How Thin and Efficient Can a Metasurface Reflector Be? Universal Bounds on Reflection for Any Direction and Polarization

Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The...

Full description

Saved in:
Bibliographic Details
Published inAdvanced optical materials Vol. 11; no. 4
Main Authors Abdelrahman, Mohamed Ismail, Monticone, Francesco
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The problem of optimal light‐matter interactions to maximize reflection is formulated as the solution of an optimization problem in terms of the induced currents, subject to energy conservation and passivity, which admits a global upper bound by using Lagrangian duality. The derived upper bounds apply to a broad range of planar structures, including metasurfaces, gratings, homogenized films, photonic crystal slabs, and more generally, any inhomogeneous planar structure irrespective of its geometrical details. These bounds also set the limit on the minimum possible thickness, for a given lossy material, to achieve a desired reflectance. Moreover, the results allow the discovery of parameter regions where large improvements in the efficiency of a reflective structure are possible compared to existing designs. Examples are given of the implications of these findings for the design of superior and compact reflective components made of real, imperfect (i.e., lossy) materials, such as ultra‐thin and efficient gratings, polarization converters, and light‐weight mirrors for solar/laser sails. Light reflection plays a crucial role in a number of modern technologies. In this paper, universal bounds for maximal reflected power in any direction and for any polarization are derived for generic planar structures. Examples are given of the implications of these findings for the design of ultra‐thin and efficient reflective gratings, polarization converters, and light‐weight mirrors for solar/laser sails.
AbstractList Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The problem of optimal light‐matter interactions to maximize reflection is formulated as the solution of an optimization problem in terms of the induced currents, subject to energy conservation and passivity, which admits a global upper bound by using Lagrangian duality. The derived upper bounds apply to a broad range of planar structures, including metasurfaces, gratings, homogenized films, photonic crystal slabs, and more generally, any inhomogeneous planar structure irrespective of its geometrical details. These bounds also set the limit on the minimum possible thickness, for a given lossy material, to achieve a desired reflectance. Moreover, the results allow the discovery of parameter regions where large improvements in the efficiency of a reflective structure are possible compared to existing designs. Examples are given of the implications of these findings for the design of superior and compact reflective components made of real, imperfect (i.e., lossy) materials, such as ultra‐thin and efficient gratings, polarization converters, and light‐weight mirrors for solar/laser sails.
Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The problem of optimal light‐matter interactions to maximize reflection is formulated as the solution of an optimization problem in terms of the induced currents, subject to energy conservation and passivity, which admits a global upper bound by using Lagrangian duality. The derived upper bounds apply to a broad range of planar structures, including metasurfaces, gratings, homogenized films, photonic crystal slabs, and more generally, any inhomogeneous planar structure irrespective of its geometrical details. These bounds also set the limit on the minimum possible thickness, for a given lossy material, to achieve a desired reflectance. Moreover, the results allow the discovery of parameter regions where large improvements in the efficiency of a reflective structure are possible compared to existing designs. Examples are given of the implications of these findings for the design of superior and compact reflective components made of real, imperfect (i.e., lossy) materials, such as ultra‐thin and efficient gratings, polarization converters, and light‐weight mirrors for solar/laser sails. Light reflection plays a crucial role in a number of modern technologies. In this paper, universal bounds for maximal reflected power in any direction and for any polarization are derived for generic planar structures. Examples are given of the implications of these findings for the design of ultra‐thin and efficient reflective gratings, polarization converters, and light‐weight mirrors for solar/laser sails.
Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction and for any polarization are given for generic planar structures made of a single material represented by a complex scalar susceptibility. The problem of optimal light‐matter interactions to maximize reflection is formulated as the solution of an optimization problem in terms of the induced currents, subject to energy conservation and passivity, which admits a global upper bound by using Lagrangian duality. The derived upper bounds apply to a broad range of planar structures, including metasurfaces, gratings, homogenized films, photonic crystal slabs, and more generally, any inhomogeneous planar structure irrespective of its geometrical details. These bounds also set the limit on the minimum possible thickness, for a given lossy material, to achieve a desired reflectance. Moreover, the results allow the discovery of parameter regions where large improvements in the efficiency of a reflective structure are possible compared to existing designs. Examples are given of the implications of these findings for the design of superior and compact reflective components made of real, imperfect (i.e., lossy) materials, such as ultra‐thin and efficient gratings, polarization converters, and light‐weight mirrors for solar/laser sails.
Author Abdelrahman, Mohamed Ismail
Monticone, Francesco
Author_xml – sequence: 1
  givenname: Mohamed Ismail
  orcidid: 0000-0003-4172-6927
  surname: Abdelrahman
  fullname: Abdelrahman, Mohamed Ismail
  email: mia37@cornell.edu
  organization: Cornell University
– sequence: 2
  givenname: Francesco
  orcidid: 0000-0003-0457-1807
  surname: Monticone
  fullname: Monticone, Francesco
  email: francesco.monticone@cornell.edu
  organization: Cornell University
BookMark eNqFkM1PAjEQxRuDiYhcPTfxvNh2t-zuyfClmEAwBs6bbncaS5YW20XEv95F8CMmxtPMvPzezOSdo4axBhC6pKRDCWHXorCrDiOMERon7AQ1GU15QElMGz_6M9T2fkkIqYcwjeImeh3bLZ4_aYOFKfBIKS01mAoPRK3gKVTCb5wSEvAjqBJkZR3uww1eGP0CzosS9-3GFB5b80noulU11jM7PNTuqOzXP9hSOP0m9sIFOlWi9NA-1hZa3I7mg3Ewmd3dD3qTQIY0ZoEikgFXBZdJnFOucl5ElIdcEYhyEVKI6iIEBcZFEeYFYzntRgkXYSw5Bxm20NVh79rZ5w34KlvajTP1yYzFcULDbkpJTUUHSjrrvQOVSV19_Fk5ocuMkmwfc7aPOfuKubZ1ftnWTq-E2_1tSA-GrS5h9w-d9Yaz6bf3HeRNktE
CitedBy_id crossref_primary_10_1126_science_ade3395
crossref_primary_10_1103_PhysRevApplied_22_044044
crossref_primary_10_1103_PhysRevB_108_014308
Cites_doi 10.1103/PhysRevLett.124.033201
10.1103/PhysRevB.94.075142
10.1364/OE.21.013351
10.1134/S1063776118100114
10.1103/PhysRevB.86.115423
10.1021/acsphotonics.0c00327
10.1364/OE.462926
10.1021/acs.nanolett.7b03882
10.1017/CBO9780511804441
10.1364/OPTICA.398715
10.1098/rsta.1904.0024
10.1088/0034-4885/79/7/076401
10.1038/nnano.2015.2
10.1126/science.1096796
10.1364/OME.4.001717
10.1103/PhysRevLett.85.3966
10.1038/s41598-017-01939-2
10.1063/1.4901272
10.1103/PhysRevLett.110.203903
10.1364/OPTICA.417007
10.1038/srep43722
10.1002/adma.202103946
10.3390/photonics8030065
10.1103/PhysRevB.89.155118
10.1126/science.1058847
10.1073/pnas.1008296107
10.1017/CBO9781139644181
10.1126/science.1125907
10.1109/TAP.2012.2227656
10.1088/1367-2630/ab83d3
10.1109/TAP.2018.2816784
10.1103/PhysRevLett.125.263607
10.5772/6915
10.1103/PhysRevLett.119.067404
10.1038/nmat3839
10.1126/science.aat3100
10.1126/science.aaw6747
10.1103/PhysRevLett.108.097402
10.1515/nanoph-2018-0183
10.1103/PhysRevApplied.11.054077
10.1063/10.0010119
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7U5
8FD
H8D
L7M
DOI 10.1002/adom.202201782
DatabaseName CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2195-1071
EndPage n/a
ExternalDocumentID 10_1002_adom_202201782
ADOM202201782
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: 1741694
– fundername: U.S. Air Force
  funderid: FA9550‐22‐1‐0204
GroupedDBID 0R~
1OC
33P
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
DPXWK
EBS
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
31~
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
EJD
GODZA
7SP
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c3172-f0c2e5fd5c87b15fb5d41535f0e4ba31e44baaa1e25ad3bd22b16485a37c55ec3
ISSN 2195-1071
IngestDate Fri Jul 25 12:01:33 EDT 2025
Tue Jul 01 00:35:55 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Sun Jul 06 04:45:43 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3172-f0c2e5fd5c87b15fb5d41535f0e4ba31e44baaa1e25ad3bd22b16485a37c55ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0457-1807
0000-0003-4172-6927
PQID 2778136910
PQPubID 2034581
PageCount 8
ParticipantIDs proquest_journals_2778136910
crossref_citationtrail_10_1002_adom_202201782
crossref_primary_10_1002_adom_202201782
wiley_primary_10_1002_adom_202201782_ADOM202201782
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced optical materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2012; 61
2017; 119
2021; 8
2017; 7
2019; 9
2010; 107
2013; 21
2018; 127
2019; 11
2010
2000; 85
2015; 10
1999; 42
2016; 94
2004
2020; 124
1904; 203
2020; 125
2002
2018; 66
2004; 305
2019; 364
2014; 89
2012; 108
2016; 79
2006; 312
1999
2020; 7
2014; 105
2014; 4
2021; 33
2022
2001; 292
2017; 17
2021
2022; 5
2020; 27
2014; 13
2022; 30
2020; 22
2014
2013; 110
2012; 86
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_33_1
Orfanidis S. J. (e_1_2_9_34_1) 2002
e_1_2_9_54_1
Rahmat‐Samii Y. (e_1_2_9_9_1) 1999; 42
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_37_1
e_1_2_9_18_1
Vulpetti G. (e_1_2_9_21_1) 2014
e_1_2_9_41_1
Shim H. (e_1_2_9_16_1) 2019; 9
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Budhu J. (e_1_2_9_30_1) 2021
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
Lesina A. C. (e_1_2_9_29_1) 2020; 27
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_42_1
e_1_2_9_40_1
Chao P. (e_1_2_9_19_1) 2022
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – volume: 79
  year: 2016
  publication-title: Rep. Prog. Phys.
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 105
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 203
  start-page: 385
  year: 1904
  publication-title: Philosophical Transactions of the Royal Society of London.
– volume: 17
  start-page: 7102
  year: 2017
  publication-title: Nano Lett.
– year: 2021
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 364
  year: 2019
  publication-title: Science
– year: 2014
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 65
  year: 2021
  publication-title: Photonics
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 139
  year: 2014
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– year: 2022
– year: 2004
– volume: 27
  year: 2020
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 66
  start-page: 3213
  year: 2018
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 7
  start-page: 1729
  year: 2020
  publication-title: ACS Photonics
– volume: 305
  start-page: 788
  year: 2004
  publication-title: Science
– volume: 292
  start-page: 77
  year: 2001
  publication-title: Science
– volume: 22
  year: 2020
  publication-title: New J. Phys.
– volume: 61
  start-page: 1109
  year: 2012
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 364
  start-page: 1087
  year: 2019
  publication-title: Science
– volume: 127
  start-page: 608
  year: 2018
  publication-title: J. Exp. Theor. Phys.
– volume: 4
  start-page: 1717
  year: 2014
  publication-title: Opt. Mater. Express
– volume: 42
  start-page: 232
  year: 1999
  publication-title: Microwave Journal
– volume: 9
  year: 2019
  publication-title: Phys. Rev. X
– volume: 30
  year: 2022
  publication-title: Opt. Express
– volume: 7
  start-page: 1746
  year: 2020
  publication-title: Optica
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 85
  start-page: 3966
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 722
  year: 2021
  publication-title: Optica
– volume: 7
  start-page: 1
  year: 2017
  publication-title: Sci. Rep.
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– year: 2010
– volume: 21
  year: 2013
  publication-title: Opt. Express
– year: 2002
– volume: 10
  start-page: 308
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 5
  year: 2022
  publication-title: Nanotechnology and Precision Engineering
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– start-page: 1
  year: 2022
  publication-title: Nat. Rev. Phys.
– volume: 107
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 339
  year: 2019
  publication-title: Nanophotonics
– year: 1999
– ident: e_1_2_9_42_1
– ident: e_1_2_9_24_1
  doi: 10.1103/PhysRevLett.124.033201
– ident: e_1_2_9_37_1
  doi: 10.1103/PhysRevB.94.075142
– ident: e_1_2_9_48_1
– ident: e_1_2_9_10_1
  doi: 10.1364/OE.21.013351
– volume-title: Proc. 15th European Conference on Antennas and Propagation (EuCAP)
  year: 2021
  ident: e_1_2_9_30_1
– ident: e_1_2_9_46_1
  doi: 10.1134/S1063776118100114
– ident: e_1_2_9_35_1
  doi: 10.1103/PhysRevB.86.115423
– ident: e_1_2_9_13_1
  doi: 10.1021/acsphotonics.0c00327
– ident: e_1_2_9_20_1
  doi: 10.1364/OE.462926
– ident: e_1_2_9_23_1
  doi: 10.1021/acs.nanolett.7b03882
– ident: e_1_2_9_32_1
  doi: 10.1017/CBO9780511804441
– ident: e_1_2_9_17_1
  doi: 10.1364/OPTICA.398715
– ident: e_1_2_9_43_1
  doi: 10.1098/rsta.1904.0024
– ident: e_1_2_9_51_1
  doi: 10.1088/0034-4885/79/7/076401
– ident: e_1_2_9_47_1
– ident: e_1_2_9_26_1
  doi: 10.1038/nnano.2015.2
– ident: e_1_2_9_4_1
  doi: 10.1126/science.1096796
– ident: e_1_2_9_25_1
  doi: 10.1364/OME.4.001717
– ident: e_1_2_9_2_1
  doi: 10.1103/PhysRevLett.85.3966
– ident: e_1_2_9_11_1
  doi: 10.1038/s41598-017-01939-2
– ident: e_1_2_9_52_1
  doi: 10.1063/1.4901272
– ident: e_1_2_9_41_1
– ident: e_1_2_9_49_1
– ident: e_1_2_9_53_1
  doi: 10.1103/PhysRevLett.110.203903
– ident: e_1_2_9_22_1
  doi: 10.1364/OPTICA.417007
– ident: e_1_2_9_54_1
  doi: 10.1038/srep43722
– volume: 27
  year: 2020
  ident: e_1_2_9_29_1
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– ident: e_1_2_9_18_1
  doi: 10.1002/adma.202103946
– ident: e_1_2_9_28_1
  doi: 10.3390/photonics8030065
– volume-title: Electromagnetic waves and antennas
  year: 2002
  ident: e_1_2_9_34_1
– ident: e_1_2_9_44_1
  doi: 10.1103/PhysRevB.89.155118
– ident: e_1_2_9_3_1
  doi: 10.1126/science.1058847
– ident: e_1_2_9_1_1
  doi: 10.1073/pnas.1008296107
– start-page: 1
  year: 2022
  ident: e_1_2_9_19_1
  publication-title: Nat. Rev. Phys.
– volume: 42
  start-page: 232
  year: 1999
  ident: e_1_2_9_9_1
  publication-title: Microwave Journal
– ident: e_1_2_9_36_1
  doi: 10.1017/CBO9781139644181
– ident: e_1_2_9_5_1
  doi: 10.1126/science.1125907
– ident: e_1_2_9_14_1
  doi: 10.1109/TAP.2012.2227656
– volume-title: Solar sails: a novel approach to interplanetary travel
  year: 2014
  ident: e_1_2_9_21_1
– ident: e_1_2_9_15_1
  doi: 10.1088/1367-2630/ab83d3
– ident: e_1_2_9_40_1
– ident: e_1_2_9_50_1
  doi: 10.1109/TAP.2018.2816784
– ident: e_1_2_9_33_1
  doi: 10.1103/PhysRevLett.125.263607
– volume: 9
  year: 2019
  ident: e_1_2_9_16_1
  publication-title: Phys. Rev. X
– ident: e_1_2_9_45_1
  doi: 10.5772/6915
– ident: e_1_2_9_38_1
  doi: 10.1103/PhysRevLett.119.067404
– ident: e_1_2_9_7_1
  doi: 10.1038/nmat3839
– ident: e_1_2_9_8_1
  doi: 10.1126/science.aat3100
– ident: e_1_2_9_27_1
  doi: 10.1126/science.aaw6747
– ident: e_1_2_9_6_1
  doi: 10.1103/PhysRevLett.108.097402
– ident: e_1_2_9_12_1
  doi: 10.1515/nanoph-2018-0183
– ident: e_1_2_9_39_1
  doi: 10.1103/PhysRevApplied.11.054077
– ident: e_1_2_9_31_1
  doi: 10.1063/10.0010119
SSID ssj0001073947
Score 2.3292916
Snippet Light reflection plays a crucial role in a number of modern technologies. In this paper, analytical expressions for maximal reflected power in any direction...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms fundamental limits
gratings
Light reflection
light sails
Materials science
Mathematical analysis
Metasurfaces
Optics
Optimization
Photonic crystals
Planar structures
Polarization
reflection
Sails
Upper bounds
Weight reduction
Title How Thin and Efficient Can a Metasurface Reflector Be? Universal Bounds on Reflection for Any Direction and Polarization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202201782
https://www.proquest.com/docview/2778136910
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MKFNyK0oD2AOEQGex-2OaGkDxVEAIlW6s3ap3oocUVSqfAb-NHMeh92RHn14kSb9VrO9-3szOzsDELPLCjdvGIiy01pM8a0zSToxVlNXotC5lRo22X7_FAeHrN3J_xkNPoxiFq6WMuX6vuV50qugyq0Aa7ulOx_IJsGhQb4DvjCFRCG6z9h7OrBucKb3Q7AfpcMwm3t78KcFdOFWTv3nxXKlWaw3j0_nZvn9CCGYwA8c1dWqdsyCH1i6OFs-S3KwxCw_MlZweHY5lCnncUwgvbcO8ZBCfZv3-8taXMGUi14WxftqYBFePp29WUQ4QHSBW5vQ7yxq_dhVqodeiUIjYHMUXgRVwMSTEvfZK5oi9K3GLCMDdbhtEr9IuR90lihW5dJgIAGU_n6RZvZtFNP_ue-Pvnv3sdF-v0G2iJgdJAx2prtLd5_7n12bluzq1mXXiXmAc3Jq82HbOo5vfEyNIE6HeboDroVjA8880y6i0ZmeQ_dDoYIDmJ-dR9dArGwIxYG3HEiFgZiYYEHxMKJWHhu3uBEK-xphdsl7mmFgVYYaIUTrbrhh7R6gI4P9o92D7NQoiNToHiSzOaKGG41V3UlC24l16ARUm5zw6SghWHwIURhCBeaSk2IBPu85oJWinOj6EM0XgKzHiFcaV6JWpW6yi2zMFwtLctVCQplaW1RTVAW_9BGhfz1rozKWeMzb5PGAdAkACboRep_7jO3_LbnTsSnCbN71QAD6oKWoE1PEOkw-8sozQaHHl_npm10s59LO2i8_nphnoDOu5ZPAxV_AlUvp6c
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Thin+and+Efficient+Can+a+Metasurface+Reflector+Be%3F+Universal+Bounds+on+Reflection+for+Any+Direction+and+Polarization&rft.jtitle=Advanced+optical+materials&rft.au=Abdelrahman%2C+Mohamed+Ismail&rft.au=Monticone%2C+Francesco&rft.date=2023-02-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=11&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.202201782&rft.externalDBID=10.1002%252Fadom.202201782&rft.externalDocID=ADOM202201782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon