Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport
Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown uniform pore size, high surface area, and excellent chemical stability, but their mechanical properties are poor due to their brittleness. Herein, a flexible ionic CMP membrane with precisely tailored pore architecture and chemistry prepared by a coelectropolymerization (COEP) strategy is reported. The structure contains rigid monomers to maintain structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining precise size sieving and Donnan effect. The resulting 40 nm thick CMP membranes show equivalent ion conductance compared to the commercial Nafion 117 membrane, but an order of magnitude higher ion selectivity for ion systems such as K+/Mg2+ and Li+/Mg2+.
The strategy of coelectropolymerization (COEP) achieves dual softness and functionalization adjustments to conjugated microporous polymer (CMP) membranes. The flexible ionic 40 nm thick membranes enable fast transport of monovalent ions and high selectivity toward divalent ions. |
---|---|
AbstractList | Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown uniform pore size, high surface area, and excellent chemical stability, but their mechanical properties are poor due to their brittleness. Herein, a flexible ionic CMP membrane with precisely tailored pore architecture and chemistry prepared by a coelectropolymerization (COEP) strategy is reported. The structure contains rigid monomers to maintain structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining precise size sieving and Donnan effect. The resulting 40 nm thick CMP membranes show equivalent ion conductance compared to the commercial Nafion 117 membrane, but an order of magnitude higher ion selectivity for ion systems such as K
+
/Mg
2+
and Li
+
/Mg
2+
. Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown uniform pore size, high surface area, and excellent chemical stability, but their mechanical properties are poor due to their brittleness. Herein, a flexible ionic CMP membrane with precisely tailored pore architecture and chemistry prepared by a coelectropolymerization (COEP) strategy is reported. The structure contains rigid monomers to maintain structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining precise size sieving and Donnan effect. The resulting 40 nm thick CMP membranes show equivalent ion conductance compared to the commercial Nafion 117 membrane, but an order of magnitude higher ion selectivity for ion systems such as K+/Mg2+ and Li+/Mg2+. Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown uniform pore size, high surface area, and excellent chemical stability, but their mechanical properties are poor due to their brittleness. Herein, a flexible ionic CMP membrane with precisely tailored pore architecture and chemistry prepared by a coelectropolymerization (COEP) strategy is reported. The structure contains rigid monomers to maintain structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining precise size sieving and Donnan effect. The resulting 40 nm thick CMP membranes show equivalent ion conductance compared to the commercial Nafion 117 membrane, but an order of magnitude higher ion selectivity for ion systems such as K+/Mg2+ and Li+/Mg2+. The strategy of coelectropolymerization (COEP) achieves dual softness and functionalization adjustments to conjugated microporous polymer (CMP) membranes. The flexible ionic 40 nm thick membranes enable fast transport of monovalent ions and high selectivity toward divalent ions. |
Author | Zhang, Yuting Lai, Zhiping Zhou, Zongyao Enakonda, Linga Reddy Shinde, Digambar B. Guo, Dong Cao, Li Nuaimi, Reham Al |
Author_xml | – sequence: 1 givenname: Zongyao orcidid: 0000-0002-4694-2330 surname: Zhou fullname: Zhou, Zongyao organization: King Abdullah University of Science and Technology (KAUST) – sequence: 2 givenname: Digambar B. surname: Shinde fullname: Shinde, Digambar B. organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Dong surname: Guo fullname: Guo, Dong organization: King Abdullah University of Science and Technology (KAUST) – sequence: 4 givenname: Li surname: Cao fullname: Cao, Li organization: King Abdullah University of Science and Technology (KAUST) – sequence: 5 givenname: Reham Al surname: Nuaimi fullname: Nuaimi, Reham Al organization: King Abdullah University of Science and Technology (KAUST) – sequence: 6 givenname: Yuting surname: Zhang fullname: Zhang, Yuting organization: King Abdullah University of Science and Technology (KAUST) – sequence: 7 givenname: Linga Reddy surname: Enakonda fullname: Enakonda, Linga Reddy organization: King Abdullah University of Science and Technology (KAUST) – sequence: 8 givenname: Zhiping surname: Lai fullname: Lai, Zhiping email: zhiping.lai@kaust.edu.sa organization: King Abdullah University of Science and Technology (KAUST) |
BookMark | eNqFkM9LwzAUx4NMcJtePQc8d-ZHk3THMZ0ONhSc4EEoafoqGW0zk1bdf2_nZIIgnt47fD_fx_sMUK92NSB0TsmIEsIudV5UI0YYJYlU7Aj1qaQy4oQlvcNOn07QIIQ1IVQpHvfR86yED5uVgOeutgZPXb1uX3QDOV5a493GedcGfO_KbQUeL6HKvK4h4MJ5PNOhwbrO8QOUYBr79tWCV10idGBzio4LXQY4-55D9Di7Xk1vo8XdzXw6WUSGU8WiXOYJ40QpkRWZiqlRkEgux2RMtWAxz0CwXAohBWOacyI4TTLgVBNgXBnDh-hi37vx7rWF0KRr1_q6O5kyyWKRUNZBQxTvU91bIXgoUmMb3VhXN17bMqUk3XlMdx7Tg8cOG_3CNt5W2m__BsZ74N2WsP0nnU6uZssf9hOdC4cH |
CitedBy_id | crossref_primary_10_1016_j_jcis_2023_11_056 crossref_primary_10_1002_ange_202402943 crossref_primary_10_1002_smtd_202401111 crossref_primary_10_1021_acs_nanolett_4c01324 crossref_primary_10_1038_s41467_024_46464_9 crossref_primary_10_1039_D3SC05787A crossref_primary_10_1002_adma_202415509 crossref_primary_10_1016_j_catcom_2022_106463 crossref_primary_10_1021_acsnano_2c07641 crossref_primary_10_1002_aic_17825 crossref_primary_10_1002_cssc_202402562 crossref_primary_10_1016_j_memsci_2024_122671 crossref_primary_10_1038_s41467_024_48419_6 crossref_primary_10_1002_adfm_202406430 crossref_primary_10_3390_nano14050478 crossref_primary_10_1016_j_seppur_2024_126825 crossref_primary_10_1016_j_desal_2023_116611 crossref_primary_10_1039_D4TA02085E crossref_primary_10_1021_jacs_4c02960 crossref_primary_10_1007_s11426_022_1475_x crossref_primary_10_1002_adma_202300975 crossref_primary_10_1039_D3CP03133K crossref_primary_10_1002_aic_18232 crossref_primary_10_1126_sciadv_abo2929 crossref_primary_10_1016_j_seppur_2025_131795 crossref_primary_10_1021_acscentsci_3c01291 crossref_primary_10_1016_j_cej_2022_137013 crossref_primary_10_3390_molecules28124785 crossref_primary_10_1021_acs_nanolett_4c01997 crossref_primary_10_6023_A21110505 crossref_primary_10_1016_j_memsci_2025_123964 crossref_primary_10_1002_anie_202402943 crossref_primary_10_1016_j_cjche_2022_01_027 crossref_primary_10_1002_aenm_202302262 crossref_primary_10_1093_nsr_nwae439 crossref_primary_10_1016_j_microc_2025_113120 |
Cites_doi | 10.1021/acsnano.9b02579 10.1038/s41467-019-13993-7 10.1002/anie.201402141 10.1038/s41565-020-0713-6 10.1016/j.memsci.2020.118832 10.1038/s41563-019-0536-8 10.1021/acsnano.0c06944 10.1038/nature24044 10.1126/science.aaa5058 10.1016/j.memsci.2011.05.015 10.1016/j.carbon.2019.11.031 10.1039/D1EE00354B 10.1002/adfm.202009430 10.1111/jace.12068 10.1007/s40820-021-00623-5 10.1021/jacs.1c00575 10.1016/j.memsci.2018.10.054 10.1002/anie.201809907 10.1126/sciadv.aaq0066 10.1016/j.memsci.2013.08.012 10.1021/acsnano.8b09761 10.1126/sciadv.abe8706 10.1002/adfm.202104629 10.1038/nnano.2017.21 10.1021/acs.nanolett.8b01904 10.1016/j.memsci.2016.07.042 10.1002/adfm.202007054 10.1039/D0SC01679A 10.1126/science.1192160 10.1126/science.1146744 10.1002/anie.201605916 10.1021/jacs.8b08788 10.1021/acsnano.0c05649 10.1007/s42114-021-00253-w 10.1021/la100449z 10.1126/science.1245711 10.1002/anie.202000012 10.1038/s41893-020-0474-0 10.1002/adfm.201902014 10.3390/ma9050376 10.1002/adfm.201601689 10.1021/acs.jpclett.5b01895 10.1016/j.nanoen.2020.104769 10.1002/adma.202101312 10.1002/anie.201804299 10.1038/s41467-020-17373-4 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202108672 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202108672 ADFM202108672 |
Genre | article |
GrantInformation_xml | – fundername: King Abdullah University of Science and Technology funderid: URF/1/3769‐01; BAS/1/1375‐01 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3172-d6d8230775bfb741c7e86369091a5243be52d6556522a3305318be31a0e237cc3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:22:57 EDT 2025 Tue Jul 01 04:12:37 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:26:08 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3172-d6d8230775bfb741c7e86369091a5243be52d6556522a3305318be31a0e237cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4694-2330 |
PQID | 2624581205 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2624581205 crossref_citationtrail_10_1002_adfm_202108672 crossref_primary_10_1002_adfm_202108672 wiley_primary_10_1002_adfm_202108672_ADFM202108672 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 13 2020 2019 2019; 3 13 29 2020 2020 2020; 11 73 14 2018 2020; 140 11 2010; 329 2021 2016; 620 55 2020 2018 2021; 4 4 2015 2014 2016 2018 2020 2020 2021 2020 2016; 6 343 26 18 11 14 143 158 520 2013 2010; 96 26 2020 2020 2021; 59 19 31 2021 2021; 14 31 2021 2020; 33 15 2018 2019; 57 13 2021 2018; 7 57 2017 2017; 550 12 2015; 348 2007; 318 2019 2013 2011 2021; 572 448 378 31 1991; 8 2016; 9 2014; 53 e_1_2_6_10_1 Lu J. (e_1_2_6_6_1) 2020 Anastassopoulou J. D. (e_1_2_6_13_1) 1991 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_11_1 e_1_2_6_10_3 e_1_2_6_11_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_17_1 e_1_2_6_17_2 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_20_2 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_8_2 e_1_2_6_9_1 e_1_2_6_6_3 e_1_2_6_7_2 e_1_2_6_8_1 e_1_2_6_4_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_4_1 e_1_2_6_6_2 e_1_2_6_7_1 e_1_2_6_4_3 e_1_2_6_1_1 e_1_2_6_20_6 e_1_2_6_20_5 e_1_2_6_21_4 e_1_2_6_1_3 e_1_2_6_2_2 e_1_2_6_3_1 e_1_2_6_20_4 e_1_2_6_21_3 e_1_2_6_1_2 e_1_2_6_2_1 e_1_2_6_20_3 e_1_2_6_21_2 e_1_2_6_20_9 e_1_2_6_20_8 e_1_2_6_20_7 |
References_xml | – volume: 14 31 start-page: 3152 year: 2021 2021 publication-title: Energy Environ. Sci. Adv. Funct. Mater. – volume: 140 11 start-page: 5434 year: 2018 2020 publication-title: J. Am. Chem. Soc. Chem. Sci. – volume: 59 19 31 start-page: 9564 195 year: 2020 2020 2021 publication-title: Angew. Chem., Int. Ed. Nat. Mater. Adv. Funct. Mater. – volume: 4 4 start-page: 1 562 year: 2020 2018 2021 publication-title: Nat. Mater. Sci. Adv. Adv. Compos. Hybrid Mater. – volume: 7 57 year: 2021 2018 publication-title: Sci. Adv. Angew. Chem., Int. Ed. – volume: 620 55 year: 2021 2016 publication-title: J. Membr. Sci. Angew. Chem., Int. Ed. Engl. – volume: 6 343 26 18 11 14 143 158 520 start-page: 4026 752 5796 5506 3540 5080 598 139 year: 2015 2014 2016 2018 2020 2020 2021 2020 2016 publication-title: J. Phys. Chem. Lett. Science Adv. Funct. Mater. Nano Lett. Nat. Commun. ACS Nano J. Am. Chem. Soc. Carbon J. Membr. Sci. – volume: 318 start-page: 254 year: 2007 publication-title: Science – volume: 348 start-page: 1347 year: 2015 publication-title: Science – volume: 9 start-page: 376 year: 2016 publication-title: Materials – volume: 3 13 29 start-page: 296 5278 year: 2020 2019 2019 publication-title: Nat. Sustainability ACS Nano Adv. Funct. Mater. – volume: 8 year: 1991 – volume: 11 73 14 start-page: 1 year: 2020 2020 2020 publication-title: Nat. Commun. Nano Energy ACS Nano – volume: 33 15 start-page: 426 year: 2021 2020 publication-title: Adv. Mater. Nat. Nanotechnol. – volume: 550 12 start-page: 380 546 year: 2017 2017 publication-title: Nature Nat. Nanotechnol. – volume: 572 448 378 31 start-page: 28 180 243 year: 2019 2013 2011 2021 publication-title: J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. Adv. Funct. Mater. – volume: 329 start-page: 424 year: 2010 publication-title: Science – volume: 57 13 start-page: 8917 year: 2018 2019 publication-title: Angew. Chem., Int. Ed. ACS Nano – volume: 53 start-page: 4850 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 113 year: 2021 publication-title: Nano‐Micro Lett. – volume: 96 26 start-page: 68 5475 year: 2013 2010 publication-title: J. Am. Ceram. Soc. Langmuir – ident: e_1_2_6_2_2 doi: 10.1021/acsnano.9b02579 – ident: e_1_2_6_10_1 doi: 10.1038/s41467-019-13993-7 – ident: e_1_2_6_12_1 doi: 10.1002/anie.201402141 – ident: e_1_2_6_11_2 doi: 10.1038/s41565-020-0713-6 – ident: e_1_2_6_19_1 doi: 10.1016/j.memsci.2020.118832 – ident: e_1_2_6_1_2 doi: 10.1038/s41563-019-0536-8 – ident: e_1_2_6_10_3 doi: 10.1021/acsnano.0c06944 – ident: e_1_2_6_8_1 doi: 10.1038/nature24044 – ident: e_1_2_6_15_1 doi: 10.1126/science.aaa5058 – ident: e_1_2_6_21_3 doi: 10.1016/j.memsci.2011.05.015 – ident: e_1_2_6_20_8 doi: 10.1016/j.carbon.2019.11.031 – ident: e_1_2_6_3_1 doi: 10.1039/D1EE00354B – ident: e_1_2_6_3_2 doi: 10.1002/adfm.202009430 – ident: e_1_2_6_16_1 doi: 10.1111/jace.12068 – ident: e_1_2_6_5_1 doi: 10.1007/s40820-021-00623-5 – ident: e_1_2_6_20_7 doi: 10.1021/jacs.1c00575 – ident: e_1_2_6_21_1 doi: 10.1016/j.memsci.2018.10.054 – ident: e_1_2_6_7_2 doi: 10.1002/anie.201809907 – start-page: 1 year: 2020 ident: e_1_2_6_6_1 publication-title: Nat. Mater. – ident: e_1_2_6_6_2 doi: 10.1126/sciadv.aaq0066 – ident: e_1_2_6_21_2 doi: 10.1016/j.memsci.2013.08.012 – ident: e_1_2_6_4_2 doi: 10.1021/acsnano.8b09761 – ident: e_1_2_6_7_1 doi: 10.1126/sciadv.abe8706 – ident: e_1_2_6_1_3 doi: 10.1002/adfm.202104629 – ident: e_1_2_6_8_2 doi: 10.1038/nnano.2017.21 – ident: e_1_2_6_20_4 doi: 10.1021/acs.nanolett.8b01904 – ident: e_1_2_6_20_9 doi: 10.1016/j.memsci.2016.07.042 – ident: e_1_2_6_21_4 doi: 10.1002/adfm.202007054 – ident: e_1_2_6_17_2 doi: 10.1039/D0SC01679A – ident: e_1_2_6_18_1 doi: 10.1126/science.1192160 – ident: e_1_2_6_9_1 doi: 10.1126/science.1146744 – ident: e_1_2_6_19_2 doi: 10.1002/anie.201605916 – ident: e_1_2_6_17_1 doi: 10.1021/jacs.8b08788 – ident: e_1_2_6_20_6 doi: 10.1021/acsnano.0c05649 – ident: e_1_2_6_6_3 doi: 10.1007/s42114-021-00253-w – ident: e_1_2_6_16_2 doi: 10.1021/la100449z – ident: e_1_2_6_20_2 doi: 10.1126/science.1245711 – ident: e_1_2_6_1_1 doi: 10.1002/anie.202000012 – ident: e_1_2_6_4_1 doi: 10.1038/s41893-020-0474-0 – ident: e_1_2_6_4_3 doi: 10.1002/adfm.201902014 – ident: e_1_2_6_14_1 doi: 10.3390/ma9050376 – volume-title: Topics in Molecular Organization and Engineering year: 1991 ident: e_1_2_6_13_1 – ident: e_1_2_6_20_3 doi: 10.1002/adfm.201601689 – ident: e_1_2_6_20_1 doi: 10.1021/acs.jpclett.5b01895 – ident: e_1_2_6_10_2 doi: 10.1016/j.nanoen.2020.104769 – ident: e_1_2_6_11_1 doi: 10.1002/adma.202101312 – ident: e_1_2_6_2_1 doi: 10.1002/anie.201804299 – ident: e_1_2_6_20_5 doi: 10.1038/s41467-020-17373-4 |
SSID | ssj0017734 |
Score | 2.559146 |
Snippet | Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | conjugated microporous polymer electropolymerization ion sieving Ion transport Materials science Mechanical properties membrane Membranes Monomers Pore size Selectivity Surface stability |
Title | Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202108672 https://www.proquest.com/docview/2624581205 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iFz34W5xOyUHwVG1fm8Ydx2aZYkWcwg5CSZrkoFsrbjvoX29e23VTEEEvpYUkpHl5L1-S975HyEnAFRhr-x3FXeMERihHMCGcVClfuoZV8RXxbdh7DK4HbLAQxV_yQ9QHbqgZhb1GBRdyfD4nDRXKYCQ5YKogjkYYHbYQFd3X_FEe5-W1cuihg5c3mLE2unD-tfrXVWkONRcBa7HiRBtEzPpaOpq8nE0n8iz9-Ebj-J-f2STrFRyl7XL-bJElnW2TtQWSwh3yFCFnphxqeoU0urSTZ89TPHxTNEZvPgvg8-mY3uXD95F-o7Ee2Y5YA0otHKaRGE-oyBTtF_l2rGnFVmhNqb5LHqPLh07PqXIyOKlFGuCoUOHVHOdMGmnRSMr1RejbLXbLEwwCX2oGKmQWJgII30cVv5Da94Srwedp6u-R5SzP9D6hrubStAKjAvtsadYyTINwQwBtX1nYIM5MJklaEZZj3oxhUlItQ4KjltSj1iCndfnXkqrjx5LNmYiTSmXHCYQQMAt3XNYgUMjql1aSdjeK66-Dv1Q6JKuA4RSFF3iTLE_epvrIgpyJPCYr7W580z8uJvQnOoH0Jw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_FcsFPABxCltMonj7oFD1SXapU2FoJX2gBTs2D7ANou6u0LlrXgVnoiZ_LVFQkhIPXCJEimxYnvG84098w3Ai0RZ9LT2B1aFPki8toGWWgeltbEJvWzzK_LDdHycvJ3K6Rr86HJhGn6IfsONNaNer1nBeUN6-5w1VFvPqeTItYIUtnGV--7sG3lti9eTEU3xS8TszdHeOGgLCwQlmUsMbGr5fEkpabwhk1oqt5PG5CcOIy0xiY2TaFNJWAdRk8NPcrpjXBzp0GGsyjKmdq_BdS4jznT9o_c9Y1WkVHOQnUYcUhZNO57IELcv_-9lO3gObi9C5NrGZXfgZzc6TWjLl63V0myV338jjvyvhu8u3G4Rt9htVOQerLnqPty6wMP4AD5mTAtqZk5MmClY7M2rzyveX7Qi54BF8lHmq4V4N5-dnbhTkbsT6jnZCEGIX2R6sRS6suJDXVKIrAe3InrW-IdwfCXd24D1al65RyBCp4wfJt4mdB06OfTSoQ5TREe3Mh1A0AlBUbac7FwaZFY0bNJY8CwV_SwN4FX__teGjeSPb252MlW0q9KiwBQTSYgulAPAWjj-0kqxO8ry_unxv3z0HG6Mj_KD4mByuP8EbiJnj9RB75uwvjxduaeE6ZbmWa1FAj5dtdz9Al5fTE8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKlXlQH8RC7T1oVVPgWQS2-TQA2IbsaWLUFukPVRK7dg-wJJF7K4QPBWv0jfqOH9ApapSJQ69RImUWLE94_nGnvkG4G0iDTpa-wMjQxckTplAcaWCwphYh443-RXDA7F3lHwa8dECXLe5MDU_RLfh5jWjWq-9gp8Zt3VDGqqM85nk6EsFSWzCKvft5QU5bdMPgz7N8DvE7OO33b2gqSsQFGQtMTDC-OMlKbl2mixqIe22iMlNTCPFMYm15WgEJ6iDqMjfJzHd1jaOVGgxlkURU7sP4GEiwtQXi-h_6QirIinrc2wR-YiyaNTSRIa4dfd_75rBG2x7GyFXJi57Aj_bwakjW0425zO9WVz9xhv5P43eU1hu8DbbqRXkGSzY8jks3WJhfAHfM08KqseWDTxPMNudlMdzv7to2NCHK5KHMplP2eFkfHlqz9nQnlLHyUIwwvssU9MZU6VhX6uCQmQ7fCus44x_CUf30r0VWCwnpV0FFlqpXZo4k9A1tTx13KIKBaKlWy56ELQykBcNI7svDDLOay5pzP0s5d0s9eB99_5ZzUXyxzc3WpHKmzVpmqPAhBOeC3kPsJKNv7SS7_SzYfe09i8fvYFHh_0s_zw42F-Hx-hTR6qI9w1YnJ3P7SsCdDP9utIhBj_uW-x-AfkMSv4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Ionic+Conjugated+Microporous+Polymer+Membranes+for+Fast+and+Selective+Ion+Transport&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Zongyao&rft.au=Shinde%2C+Digambar+B.&rft.au=Guo%2C+Dong&rft.au=Cao%2C+Li&rft.date=2022-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202108672&rft.externalDBID=10.1002%252Fadfm.202108672&rft.externalDocID=ADFM202108672 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |