Vertically Aligned MXene Nanosheet Arrays for High‐Rate Lithium Metal Anodes
Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti3C2Tx MXene nanosheet arrays synthesized by a facile...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 18 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti3C2Tx MXene nanosheet arrays synthesized by a facile ice template assisted blade coating method are adopted to regulate Li metal nucleation and guide Li metal deposition. This kind of vertical structure exhibits low tortuosity that can achieve homogeneous and fast Li transport. In addition, the rich F and O groups on the Ti3C2Tx surface are conducive to the formation of a uniform solid–electrolyte interphase layer, which plays an important role in regulating the nucleation and growth of Li metal. Consequently, the vertically aligned Ti3C2Tx electrodes achieve high Coulombic efficiencies (98.8%) for more than 450 cycles at a fixed areal capacity of 1.0 mAh cm−2 with a current density of 1.0 mA cm−2. Moreover, it can maintain stable lithium plating/striping behaviors even at an ultrahigh current density of 5.0 mA cm−2 and high areal capacity of 5.0 mAh cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with these vertically aligned Ti3C2Tx electrodes show superior stability and rate performance than the horizontally aligned Ti3C2Tx electrodes.
A facile ice template assisted blade coating method is applied to prepare vertical MXene electrodes. The uniform SEI layer and homogeneous current density distribution enable the dendrite‐free Li plating/stripping behaviors on vertical MXene walls. The vertical MXene electrodes show significantly improved cycling stability and rate capability compared to the horizontal MXene electrodes in both half and full cells. |
---|---|
AbstractList | Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti3C2Tx MXene nanosheet arrays synthesized by a facile ice template assisted blade coating method are adopted to regulate Li metal nucleation and guide Li metal deposition. This kind of vertical structure exhibits low tortuosity that can achieve homogeneous and fast Li transport. In addition, the rich F and O groups on the Ti3C2Tx surface are conducive to the formation of a uniform solid–electrolyte interphase layer, which plays an important role in regulating the nucleation and growth of Li metal. Consequently, the vertically aligned Ti3C2Tx electrodes achieve high Coulombic efficiencies (98.8%) for more than 450 cycles at a fixed areal capacity of 1.0 mAh cm−2 with a current density of 1.0 mA cm−2. Moreover, it can maintain stable lithium plating/striping behaviors even at an ultrahigh current density of 5.0 mA cm−2 and high areal capacity of 5.0 mAh cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with these vertically aligned Ti3C2Tx electrodes show superior stability and rate performance than the horizontally aligned Ti3C2Tx electrodes. Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti 3 C 2 T x MXene nanosheet arrays synthesized by a facile ice template assisted blade coating method are adopted to regulate Li metal nucleation and guide Li metal deposition. This kind of vertical structure exhibits low tortuosity that can achieve homogeneous and fast Li transport. In addition, the rich F and O groups on the Ti 3 C 2 T x surface are conducive to the formation of a uniform solid–electrolyte interphase layer, which plays an important role in regulating the nucleation and growth of Li metal. Consequently, the vertically aligned Ti 3 C 2 T x electrodes achieve high Coulombic efficiencies (98.8%) for more than 450 cycles at a fixed areal capacity of 1.0 mAh cm −2 with a current density of 1.0 mA cm −2 . Moreover, it can maintain stable lithium plating/striping behaviors even at an ultrahigh current density of 5.0 mA cm −2 and high areal capacity of 5.0 mAh cm −2 . Furthermore, full batteries (LiFePO 4 as cathode) paired with these vertically aligned Ti 3 C 2 T x electrodes show superior stability and rate performance than the horizontally aligned Ti 3 C 2 T x electrodes. Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti3C2Tx MXene nanosheet arrays synthesized by a facile ice template assisted blade coating method are adopted to regulate Li metal nucleation and guide Li metal deposition. This kind of vertical structure exhibits low tortuosity that can achieve homogeneous and fast Li transport. In addition, the rich F and O groups on the Ti3C2Tx surface are conducive to the formation of a uniform solid–electrolyte interphase layer, which plays an important role in regulating the nucleation and growth of Li metal. Consequently, the vertically aligned Ti3C2Tx electrodes achieve high Coulombic efficiencies (98.8%) for more than 450 cycles at a fixed areal capacity of 1.0 mAh cm−2 with a current density of 1.0 mA cm−2. Moreover, it can maintain stable lithium plating/striping behaviors even at an ultrahigh current density of 5.0 mA cm−2 and high areal capacity of 5.0 mAh cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with these vertically aligned Ti3C2Tx electrodes show superior stability and rate performance than the horizontally aligned Ti3C2Tx electrodes. A facile ice template assisted blade coating method is applied to prepare vertical MXene electrodes. The uniform SEI layer and homogeneous current density distribution enable the dendrite‐free Li plating/stripping behaviors on vertical MXene walls. The vertical MXene electrodes show significantly improved cycling stability and rate capability compared to the horizontal MXene electrodes in both half and full cells. |
Author | Wang, Xingguo Liu, Wei Zuo, Jinghan Wei, Yi Gong, Yongji Chen, Qian Yang, Zhilin Gu, Xiaokang Yang, Shubin Yao, Yong Zhao, Feifei Zhang, Xiaokun Wang, Fan |
Author_xml | – sequence: 1 givenname: Qian surname: Chen fullname: Chen, Qian organization: Beihang University – sequence: 2 givenname: Yi surname: Wei fullname: Wei, Yi organization: Beijing University of Chemical Technology – sequence: 3 givenname: Xiaokun surname: Zhang fullname: Zhang, Xiaokun email: zxk@uestc.edu.cn organization: University of Electronic Science and Technology of China – sequence: 4 givenname: Zhilin surname: Yang fullname: Yang, Zhilin organization: Beihang University – sequence: 5 givenname: Fan surname: Wang fullname: Wang, Fan organization: Beihang University – sequence: 6 givenname: Wei surname: Liu fullname: Liu, Wei organization: Beihang University – sequence: 7 givenname: Jinghan surname: Zuo fullname: Zuo, Jinghan organization: Beihang University – sequence: 8 givenname: Xiaokang surname: Gu fullname: Gu, Xiaokang organization: Beihang University – sequence: 9 givenname: Yong surname: Yao fullname: Yao, Yong organization: Beihang University – sequence: 10 givenname: Xingguo surname: Wang fullname: Wang, Xingguo organization: Beihang University – sequence: 11 givenname: Feifei surname: Zhao fullname: Zhao, Feifei organization: Beihang University – sequence: 12 givenname: Shubin surname: Yang fullname: Yang, Shubin email: yangshubin@buaa.edu.cn organization: Beihang University – sequence: 13 givenname: Yongji orcidid: 0000-0003-1432-6813 surname: Gong fullname: Gong, Yongji email: yongjigong@buaa.edu.cn organization: Beihang University |
BookMark | eNqFkEFLwzAUgINMcM5dPQc8byZp1jbHMqYTtgmi4i2k7cuW0aUzyZDe_An-Rn-JHZMJgnh67_B978F3jjq2toDQJSVDSgi7VmA3Q0YYI4Qk7AR1aUz5IE456Rz3iJ2hvvfrFiFcUBJFXbR4BhdMoaqqwVlllhZKPH8BC3ihbO1XAAFnzqnGY107PDXL1ef7x4MKgGcmrMxug-cQVIUzW5fgL9CpVpWH_vfsoaebyeN4Opjd396Ns9mgiGjCBrlm-UjrUQk84XkhIg0FKCGA6zynKhdlwmNIFWNRQlPKWCpaJdGFigGEHkU9dHW4u3X16w58kOt652z7UrI4ZixOKSctxQ9U4WrvHWhZmKCCqW1wylSSErmPJ_fx5DFeqw1_aVtnNso1fwviILyZCpp_aJlNFvMf9wt3ioUJ |
CitedBy_id | crossref_primary_10_1002_adma_202406034 crossref_primary_10_1021_acsanm_3c06242 crossref_primary_10_1039_D3TA03877G crossref_primary_10_1002_adma_202300886 crossref_primary_10_1016_j_ensm_2024_103257 crossref_primary_10_1016_j_cej_2023_142555 crossref_primary_10_1002_eem2_12861 crossref_primary_10_1016_j_jechem_2023_01_035 crossref_primary_10_1016_j_cej_2024_150697 crossref_primary_10_1039_D2TA08057E crossref_primary_10_1002_aesr_202300103 crossref_primary_10_1002_adfm_202310833 crossref_primary_10_1002_adfm_202303668 crossref_primary_10_1021_acsami_2c21451 crossref_primary_10_1002_cey2_359 crossref_primary_10_1021_acsami_2c13873 crossref_primary_10_1016_j_nanoen_2024_109645 crossref_primary_10_1007_s40820_023_01039_z crossref_primary_10_1039_D2DT03024A crossref_primary_10_1002_smll_202208095 crossref_primary_10_1002_smll_202206702 crossref_primary_10_1002_smll_202304290 crossref_primary_10_1002_aenm_202301349 crossref_primary_10_1016_j_cej_2024_150502 crossref_primary_10_1002_smll_202205653 crossref_primary_10_1039_D4TA05312E crossref_primary_10_1016_j_ces_2025_121499 crossref_primary_10_1016_S1872_5805_23_60761_9 crossref_primary_10_1016_j_ensm_2024_103281 crossref_primary_10_1016_j_jcis_2025_01_151 crossref_primary_10_20517_energymater_2024_31 crossref_primary_10_1016_j_cej_2022_140468 crossref_primary_10_1002_slct_202202055 crossref_primary_10_1002_adma_202210111 crossref_primary_10_1039_D4DT03381G crossref_primary_10_1002_cey2_603 crossref_primary_10_1016_j_ensm_2024_103837 crossref_primary_10_1016_j_ensm_2024_103958 crossref_primary_10_1039_D4EE05862C crossref_primary_10_1002_ange_202413065 crossref_primary_10_1016_j_cej_2024_149431 crossref_primary_10_1016_j_ensm_2025_104200 crossref_primary_10_3390_mi13091534 crossref_primary_10_1016_j_electacta_2025_145849 crossref_primary_10_3390_ma16031138 crossref_primary_10_1002_advs_202203321 crossref_primary_10_3390_nano12213792 crossref_primary_10_1016_j_mattod_2022_06_006 crossref_primary_10_1039_D3QM00003F crossref_primary_10_1021_acsami_2c21558 crossref_primary_10_1002_adfm_202309624 crossref_primary_10_20517_energymater_2023_94 crossref_primary_10_1002_adfm_202307404 crossref_primary_10_1002_smll_202104832 crossref_primary_10_1016_j_cossms_2023_101079 crossref_primary_10_1016_j_carbon_2024_119156 crossref_primary_10_1002_adfm_202413613 crossref_primary_10_1002_smtd_202201598 crossref_primary_10_1016_j_ensm_2022_06_033 crossref_primary_10_1002_advs_202300860 crossref_primary_10_1021_acsaem_2c02323 crossref_primary_10_1039_D3EE01841E crossref_primary_10_3390_nano13081400 crossref_primary_10_1002_anie_202413065 crossref_primary_10_1002_smtd_202200980 crossref_primary_10_1021_acsanm_4c01231 crossref_primary_10_1002_aenm_202300890 crossref_primary_10_1039_D2CC05911H crossref_primary_10_1021_acsnano_4c15493 crossref_primary_10_1002_solr_202201125 crossref_primary_10_1071_CH23090 crossref_primary_10_1002_smll_202404810 crossref_primary_10_1016_j_enchem_2023_100110 crossref_primary_10_1002_adma_202209028 crossref_primary_10_1002_adma_202400888 crossref_primary_10_1002_adfm_202403091 crossref_primary_10_1002_adfm_202417923 crossref_primary_10_1007_s42114_023_00769_3 crossref_primary_10_1016_j_cej_2022_139139 crossref_primary_10_1016_j_ensm_2023_102900 crossref_primary_10_1016_S1872_5805_23_60767_X crossref_primary_10_1016_j_jcis_2024_07_246 crossref_primary_10_1016_S1872_5805_23_60734_6 crossref_primary_10_1002_adma_202303780 crossref_primary_10_1016_j_est_2023_109555 crossref_primary_10_1002_adma_202210130 crossref_primary_10_1002_adma_202406349 crossref_primary_10_1002_smll_202305964 |
Cites_doi | 10.1038/s41586-019-1481-z 10.1021/acs.chemmater.7b02847 10.1002/adma.201901820 10.1021/acsnano.9b07710 10.1007/s12274-017-1461-2 10.1021/cm901452z 10.1002/adma.202105962 10.1038/s41560-019-0338-x 10.1002/anie.202011482 10.1038/s41467-021-25848-1 10.1016/j.nanoen.2020.104817 10.1002/aenm.201800564 10.1002/aenm.202100046 10.1021/acs.nanolett.1c02521 10.1021/acs.nanolett.0c01085 10.1038/nnano.2017.129 10.1002/adma.202002193 10.1021/ja3091438 10.1038/nnano.2016.32 10.1002/smsc.202100021 10.1002/adma.201707334 10.1016/j.apsusc.2015.11.089 10.1038/s41560-018-0237-6 10.1021/acsnano.0c10558 10.1002/aenm.202003025 10.1002/adfm.202101194 10.1016/j.ensm.2019.12.022 10.1002/adfm.202004613 10.1002/aenm.202001257 10.1038/s41467-019-09932-1 10.1002/aenm.201903534 10.1002/adfm.201700348 10.1016/j.joule.2019.09.022 10.1016/j.joule.2020.03.008 10.1038/s41524-018-0064-0 10.1016/j.ensm.2020.01.005 10.1038/s41560-020-0634-5 10.1002/smll.201704371 10.1002/anie.201702099 10.1002/aenm.202002297 10.1038/s41586-018-0109-z 10.1002/adma.202006247 10.1016/j.ensm.2017.03.008 10.1002/aenm.202101712 10.1038/35104644 10.1039/C9TA00466A 10.1002/anie.201808714 10.1021/acsenergylett.0c00643 10.1016/j.ensm.2019.06.019 10.1039/D1EE00508A 10.1002/adma.201906739 10.1038/nnano.2017.16 10.1021/acsnano.9b08141 10.1002/adma.202103148 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202200072 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202200072 AENM202200072 |
Genre | article |
GrantInformation_xml | – fundername: Key Technologies Research and Development Program of China funderid: 2018YFA0306900 – fundername: National Natural Science Foundation of China funderid: 51872012; 22171016; 52072014; 21905040 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3172-bf2b5ff5de474bc93fecea99e4fbb1ab9d746e8a22371812289bf27fca6ee9f53 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:07:45 EDT 2025 Thu Apr 24 22:54:12 EDT 2025 Tue Jul 01 01:43:44 EDT 2025 Wed Jan 22 16:24:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3172-bf2b5ff5de474bc93fecea99e4fbb1ab9d746e8a22371812289bf27fca6ee9f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1432-6813 |
PQID | 2662268140 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2662268140 crossref_citationtrail_10_1002_aenm_202200072 crossref_primary_10_1002_aenm_202200072 wiley_primary_10_1002_aenm_202200072_AENM202200072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2019; 4 2021; 21 2019; 3 2020; 20 2019; 31 2017; 27 2019; 10 2019; 13 2020; 14 2017; 29 2020; 10 2020; 32 2021; 1 2016; 362 2016; 11 2021; 14 2010; 22 2020; 5 2018; 8 2021; 15 2020; 4 2018; 3 2020; 3 2021; 31 2021; 12 2021; 33 2021; 11 2018; 4 2018; 557 2020; 30 2020; 74 2021 2017; 10 2017; 12 2017; 56 2020; 26 2013; 135 2020; 24 2018; 30 2021; 60 2018; 10 2001; 414 2018; 14 2020; 29 2018; 57 2019; 572 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 Yang W. (e_1_2_7_34_1) 2020; 3 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 4 start-page: 938 year: 2020 publication-title: Joule – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 3 start-page: 889 year: 2018 publication-title: Nat. Energy – volume: 29 start-page: 361 year: 2020 publication-title: Energy Stor. Mater. – volume: 14 year: 2018 publication-title: Small – volume: 60 start-page: 4090 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 380 year: 2020 publication-title: Energy Environ. Sci. – volume: 14 start-page: 891 year: 2020 publication-title: ACS Nano – volume: 12 start-page: 993 year: 2017 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 526 year: 2020 publication-title: Nat. Energy. – volume: 557 start-page: 409 year: 2018 publication-title: Nature – volume: 12 start-page: 194 year: 2017 publication-title: Nature Nanotechnol – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 21 start-page: 7715 year: 2021 publication-title: Nano Lett. – volume: 5 start-page: 1438 year: 2020 publication-title: ACS Energy Lett. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 4 start-page: 15 year: 2018 publication-title: NPJ Comput. Mater. – volume: 10 start-page: 1896 year: 2019 publication-title: Nat. Commun. – volume: 12 start-page: 5537 year: 2021 publication-title: Nat. Commun. – volume: 10 start-page: 1356 year: 2017 publication-title: Nano Res. – volume: 3 start-page: 2647 year: 2019 publication-title: Joule – volume: 20 start-page: 3911 year: 2020 publication-title: Nano Lett. – year: 2021 publication-title: Adv. Mater. – volume: 1 year: 2021 publication-title: Small Sci. – volume: 26 start-page: 223 year: 2020 publication-title: Energy Storage Mater. – volume: 10 start-page: 199 year: 2018 publication-title: Energy Stor. Mater. – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 13 year: 2019 publication-title: ACS Nano – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 29 start-page: 7633 year: 2017 publication-title: Chem. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 362 start-page: 406 year: 2016 publication-title: Appl. Surf. Sci. – volume: 572 start-page: 511 year: 2019 publication-title: Nature – volume: 15 start-page: 8407 year: 2021 publication-title: ACS Nano – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 5726 year: 2019 publication-title: J. Mater. Chem. A. – volume: 24 start-page: 700 year: 2020 publication-title: Energy Storrage Mater. – volume: 4 start-page: 180 year: 2019 publication-title: Nat. Energy – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 14 start-page: 4115 year: 2021 publication-title: Energy Environ. Sci. – ident: e_1_2_7_49_1 doi: 10.1038/s41586-019-1481-z – ident: e_1_2_7_37_1 doi: 10.1021/acs.chemmater.7b02847 – ident: e_1_2_7_30_1 doi: 10.1002/adma.201901820 – ident: e_1_2_7_53_1 doi: 10.1021/acsnano.9b07710 – ident: e_1_2_7_21_1 doi: 10.1007/s12274-017-1461-2 – ident: e_1_2_7_4_1 doi: 10.1021/cm901452z – ident: e_1_2_7_50_1 doi: 10.1002/adma.202105962 – ident: e_1_2_7_3_1 doi: 10.1038/s41560-019-0338-x – ident: e_1_2_7_45_1 doi: 10.1002/anie.202011482 – ident: e_1_2_7_42_1 doi: 10.1038/s41467-021-25848-1 – ident: e_1_2_7_52_1 doi: 10.1016/j.nanoen.2020.104817 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.201800564 – ident: e_1_2_7_44_1 doi: 10.1002/aenm.202100046 – ident: e_1_2_7_46_1 doi: 10.1021/acs.nanolett.1c02521 – ident: e_1_2_7_12_1 doi: 10.1021/acs.nanolett.0c01085 – ident: e_1_2_7_24_1 doi: 10.1038/nnano.2017.129 – ident: e_1_2_7_16_1 doi: 10.1002/adma.202002193 – ident: e_1_2_7_2_1 doi: 10.1021/ja3091438 – ident: e_1_2_7_23_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_7_54_1 doi: 10.1002/smsc.202100021 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201707334 – ident: e_1_2_7_39_1 doi: 10.1016/j.apsusc.2015.11.089 – ident: e_1_2_7_48_1 doi: 10.1038/s41560-018-0237-6 – ident: e_1_2_7_28_1 doi: 10.1021/acsnano.0c10558 – ident: e_1_2_7_35_1 doi: 10.1002/aenm.202003025 – ident: e_1_2_7_55_1 doi: 10.1002/adfm.202101194 – ident: e_1_2_7_11_1 doi: 10.1016/j.ensm.2019.12.022 – ident: e_1_2_7_32_1 doi: 10.1002/adfm.202004613 – ident: e_1_2_7_9_1 doi: 10.1002/aenm.202001257 – ident: e_1_2_7_19_1 doi: 10.1038/s41467-019-09932-1 – ident: e_1_2_7_29_1 doi: 10.1002/aenm.201903534 – ident: e_1_2_7_17_1 doi: 10.1002/adfm.201700348 – ident: e_1_2_7_43_1 doi: 10.1016/j.joule.2019.09.022 – ident: e_1_2_7_47_1 doi: 10.1016/j.joule.2020.03.008 – ident: e_1_2_7_41_1 doi: 10.1038/s41524-018-0064-0 – ident: e_1_2_7_51_1 doi: 10.1016/j.ensm.2020.01.005 – volume: 3 start-page: 380 year: 2020 ident: e_1_2_7_34_1 publication-title: Energy Environ. Sci. – ident: e_1_2_7_13_1 doi: 10.1038/s41560-020-0634-5 – ident: e_1_2_7_10_1 doi: 10.1002/smll.201704371 – ident: e_1_2_7_25_1 doi: 10.1002/anie.201702099 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.202002297 – ident: e_1_2_7_33_1 doi: 10.1038/s41586-018-0109-z – ident: e_1_2_7_8_1 doi: 10.1002/adma.202006247 – ident: e_1_2_7_14_1 doi: 10.1016/j.ensm.2017.03.008 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.202101712 – ident: e_1_2_7_1_1 doi: 10.1038/35104644 – ident: e_1_2_7_18_1 doi: 10.1039/C9TA00466A – ident: e_1_2_7_40_1 doi: 10.1002/anie.201808714 – ident: e_1_2_7_15_1 doi: 10.1021/acsenergylett.0c00643 – ident: e_1_2_7_20_1 doi: 10.1016/j.ensm.2019.06.019 – ident: e_1_2_7_7_1 doi: 10.1039/D1EE00508A – ident: e_1_2_7_27_1 doi: 10.1002/adma.201906739 – ident: e_1_2_7_5_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_7_31_1 doi: 10.1021/acsnano.9b08141 – ident: e_1_2_7_36_1 doi: 10.1002/adma.202103148 |
SSID | ssj0000491033 |
Score | 2.6247675 |
Snippet | Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Arrays Blade coating Current density Dendritic structure Electrode materials Electrodes ice template Li metal anode Lithium low tortuosity MXenes Nanosheets Nucleation Ti 3C 2T x MXene Tortuosity vertical alignment |
Title | Vertically Aligned MXene Nanosheet Arrays for High‐Rate Lithium Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200072 https://www.proquest.com/docview/2662268140 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2V9gIHBAVEoEV7qMQhMsRrO7aPVimqUB0JaCHlYu3aszQiOChNDu2pP6G_kV_S2Q-v3TaIwsWKV7t27HmefbOeeSZkB53hQCaB8JgvMEBJmfQESPBimaQiiPxkoLMq89Fw_yj8MI7GbQmBri5ZiDfl-cq6kv-xKrahXVWV7D9Y1h0UG_A32he3aGHc3snGX3RSNJ9Oz_rZdPIdPWY_H6PzUj5zdnqiXjdn8zk_05oLOqXD5TZ8Qo6pFDNOJsuf_RxUSWRWzyqbUdjI0jYJAmAqBJHdmstqkwKM1_rYAdlX0AkCx5Nba9LjCZ_9WLqOx7b5m1rTqbvLDxi5umQ_6zFxfveGiV2khG6b0WFybpZ14ZSsdN9GDpZDrTQCmKoiilk7UTUv52_MXy6r0Cgws0KNL9z4e2SDYQiBPnAje5cffHYrcBgb-YNAV2A019Coeg7Y2-t_4jpraUORbkCjGcnhI_LQhhI0M7h4TNag3iQPOgKTT8ioRQi1CKEaIdQhhBqEUEQIVQj5fXGpsEEtNqjGBjXYeEqO3u8d7u579gsaXom8kHlCMhFJGVUQxqEo00BCCTxNIZRC-FykVRwOIeHIEWNF9TD6xiGxLPkQIJVR8Iys17ManhMaQykqJQaUIKuTfsiRHEp1kirCINyPe8Rr7lBRWnl59ZWTabHaLD3y2vX_ZYRV_thzq7nhhX34TgvklRg4KLm2HmHaCH85SpHtjXK39-LOZ39J7rew3yLri_kStpGHLsQrC6grCkuCOw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertically+Aligned+MXene+Nanosheet+Arrays+for+High%E2%80%90Rate+Lithium+Metal+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Qian&rft.au=Wei%2C+Yi&rft.au=Zhang%2C+Xiaokun&rft.au=Yang%2C+Zhilin&rft.date=2022-05-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=18&rft_id=info:doi/10.1002%2Faenm.202200072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202200072 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |