How Thin and Efficient Can a Metasurface Reflector Be? Universal Bounds on Reflection for Any Direction and Polarization
Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The...
Saved in:
Published in | Advanced optical materials Vol. 11; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The problem of optimal light‐matter interactions to maximize reflection is formulated as the solution of an optimization problem in terms of the induced currents, subject to energy conservation and passivity, which admits a global upper bound by using Lagrangian duality. The derived upper bounds apply to a broad range of planar structures, including metasurfaces, gratings, homogenized films, photonic crystal slabs, and more generally, any inhomogeneous planar structure irrespective of its geometrical details. These bounds also set the limit on the minimum possible thickness, for a given lossy material, to achieve a desired reflectance. Moreover, the results allow the discovery of parameter regions where large improvements in the efficiency of a reflective structure are possible compared to existing designs. Examples are given of the implications of these findings for the design of superior and compact reflective components made of real, imperfect (i.e., lossy) materials, such as ultra‐thin and efficient gratings, polarization converters, and light‐weight mirrors for solar/laser sails.
Light reflection plays a crucial role in a number of modern technologies. In this paper, universal bounds for maximal reflected power in any direction and for any polarization are derived for generic planar structures. Examples are given of the implications of these findings for the design of ultra‐thin and efficient reflective gratings, polarization converters, and light‐weight mirrors for solar/laser sails. |
---|---|
AbstractList | Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The problem of optimal light‐matter interactions to maximize reflection is formulated as the solution of an optimization problem in terms of the induced currents, subject to energy conservation and passivity, which admits a global upper bound by using Lagrangian duality. The derived upper bounds apply to a broad range of planar structures, including metasurfaces, gratings, homogenized films, photonic crystal slabs, and more generally, any inhomogeneous planar structure irrespective of its geometrical details. These bounds also set the limit on the minimum possible thickness, for a given lossy material, to achieve a desired reflectance. Moreover, the results allow the discovery of parameter regions where large improvements in the efficiency of a reflective structure are possible compared to existing designs. Examples are given of the implications of these findings for the design of superior and compact reflective components made of real, imperfect (i.e., lossy) materials, such as ultra‐thin and efficient gratings, polarization converters, and light‐weight mirrors for solar/laser sails. Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The problem of optimal light‐matter interactions to maximize reflection is formulated as the solution of an optimization problem in terms of the induced currents, subject to energy conservation and passivity, which admits a global upper bound by using Lagrangian duality. The derived upper bounds apply to a broad range of planar structures, including metasurfaces, gratings, homogenized films, photonic crystal slabs, and more generally, any inhomogeneous planar structure irrespective of its geometrical details. These bounds also set the limit on the minimum possible thickness, for a given lossy material, to achieve a desired reflectance. Moreover, the results allow the discovery of parameter regions where large improvements in the efficiency of a reflective structure are possible compared to existing designs. Examples are given of the implications of these findings for the design of superior and compact reflective components made of real, imperfect (i.e., lossy) materials, such as ultra‐thin and efficient gratings, polarization converters, and light‐weight mirrors for solar/laser sails. Light reflection plays a crucial role in a number of modern technologies. In this paper, universal bounds for maximal reflected power in any direction and for any polarization are derived for generic planar structures. Examples are given of the implications of these findings for the design of ultra‐thin and efficient reflective gratings, polarization converters, and light‐weight mirrors for solar/laser sails. Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The problem of optimal light‐matter interactions to maximize reflection is formulated as the solution of an optimization problem in terms of the induced currents, subject to energy conservation and passivity, which admits a global upper bound by using Lagrangian duality. The derived upper bounds apply to a broad range of planar structures, including metasurfaces, gratings, homogenized films, photonic crystal slabs, and more generally, any inhomogeneous planar structure irrespective of its geometrical details. These bounds also set the limit on the minimum possible thickness, for a given lossy material, to achieve a desired reflectance. Moreover, the results allow the discovery of parameter regions where large improvements in the efficiency of a reflective structure are possible compared to existing designs. Examples are given of the implications of these findings for the design of superior and compact reflective components made of real, imperfect (i.e., lossy) materials, such as ultra‐thin and efficient gratings, polarization converters, and light‐weight mirrors for solar/laser sails. |
Author | Abdelrahman, Mohamed Ismail Monticone, Francesco |
Author_xml | – sequence: 1 givenname: Mohamed Ismail orcidid: 0000-0003-4172-6927 surname: Abdelrahman fullname: Abdelrahman, Mohamed Ismail email: mia37@cornell.edu organization: Cornell University – sequence: 2 givenname: Francesco orcidid: 0000-0003-0457-1807 surname: Monticone fullname: Monticone, Francesco email: francesco.monticone@cornell.edu organization: Cornell University |
BookMark | eNqFkM1PAjEQxRuDiYhcPTfxvNh2t-zuyfClmEAwBs6bbncaS5YW20XEv95F8CMmxtPMvPzezOSdo4axBhC6pKRDCWHXorCrDiOMERon7AQ1GU15QElMGz_6M9T2fkkIqYcwjeImeh3bLZ4_aYOFKfBIKS01mAoPRK3gKVTCb5wSEvAjqBJkZR3uww1eGP0CzosS9-3GFB5b80noulU11jM7PNTuqOzXP9hSOP0m9sIFOlWi9NA-1hZa3I7mg3Ewmd3dD3qTQIY0ZoEikgFXBZdJnFOucl5ElIdcEYhyEVKI6iIEBcZFEeYFYzntRgkXYSw5Bxm20NVh79rZ5w34KlvajTP1yYzFcULDbkpJTUUHSjrrvQOVSV19_Fk5ocuMkmwfc7aPOfuKubZ1ftnWTq-E2_1tSA-GrS5h9w-d9Yaz6bf3HeRNktE |
CitedBy_id | crossref_primary_10_1126_science_ade3395 crossref_primary_10_1103_PhysRevApplied_22_044044 crossref_primary_10_1103_PhysRevB_108_014308 |
Cites_doi | 10.1103/PhysRevLett.124.033201 10.1103/PhysRevB.94.075142 10.1364/OE.21.013351 10.1134/S1063776118100114 10.1103/PhysRevB.86.115423 10.1021/acsphotonics.0c00327 10.1364/OE.462926 10.1021/acs.nanolett.7b03882 10.1017/CBO9780511804441 10.1364/OPTICA.398715 10.1098/rsta.1904.0024 10.1088/0034-4885/79/7/076401 10.1038/nnano.2015.2 10.1126/science.1096796 10.1364/OME.4.001717 10.1103/PhysRevLett.85.3966 10.1038/s41598-017-01939-2 10.1063/1.4901272 10.1103/PhysRevLett.110.203903 10.1364/OPTICA.417007 10.1038/srep43722 10.1002/adma.202103946 10.3390/photonics8030065 10.1103/PhysRevB.89.155118 10.1126/science.1058847 10.1073/pnas.1008296107 10.1017/CBO9781139644181 10.1126/science.1125907 10.1109/TAP.2012.2227656 10.1088/1367-2630/ab83d3 10.1109/TAP.2018.2816784 10.1103/PhysRevLett.125.263607 10.5772/6915 10.1103/PhysRevLett.119.067404 10.1038/nmat3839 10.1126/science.aat3100 10.1126/science.aaw6747 10.1103/PhysRevLett.108.097402 10.1515/nanoph-2018-0183 10.1103/PhysRevApplied.11.054077 10.1063/10.0010119 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202201782 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202201782 ADOM202201782 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: 1741694 – fundername: U.S. Air Force funderid: FA9550‐22‐1‐0204 |
GroupedDBID | 0R~ 1OC 33P 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR ZZTAW 31~ AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION EJD GODZA 7SP 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c3172-f0c2e5fd5c87b15fb5d41535f0e4ba31e44baaa1e25ad3bd22b16485a37c55ec3 |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 12:01:33 EDT 2025 Tue Jul 01 00:35:55 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Sun Jul 06 04:45:43 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3172-f0c2e5fd5c87b15fb5d41535f0e4ba31e44baaa1e25ad3bd22b16485a37c55ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0457-1807 0000-0003-4172-6927 |
PQID | 2778136910 |
PQPubID | 2034581 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2778136910 crossref_citationtrail_10_1002_adom_202201782 crossref_primary_10_1002_adom_202201782 wiley_primary_10_1002_adom_202201782_ADOM202201782 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2012; 61 2017; 119 2021; 8 2017; 7 2019; 9 2010; 107 2013; 21 2018; 127 2019; 11 2010 2000; 85 2015; 10 1999; 42 2016; 94 2004 2020; 124 1904; 203 2020; 125 2002 2018; 66 2004; 305 2019; 364 2014; 89 2012; 108 2016; 79 2006; 312 1999 2020; 7 2014; 105 2014; 4 2021; 33 2022 2001; 292 2017; 17 2021 2022; 5 2020; 27 2014; 13 2022; 30 2020; 22 2014 2013; 110 2012; 86 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Orfanidis S. J. (e_1_2_9_34_1) 2002 e_1_2_9_54_1 Rahmat‐Samii Y. (e_1_2_9_9_1) 1999; 42 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_37_1 e_1_2_9_18_1 Vulpetti G. (e_1_2_9_21_1) 2014 e_1_2_9_41_1 Shim H. (e_1_2_9_16_1) 2019; 9 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Budhu J. (e_1_2_9_30_1) 2021 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_13_1 e_1_2_9_32_1 Lesina A. C. (e_1_2_9_29_1) 2020; 27 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_42_1 e_1_2_9_40_1 Chao P. (e_1_2_9_19_1) 2022 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 |
References_xml | – volume: 79 year: 2016 publication-title: Rep. Prog. Phys. – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 105 year: 2014 publication-title: Appl. Phys. Lett. – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 203 start-page: 385 year: 1904 publication-title: Philosophical Transactions of the Royal Society of London. – volume: 17 start-page: 7102 year: 2017 publication-title: Nano Lett. – year: 2021 – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 11 year: 2019 publication-title: Phys. Rev. Appl. – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 364 year: 2019 publication-title: Science – year: 2014 – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 8 start-page: 65 year: 2021 publication-title: Photonics – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 139 year: 2014 publication-title: Nat. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – year: 2022 – year: 2004 – volume: 27 year: 2020 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 66 start-page: 3213 year: 2018 publication-title: IEEE Transactions on Antennas and Propagation – volume: 7 start-page: 1729 year: 2020 publication-title: ACS Photonics – volume: 305 start-page: 788 year: 2004 publication-title: Science – volume: 292 start-page: 77 year: 2001 publication-title: Science – volume: 22 year: 2020 publication-title: New J. Phys. – volume: 61 start-page: 1109 year: 2012 publication-title: IEEE Transactions on Antennas and Propagation – volume: 364 start-page: 1087 year: 2019 publication-title: Science – volume: 127 start-page: 608 year: 2018 publication-title: J. Exp. Theor. Phys. – volume: 4 start-page: 1717 year: 2014 publication-title: Opt. Mater. Express – volume: 42 start-page: 232 year: 1999 publication-title: Microwave Journal – volume: 9 year: 2019 publication-title: Phys. Rev. X – volume: 30 year: 2022 publication-title: Opt. Express – volume: 7 start-page: 1746 year: 2020 publication-title: Optica – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 85 start-page: 3966 year: 2000 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 722 year: 2021 publication-title: Optica – volume: 7 start-page: 1 year: 2017 publication-title: Sci. Rep. – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – year: 2010 – volume: 21 year: 2013 publication-title: Opt. Express – year: 2002 – volume: 10 start-page: 308 year: 2015 publication-title: Nat. Nanotechnol. – volume: 5 year: 2022 publication-title: Nanotechnology and Precision Engineering – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – start-page: 1 year: 2022 publication-title: Nat. Rev. Phys. – volume: 107 year: 2010 publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 339 year: 2019 publication-title: Nanophotonics – year: 1999 – ident: e_1_2_9_42_1 – ident: e_1_2_9_24_1 doi: 10.1103/PhysRevLett.124.033201 – ident: e_1_2_9_37_1 doi: 10.1103/PhysRevB.94.075142 – ident: e_1_2_9_48_1 – ident: e_1_2_9_10_1 doi: 10.1364/OE.21.013351 – volume-title: Proc. 15th European Conference on Antennas and Propagation (EuCAP) year: 2021 ident: e_1_2_9_30_1 – ident: e_1_2_9_46_1 doi: 10.1134/S1063776118100114 – ident: e_1_2_9_35_1 doi: 10.1103/PhysRevB.86.115423 – ident: e_1_2_9_13_1 doi: 10.1021/acsphotonics.0c00327 – ident: e_1_2_9_20_1 doi: 10.1364/OE.462926 – ident: e_1_2_9_23_1 doi: 10.1021/acs.nanolett.7b03882 – ident: e_1_2_9_32_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_9_17_1 doi: 10.1364/OPTICA.398715 – ident: e_1_2_9_43_1 doi: 10.1098/rsta.1904.0024 – ident: e_1_2_9_51_1 doi: 10.1088/0034-4885/79/7/076401 – ident: e_1_2_9_47_1 – ident: e_1_2_9_26_1 doi: 10.1038/nnano.2015.2 – ident: e_1_2_9_4_1 doi: 10.1126/science.1096796 – ident: e_1_2_9_25_1 doi: 10.1364/OME.4.001717 – ident: e_1_2_9_2_1 doi: 10.1103/PhysRevLett.85.3966 – ident: e_1_2_9_11_1 doi: 10.1038/s41598-017-01939-2 – ident: e_1_2_9_52_1 doi: 10.1063/1.4901272 – ident: e_1_2_9_41_1 – ident: e_1_2_9_49_1 – ident: e_1_2_9_53_1 doi: 10.1103/PhysRevLett.110.203903 – ident: e_1_2_9_22_1 doi: 10.1364/OPTICA.417007 – ident: e_1_2_9_54_1 doi: 10.1038/srep43722 – volume: 27 year: 2020 ident: e_1_2_9_29_1 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: e_1_2_9_18_1 doi: 10.1002/adma.202103946 – ident: e_1_2_9_28_1 doi: 10.3390/photonics8030065 – volume-title: Electromagnetic waves and antennas year: 2002 ident: e_1_2_9_34_1 – ident: e_1_2_9_44_1 doi: 10.1103/PhysRevB.89.155118 – ident: e_1_2_9_3_1 doi: 10.1126/science.1058847 – ident: e_1_2_9_1_1 doi: 10.1073/pnas.1008296107 – start-page: 1 year: 2022 ident: e_1_2_9_19_1 publication-title: Nat. Rev. Phys. – volume: 42 start-page: 232 year: 1999 ident: e_1_2_9_9_1 publication-title: Microwave Journal – ident: e_1_2_9_36_1 doi: 10.1017/CBO9781139644181 – ident: e_1_2_9_5_1 doi: 10.1126/science.1125907 – ident: e_1_2_9_14_1 doi: 10.1109/TAP.2012.2227656 – volume-title: Solar sails: a novel approach to interplanetary travel year: 2014 ident: e_1_2_9_21_1 – ident: e_1_2_9_15_1 doi: 10.1088/1367-2630/ab83d3 – ident: e_1_2_9_40_1 – ident: e_1_2_9_50_1 doi: 10.1109/TAP.2018.2816784 – ident: e_1_2_9_33_1 doi: 10.1103/PhysRevLett.125.263607 – volume: 9 year: 2019 ident: e_1_2_9_16_1 publication-title: Phys. Rev. X – ident: e_1_2_9_45_1 doi: 10.5772/6915 – ident: e_1_2_9_38_1 doi: 10.1103/PhysRevLett.119.067404 – ident: e_1_2_9_7_1 doi: 10.1038/nmat3839 – ident: e_1_2_9_8_1 doi: 10.1126/science.aat3100 – ident: e_1_2_9_27_1 doi: 10.1126/science.aaw6747 – ident: e_1_2_9_6_1 doi: 10.1103/PhysRevLett.108.097402 – ident: e_1_2_9_12_1 doi: 10.1515/nanoph-2018-0183 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRevApplied.11.054077 – ident: e_1_2_9_31_1 doi: 10.1063/10.0010119 |
SSID | ssj0001073947 |
Score | 2.3292916 |
Snippet | Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | fundamental limits gratings Light reflection light sails Materials science Mathematical analysis Metasurfaces Optics Optimization Photonic crystals Planar structures Polarization reflection Sails Upper bounds Weight reduction |
Title | How Thin and Efficient Can a Metasurface Reflector Be? Universal Bounds on Reflection for Any Direction and Polarization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202201782 https://www.proquest.com/docview/2778136910 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKFNyK0oD2AOEQGex-2OaGkDxVEAIlW6s3ap3oocUVSqfAb-NHMeh92RHn14kSb9VrO9-3szOzsDELPLCjdvGIiy01pM8a0zSToxVlNXotC5lRo22X7_FAeHrN3J_xkNPoxiFq6WMuX6vuV50qugyq0Aa7ulOx_IJsGhQb4DvjCFRCG6z9h7OrBucKb3Q7AfpcMwm3t78KcFdOFWTv3nxXKlWaw3j0_nZvn9CCGYwA8c1dWqdsyCH1i6OFs-S3KwxCw_MlZweHY5lCnncUwgvbcO8ZBCfZv3-8taXMGUi14WxftqYBFePp29WUQ4QHSBW5vQ7yxq_dhVqodeiUIjYHMUXgRVwMSTEvfZK5oi9K3GLCMDdbhtEr9IuR90lihW5dJgIAGU_n6RZvZtFNP_ue-Pvnv3sdF-v0G2iJgdJAx2prtLd5_7n12bluzq1mXXiXmAc3Jq82HbOo5vfEyNIE6HeboDroVjA8880y6i0ZmeQ_dDoYIDmJ-dR9dArGwIxYG3HEiFgZiYYEHxMKJWHhu3uBEK-xphdsl7mmFgVYYaIUTrbrhh7R6gI4P9o92D7NQoiNToHiSzOaKGG41V3UlC24l16ARUm5zw6SghWHwIURhCBeaSk2IBPu85oJWinOj6EM0XgKzHiFcaV6JWpW6yi2zMFwtLctVCQplaW1RTVAW_9BGhfz1rozKWeMzb5PGAdAkACboRep_7jO3_LbnTsSnCbN71QAD6oKWoE1PEOkw-8sozQaHHl_npm10s59LO2i8_nphnoDOu5ZPAxV_AlUvp6c |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Thin+and+Efficient+Can+a+Metasurface+Reflector+Be%3F+Universal+Bounds+on+Reflection+for+Any+Direction+and+Polarization&rft.jtitle=Advanced+optical+materials&rft.au=Abdelrahman%2C+Mohamed+Ismail&rft.au=Monticone%2C+Francesco&rft.date=2023-02-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=11&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202201782&rft.externalDBID=10.1002%252Fadom.202201782&rft.externalDocID=ADOM202201782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |