbu_eu49G10HsXOPbx2uBKYspYTBGbWrcpZR3de11IfbeVNIfBILi6E4c3YmTuxagvwBlgjwqaW2Y8m-Md9inKfXhnyNiMlusftgvG3eHFg |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_08_137 crossref_primary_10_1021_acs_energyfuels_2c02321 crossref_primary_10_1002_adtp_202200027 crossref_primary_10_1002_adfm_202401897 crossref_primary_10_1002_adma_202008226 crossref_primary_10_1016_j_mtbio_2023_100825 crossref_primary_10_1039_D4MA00493K crossref_primary_10_1039_D2CS00586G crossref_primary_10_1016_j_cej_2022_137321 crossref_primary_10_1016_j_jphotochem_2024_116073 crossref_primary_10_1021_acsnano_5c02753 crossref_primary_10_1002_cphc_202400904 crossref_primary_10_1016_j_addr_2022_114268 crossref_primary_10_1002_adhm_202203107 crossref_primary_10_1016_j_aiepr_2023_06_003 crossref_primary_10_1002_smll_202411522 crossref_primary_10_1016_j_est_2022_105900 crossref_primary_10_1016_j_chempr_2022_06_006 crossref_primary_10_1039_D3TC00587A crossref_primary_10_1002_admt_202300818 crossref_primary_10_1007_s11468_024_02275_8 crossref_primary_10_1016_j_inoche_2023_111724 crossref_primary_10_1186_s12951_024_02465_w crossref_primary_10_1016_j_biomaterials_2022_121791 crossref_primary_10_1016_j_cej_2024_157762 crossref_primary_10_1515_nanoph_2022_0045 crossref_primary_10_1364_OE_493962 crossref_primary_10_1016_j_checat_2021_12_004 crossref_primary_10_1016_j_ijpharm_2023_122825 crossref_primary_10_1039_D2MA00318J crossref_primary_10_1039_D3TB01544K crossref_primary_10_1016_j_ensm_2023_102780 crossref_primary_10_1016_j_biomaterials_2024_122709 crossref_primary_10_1016_j_electacta_2022_140838 crossref_primary_10_1016_j_est_2024_111042 crossref_primary_10_1016_j_envres_2024_120297 crossref_primary_10_1016_j_cej_2024_149445 crossref_primary_10_1016_j_addr_2022_114241 crossref_primary_10_1021_acsami_0c21579 crossref_primary_10_15541_jim20220089 crossref_primary_10_1002_advs_202101043 crossref_primary_10_1039_D1CS01070K crossref_primary_10_1016_j_apsadv_2023_100512 crossref_primary_10_1016_j_cej_2024_150962 crossref_primary_10_1016_j_checat_2022_01_021 crossref_primary_10_1039_D2CC06337A crossref_primary_10_1002_ppsc_202100113 crossref_primary_10_1016_j_cej_2022_137039 crossref_primary_10_1002_adfm_202302541 crossref_primary_10_1021_acs_nanolett_4c00807 crossref_primary_10_1016_j_addr_2022_114314 crossref_primary_10_1039_D0CS01138J crossref_primary_10_1021_acsnano_3c01380 |
Cites_doi | 10.1002/anie.201703657 10.1002/adma.201903013 10.1002/aelm.201800475 10.1002/anie.201903485 10.1002/adma.201807874 10.1126/science.aad1080 10.1021/nn506137n 10.1103/PhysRevLett.107.076802 10.1039/C9CS00283A 10.1126/sciadv.aaw6264 10.1103/PhysRevB.91.085423 10.1039/C7NR02213A 10.1021/acs.nanolett.0c01098 10.1002/anie.201507568 10.1126/science.1102896 10.1002/adma.201602254 10.1002/adma.201605299 10.1002/anie.201706389 10.1103/PhysRevLett.108.155501 10.1021/acsami.6b04579 10.1002/anie.201908377 10.1038/s41565-018-0157-4 10.1016/j.matt.2019.12.007 10.1039/C9BM00351G 10.1002/anie.201913675 10.1146/annurev-bioeng-071516-044442 10.1038/s41467-018-03712-z 10.1038/nmat1571 10.1021/jacs.5b06025 10.1002/anie.201710399 10.1021/acsnano.7b00476 10.1126/science.aai8142 10.1039/C6CS00937A 10.1016/j.radonc.2008.11.008 10.1002/adfm.201601341 10.1098/rsfs.2011.0028 10.1038/nnano.2014.35 10.1038/nmat4384 10.1002/aenm.201703496 10.1039/c1sm00011j 10.1002/advs.201901211 10.1016/j.biomaterials.2014.10.001 10.1016/j.biomaterials.2018.10.016 10.1039/C7CS00021A 10.1126/science.aaa7154 10.1021/nl100996u 10.1016/j.biomaterials.2016.03.022 10.1007/s12274-016-1085-y 10.1126/sciadv.1701373 10.1039/C8CS00342D 10.1002/adfm.201702018 10.1016/j.molliq.2017.05.128 10.1038/natrevmats.2016.42 10.1002/adma.201603276 10.1088/2053-1583/aa8418 10.1021/acs.nanolett.8b02639 10.1021/jacs.7b07818 10.1002/lpor.201700221 10.1002/adma.201703771 10.1007/s10439-011-0449-4 10.1002/anie.200901479 10.1038/s41570-016-0014 10.1016/j.cplett.2004.07.126 10.1002/adma.201802061 10.1002/anie.201411246 10.1039/C8NR06797J 10.1021/nn501226z 10.1016/j.biomaterials.2017.06.033 10.1002/adma.201103289 10.1021/acsnano.6b05427 10.1039/C8CS00823J 10.1007/s00604-018-2815-5 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202005093 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202005093 ADFM202005093 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51672303; 51722211 – fundername: China Postdoctoral Science Foundation funderid: 2019M661643; 2019TQ0332 – fundername: Program of Shanghai Subject Chief Scientist funderid: 18XD1404300 – fundername: National Science Foundation for Young Scientists of China funderid: 51802336; 51902334; 81903178 – fundername: National Key Research and Development Program of China funderid: 2016YFA0203700 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3173-ad9b49fc38a9803c84bab8cd6c3b54a8ab5e17d5b003c99fb17ca4297a1d26a53 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 10:42:09 EDT 2025 Tue Jul 01 04:12:21 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Wed Jan 22 16:30:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3173-ad9b49fc38a9803c84bab8cd6c3b54a8ab5e17d5b003c99fb17ca4297a1d26a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8206-3325 |
PQID | 2485438051 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2485438051 crossref_primary_10_1002_adfm_202005093 crossref_citationtrail_10_1002_adfm_202005093 wiley_primary_10_1002_adfm_202005093_ADFM202005093 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018 2017; 12 357 2015; 37 2010; 10 2017; 4 2019; 58 2020; 59 2017; 9 2018; 47 2019 2011; 58 107 2020; 2 2018 2018 2017; 9 8 29 2015; 137 2011 2017 2009; 1 19 91 2020; 49 2018 2015; 13 350 2018; 30 2017; 240 2011; 23 2015; 91 2014; 9 2014; 8 2019; 7 2015; 14 2014 2017 2017 2020; 9 46 29 20 2019; 5 2019; 31 2017; 27 2016; 10 2006; 5 2016; 91 2015; 9 2012; 108 2019; 189 2011; 7 2017; 139 2016; 55 2018; 18 2004; 396 2018 2015 2017; 30 54 56 2016; 1 2018 2019; 185 6 2004 2009; 306 48 2017; 11 2019; 48 2017; 56 2017 2017; 46 1 2017; 141 2016; 28 2018; 10 2016; 26 2016; 8 2015 2018; 350 4 2016; 9 2018; 57 2012; 40 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_34_3 e_1_2_6_36_1 e_1_2_6_34_2 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_11_2 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_17_2 e_1_2_6_55_2 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_55_3 e_1_2_6_57_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 Ranjitha S. (e_1_2_6_42_1) 2014; 9 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_1_2 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_16_2 e_1_2_6_16_3 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_2 e_1_2_6_8_1 e_1_2_6_2_4 e_1_2_6_2_3 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_44_2 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 28 start-page: 8586 year: 2016 publication-title: Adv. Mater. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 7 start-page: 5604 year: 2011 publication-title: Soft Matter – volume: 37 start-page: 447 year: 2015 publication-title: Biomaterials – volume: 23 start-page: 4886 year: 2011 publication-title: Adv. Mater. – volume: 40 start-page: 422 year: 2012 publication-title: Ann. Biomed. Eng. – volume: 59 start-page: 5151 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 5335 year: 2016 publication-title: Adv. Funct. Mater. – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 9 start-page: 8229 year: 2017 publication-title: Nanoscale – volume: 58 start-page: 8814 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 4 year: 2017 publication-title: 2D Mater. – volume: 11 start-page: 3990 year: 2017 publication-title: ACS Nano – volume: 9 start-page: 9 year: 2014 publication-title: Int. J. Sci. Technol. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 57 start-page: 246 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 4033 year: 2014 publication-title: ACS Nano – volume: 189 start-page: 11 year: 2019 publication-title: Biomaterials – volume: 55 start-page: 1666 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 58 107 year: 2019 2011 publication-title: Angew. Chem., Int. Ed. Phys. Rev. Lett. – volume: 46 1 start-page: 2127 0014 year: 2017 2017 publication-title: Chem. Soc. Rev. Nat. Rev. Chem. – volume: 9 46 29 20 start-page: 372 3492 3943 year: 2014 2017 2017 2020 publication-title: Nat. Nanotechnol. Chem. Soc. Rev. Adv. Mater. Nano Lett. – volume: 5 start-page: 118 year: 2006 publication-title: Nat. Mater. – volume: 141 start-page: 284 year: 2017 publication-title: Biomaterials – volume: 9 start-page: 696 year: 2015 publication-title: ACS Nano – volume: 185 6 start-page: 269 year: 2018 2019 publication-title: Microchim. Acta Adv. Sci. – volume: 2 start-page: 297 year: 2020 publication-title: Matter – volume: 7 start-page: 3025 year: 2019 publication-title: Biomater. Sci. – volume: 396 start-page: 226 year: 2004 publication-title: Chem. Phys. Lett. – volume: 240 start-page: 682 year: 2017 publication-title: J. Mol. Liq. – volume: 1 19 91 start-page: 602 221 85 year: 2011 2017 2009 publication-title: Interface Focus Ann. Rev. Biomed. Eng. Radiother. Oncol. – volume: 47 start-page: 5588 year: 2018 publication-title: Chem. Soc. Rev. – volume: 12 357 start-page: 287 year: 2018 2017 publication-title: Laser Photonics Rev. Science – volume: 306 48 start-page: 666 4785 year: 2004 2009 publication-title: Science Angew. Chem., Int. Ed. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 9 start-page: 1934 year: 2016 publication-title: Nano Res. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 48 start-page: 2891 year: 2019 publication-title: Chem. Soc. Rev. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 9646 year: 2016 publication-title: ACS Nano – volume: 9 8 29 start-page: 1320 year: 2018 2018 2017 publication-title: Nat. Commun. Adv. Energy Mater. Adv. Mater. – volume: 30 54 56 start-page: 3112 year: 2018 2015 2017 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 91 start-page: 81 year: 2016 publication-title: Biomaterials – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 13 350 start-page: 444 1513 year: 2018 2015 publication-title: Nat. Nanotechnol. Science – volume: 14 start-page: 1020 year: 2015 publication-title: Nat. Mater. – volume: 49 start-page: 1253 year: 2020 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 3318 year: 2010 publication-title: Nano Lett. – volume: 18 start-page: 6778 year: 2018 publication-title: Nano Lett. – volume: 350 4 start-page: 542 year: 2015 2018 publication-title: Science Sci. Adv. – ident: e_1_2_6_16_3 doi: 10.1002/anie.201703657 – ident: e_1_2_6_9_1 doi: 10.1002/adma.201903013 – ident: e_1_2_6_18_1 doi: 10.1002/aelm.201800475 – ident: e_1_2_6_38_1 doi: 10.1002/anie.201903485 – ident: e_1_2_6_33_1 doi: 10.1002/adma.201807874 – ident: e_1_2_6_7_2 doi: 10.1126/science.aad1080 – ident: e_1_2_6_50_1 doi: 10.1021/nn506137n – ident: e_1_2_6_11_2 doi: 10.1103/PhysRevLett.107.076802 – ident: e_1_2_6_25_1 doi: 10.1039/C9CS00283A – ident: e_1_2_6_54_1 doi: 10.1126/sciadv.aaw6264 – ident: e_1_2_6_15_1 doi: 10.1103/PhysRevB.91.085423 – ident: e_1_2_6_28_1 doi: 10.1039/C7NR02213A – ident: e_1_2_6_2_4 doi: 10.1021/acs.nanolett.0c01098 – ident: e_1_2_6_32_1 doi: 10.1002/anie.201507568 – ident: e_1_2_6_1_1 doi: 10.1126/science.1102896 – ident: e_1_2_6_13_1 doi: 10.1002/adma.201602254 – ident: e_1_2_6_34_3 doi: 10.1002/adma.201605299 – ident: e_1_2_6_35_1 doi: 10.1002/anie.201706389 – ident: e_1_2_6_10_1 doi: 10.1103/PhysRevLett.108.155501 – ident: e_1_2_6_47_1 doi: 10.1021/acsami.6b04579 – ident: e_1_2_6_11_1 doi: 10.1002/anie.201908377 – ident: e_1_2_6_7_1 doi: 10.1038/s41565-018-0157-4 – ident: e_1_2_6_4_1 doi: 10.1016/j.matt.2019.12.007 – ident: e_1_2_6_29_1 doi: 10.1039/C9BM00351G – ident: e_1_2_6_14_1 doi: 10.1002/anie.201913675 – ident: e_1_2_6_55_2 doi: 10.1146/annurev-bioeng-071516-044442 – ident: e_1_2_6_34_1 doi: 10.1038/s41467-018-03712-z – ident: e_1_2_6_57_1 doi: 10.1038/nmat1571 – ident: e_1_2_6_41_1 doi: 10.1021/jacs.5b06025 – ident: e_1_2_6_52_1 doi: 10.1002/anie.201710399 – volume: 9 start-page: 9 year: 2014 ident: e_1_2_6_42_1 publication-title: Int. J. Sci. Technol. – ident: e_1_2_6_27_1 doi: 10.1021/acsnano.7b00476 – ident: e_1_2_6_17_2 doi: 10.1126/science.aai8142 – ident: e_1_2_6_5_1 doi: 10.1039/C6CS00937A – ident: e_1_2_6_55_3 doi: 10.1016/j.radonc.2008.11.008 – ident: e_1_2_6_43_1 doi: 10.1002/adfm.201601341 – ident: e_1_2_6_55_1 doi: 10.1098/rsfs.2011.0028 – ident: e_1_2_6_2_1 doi: 10.1038/nnano.2014.35 – ident: e_1_2_6_12_1 doi: 10.1038/nmat4384 – ident: e_1_2_6_34_2 doi: 10.1002/aenm.201703496 – ident: e_1_2_6_49_1 doi: 10.1039/c1sm00011j – ident: e_1_2_6_44_2 doi: 10.1002/advs.201901211 – ident: e_1_2_6_22_1 doi: 10.1016/j.biomaterials.2014.10.001 – ident: e_1_2_6_31_1 doi: 10.1016/j.biomaterials.2018.10.016 – ident: e_1_2_6_2_2 doi: 10.1039/C7CS00021A – ident: e_1_2_6_8_1 doi: 10.1126/science.aaa7154 – ident: e_1_2_6_46_1 doi: 10.1021/nl100996u – ident: e_1_2_6_48_1 doi: 10.1016/j.biomaterials.2016.03.022 – ident: e_1_2_6_53_1 doi: 10.1007/s12274-016-1085-y – ident: e_1_2_6_8_2 doi: 10.1126/sciadv.1701373 – ident: e_1_2_6_3_1 doi: 10.1039/C8CS00342D – ident: e_1_2_6_26_1 doi: 10.1002/adfm.201702018 – ident: e_1_2_6_20_1 doi: 10.1016/j.molliq.2017.05.128 – ident: e_1_2_6_36_1 doi: 10.1038/natrevmats.2016.42 – ident: e_1_2_6_2_3 doi: 10.1002/adma.201603276 – ident: e_1_2_6_19_1 doi: 10.1088/2053-1583/aa8418 – ident: e_1_2_6_24_1 doi: 10.1021/acs.nanolett.8b02639 – ident: e_1_2_6_45_1 doi: 10.1021/jacs.7b07818 – ident: e_1_2_6_17_1 doi: 10.1002/lpor.201700221 – ident: e_1_2_6_16_1 doi: 10.1002/adma.201703771 – ident: e_1_2_6_56_1 doi: 10.1007/s10439-011-0449-4 – ident: e_1_2_6_1_2 doi: 10.1002/anie.200901479 – ident: e_1_2_6_5_2 doi: 10.1038/s41570-016-0014 – ident: e_1_2_6_37_1 doi: 10.1016/j.cplett.2004.07.126 – ident: e_1_2_6_21_1 doi: 10.1002/adma.201802061 – ident: e_1_2_6_16_2 doi: 10.1002/anie.201411246 – ident: e_1_2_6_40_1 doi: 10.1039/C8NR06797J – ident: e_1_2_6_39_1 doi: 10.1021/nn501226z – ident: e_1_2_6_23_1 doi: 10.1016/j.biomaterials.2017.06.033 – ident: e_1_2_6_30_1 doi: 10.1002/adma.201103289 – ident: e_1_2_6_51_1 doi: 10.1021/acsnano.6b05427 – ident: e_1_2_6_6_1 doi: 10.1039/C8CS00823J – ident: e_1_2_6_44_1 doi: 10.1007/s00604-018-2815-5 |
SSID | ssj0017734 |
Score | 2.5790095 |
Snippet | 2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Attenuation Biocompatibility Biomedical engineering Biomedical materials Bismuth bismuthene Cancer Computed tomography Freezing Heavy elements Hyperthermia Materials science Nanomaterials Photodynamic therapy photonic nanomedicine Photonics reactive oxygen species thermal ablation Water chemistry Xenes |
Title | Engineering 2D Multifunctional Ultrathin Bismuthene for Multiple Photonic Nanomedicine |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202005093 https://www.proquest.com/docview/2485438051 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD6EUP_hanc-QgeOq2pkl_HKdzDHEi6mS3kqQpG85uuO7iX29e-mOdIIIeW5LS5sd73ybvfYLQZRzEDnO92II8RosKL9B2UP-4UinahFMnEgbHMHhw-0N6N2KjShZ_xocoF9xgZhh7DROci0VrBQ3lUQyZ5MQQTAD3CQFboIqeSn6U7XnZtrJrQ4CXPSqojW3SWq--7pVWUrMqWI3H6e0hXrxrFmjy1lymoik_v2Ec__Mx-2g3l6O4k42fA7ShkkO0U4EUHqHXyhUmXWxSdsEdZquIeDgFwO14kuDryeIdAuYThbUUzgrOpwo_jmcpEHixNuWzYjP_GA17ty83fSs_jcGSWmM4Fo8CQYNYOj4P_LYjfSq48GXkSkcwyn0umLK9iIGdkEEQC9uTXHs7j9sRcTlzTtBmMkvUKcJatXGmbyq37VCX-4Lr0aIkcyWlXMqohqyiN0KZo8rhxIxpmEGWSQjtFZbtVUNXZfl5Bun4sWS96Nwwn6yLEKhuAN5ndg0R00u_PCXsdHuD8ursL5XO0TaB6BgT_11Hm-nHUl1oeZOKBtrqdAf3zw0zlL8A3lHzYQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIBPUAZg4I0oTw9ITClNbOcxAqUqjyKEWtQtsp1ErShpRduFX4_PadIWCSHB6MiOEj_uzue7zwDnSZBQ7nqJhXmMFpNeoOWg3rgyJauOYDSSBsfQfHIbbXbf4Xk0IebCZHyIwuGGK8PIa1zg6JC-nFFDRZRgKrljECZ0GVbwWm-zq3opCFK252UHy66NIV52J-c2Vp3LxfaLemlmbM6brEbn1DdB5l-bhZq8VSZjWVGf30CO__qdLdiYWqTkKptC27AUpzuwPscp3IXXuRJxasRk7aJGzByJpN1Hxm23l5Lr3ugdY-bTmGhrOKs47MfkuTsYI4SXaGk-yM_z96Bdv23dNKzphQyW0mYGtUQUSBYkivoi8KtU-UwK6avIVVRyJnwheWx7EUdRoYIgkbanhFZ4nrAjxxWc7kMpHaTxARBtuAmuH8ZulTJX-FLoCRMr7irGhFJRGax8OEI1pZXjpRn9MOMsOyH2V1j0VxkuivrDjNPxY83jfHTD6XodhQh2Q_Y-t8vgmGH65S3hVa3eLEqHf2l0BquNVvMxfLx7ejiCNQeDZUw4-DGUxh-T-ERbO2N5aubzF2zz9eg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT8IwFMBfFBOjB7-NKGoPJp4G2_qx7YgiwQ8IMWK4LW23BSIOIuPiX2-7sQEmxkSPXdpma1_fe2vf-xXgKvIiTJkTGTqP0SDC8ZQeVD-uRArT5gQHIsUxtDus1SMPfdpfyuLP-BDFhpteGam-1gt8EkS1BTSUB5HOJLdTgglehw3CTFfLdeO5AEhZjpOdKzNLR3hZ_RzbaNq11farZmnhay57rKnJae4Cz182izR5q84SUZWf3ziO__maPdiZ-6OongnQPqyF8QFsL1EKD-F1qYTsBkpzdrU9zLYRUW-kCbeDYYxuhtN3HTEfh0j5wlnFyShE3cE40QhepHT5OD_NP4Je8-7ltmXMr2MwpHIysMEDTxAvktjlnmti6RLBhSsDJrGghLtc0NByAqoVhfS8SFiO5MrcOdwKbMYpPoZSPI7DE0DKbeNUPQyZiQnjruBKXEJJmSSESxmUwchnw5dzVrm-MmPkZ5Rl29fj5RfjVYbrov4ko3T8WLOST64_X61TX2PdNHmfWmWw01n6pRe_3mi2i9LpXxpdwma30fSf7juPZ7Bl60iZNBa8AqXkYxaeK1cnERepNH8BqU30oA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+2D+Multifunctional+Ultrathin+Bismuthene+for+Multiple+Photonic+Nanomedicine&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Yuemei&rft.au=Feng%2C+Wei&rft.au=Chang%2C+Meiqi&rft.au=Yang%2C+Jiacai&rft.date=2021-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=6&rft_id=info:doi/10.1002%2Fadfm.202005093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202005093 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |