Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport

Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 6
Main Authors Zhou, Zongyao, Shinde, Digambar B., Guo, Dong, Cao, Li, Nuaimi, Reham Al, Zhang, Yuting, Enakonda, Linga Reddy, Lai, Zhiping
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown uniform pore size, high surface area, and excellent chemical stability, but their mechanical properties are poor due to their brittleness. Herein, a flexible ionic CMP membrane with precisely tailored pore architecture and chemistry prepared by a coelectropolymerization (COEP) strategy is reported. The structure contains rigid monomers to maintain structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining precise size sieving and Donnan effect. The resulting 40 nm thick CMP membranes show equivalent ion conductance compared to the commercial Nafion 117 membrane, but an order of magnitude higher ion selectivity for ion systems such as K+/Mg2+ and Li+/Mg2+. The strategy of coelectropolymerization (COEP) achieves dual softness and functionalization adjustments to conjugated microporous polymer (CMP) membranes. The flexible ionic 40 nm thick membranes enable fast transport of monovalent ions and high selectivity toward divalent ions.
AbstractList Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown uniform pore size, high surface area, and excellent chemical stability, but their mechanical properties are poor due to their brittleness. Herein, a flexible ionic CMP membrane with precisely tailored pore architecture and chemistry prepared by a coelectropolymerization (COEP) strategy is reported. The structure contains rigid monomers to maintain structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining precise size sieving and Donnan effect. The resulting 40 nm thick CMP membranes show equivalent ion conductance compared to the commercial Nafion 117 membrane, but an order of magnitude higher ion selectivity for ion systems such as K + /Mg 2+ and Li + /Mg 2+ .
Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown uniform pore size, high surface area, and excellent chemical stability, but their mechanical properties are poor due to their brittleness. Herein, a flexible ionic CMP membrane with precisely tailored pore architecture and chemistry prepared by a coelectropolymerization (COEP) strategy is reported. The structure contains rigid monomers to maintain structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining precise size sieving and Donnan effect. The resulting 40 nm thick CMP membranes show equivalent ion conductance compared to the commercial Nafion 117 membrane, but an order of magnitude higher ion selectivity for ion systems such as K+/Mg2+ and Li+/Mg2+.
Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of the membranes play a key role in improving their performance. Conjugated microporous polymers (CMPs) as emerging membrane materials have shown uniform pore size, high surface area, and excellent chemical stability, but their mechanical properties are poor due to their brittleness. Herein, a flexible ionic CMP membrane with precisely tailored pore architecture and chemistry prepared by a coelectropolymerization (COEP) strategy is reported. The structure contains rigid monomers to maintain structural uniformity and flexible and charged monomers to enhance mechanical flexibility and improve ion selectivity by combining precise size sieving and Donnan effect. The resulting 40 nm thick CMP membranes show equivalent ion conductance compared to the commercial Nafion 117 membrane, but an order of magnitude higher ion selectivity for ion systems such as K+/Mg2+ and Li+/Mg2+. The strategy of coelectropolymerization (COEP) achieves dual softness and functionalization adjustments to conjugated microporous polymer (CMP) membranes. The flexible ionic 40 nm thick membranes enable fast transport of monovalent ions and high selectivity toward divalent ions.
Author Zhang, Yuting
Lai, Zhiping
Zhou, Zongyao
Enakonda, Linga Reddy
Shinde, Digambar B.
Guo, Dong
Cao, Li
Nuaimi, Reham Al
Author_xml – sequence: 1
  givenname: Zongyao
  orcidid: 0000-0002-4694-2330
  surname: Zhou
  fullname: Zhou, Zongyao
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Digambar B.
  surname: Shinde
  fullname: Shinde, Digambar B.
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Dong
  surname: Guo
  fullname: Guo, Dong
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Li
  surname: Cao
  fullname: Cao, Li
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Reham Al
  surname: Nuaimi
  fullname: Nuaimi, Reham Al
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Yuting
  surname: Zhang
  fullname: Zhang, Yuting
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Linga Reddy
  surname: Enakonda
  fullname: Enakonda, Linga Reddy
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Zhiping
  surname: Lai
  fullname: Lai, Zhiping
  email: zhiping.lai@kaust.edu.sa
  organization: King Abdullah University of Science and Technology (KAUST)
BookMark eNqFkM9LwzAUx4NMcJtePQc8d-ZHk3THMZ0ONhSc4EEoafoqGW0zk1bdf2_nZIIgnt47fD_fx_sMUK92NSB0TsmIEsIudV5UI0YYJYlU7Aj1qaQy4oQlvcNOn07QIIQ1IVQpHvfR86yED5uVgOeutgZPXb1uX3QDOV5a493GedcGfO_KbQUeL6HKvK4h4MJ5PNOhwbrO8QOUYBr79tWCV10idGBzio4LXQY4-55D9Di7Xk1vo8XdzXw6WUSGU8WiXOYJ40QpkRWZiqlRkEgux2RMtWAxz0CwXAohBWOacyI4TTLgVBNgXBnDh-hi37vx7rWF0KRr1_q6O5kyyWKRUNZBQxTvU91bIXgoUmMb3VhXN17bMqUk3XlMdx7Tg8cOG_3CNt5W2m__BsZ74N2WsP0nnU6uZssf9hOdC4cH
CitedBy_id crossref_primary_10_1016_j_jcis_2023_11_056
crossref_primary_10_1002_ange_202402943
crossref_primary_10_1002_smtd_202401111
crossref_primary_10_1021_acs_nanolett_4c01324
crossref_primary_10_1038_s41467_024_46464_9
crossref_primary_10_1039_D3SC05787A
crossref_primary_10_1002_adma_202415509
crossref_primary_10_1016_j_catcom_2022_106463
crossref_primary_10_1021_acsnano_2c07641
crossref_primary_10_1002_aic_17825
crossref_primary_10_1002_cssc_202402562
crossref_primary_10_1016_j_memsci_2024_122671
crossref_primary_10_1038_s41467_024_48419_6
crossref_primary_10_1002_adfm_202406430
crossref_primary_10_3390_nano14050478
crossref_primary_10_1016_j_seppur_2024_126825
crossref_primary_10_1016_j_desal_2023_116611
crossref_primary_10_1039_D4TA02085E
crossref_primary_10_1021_jacs_4c02960
crossref_primary_10_1007_s11426_022_1475_x
crossref_primary_10_1002_adma_202300975
crossref_primary_10_1039_D3CP03133K
crossref_primary_10_1002_aic_18232
crossref_primary_10_1126_sciadv_abo2929
crossref_primary_10_1016_j_seppur_2025_131795
crossref_primary_10_1021_acscentsci_3c01291
crossref_primary_10_1016_j_cej_2022_137013
crossref_primary_10_3390_molecules28124785
crossref_primary_10_1021_acs_nanolett_4c01997
crossref_primary_10_6023_A21110505
crossref_primary_10_1016_j_memsci_2025_123964
crossref_primary_10_1002_anie_202402943
crossref_primary_10_1016_j_cjche_2022_01_027
crossref_primary_10_1002_aenm_202302262
crossref_primary_10_1093_nsr_nwae439
crossref_primary_10_1016_j_microc_2025_113120
Cites_doi 10.1021/acsnano.9b02579
10.1038/s41467-019-13993-7
10.1002/anie.201402141
10.1038/s41565-020-0713-6
10.1016/j.memsci.2020.118832
10.1038/s41563-019-0536-8
10.1021/acsnano.0c06944
10.1038/nature24044
10.1126/science.aaa5058
10.1016/j.memsci.2011.05.015
10.1016/j.carbon.2019.11.031
10.1039/D1EE00354B
10.1002/adfm.202009430
10.1111/jace.12068
10.1007/s40820-021-00623-5
10.1021/jacs.1c00575
10.1016/j.memsci.2018.10.054
10.1002/anie.201809907
10.1126/sciadv.aaq0066
10.1016/j.memsci.2013.08.012
10.1021/acsnano.8b09761
10.1126/sciadv.abe8706
10.1002/adfm.202104629
10.1038/nnano.2017.21
10.1021/acs.nanolett.8b01904
10.1016/j.memsci.2016.07.042
10.1002/adfm.202007054
10.1039/D0SC01679A
10.1126/science.1192160
10.1126/science.1146744
10.1002/anie.201605916
10.1021/jacs.8b08788
10.1021/acsnano.0c05649
10.1007/s42114-021-00253-w
10.1021/la100449z
10.1126/science.1245711
10.1002/anie.202000012
10.1038/s41893-020-0474-0
10.1002/adfm.201902014
10.3390/ma9050376
10.1002/adfm.201601689
10.1021/acs.jpclett.5b01895
10.1016/j.nanoen.2020.104769
10.1002/adma.202101312
10.1002/anie.201804299
10.1038/s41467-020-17373-4
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202108672
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202108672
ADFM202108672
Genre article
GrantInformation_xml – fundername: King Abdullah University of Science and Technology
  funderid: URF/1/3769‐01; BAS/1/1375‐01
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3172-d6d8230775bfb741c7e86369091a5243be52d6556522a3305318be31a0e237cc3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:22:57 EDT 2025
Tue Jul 01 04:12:37 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jan 22 16:26:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-d6d8230775bfb741c7e86369091a5243be52d6556522a3305318be31a0e237cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4694-2330
PQID 2624581205
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2624581205
crossref_citationtrail_10_1002_adfm_202108672
crossref_primary_10_1002_adfm_202108672
wiley_primary_10_1002_adfm_202108672_ADFM202108672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 13
2020 2019 2019; 3 13 29
2020 2020 2020; 11 73 14
2018 2020; 140 11
2010; 329
2021 2016; 620 55
2020 2018 2021; 4 4
2015 2014 2016 2018 2020 2020 2021 2020 2016; 6 343 26 18 11 14 143 158 520
2013 2010; 96 26
2020 2020 2021; 59 19 31
2021 2021; 14 31
2021 2020; 33 15
2018 2019; 57 13
2021 2018; 7 57
2017 2017; 550 12
2015; 348
2007; 318
2019 2013 2011 2021; 572 448 378 31
1991; 8
2016; 9
2014; 53
e_1_2_6_10_1
Lu J. (e_1_2_6_6_1) 2020
Anastassopoulou J. D. (e_1_2_6_13_1) 1991
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_11_1
e_1_2_6_10_3
e_1_2_6_11_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_17_1
e_1_2_6_17_2
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_20_2
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_8_2
e_1_2_6_9_1
e_1_2_6_6_3
e_1_2_6_7_2
e_1_2_6_8_1
e_1_2_6_4_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_4_1
e_1_2_6_6_2
e_1_2_6_7_1
e_1_2_6_4_3
e_1_2_6_1_1
e_1_2_6_20_6
e_1_2_6_20_5
e_1_2_6_21_4
e_1_2_6_1_3
e_1_2_6_2_2
e_1_2_6_3_1
e_1_2_6_20_4
e_1_2_6_21_3
e_1_2_6_1_2
e_1_2_6_2_1
e_1_2_6_20_3
e_1_2_6_21_2
e_1_2_6_20_9
e_1_2_6_20_8
e_1_2_6_20_7
References_xml – volume: 14 31
  start-page: 3152
  year: 2021 2021
  publication-title: Energy Environ. Sci. Adv. Funct. Mater.
– volume: 140 11
  start-page: 5434
  year: 2018 2020
  publication-title: J. Am. Chem. Soc. Chem. Sci.
– volume: 59 19 31
  start-page: 9564 195
  year: 2020 2020 2021
  publication-title: Angew. Chem., Int. Ed. Nat. Mater. Adv. Funct. Mater.
– volume: 4 4
  start-page: 1 562
  year: 2020 2018 2021
  publication-title: Nat. Mater. Sci. Adv. Adv. Compos. Hybrid Mater.
– volume: 7 57
  year: 2021 2018
  publication-title: Sci. Adv. Angew. Chem., Int. Ed.
– volume: 620 55
  year: 2021 2016
  publication-title: J. Membr. Sci. Angew. Chem., Int. Ed. Engl.
– volume: 6 343 26 18 11 14 143 158 520
  start-page: 4026 752 5796 5506 3540 5080 598 139
  year: 2015 2014 2016 2018 2020 2020 2021 2020 2016
  publication-title: J. Phys. Chem. Lett. Science Adv. Funct. Mater. Nano Lett. Nat. Commun. ACS Nano J. Am. Chem. Soc. Carbon J. Membr. Sci.
– volume: 318
  start-page: 254
  year: 2007
  publication-title: Science
– volume: 348
  start-page: 1347
  year: 2015
  publication-title: Science
– volume: 9
  start-page: 376
  year: 2016
  publication-title: Materials
– volume: 3 13 29
  start-page: 296 5278
  year: 2020 2019 2019
  publication-title: Nat. Sustainability ACS Nano Adv. Funct. Mater.
– volume: 8
  year: 1991
– volume: 11 73 14
  start-page: 1
  year: 2020 2020 2020
  publication-title: Nat. Commun. Nano Energy ACS Nano
– volume: 33 15
  start-page: 426
  year: 2021 2020
  publication-title: Adv. Mater. Nat. Nanotechnol.
– volume: 550 12
  start-page: 380 546
  year: 2017 2017
  publication-title: Nature Nat. Nanotechnol.
– volume: 572 448 378 31
  start-page: 28 180 243
  year: 2019 2013 2011 2021
  publication-title: J. Membr. Sci. J. Membr. Sci. J. Membr. Sci. Adv. Funct. Mater.
– volume: 329
  start-page: 424
  year: 2010
  publication-title: Science
– volume: 57 13
  start-page: 8917
  year: 2018 2019
  publication-title: Angew. Chem., Int. Ed. ACS Nano
– volume: 53
  start-page: 4850
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 113
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 96 26
  start-page: 68 5475
  year: 2013 2010
  publication-title: J. Am. Ceram. Soc. Langmuir
– ident: e_1_2_6_2_2
  doi: 10.1021/acsnano.9b02579
– ident: e_1_2_6_10_1
  doi: 10.1038/s41467-019-13993-7
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.201402141
– ident: e_1_2_6_11_2
  doi: 10.1038/s41565-020-0713-6
– ident: e_1_2_6_19_1
  doi: 10.1016/j.memsci.2020.118832
– ident: e_1_2_6_1_2
  doi: 10.1038/s41563-019-0536-8
– ident: e_1_2_6_10_3
  doi: 10.1021/acsnano.0c06944
– ident: e_1_2_6_8_1
  doi: 10.1038/nature24044
– ident: e_1_2_6_15_1
  doi: 10.1126/science.aaa5058
– ident: e_1_2_6_21_3
  doi: 10.1016/j.memsci.2011.05.015
– ident: e_1_2_6_20_8
  doi: 10.1016/j.carbon.2019.11.031
– ident: e_1_2_6_3_1
  doi: 10.1039/D1EE00354B
– ident: e_1_2_6_3_2
  doi: 10.1002/adfm.202009430
– ident: e_1_2_6_16_1
  doi: 10.1111/jace.12068
– ident: e_1_2_6_5_1
  doi: 10.1007/s40820-021-00623-5
– ident: e_1_2_6_20_7
  doi: 10.1021/jacs.1c00575
– ident: e_1_2_6_21_1
  doi: 10.1016/j.memsci.2018.10.054
– ident: e_1_2_6_7_2
  doi: 10.1002/anie.201809907
– start-page: 1
  year: 2020
  ident: e_1_2_6_6_1
  publication-title: Nat. Mater.
– ident: e_1_2_6_6_2
  doi: 10.1126/sciadv.aaq0066
– ident: e_1_2_6_21_2
  doi: 10.1016/j.memsci.2013.08.012
– ident: e_1_2_6_4_2
  doi: 10.1021/acsnano.8b09761
– ident: e_1_2_6_7_1
  doi: 10.1126/sciadv.abe8706
– ident: e_1_2_6_1_3
  doi: 10.1002/adfm.202104629
– ident: e_1_2_6_8_2
  doi: 10.1038/nnano.2017.21
– ident: e_1_2_6_20_4
  doi: 10.1021/acs.nanolett.8b01904
– ident: e_1_2_6_20_9
  doi: 10.1016/j.memsci.2016.07.042
– ident: e_1_2_6_21_4
  doi: 10.1002/adfm.202007054
– ident: e_1_2_6_17_2
  doi: 10.1039/D0SC01679A
– ident: e_1_2_6_18_1
  doi: 10.1126/science.1192160
– ident: e_1_2_6_9_1
  doi: 10.1126/science.1146744
– ident: e_1_2_6_19_2
  doi: 10.1002/anie.201605916
– ident: e_1_2_6_17_1
  doi: 10.1021/jacs.8b08788
– ident: e_1_2_6_20_6
  doi: 10.1021/acsnano.0c05649
– ident: e_1_2_6_6_3
  doi: 10.1007/s42114-021-00253-w
– ident: e_1_2_6_16_2
  doi: 10.1021/la100449z
– ident: e_1_2_6_20_2
  doi: 10.1126/science.1245711
– ident: e_1_2_6_1_1
  doi: 10.1002/anie.202000012
– ident: e_1_2_6_4_1
  doi: 10.1038/s41893-020-0474-0
– ident: e_1_2_6_4_3
  doi: 10.1002/adfm.201902014
– ident: e_1_2_6_14_1
  doi: 10.3390/ma9050376
– volume-title: Topics in Molecular Organization and Engineering
  year: 1991
  ident: e_1_2_6_13_1
– ident: e_1_2_6_20_3
  doi: 10.1002/adfm.201601689
– ident: e_1_2_6_20_1
  doi: 10.1021/acs.jpclett.5b01895
– ident: e_1_2_6_10_2
  doi: 10.1016/j.nanoen.2020.104769
– ident: e_1_2_6_11_1
  doi: 10.1002/adma.202101312
– ident: e_1_2_6_2_1
  doi: 10.1002/anie.201804299
– ident: e_1_2_6_20_5
  doi: 10.1038/s41467-020-17373-4
SSID ssj0017734
Score 2.559146
Snippet Membranes with fast and selective ion transport have great potential for use in water‐ and energy‐related applications. The structure and material design of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms conjugated microporous polymer
electropolymerization
ion sieving
Ion transport
Materials science
Mechanical properties
membrane
Membranes
Monomers
Pore size
Selectivity
Surface stability
Title Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202108672
https://www.proquest.com/docview/2624581205
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iFz34W5xOyUHwVG1fm8Ydx2aZYkWcwg5CSZrkoFsrbjvoX29e23VTEEEvpYUkpHl5L1-S975HyEnAFRhr-x3FXeMERihHMCGcVClfuoZV8RXxbdh7DK4HbLAQxV_yQ9QHbqgZhb1GBRdyfD4nDRXKYCQ5YKogjkYYHbYQFd3X_FEe5-W1cuihg5c3mLE2unD-tfrXVWkONRcBa7HiRBtEzPpaOpq8nE0n8iz9-Ebj-J-f2STrFRyl7XL-bJElnW2TtQWSwh3yFCFnphxqeoU0urSTZ89TPHxTNEZvPgvg8-mY3uXD95F-o7Ee2Y5YA0otHKaRGE-oyBTtF_l2rGnFVmhNqb5LHqPLh07PqXIyOKlFGuCoUOHVHOdMGmnRSMr1RejbLXbLEwwCX2oGKmQWJgII30cVv5Da94Srwedp6u-R5SzP9D6hrubStAKjAvtsadYyTINwQwBtX1nYIM5MJklaEZZj3oxhUlItQ4KjltSj1iCndfnXkqrjx5LNmYiTSmXHCYQQMAt3XNYgUMjql1aSdjeK66-Dv1Q6JKuA4RSFF3iTLE_epvrIgpyJPCYr7W580z8uJvQnOoH0Jw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_FcsFPABxCltMonj7oFD1SXapU2FoJX2gBTs2D7ANou6u0LlrXgVnoiZ_LVFQkhIPXCJEimxYnvG84098w3Ai0RZ9LT2B1aFPki8toGWWgeltbEJvWzzK_LDdHycvJ3K6Rr86HJhGn6IfsONNaNer1nBeUN6-5w1VFvPqeTItYIUtnGV--7sG3lti9eTEU3xS8TszdHeOGgLCwQlmUsMbGr5fEkpabwhk1oqt5PG5CcOIy0xiY2TaFNJWAdRk8NPcrpjXBzp0GGsyjKmdq_BdS4jznT9o_c9Y1WkVHOQnUYcUhZNO57IELcv_-9lO3gObi9C5NrGZXfgZzc6TWjLl63V0myV338jjvyvhu8u3G4Rt9htVOQerLnqPty6wMP4AD5mTAtqZk5MmClY7M2rzyveX7Qi54BF8lHmq4V4N5-dnbhTkbsT6jnZCEGIX2R6sRS6suJDXVKIrAe3InrW-IdwfCXd24D1al65RyBCp4wfJt4mdB06OfTSoQ5TREe3Mh1A0AlBUbac7FwaZFY0bNJY8CwV_SwN4FX__teGjeSPb252MlW0q9KiwBQTSYgulAPAWjj-0kqxO8ry_unxv3z0HG6Mj_KD4mByuP8EbiJnj9RB75uwvjxduaeE6ZbmWa1FAj5dtdz9Al5fTE8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKlXlQH8RC7T1oVVPgWQS2-TQA2IbsaWLUFukPVRK7dg-wJJF7K4QPBWv0jfqOH9ApapSJQ69RImUWLE94_nGnvkG4G0iDTpa-wMjQxckTplAcaWCwphYh443-RXDA7F3lHwa8dECXLe5MDU_RLfh5jWjWq-9gp8Zt3VDGqqM85nk6EsFSWzCKvft5QU5bdMPgz7N8DvE7OO33b2gqSsQFGQtMTDC-OMlKbl2mixqIe22iMlNTCPFMYm15WgEJ6iDqMjfJzHd1jaOVGgxlkURU7sP4GEiwtQXi-h_6QirIinrc2wR-YiyaNTSRIa4dfd_75rBG2x7GyFXJi57Aj_bwakjW0425zO9WVz9xhv5P43eU1hu8DbbqRXkGSzY8jks3WJhfAHfM08KqseWDTxPMNudlMdzv7to2NCHK5KHMplP2eFkfHlqz9nQnlLHyUIwwvssU9MZU6VhX6uCQmQ7fCus44x_CUf30r0VWCwnpV0FFlqpXZo4k9A1tTx13KIKBaKlWy56ELQykBcNI7svDDLOay5pzP0s5d0s9eB99_5ZzUXyxzc3WpHKmzVpmqPAhBOeC3kPsJKNv7SS7_SzYfe09i8fvYFHh_0s_zw42F-Hx-hTR6qI9w1YnJ3P7SsCdDP9utIhBj_uW-x-AfkMSv4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Ionic+Conjugated+Microporous+Polymer+Membranes+for+Fast+and+Selective+Ion+Transport&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Zongyao&rft.au=Shinde%2C+Digambar+B.&rft.au=Guo%2C+Dong&rft.au=Cao%2C+Li&rft.date=2022-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202108672&rft.externalDBID=10.1002%252Fadfm.202108672&rft.externalDocID=ADFM202108672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon