Superhydrophilic All‐pH‐Adaptable Redox Conjugated Porous Polymers as Universal and Ultrarobust Ion Hosts for Diverse Energy Storage with Chemical Self‐Chargeability

Herein, a new fibrous conjugated microporous polymer bearing phenazine species (PNZ‐CMP) is reported as a universal and ultrastable electrode to host various mono‐ and multi‐valent charge carriers for diverse aqueous rechargeable cells combining rapid kinetics, ultralong lifespan, and chemical recha...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 24
Main Authors Zhong, Linfeng, Li, Jing, Liu, Cong, Fang, Long, Yuan, Zhongke, Yu, Dingshan, Chen, Xudong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, a new fibrous conjugated microporous polymer bearing phenazine species (PNZ‐CMP) is reported as a universal and ultrastable electrode to host various mono‐ and multi‐valent charge carriers for diverse aqueous rechargeable cells combining rapid kinetics, ultralong lifespan, and chemical rechargeability. The porous cross‐linked structure, interconnected donor‐acceptor network, and readily accessible active sites endow PNZ‐CMP with highly‐reversible redox activity, superhydrophilicity, facile electron transport, high ion diffusion coefficient, and all‐pH‐adaptability (−1 to 15) in aqueous electrolytes. Thus, adopting PNZ‐CMP electrodes enables good compatibility with H+/Li+/Na+/K+/Zn2+/Al3+ ions and fast surface‐controlled redox reactions for diverse aqueous battery chemistry. Multiple PNZ‐CMP‐based full cells show superior electrochemical performance especially ultralong lifespan, e.g., ≈84% capacity retention over 200 days for K+, ≈100% over 127 days for Zn2+, and ≈76% over 47 days for anion‐coordinated Al ions, surpassing small molecule counterparts and most previously‐reported corresponding systems. The spontaneous redox chemistry of reduced phenazine species with O2 is first explored to render PNZ‐CMP with repeatable chemical self‐chargeability in four electrolytes. Especially in 0.05 m H2SO4, an accumulative discharge capacity up to 48505 mAh g−1 is achieved via facile self‐charging, which can originate from the “reactive antiaromaticity to stable aromaticity” conversion of the redox moieties as revealed by theoretical studies. A new class of fibrous conjugated microporous polymers bearing rich redox phenazine units is exploited for the first time as a universal and ultrarobust electrode capable of hosting various mono‐ and multi‐valent charge carriers for diverse aqueous rechargeable cells with fast kinetics, ultralong cyclability, and chemical self‐chargeability.
AbstractList Abstract Herein, a new fibrous conjugated microporous polymer bearing phenazine species (PNZ‐CMP) is reported as a universal and ultrastable electrode to host various mono‐ and multi‐valent charge carriers for diverse aqueous rechargeable cells combining rapid kinetics, ultralong lifespan, and chemical rechargeability. The porous cross‐linked structure, interconnected donor‐acceptor network, and readily accessible active sites endow PNZ‐CMP with highly‐reversible redox activity, superhydrophilicity, facile electron transport, high ion diffusion coefficient, and all‐pH‐adaptability (−1 to 15) in aqueous electrolytes. Thus, adopting PNZ‐CMP electrodes enables good compatibility with H + /Li + /Na + /K + /Zn 2+ /Al 3+ ions and fast surface‐controlled redox reactions for diverse aqueous battery chemistry. Multiple PNZ‐CMP‐based full cells show superior electrochemical performance especially ultralong lifespan, e.g., ≈84% capacity retention over 200 days for K + , ≈100% over 127 days for Zn 2+ , and ≈76% over 47 days for anion‐coordinated Al ions, surpassing small molecule counterparts and most previously‐reported corresponding systems. The spontaneous redox chemistry of reduced phenazine species with O 2 is first explored to render PNZ‐CMP with repeatable chemical self‐chargeability in four electrolytes. Especially in 0.05  m H 2 SO 4 , an accumulative discharge capacity up to 48505 mAh g −1 is achieved via facile self‐charging, which can originate from the “reactive antiaromaticity to stable aromaticity” conversion of the redox moieties as revealed by theoretical studies.
Herein, a new fibrous conjugated microporous polymer bearing phenazine species (PNZ‐CMP) is reported as a universal and ultrastable electrode to host various mono‐ and multi‐valent charge carriers for diverse aqueous rechargeable cells combining rapid kinetics, ultralong lifespan, and chemical rechargeability. The porous cross‐linked structure, interconnected donor‐acceptor network, and readily accessible active sites endow PNZ‐CMP with highly‐reversible redox activity, superhydrophilicity, facile electron transport, high ion diffusion coefficient, and all‐pH‐adaptability (−1 to 15) in aqueous electrolytes. Thus, adopting PNZ‐CMP electrodes enables good compatibility with H+/Li+/Na+/K+/Zn2+/Al3+ ions and fast surface‐controlled redox reactions for diverse aqueous battery chemistry. Multiple PNZ‐CMP‐based full cells show superior electrochemical performance especially ultralong lifespan, e.g., ≈84% capacity retention over 200 days for K+, ≈100% over 127 days for Zn2+, and ≈76% over 47 days for anion‐coordinated Al ions, surpassing small molecule counterparts and most previously‐reported corresponding systems. The spontaneous redox chemistry of reduced phenazine species with O2 is first explored to render PNZ‐CMP with repeatable chemical self‐chargeability in four electrolytes. Especially in 0.05 m H2SO4, an accumulative discharge capacity up to 48505 mAh g−1 is achieved via facile self‐charging, which can originate from the “reactive antiaromaticity to stable aromaticity” conversion of the redox moieties as revealed by theoretical studies. A new class of fibrous conjugated microporous polymers bearing rich redox phenazine units is exploited for the first time as a universal and ultrarobust electrode capable of hosting various mono‐ and multi‐valent charge carriers for diverse aqueous rechargeable cells with fast kinetics, ultralong cyclability, and chemical self‐chargeability.
Herein, a new fibrous conjugated microporous polymer bearing phenazine species (PNZ‐CMP) is reported as a universal and ultrastable electrode to host various mono‐ and multi‐valent charge carriers for diverse aqueous rechargeable cells combining rapid kinetics, ultralong lifespan, and chemical rechargeability. The porous cross‐linked structure, interconnected donor‐acceptor network, and readily accessible active sites endow PNZ‐CMP with highly‐reversible redox activity, superhydrophilicity, facile electron transport, high ion diffusion coefficient, and all‐pH‐adaptability (−1 to 15) in aqueous electrolytes. Thus, adopting PNZ‐CMP electrodes enables good compatibility with H+/Li+/Na+/K+/Zn2+/Al3+ ions and fast surface‐controlled redox reactions for diverse aqueous battery chemistry. Multiple PNZ‐CMP‐based full cells show superior electrochemical performance especially ultralong lifespan, e.g., ≈84% capacity retention over 200 days for K+, ≈100% over 127 days for Zn2+, and ≈76% over 47 days for anion‐coordinated Al ions, surpassing small molecule counterparts and most previously‐reported corresponding systems. The spontaneous redox chemistry of reduced phenazine species with O2 is first explored to render PNZ‐CMP with repeatable chemical self‐chargeability in four electrolytes. Especially in 0.05 m H2SO4, an accumulative discharge capacity up to 48505 mAh g−1 is achieved via facile self‐charging, which can originate from the “reactive antiaromaticity to stable aromaticity” conversion of the redox moieties as revealed by theoretical studies.
Author Yuan, Zhongke
Zhong, Linfeng
Fang, Long
Li, Jing
Yu, Dingshan
Liu, Cong
Chen, Xudong
Author_xml – sequence: 1
  givenname: Linfeng
  surname: Zhong
  fullname: Zhong, Linfeng
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Jing
  surname: Li
  fullname: Li, Jing
  organization: Avenida da Universidade
– sequence: 3
  givenname: Cong
  surname: Liu
  fullname: Liu, Cong
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Long
  surname: Fang
  fullname: Fang, Long
  organization: Sun Yat‐sen University
– sequence: 5
  givenname: Zhongke
  surname: Yuan
  fullname: Yuan, Zhongke
  organization: Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory
– sequence: 6
  givenname: Dingshan
  orcidid: 0000-0002-2913-2432
  surname: Yu
  fullname: Yu, Dingshan
  email: yudings@mail.sysu.edu.cn
  organization: Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory
– sequence: 7
  givenname: Xudong
  surname: Chen
  fullname: Chen, Xudong
  email: chenxd@gdut.edu.cn
  organization: Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory
BookMark eNqFUcFO4zAUtBArLWW57tnSnltsJ2mSY5W2WyRWiyiVuEV2_NykcuOs7cDmxifwH_zVfsm6FMER6em9OczMG2lG6LQ1LSD0nZIJJYRdcqn2E0YYowmNohN0Rqd0Oo4Iy07fMb3_ikbO7QihaRrFZ-hl3Xdg60Fa09WNbio80_rf03O3Cmsmeee50IBvQZq_uDDtrt9yDxLfGGt6F44e9mAd5g5v2uYhQK4xbyXeaG-5NaJ3Hl-ZFq-M8w4rY_H8lQZ40YLdDnjtjeVbwI-Nr3FRw76pgsUatAoJiprbLXARkvnhG_qiuHZw8XbP0Wa5uCtW4-vfP6-K2fW4imgajVPChFIZk7lK8jwMiLwStIqVAiJTxTIWs5QDz4WMGc2yRKgkYcm0yggXkYrO0Y-jb2fNnx6cL3emt214WR60SZZmMQmsyZFVWeOcBVV2ttlzO5SUlIdCykMh5XshQZAfBY-NhuETdjmbL399aP8DwpiX4g
CitedBy_id crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1002_ange_202401957
crossref_primary_10_1002_celc_202300737
crossref_primary_10_1002_anie_202401957
crossref_primary_10_1002_adma_202314050
crossref_primary_10_1016_j_polymer_2024_127244
Cites_doi 10.1002/jcc.22885
10.1016/j.esci.2021.10.004
10.1016/j.ensm.2018.06.005
10.1021/acsaem.9b00443
10.1021/ac60312a002
10.1016/0013-4686(95)00363-0
10.1039/D0TA08600B
10.1021/acs.chemrev.9b00482
10.1002/adfm.202105027
10.1021/ol0529546
10.1016/j.electacta.2009.11.096
10.1002/aenm.202203253
10.1002/adma.202105611
10.1002/smll.201805061
10.1039/C4CC01002G
10.1002/cssc.201903083
10.1038/s41467-021-22288-9
10.1038/s41598-017-16711-9
10.1039/C9CS00349E
10.1038/nmat4919
10.1016/j.jpowsour.2020.228814
10.1016/j.esci.2021.08.002
10.1039/D0EE02111C
10.1016/j.esci.2021.12.002
10.1002/(SICI)1521-3935(19980501)199:5<795::AID-MACP795>3.0.CO;2-8
10.1021/jp970490q
10.1016/j.apenergy.2021.116777
10.1016/j.eurpolymj.2009.12.007
10.1002/adfm.202010445
10.1039/D1CC02024B
10.1021/cr030088
10.1021/jacs.1c06936
10.1002/anie.202208513
10.1021/acsnano.2c05090
10.1021/acs.chemrev.9b00399
10.1002/adfm.202007942
10.1039/D1CP02805G
10.1007/BF01341953
10.1149/1.1838571
10.1016/j.nanoen.2021.105958
10.1016/j.carbon.2021.09.019
10.1039/C8EE00378E
10.1039/D0TA09404H
10.1016/j.mattod.2022.04.010
10.1002/adfm.202000516
10.1002/adfm.202102063
10.1016/j.micromeso.2022.112030
10.1039/C7GC00849J
10.1016/j.jechem.2021.06.034
10.1039/D0EE01723J
10.1021/ja01146a537
10.1038/s41467-020-16039-5
10.1002/anie.201002439
10.1016/j.jpowsour.2020.228904
10.1016/j.chempr.2019.06.001
10.1039/D2TA00546H
10.1016/j.elspec.2004.09.027
10.1016/j.electacta.2013.10.133
10.1016/j.egyr.2020.08.001
10.1038/s41467-021-24701-9
10.1002/smll.202100955
10.1021/cr0300901
10.1366/000370270774371642
10.1002/anie.202115046
10.1126/sciadv.abm3381
10.1021/acs.jpcc.9b06302
10.1016/j.chempr.2018.09.005
10.1021/jacs.9b12436
10.1126/sciadv.aba4098
10.1039/D0TA11648C
10.1039/c3cs60160a
10.1002/advs.201802130
10.1007/s12274-020-2674-3
10.1016/j.jpowsour.2020.228401
10.1002/aenm.202201074
10.1016/S0166-1280(00)00477-2
10.1021/cr010423z
10.1021/jacs.2c01485
10.1016/j.jpowsour.2020.227868
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202215133
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202215133
ADFM202215133
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 52273222
– fundername: FDCT Funding Scheme for Postdoctoral Researchers
  funderid: 0026/APD/2021
– fundername: Guangdong Basic and Applied Basic Research Funding‐Regional Joint Fund
  funderid: 2020A515111095
– fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2020B1515420001
– fundername: Natural Science Foundation of Guangdong Province
  funderid: 2023B1515040027
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AASGY
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3173-702bff82d9f599599eb9cb1c4ffe0d7f282427aea9bd421885bf55256c80ab3f3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Sep 13 06:10:56 EDT 2024
Fri Aug 23 03:03:49 EDT 2024
Sat Aug 24 00:53:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3173-702bff82d9f599599eb9cb1c4ffe0d7f282427aea9bd421885bf55256c80ab3f3
ORCID 0000-0002-2913-2432
PQID 2824587840
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2824587840
crossref_primary_10_1002_adfm_202215133
wiley_primary_10_1002_adfm_202215133_ADFM202215133
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2020; 8 468
1997 1998; 101 145
2022 2014 2021; 16 50 9
2019; 6
2017 2021 2019; 16 9 2
2020 2020 2021; 6 30 17
2002 2010 2014; 102 46 122
2005 2006; 105 8
2005 2019; 142 16
2022 2021 2021 2022; 144 143 31 61
2017 2020; 19 13
1931 1951; 72 73
2020; 11
2020 2022 2022; 49 34 61
2021 2018 2020; 482 4 120
2022 2022; 340 8
2021 2012; 23 33
2021 2022 2021; 1 13 31
2020 2010; 453 49
2020 2013; 120 42
2021; 12
1996 2021 2021; 41 57 31
1972 1970 1998; 44 24 199
2020 2021; 13 12
2005; 105
2021 2022 2021; 185 10 290
2021 2019; 63 5
2020 2021 2021 2022; 6 1 1 12
2022; 55
2020 2021 2019; 13 31 15
2021 2017 2010 2020; 482 7 55 13
2021; 85
2018 2020; 11 142
2019 2000; 123 527
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_28_1
e_1_2_7_9_3
e_1_2_7_25_3
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_21_4
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_21_3
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_27_3
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_22_3
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_20_1
References_xml – volume: 12
  start-page: 4424
  year: 2021
  publication-title: Nat. Commun.
– volume: 23 33
  start-page: 580
  year: 2021 2012
  publication-title: Phys. Chem. Chem. Phys. J. Comput. Chem.
– volume: 63 5
  start-page: 320 2159
  year: 2021 2019
  publication-title: J. Energy Chem. Chem
– volume: 105
  start-page: 3758
  year: 2005
  publication-title: Chem. Rev.
– volume: 144 143 31 61
  year: 2022 2021 2021 2022
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 482 4 120
  start-page: 2786 6490
  year: 2021 2018 2020
  publication-title: J. Power Sources Chem Chem. Rev.
– volume: 453 49
  start-page: 8444
  year: 2020 2010
  publication-title: J. Power Sources Angew. Chem., Int. Ed.
– volume: 101 145
  start-page: 7717 1882
  year: 1997 1998
  publication-title: J. Phys. Chem. B J. Electrochem. Soc.
– volume: 340 8
  year: 2022 2022
  publication-title: Microporous Mesoporous Mater. Sci. Adv.
– volume: 85
  year: 2021
  publication-title: Nano Energy
– volume: 16 9 2
  start-page: 841 505 3035
  year: 2017 2021 2019
  publication-title: Nat. Mater. J. Mater. Chem. A ACS Appl. Energy Mater.
– volume: 11 142
  start-page: 881 2541
  year: 2018 2020
  publication-title: Energy Environ. Sci. J. Am. Chem. Soc.
– volume: 6 30 17
  start-page: 2094
  year: 2020 2020 2021
  publication-title: Energy Rep. Adv. Funct. Mater. Small
– volume: 123 527
  start-page: 51
  year: 2019 2000
  publication-title: J. Phys. Chem. C J. Mol. Struct.: THEOCHEM
– volume: 1 13 31
  start-page: 60
  year: 2021 2022 2021
  publication-title: eScience Adv. Energy Mater. Adv. Funct. Mater.
– volume: 13 12
  start-page: 676 1982
  year: 2020 2021
  publication-title: Nano Res. Nat. Commun.
– volume: 72 73
  start-page: 310 876
  year: 1931 1951
  publication-title: Z. Phys. J. Am. Chem. Soc.
– volume: 55
  start-page: 29
  year: 2022
  publication-title: Mater. Today
– volume: 6 1 1 12
  start-page: 99 212
  year: 2020 2021 2021 2022
  publication-title: Sci. Adv. eScience eScience Adv. Energy Mater.
– volume: 49 34 61
  start-page: 4203
  year: 2020 2022 2022
  publication-title: Chem. Soc. Rev. Adv. Mater. Angew. Chem., Int. Ed.
– volume: 185 10 290
  start-page: 1
  year: 2021 2022 2021
  publication-title: Carbon J. Mater. Chem. A Appl. Energy
– volume: 44 24 199
  start-page: 715 339 795
  year: 1972 1970 1998
  publication-title: Anal. Chem. Appl. Spectrosc. Macromol. Chem. Phys.
– volume: 482 7 55 13
  start-page: 2384 2515
  year: 2021 2017 2010 2020
  publication-title: J. Power Sources Sci. Rep. Electrochim. Acta Energy Environ. Sci.
– volume: 19 13
  start-page: 2980 2239
  year: 2017 2020
  publication-title: Green Chem. ChemSusChem
– volume: 105 8
  start-page: 3842 863
  year: 2005 2006
  publication-title: Chem. Rev. Org. Lett.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 8 468
  year: 2020 2020
  publication-title: J. Mater. Chem. A J. Power Sources
– volume: 102 46 122
  start-page: 2925 484 28
  year: 2002 2010 2014
  publication-title: Chem. Rev. Eur. Polym. J. Electrochim. Acta
– volume: 120 42
  start-page: 2171 8012
  year: 2020 2013
  publication-title: Chem. Rev. Chem. Soc. Rev.
– volume: 41 57 31
  start-page: 747 6931
  year: 1996 2021 2021
  publication-title: Electrochim. Acta Chem. Commun. Adv. Funct. Mater.
– volume: 16 50 9
  start-page: 4788 2700
  year: 2022 2014 2021
  publication-title: ACS Nano Chem. Commun. J. Mater. Chem. A
– volume: 11
  start-page: 2199
  year: 2020
  publication-title: Nat. Commun.
– volume: 142 16
  start-page: 163 236
  year: 2005 2019
  publication-title: J. Electron Spectrosc. Relat. Phenom. Energy Storage Mater.
– volume: 13 31 15
  start-page: 3950
  year: 2020 2021 2019
  publication-title: Energy Environ. Sci. Adv. Funct. Mater. Small
– ident: e_1_2_7_31_2
  doi: 10.1002/jcc.22885
– ident: e_1_2_7_1_2
  doi: 10.1016/j.esci.2021.10.004
– ident: e_1_2_7_30_2
  doi: 10.1016/j.ensm.2018.06.005
– ident: e_1_2_7_6_3
  doi: 10.1021/acsaem.9b00443
– ident: e_1_2_7_27_1
  doi: 10.1021/ac60312a002
– ident: e_1_2_7_26_1
  doi: 10.1016/0013-4686(95)00363-0
– ident: e_1_2_7_11_1
  doi: 10.1039/D0TA08600B
– ident: e_1_2_7_4_3
  doi: 10.1021/acs.chemrev.9b00482
– ident: e_1_2_7_9_3
  doi: 10.1002/adfm.202105027
– ident: e_1_2_7_33_2
  doi: 10.1021/ol0529546
– ident: e_1_2_7_21_3
  doi: 10.1016/j.electacta.2009.11.096
– ident: e_1_2_7_9_2
  doi: 10.1002/aenm.202203253
– ident: e_1_2_7_2_2
  doi: 10.1002/adma.202105611
– ident: e_1_2_7_3_3
  doi: 10.1002/smll.201805061
– ident: e_1_2_7_8_2
  doi: 10.1039/C4CC01002G
– ident: e_1_2_7_17_2
  doi: 10.1002/cssc.201903083
– ident: e_1_2_7_19_2
  doi: 10.1038/s41467-021-22288-9
– ident: e_1_2_7_21_2
  doi: 10.1038/s41598-017-16711-9
– ident: e_1_2_7_2_1
  doi: 10.1039/C9CS00349E
– ident: e_1_2_7_6_1
  doi: 10.1038/nmat4919
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jpowsour.2020.228814
– ident: e_1_2_7_9_1
  doi: 10.1016/j.esci.2021.08.002
– ident: e_1_2_7_3_1
  doi: 10.1039/D0EE02111C
– ident: e_1_2_7_1_3
  doi: 10.1016/j.esci.2021.12.002
– ident: e_1_2_7_27_3
  doi: 10.1002/(SICI)1521-3935(19980501)199:5<795::AID-MACP795>3.0.CO;2-8
– ident: e_1_2_7_20_1
  doi: 10.1021/jp970490q
– ident: e_1_2_7_22_3
  doi: 10.1016/j.apenergy.2021.116777
– ident: e_1_2_7_25_2
  doi: 10.1016/j.eurpolymj.2009.12.007
– ident: e_1_2_7_3_2
  doi: 10.1002/adfm.202010445
– ident: e_1_2_7_26_2
  doi: 10.1039/D1CC02024B
– ident: e_1_2_7_33_1
  doi: 10.1021/cr030088
– ident: e_1_2_7_10_2
  doi: 10.1021/jacs.1c06936
– ident: e_1_2_7_10_4
  doi: 10.1002/anie.202208513
– ident: e_1_2_7_8_1
  doi: 10.1021/acsnano.2c05090
– ident: e_1_2_7_7_1
  doi: 10.1021/acs.chemrev.9b00399
– ident: e_1_2_7_10_3
  doi: 10.1002/adfm.202007942
– ident: e_1_2_7_31_1
  doi: 10.1039/D1CP02805G
– ident: e_1_2_7_29_1
  doi: 10.1007/BF01341953
– ident: e_1_2_7_20_2
  doi: 10.1149/1.1838571
– ident: e_1_2_7_5_1
  doi: 10.1016/j.nanoen.2021.105958
– ident: e_1_2_7_22_1
  doi: 10.1016/j.carbon.2021.09.019
– ident: e_1_2_7_23_1
  doi: 10.1039/C8EE00378E
– ident: e_1_2_7_6_2
  doi: 10.1039/D0TA09404H
– ident: e_1_2_7_12_1
  doi: 10.1016/j.mattod.2022.04.010
– ident: e_1_2_7_14_2
  doi: 10.1002/adfm.202000516
– ident: e_1_2_7_26_3
  doi: 10.1002/adfm.202102063
– ident: e_1_2_7_16_1
  doi: 10.1016/j.micromeso.2022.112030
– ident: e_1_2_7_17_1
  doi: 10.1039/C7GC00849J
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jechem.2021.06.034
– ident: e_1_2_7_21_4
  doi: 10.1039/D0EE01723J
– ident: e_1_2_7_29_2
  doi: 10.1021/ja01146a537
– ident: e_1_2_7_28_1
  doi: 10.1038/s41467-020-16039-5
– ident: e_1_2_7_15_2
  doi: 10.1002/anie.201002439
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jpowsour.2020.228904
– ident: e_1_2_7_24_2
  doi: 10.1016/j.chempr.2019.06.001
– ident: e_1_2_7_22_2
  doi: 10.1039/D2TA00546H
– ident: e_1_2_7_30_1
  doi: 10.1016/j.elspec.2004.09.027
– ident: e_1_2_7_25_3
  doi: 10.1016/j.electacta.2013.10.133
– ident: e_1_2_7_14_1
  doi: 10.1016/j.egyr.2020.08.001
– ident: e_1_2_7_13_1
  doi: 10.1038/s41467-021-24701-9
– ident: e_1_2_7_14_3
  doi: 10.1002/smll.202100955
– ident: e_1_2_7_32_1
  doi: 10.1021/cr0300901
– ident: e_1_2_7_27_2
  doi: 10.1366/000370270774371642
– ident: e_1_2_7_2_3
  doi: 10.1002/anie.202115046
– ident: e_1_2_7_16_2
  doi: 10.1126/sciadv.abm3381
– ident: e_1_2_7_34_1
  doi: 10.1021/acs.jpcc.9b06302
– ident: e_1_2_7_4_2
  doi: 10.1016/j.chempr.2018.09.005
– ident: e_1_2_7_23_2
  doi: 10.1021/jacs.9b12436
– ident: e_1_2_7_1_1
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_7_8_3
  doi: 10.1039/D0TA11648C
– ident: e_1_2_7_7_2
  doi: 10.1039/c3cs60160a
– ident: e_1_2_7_18_1
  doi: 10.1002/advs.201802130
– ident: e_1_2_7_19_1
  doi: 10.1007/s12274-020-2674-3
– ident: e_1_2_7_11_2
  doi: 10.1016/j.jpowsour.2020.228401
– ident: e_1_2_7_1_4
  doi: 10.1002/aenm.202201074
– ident: e_1_2_7_34_2
  doi: 10.1016/S0166-1280(00)00477-2
– ident: e_1_2_7_25_1
  doi: 10.1021/cr010423z
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.2c01485
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jpowsour.2020.227868
SSID ssj0017734
Score 2.492607
Snippet Herein, a new fibrous conjugated microporous polymer bearing phenazine species (PNZ‐CMP) is reported as a universal and ultrastable electrode to host various...
Abstract Herein, a new fibrous conjugated microporous polymer bearing phenazine species (PNZ‐CMP) is reported as a universal and ultrastable electrode to host...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Aluminum
Aqueous electrolytes
aqueous rechargeable batteries
Aromaticity
chemical charging
conjugated microporous polymers
Current carriers
Diffusion coefficient
Electrochemical analysis
Electrodes
Electrolytes
Electrolytic cells
Electron transport
Energy storage
Hydrophilicity
Ion diffusion
Life span
Materials science
organic electrodes
Oxidation
polymer electrodes
Redox reactions
Sulfuric acid
Title Superhydrophilic All‐pH‐Adaptable Redox Conjugated Porous Polymers as Universal and Ultrarobust Ion Hosts for Diverse Energy Storage with Chemical Self‐Chargeability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202215133
https://www.proquest.com/docview/2824587840/abstract/
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbptAEF5FOTWHNm1S1fmp5lApJxJYWANHK4nlVkpVxbHkG9rfRClikQGp7imPkPfoW_VJsgPGcXqp1F5ASCwMu7PMN7Mz3xLyKeJ-Kp0p89KEKc-ZAO1xE2lPOvQRGJYGsl3Bv_o6nMyiL3M236ji7_gh1gE3nBnt_xonOBfV2TNpKFcGK8kp2qwQ6T6RTQ9R0fWaPyqI425ZeRhgglcw71kbfXr2svlLq_QMNTcBa2txxm8I72XtEk2-nza1OJU__6Bx_J-P2SWvV3AURp3-vCVbunhHdjZICvfIr2lT6sXdUi1sidEXCaM8__3wWE7cYaR4WWP1FVxrZX_AuS3uG4zMKfhmF7ap3ClfYmwceAWrLBD3Ql4omOVY8m9FU9Xw2RYwsVVdgQPRcNHepuGyLUyEae309FYDxoyhZziAqc6NkwDzBW51xza-3Cez8eXN-cRbbfHgSQdcQi_2qTAmoSo1LfNZqkUqRSAjY7SvYuMcwojGXPNUqMihkYQJw5iDaTLxuQhN-J5sF7bQHwhok2jO6JAGPIqcUyV4yBRiHGmMGOp4QE76Ic7Kjskj6zibaYbdn627f0COeg3IVjO6ylASlsTOHx4Q2g7lX56SjS7GV-urg39pdEhe4e72XWbaEdmuF40-dhioFh9bPX8CrOMEfQ
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagHKAH_hELBeaAxClt_rxJjqu2qxS6Fep2pd4i_7aCKI42idTlxCPwHrwVT4LH2WxbLkhwSRQpThx7JvPNeOYzIe9j5mfCmjIvS6n0rAlQHtOx8oRFH4GmWSDcCv7sZJwv4o_ndMgmxFqYnh9iE3BDzXD_a1RwDEjvXbOGMqmxlDxEoxVFd8k9q_PUeVWnGwapIEn6heVxgClewfnA2-iHe7fb37ZL12DzJmR1Nmf6iPCht32qydfdruW74tsfRI7_9TmPycM1IoVJL0JPyB1VPSXbN3gKn5Gf865Wy8uVXJoaAzACJmX56_uPOreHiWR1iwVYcKqkuYJ9U33pMDgn4bNZmq6xp3KF4XFgDawTQewLWSVhUWLVv-Fd08KRqSA3TduAxdFw4G5TcOhqE2HeWlG9UIBhYxhIDmCuSm17gCkDF6onHF89J4vp4dl-7q13efCExS6Rl_gh1zoNZaYd-VmmeCZ4IGKtlS8TbX3COEyYYhmXsQUkKeWaUovUROozHunoBdmqTKVeElA6VYyG4zBgcWz9Ks4iKhHmCK35WCUj8mGY46LuyTyKnrY5LHD4i83wj8jOIALFWqmbAntC08S6xCMSurn8y1OKycF0trl69S-N3pH7-dnsuDg-Ovn0mjzAze77RLUdstUuO_XGQqKWv3VC_xvyaQif
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagSAgO_BQQWwrMAamntIlj5-e46na1bWlVdVlpb5F_iyCKo00idTn1EfoevBVPgp1stlsuSHBJFClOJvY488145jNCnwjzU2FNmZcmVHrWBCiPaaI8YdFHoGkaiHYF_-w8mszIyZzON6r4O36IdcDNzYz2f-0meCn1wR1pKJPaVZJjZ7PC8CF6RKIQO70eXa4JpII47taVo8BleAXznrbRxwf32983S3dYcxOxtiZn_ByxXtgu0-T7flPzffHjDx7H__maF-jZCo_CsFOgl-iBKrbR0w2Wwlfo57Qp1eLrUi5M6cIvAoZ5_uvmtpzYw1CysnblV3CppLmGQ1N8a1xoTsKFWZimsqd86YLjwCpYpYHYF7JCwix3Nf-GN1UNx6aAianqCiyKhlF7m4KjtjIRprVV1CsFLmgMPcUBTFWurQQuYeBKdXTjy9doNj76cjjxVns8eMIil9CLfcy1TrBMdUt9liqeCh4IorXyZaytR0hwzBRLuSQWjiSUa0otThOJz3iowzdoqzCFeotA6UQxiiMcMEKsV8VZSKUDOUJrHql4gPb6Ic7Kjsoj60ibcea6P1t3_wDt9hqQraZ0lTlJaBJbh3iAcDuUf3lKNhyNz9ZXO__S6CN6fDEaZ5-Pz0_foSdup_suS20XbdWLRr23eKjmH1qV_w3e7wdO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Superhydrophilic+All%E2%80%90pH%E2%80%90Adaptable+Redox+Conjugated+Porous+Polymers+as+Universal+and+Ultrarobust+Ion+Hosts+for+Diverse+Energy+Storage+with+Chemical+Self%E2%80%90Chargeability&rft.jtitle=Advanced+functional+materials&rft.au=Zhong%2C+Linfeng&rft.au=Li%2C+Jing&rft.au=Liu%2C+Cong&rft.au=Fang%2C+Long&rft.date=2023-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=24&rft_id=info:doi/10.1002%2Fadfm.202215133&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202215133
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon