Engineering 2D Multifunctional Ultrathin Bismuthene for Multiple Photonic Nanomedicine

2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has acquired massive research interest due to its unique optical performance, high biocompatibility, stability, and relatively low cost. However, t...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 6
Main Authors Wang, Yuemei, Feng, Wei, Chang, Meiqi, Yang, Jiacai, Guo, Yuedong, Ding, Li, Yu, Luodan, Huang, Hui, Chen, Yu, Shi, Jianlin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has acquired massive research interest due to its unique optical performance, high biocompatibility, stability, and relatively low cost. However, the utilization of 2D bismuthene in nanomedicine has not been achieved because of the difficulty in engineering bismuthene with crucial structural/compositional characteristics for satisfying strict biomedical requirements. Herein, to address this Gordian knot, a facile strategy to intercalate and delaminate Bi bulk for generating mass few‐layered 2D bismuthene with high yield by employing a water molecule mediated freezing–thawing process and sodium borohydride‐triggered reduction treatment is proposed. The resulting 2D bismuthene displays good optical performance in the near‐infrared (NIR) biowindow and can be excited via red light for reactive oxygen species generation, enabling applications in multiple photonic cancer nanomedicine settings, including photothermal hyperthermia and photodynamic therapy. Utilizing the intrinsic desirable optical absorbance and strong X‐ray attenuation of bismuthene, dual photonic therapy can be conducted under the supervision of photoacoustic/computed tomography guided multimodal imaging. This research not only offers a potential mass‐production ready, cost‐effective, and eco‐efficient methodology for engineering 2D Xenes, but also exploits an innovative 2D bismuthene based photonic cancer nanomedicine. To capture the potential biomedical application of 2D bismuthene, herein, a facile methodology to intercalate and delaminate Bi bulk for generating mass few‐layered 2D multifunctional ultrathin bismuthene is proposed, which enables applications in multiple photonic oncological nanomedicine settings, including photothermal hyperthermia and photodynamic therapy.
AbstractList 2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has acquired massive research interest due to its unique optical performance, high biocompatibility, stability, and relatively low cost. However, the utilization of 2D bismuthene in nanomedicine has not been achieved because of the difficulty in engineering bismuthene with crucial structural/compositional characteristics for satisfying strict biomedical requirements. Herein, to address this Gordian knot, a facile strategy to intercalate and delaminate Bi bulk for generating mass few‐layered 2D bismuthene with high yield by employing a water molecule mediated freezing–thawing process and sodium borohydride‐triggered reduction treatment is proposed. The resulting 2D bismuthene displays good optical performance in the near‐infrared (NIR) biowindow and can be excited via red light for reactive oxygen species generation, enabling applications in multiple photonic cancer nanomedicine settings, including photothermal hyperthermia and photodynamic therapy. Utilizing the intrinsic desirable optical absorbance and strong X‐ray attenuation of bismuthene, dual photonic therapy can be conducted under the supervision of photoacoustic/computed tomography guided multimodal imaging. This research not only offers a potential mass‐production ready, cost‐effective, and eco‐efficient methodology for engineering 2D Xenes, but also exploits an innovative 2D bismuthene based photonic cancer nanomedicine. To capture the potential biomedical application of 2D bismuthene, herein, a facile methodology to intercalate and delaminate Bi bulk for generating mass few‐layered 2D multifunctional ultrathin bismuthene is proposed, which enables applications in multiple photonic oncological nanomedicine settings, including photothermal hyperthermia and photodynamic therapy.
2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has acquired massive research interest due to its unique optical performance, high biocompatibility, stability, and relatively low cost. However, the utilization of 2D bismuthene in nanomedicine has not been achieved because of the difficulty in engineering bismuthene with crucial structural/compositional characteristics for satisfying strict biomedical requirements. Herein, to address this Gordian knot, a facile strategy to intercalate and delaminate Bi bulk for generating mass few‐layered 2D bismuthene with high yield by employing a water molecule mediated freezing–thawing process and sodium borohydride‐triggered reduction treatment is proposed. The resulting 2D bismuthene displays good optical performance in the near‐infrared (NIR) biowindow and can be excited via red light for reactive oxygen species generation, enabling applications in multiple photonic cancer nanomedicine settings, including photothermal hyperthermia and photodynamic therapy. Utilizing the intrinsic desirable optical absorbance and strong X‐ray attenuation of bismuthene, dual photonic therapy can be conducted under the supervision of photoacoustic/computed tomography guided multimodal imaging. This research not only offers a potential mass‐production ready, cost‐effective, and eco‐efficient methodology for engineering 2D Xenes, but also exploits an innovative 2D bismuthene based photonic cancer nanomedicine.
Author Shi, Jianlin
Guo, Yuedong
Yu, Luodan
Chang, Meiqi
Feng, Wei
Yang, Jiacai
Wang, Yuemei
Huang, Hui
Ding, Li
Chen, Yu
Author_xml – sequence: 1
  givenname: Yuemei
  surname: Wang
  fullname: Wang, Yuemei
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Wei
  surname: Feng
  fullname: Feng, Wei
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Meiqi
  surname: Chang
  fullname: Chang, Meiqi
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Jiacai
  surname: Yang
  fullname: Yang, Jiacai
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Yuedong
  surname: Guo
  fullname: Guo, Yuedong
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Li
  surname: Ding
  fullname: Ding, Li
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Luodan
  surname: Yu
  fullname: Yu, Luodan
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Hui
  surname: Huang
  fullname: Huang, Hui
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Yu
  orcidid: 0000-0002-8206-3325
  surname: Chen
  fullname: Chen, Yu
  email: chenyuedu@shu.edu.cn
  organization: University of Chinese Academy of Sciences
– sequence: 10
  givenname: Jianlin
  surname: Shi
  fullname: Shi, Jianlin
  organization: University of Chinese Academy of Sciences
BookMark eNqFkM9LwzAUx4NMcJtePRc8b-ZX2-Q490OFTT048RbSNN0y2mSmKbL_3o7KBEE8vQfv-3nv8RmAnnVWA3CN4BhBiG9lXlRjDDGEMeTkDPRRgpIRgZj1Tj16vwCDut5BiNKU0D54m9uNsVp7YzcRnkWrpgymaKwKxllZRusyeBm2xkZ3pq6asNVWR4XzXXBf6uhl64KzRkVP0rpK50a1-y7BeSHLWl991yFYL-av04fR8vn-cTpZjhRBKRnJnGeUF4owyRkkitFMZkzliSJZTCWTWaxRmscZbIecFxlKlaSYpxLlOJExGYKbbu_eu49G10HsXOPbx2uBKYspYTBGbWrcpZR3de11IfbeVNIfBILi6E4c3YmTuxagvwBlgjwqaW2Y8m-Md9inKfXhnyNiMlusftgvG3eHFg
CitedBy_id crossref_primary_10_1016_j_jcis_2023_08_137
crossref_primary_10_1021_acs_energyfuels_2c02321
crossref_primary_10_1002_adtp_202200027
crossref_primary_10_1002_adfm_202401897
crossref_primary_10_1002_adma_202008226
crossref_primary_10_1016_j_mtbio_2023_100825
crossref_primary_10_1039_D4MA00493K
crossref_primary_10_1039_D2CS00586G
crossref_primary_10_1016_j_cej_2022_137321
crossref_primary_10_1016_j_jphotochem_2024_116073
crossref_primary_10_1021_acsnano_5c02753
crossref_primary_10_1002_cphc_202400904
crossref_primary_10_1016_j_addr_2022_114268
crossref_primary_10_1002_adhm_202203107
crossref_primary_10_1016_j_aiepr_2023_06_003
crossref_primary_10_1002_smll_202411522
crossref_primary_10_1016_j_est_2022_105900
crossref_primary_10_1016_j_chempr_2022_06_006
crossref_primary_10_1039_D3TC00587A
crossref_primary_10_1002_admt_202300818
crossref_primary_10_1007_s11468_024_02275_8
crossref_primary_10_1016_j_inoche_2023_111724
crossref_primary_10_1186_s12951_024_02465_w
crossref_primary_10_1016_j_biomaterials_2022_121791
crossref_primary_10_1016_j_cej_2024_157762
crossref_primary_10_1515_nanoph_2022_0045
crossref_primary_10_1364_OE_493962
crossref_primary_10_1016_j_checat_2021_12_004
crossref_primary_10_1016_j_ijpharm_2023_122825
crossref_primary_10_1039_D2MA00318J
crossref_primary_10_1039_D3TB01544K
crossref_primary_10_1016_j_ensm_2023_102780
crossref_primary_10_1016_j_biomaterials_2024_122709
crossref_primary_10_1016_j_electacta_2022_140838
crossref_primary_10_1016_j_est_2024_111042
crossref_primary_10_1016_j_envres_2024_120297
crossref_primary_10_1016_j_cej_2024_149445
crossref_primary_10_1016_j_addr_2022_114241
crossref_primary_10_1021_acsami_0c21579
crossref_primary_10_15541_jim20220089
crossref_primary_10_1002_advs_202101043
crossref_primary_10_1039_D1CS01070K
crossref_primary_10_1016_j_apsadv_2023_100512
crossref_primary_10_1016_j_cej_2024_150962
crossref_primary_10_1016_j_checat_2022_01_021
crossref_primary_10_1039_D2CC06337A
crossref_primary_10_1002_ppsc_202100113
crossref_primary_10_1016_j_cej_2022_137039
crossref_primary_10_1002_adfm_202302541
crossref_primary_10_1021_acs_nanolett_4c00807
crossref_primary_10_1016_j_addr_2022_114314
crossref_primary_10_1039_D0CS01138J
crossref_primary_10_1021_acsnano_3c01380
Cites_doi 10.1002/anie.201703657
10.1002/adma.201903013
10.1002/aelm.201800475
10.1002/anie.201903485
10.1002/adma.201807874
10.1126/science.aad1080
10.1021/nn506137n
10.1103/PhysRevLett.107.076802
10.1039/C9CS00283A
10.1126/sciadv.aaw6264
10.1103/PhysRevB.91.085423
10.1039/C7NR02213A
10.1021/acs.nanolett.0c01098
10.1002/anie.201507568
10.1126/science.1102896
10.1002/adma.201602254
10.1002/adma.201605299
10.1002/anie.201706389
10.1103/PhysRevLett.108.155501
10.1021/acsami.6b04579
10.1002/anie.201908377
10.1038/s41565-018-0157-4
10.1016/j.matt.2019.12.007
10.1039/C9BM00351G
10.1002/anie.201913675
10.1146/annurev-bioeng-071516-044442
10.1038/s41467-018-03712-z
10.1038/nmat1571
10.1021/jacs.5b06025
10.1002/anie.201710399
10.1021/acsnano.7b00476
10.1126/science.aai8142
10.1039/C6CS00937A
10.1016/j.radonc.2008.11.008
10.1002/adfm.201601341
10.1098/rsfs.2011.0028
10.1038/nnano.2014.35
10.1038/nmat4384
10.1002/aenm.201703496
10.1039/c1sm00011j
10.1002/advs.201901211
10.1016/j.biomaterials.2014.10.001
10.1016/j.biomaterials.2018.10.016
10.1039/C7CS00021A
10.1126/science.aaa7154
10.1021/nl100996u
10.1016/j.biomaterials.2016.03.022
10.1007/s12274-016-1085-y
10.1126/sciadv.1701373
10.1039/C8CS00342D
10.1002/adfm.201702018
10.1016/j.molliq.2017.05.128
10.1038/natrevmats.2016.42
10.1002/adma.201603276
10.1088/2053-1583/aa8418
10.1021/acs.nanolett.8b02639
10.1021/jacs.7b07818
10.1002/lpor.201700221
10.1002/adma.201703771
10.1007/s10439-011-0449-4
10.1002/anie.200901479
10.1038/s41570-016-0014
10.1016/j.cplett.2004.07.126
10.1002/adma.201802061
10.1002/anie.201411246
10.1039/C8NR06797J
10.1021/nn501226z
10.1016/j.biomaterials.2017.06.033
10.1002/adma.201103289
10.1021/acsnano.6b05427
10.1039/C8CS00823J
10.1007/s00604-018-2815-5
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202005093
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202005093
ADFM202005093
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51672303; 51722211
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M661643; 2019TQ0332
– fundername: Program of Shanghai Subject Chief Scientist
  funderid: 18XD1404300
– fundername: National Science Foundation for Young Scientists of China
  funderid: 51802336; 51902334; 81903178
– fundername: National Key Research and Development Program of China
  funderid: 2016YFA0203700
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3173-ad9b49fc38a9803c84bab8cd6c3b54a8ab5e17d5b003c99fb17ca4297a1d26a53
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 10:42:09 EDT 2025
Tue Jul 01 04:12:21 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Wed Jan 22 16:30:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3173-ad9b49fc38a9803c84bab8cd6c3b54a8ab5e17d5b003c99fb17ca4297a1d26a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8206-3325
PQID 2485438051
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2485438051
crossref_primary_10_1002_adfm_202005093
crossref_citationtrail_10_1002_adfm_202005093
wiley_primary_10_1002_adfm_202005093_ADFM202005093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018 2017; 12 357
2015; 37
2010; 10
2017; 4
2019; 58
2020; 59
2017; 9
2018; 47
2019 2011; 58 107
2020; 2
2018 2018 2017; 9 8 29
2015; 137
2011 2017 2009; 1 19 91
2020; 49
2018 2015; 13 350
2018; 30
2017; 240
2011; 23
2015; 91
2014; 9
2014; 8
2019; 7
2015; 14
2014 2017 2017 2020; 9 46 29 20
2019; 5
2019; 31
2017; 27
2016; 10
2006; 5
2016; 91
2015; 9
2012; 108
2019; 189
2011; 7
2017; 139
2016; 55
2018; 18
2004; 396
2018 2015 2017; 30 54 56
2016; 1
2018 2019; 185 6
2004 2009; 306 48
2017; 11
2019; 48
2017; 56
2017 2017; 46 1
2017; 141
2016; 28
2018; 10
2016; 26
2016; 8
2015 2018; 350 4
2016; 9
2018; 57
2012; 40
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_34_3
e_1_2_6_36_1
e_1_2_6_34_2
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_55_3
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
Ranjitha S. (e_1_2_6_42_1) 2014; 9
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_1_2
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_16_2
e_1_2_6_16_3
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_2
e_1_2_6_8_1
e_1_2_6_2_4
e_1_2_6_2_3
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_44_2
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 28
  start-page: 8586
  year: 2016
  publication-title: Adv. Mater.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 7
  start-page: 5604
  year: 2011
  publication-title: Soft Matter
– volume: 37
  start-page: 447
  year: 2015
  publication-title: Biomaterials
– volume: 23
  start-page: 4886
  year: 2011
  publication-title: Adv. Mater.
– volume: 40
  start-page: 422
  year: 2012
  publication-title: Ann. Biomed. Eng.
– volume: 59
  start-page: 5151
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 5335
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 9
  start-page: 8229
  year: 2017
  publication-title: Nanoscale
– volume: 58
  start-page: 8814
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  year: 2017
  publication-title: 2D Mater.
– volume: 11
  start-page: 3990
  year: 2017
  publication-title: ACS Nano
– volume: 9
  start-page: 9
  year: 2014
  publication-title: Int. J. Sci. Technol.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 57
  start-page: 246
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 4033
  year: 2014
  publication-title: ACS Nano
– volume: 189
  start-page: 11
  year: 2019
  publication-title: Biomaterials
– volume: 55
  start-page: 1666
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 58 107
  year: 2019 2011
  publication-title: Angew. Chem., Int. Ed. Phys. Rev. Lett.
– volume: 46 1
  start-page: 2127 0014
  year: 2017 2017
  publication-title: Chem. Soc. Rev. Nat. Rev. Chem.
– volume: 9 46 29 20
  start-page: 372 3492 3943
  year: 2014 2017 2017 2020
  publication-title: Nat. Nanotechnol. Chem. Soc. Rev. Adv. Mater. Nano Lett.
– volume: 5
  start-page: 118
  year: 2006
  publication-title: Nat. Mater.
– volume: 141
  start-page: 284
  year: 2017
  publication-title: Biomaterials
– volume: 9
  start-page: 696
  year: 2015
  publication-title: ACS Nano
– volume: 185 6
  start-page: 269
  year: 2018 2019
  publication-title: Microchim. Acta Adv. Sci.
– volume: 2
  start-page: 297
  year: 2020
  publication-title: Matter
– volume: 7
  start-page: 3025
  year: 2019
  publication-title: Biomater. Sci.
– volume: 396
  start-page: 226
  year: 2004
  publication-title: Chem. Phys. Lett.
– volume: 240
  start-page: 682
  year: 2017
  publication-title: J. Mol. Liq.
– volume: 1 19 91
  start-page: 602 221 85
  year: 2011 2017 2009
  publication-title: Interface Focus Ann. Rev. Biomed. Eng. Radiother. Oncol.
– volume: 47
  start-page: 5588
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 12 357
  start-page: 287
  year: 2018 2017
  publication-title: Laser Photonics Rev. Science
– volume: 306 48
  start-page: 666 4785
  year: 2004 2009
  publication-title: Science Angew. Chem., Int. Ed.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 9
  start-page: 1934
  year: 2016
  publication-title: Nano Res.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 48
  start-page: 2891
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 9646
  year: 2016
  publication-title: ACS Nano
– volume: 9 8 29
  start-page: 1320
  year: 2018 2018 2017
  publication-title: Nat. Commun. Adv. Energy Mater. Adv. Mater.
– volume: 30 54 56
  start-page: 3112
  year: 2018 2015 2017
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 91
  start-page: 81
  year: 2016
  publication-title: Biomaterials
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 13 350
  start-page: 444 1513
  year: 2018 2015
  publication-title: Nat. Nanotechnol. Science
– volume: 14
  start-page: 1020
  year: 2015
  publication-title: Nat. Mater.
– volume: 49
  start-page: 1253
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 3318
  year: 2010
  publication-title: Nano Lett.
– volume: 18
  start-page: 6778
  year: 2018
  publication-title: Nano Lett.
– volume: 350 4
  start-page: 542
  year: 2015 2018
  publication-title: Science Sci. Adv.
– ident: e_1_2_6_16_3
  doi: 10.1002/anie.201703657
– ident: e_1_2_6_9_1
  doi: 10.1002/adma.201903013
– ident: e_1_2_6_18_1
  doi: 10.1002/aelm.201800475
– ident: e_1_2_6_38_1
  doi: 10.1002/anie.201903485
– ident: e_1_2_6_33_1
  doi: 10.1002/adma.201807874
– ident: e_1_2_6_7_2
  doi: 10.1126/science.aad1080
– ident: e_1_2_6_50_1
  doi: 10.1021/nn506137n
– ident: e_1_2_6_11_2
  doi: 10.1103/PhysRevLett.107.076802
– ident: e_1_2_6_25_1
  doi: 10.1039/C9CS00283A
– ident: e_1_2_6_54_1
  doi: 10.1126/sciadv.aaw6264
– ident: e_1_2_6_15_1
  doi: 10.1103/PhysRevB.91.085423
– ident: e_1_2_6_28_1
  doi: 10.1039/C7NR02213A
– ident: e_1_2_6_2_4
  doi: 10.1021/acs.nanolett.0c01098
– ident: e_1_2_6_32_1
  doi: 10.1002/anie.201507568
– ident: e_1_2_6_1_1
  doi: 10.1126/science.1102896
– ident: e_1_2_6_13_1
  doi: 10.1002/adma.201602254
– ident: e_1_2_6_34_3
  doi: 10.1002/adma.201605299
– ident: e_1_2_6_35_1
  doi: 10.1002/anie.201706389
– ident: e_1_2_6_10_1
  doi: 10.1103/PhysRevLett.108.155501
– ident: e_1_2_6_47_1
  doi: 10.1021/acsami.6b04579
– ident: e_1_2_6_11_1
  doi: 10.1002/anie.201908377
– ident: e_1_2_6_7_1
  doi: 10.1038/s41565-018-0157-4
– ident: e_1_2_6_4_1
  doi: 10.1016/j.matt.2019.12.007
– ident: e_1_2_6_29_1
  doi: 10.1039/C9BM00351G
– ident: e_1_2_6_14_1
  doi: 10.1002/anie.201913675
– ident: e_1_2_6_55_2
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: e_1_2_6_34_1
  doi: 10.1038/s41467-018-03712-z
– ident: e_1_2_6_57_1
  doi: 10.1038/nmat1571
– ident: e_1_2_6_41_1
  doi: 10.1021/jacs.5b06025
– ident: e_1_2_6_52_1
  doi: 10.1002/anie.201710399
– volume: 9
  start-page: 9
  year: 2014
  ident: e_1_2_6_42_1
  publication-title: Int. J. Sci. Technol.
– ident: e_1_2_6_27_1
  doi: 10.1021/acsnano.7b00476
– ident: e_1_2_6_17_2
  doi: 10.1126/science.aai8142
– ident: e_1_2_6_5_1
  doi: 10.1039/C6CS00937A
– ident: e_1_2_6_55_3
  doi: 10.1016/j.radonc.2008.11.008
– ident: e_1_2_6_43_1
  doi: 10.1002/adfm.201601341
– ident: e_1_2_6_55_1
  doi: 10.1098/rsfs.2011.0028
– ident: e_1_2_6_2_1
  doi: 10.1038/nnano.2014.35
– ident: e_1_2_6_12_1
  doi: 10.1038/nmat4384
– ident: e_1_2_6_34_2
  doi: 10.1002/aenm.201703496
– ident: e_1_2_6_49_1
  doi: 10.1039/c1sm00011j
– ident: e_1_2_6_44_2
  doi: 10.1002/advs.201901211
– ident: e_1_2_6_22_1
  doi: 10.1016/j.biomaterials.2014.10.001
– ident: e_1_2_6_31_1
  doi: 10.1016/j.biomaterials.2018.10.016
– ident: e_1_2_6_2_2
  doi: 10.1039/C7CS00021A
– ident: e_1_2_6_8_1
  doi: 10.1126/science.aaa7154
– ident: e_1_2_6_46_1
  doi: 10.1021/nl100996u
– ident: e_1_2_6_48_1
  doi: 10.1016/j.biomaterials.2016.03.022
– ident: e_1_2_6_53_1
  doi: 10.1007/s12274-016-1085-y
– ident: e_1_2_6_8_2
  doi: 10.1126/sciadv.1701373
– ident: e_1_2_6_3_1
  doi: 10.1039/C8CS00342D
– ident: e_1_2_6_26_1
  doi: 10.1002/adfm.201702018
– ident: e_1_2_6_20_1
  doi: 10.1016/j.molliq.2017.05.128
– ident: e_1_2_6_36_1
  doi: 10.1038/natrevmats.2016.42
– ident: e_1_2_6_2_3
  doi: 10.1002/adma.201603276
– ident: e_1_2_6_19_1
  doi: 10.1088/2053-1583/aa8418
– ident: e_1_2_6_24_1
  doi: 10.1021/acs.nanolett.8b02639
– ident: e_1_2_6_45_1
  doi: 10.1021/jacs.7b07818
– ident: e_1_2_6_17_1
  doi: 10.1002/lpor.201700221
– ident: e_1_2_6_16_1
  doi: 10.1002/adma.201703771
– ident: e_1_2_6_56_1
  doi: 10.1007/s10439-011-0449-4
– ident: e_1_2_6_1_2
  doi: 10.1002/anie.200901479
– ident: e_1_2_6_5_2
  doi: 10.1038/s41570-016-0014
– ident: e_1_2_6_37_1
  doi: 10.1016/j.cplett.2004.07.126
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201802061
– ident: e_1_2_6_16_2
  doi: 10.1002/anie.201411246
– ident: e_1_2_6_40_1
  doi: 10.1039/C8NR06797J
– ident: e_1_2_6_39_1
  doi: 10.1021/nn501226z
– ident: e_1_2_6_23_1
  doi: 10.1016/j.biomaterials.2017.06.033
– ident: e_1_2_6_30_1
  doi: 10.1002/adma.201103289
– ident: e_1_2_6_51_1
  doi: 10.1021/acsnano.6b05427
– ident: e_1_2_6_6_1
  doi: 10.1039/C8CS00823J
– ident: e_1_2_6_44_1
  doi: 10.1007/s00604-018-2815-5
SSID ssj0017734
Score 2.5790095
Snippet 2D monoelemental nanomaterials (Xenes) have shown tremendous potential for versatile biomedical applications. Bismuth, as a heavy element in pnictogens, has...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Attenuation
Biocompatibility
Biomedical engineering
Biomedical materials
Bismuth
bismuthene
Cancer
Computed tomography
Freezing
Heavy elements
Hyperthermia
Materials science
Nanomaterials
Photodynamic therapy
photonic nanomedicine
Photonics
reactive oxygen species
thermal ablation
Water chemistry
Xenes
Title Engineering 2D Multifunctional Ultrathin Bismuthene for Multiple Photonic Nanomedicine
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202005093
https://www.proquest.com/docview/2485438051
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD6EUP_hanc-QgeOq2pkl_HKdzDHEi6mS3kqQpG85uuO7iX29e-mOdIIIeW5LS5sd73ybvfYLQZRzEDnO92II8RosKL9B2UP-4UinahFMnEgbHMHhw-0N6N2KjShZ_xocoF9xgZhh7DROci0VrBQ3lUQyZ5MQQTAD3CQFboIqeSn6U7XnZtrJrQ4CXPSqojW3SWq--7pVWUrMqWI3H6e0hXrxrFmjy1lymoik_v2Ec__Mx-2g3l6O4k42fA7ShkkO0U4EUHqHXyhUmXWxSdsEdZquIeDgFwO14kuDryeIdAuYThbUUzgrOpwo_jmcpEHixNuWzYjP_GA17ty83fSs_jcGSWmM4Fo8CQYNYOj4P_LYjfSq48GXkSkcwyn0umLK9iIGdkEEQC9uTXHs7j9sRcTlzTtBmMkvUKcJatXGmbyq37VCX-4Lr0aIkcyWlXMqohqyiN0KZo8rhxIxpmEGWSQjtFZbtVUNXZfl5Bun4sWS96Nwwn6yLEKhuAN5ndg0R00u_PCXsdHuD8ursL5XO0TaB6BgT_11Hm-nHUl1oeZOKBtrqdAf3zw0zlL8A3lHzYQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIBPUAZg4I0oTw9ITClNbOcxAqUqjyKEWtQtsp1ErShpRduFX4_PadIWCSHB6MiOEj_uzue7zwDnSZBQ7nqJhXmMFpNeoOWg3rgyJauOYDSSBsfQfHIbbXbf4Xk0IebCZHyIwuGGK8PIa1zg6JC-nFFDRZRgKrljECZ0GVbwWm-zq3opCFK252UHy66NIV52J-c2Vp3LxfaLemlmbM6brEbn1DdB5l-bhZq8VSZjWVGf30CO__qdLdiYWqTkKptC27AUpzuwPscp3IXXuRJxasRk7aJGzByJpN1Hxm23l5Lr3ugdY-bTmGhrOKs47MfkuTsYI4SXaGk-yM_z96Bdv23dNKzphQyW0mYGtUQUSBYkivoi8KtU-UwK6avIVVRyJnwheWx7EUdRoYIgkbanhFZ4nrAjxxWc7kMpHaTxARBtuAmuH8ZulTJX-FLoCRMr7irGhFJRGax8OEI1pZXjpRn9MOMsOyH2V1j0VxkuivrDjNPxY83jfHTD6XodhQh2Q_Y-t8vgmGH65S3hVa3eLEqHf2l0BquNVvMxfLx7ejiCNQeDZUw4-DGUxh-T-ERbO2N5aubzF2zz9eg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NT8IwFMBfFBOjB7-NKGoPJp4G2_qx7YgiwQ8IMWK4LW23BSIOIuPiX2-7sQEmxkSPXdpma1_fe2vf-xXgKvIiTJkTGTqP0SDC8ZQeVD-uRArT5gQHIsUxtDus1SMPfdpfyuLP-BDFhpteGam-1gt8EkS1BTSUB5HOJLdTgglehw3CTFfLdeO5AEhZjpOdKzNLR3hZ_RzbaNq11farZmnhay57rKnJae4Cz182izR5q84SUZWf3ziO__maPdiZ-6OongnQPqyF8QFsL1EKD-F1qYTsBkpzdrU9zLYRUW-kCbeDYYxuhtN3HTEfh0j5wlnFyShE3cE40QhepHT5OD_NP4Je8-7ltmXMr2MwpHIysMEDTxAvktjlnmti6RLBhSsDJrGghLtc0NByAqoVhfS8SFiO5MrcOdwKbMYpPoZSPI7DE0DKbeNUPQyZiQnjruBKXEJJmSSESxmUwchnw5dzVrm-MmPkZ5Rl29fj5RfjVYbrov4ko3T8WLOST64_X61TX2PdNHmfWmWw01n6pRe_3mi2i9LpXxpdwma30fSf7juPZ7Bl60iZNBa8AqXkYxaeK1cnERepNH8BqU30oA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+2D+Multifunctional+Ultrathin+Bismuthene+for+Multiple+Photonic+Nanomedicine&rft.jtitle=Advanced+functional+materials&rft.au=Wang%2C+Yuemei&rft.au=Feng%2C+Wei&rft.au=Chang%2C+Meiqi&rft.au=Yang%2C+Jiacai&rft.date=2021-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=6&rft_id=info:doi/10.1002%2Fadfm.202005093&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202005093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon