Vertically Aligned MXene Nanosheet Arrays for High‐Rate Lithium Metal Anodes

Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti3C2Tx MXene nanosheet arrays synthesized by a facile...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 18
Main Authors Chen, Qian, Wei, Yi, Zhang, Xiaokun, Yang, Zhilin, Wang, Fan, Liu, Wei, Zuo, Jinghan, Gu, Xiaokang, Yao, Yong, Wang, Xingguo, Zhao, Feifei, Yang, Shubin, Gong, Yongji
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti3C2Tx MXene nanosheet arrays synthesized by a facile ice template assisted blade coating method are adopted to regulate Li metal nucleation and guide Li metal deposition. This kind of vertical structure exhibits low tortuosity that can achieve homogeneous and fast Li transport. In addition, the rich F and O groups on the Ti3C2Tx surface are conducive to the formation of a uniform solid–electrolyte interphase layer, which plays an important role in regulating the nucleation and growth of Li metal. Consequently, the vertically aligned Ti3C2Tx electrodes achieve high Coulombic efficiencies (98.8%) for more than 450 cycles at a fixed areal capacity of 1.0 mAh cm−2 with a current density of 1.0 mA cm−2. Moreover, it can maintain stable lithium plating/striping behaviors even at an ultrahigh current density of 5.0 mA cm−2 and high areal capacity of 5.0 mAh cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with these vertically aligned Ti3C2Tx electrodes show superior stability and rate performance than the horizontally aligned Ti3C2Tx electrodes. A facile ice template assisted blade coating method is applied to prepare vertical MXene electrodes. The uniform SEI layer and homogeneous current density distribution enable the dendrite‐free Li plating/stripping behaviors on vertical MXene walls. The vertical MXene electrodes show significantly improved cycling stability and rate capability compared to the horizontal MXene electrodes in both half and full cells.
AbstractList Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti3C2Tx MXene nanosheet arrays synthesized by a facile ice template assisted blade coating method are adopted to regulate Li metal nucleation and guide Li metal deposition. This kind of vertical structure exhibits low tortuosity that can achieve homogeneous and fast Li transport. In addition, the rich F and O groups on the Ti3C2Tx surface are conducive to the formation of a uniform solid–electrolyte interphase layer, which plays an important role in regulating the nucleation and growth of Li metal. Consequently, the vertically aligned Ti3C2Tx electrodes achieve high Coulombic efficiencies (98.8%) for more than 450 cycles at a fixed areal capacity of 1.0 mAh cm−2 with a current density of 1.0 mA cm−2. Moreover, it can maintain stable lithium plating/striping behaviors even at an ultrahigh current density of 5.0 mA cm−2 and high areal capacity of 5.0 mAh cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with these vertically aligned Ti3C2Tx electrodes show superior stability and rate performance than the horizontally aligned Ti3C2Tx electrodes.
Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti 3 C 2 T x MXene nanosheet arrays synthesized by a facile ice template assisted blade coating method are adopted to regulate Li metal nucleation and guide Li metal deposition. This kind of vertical structure exhibits low tortuosity that can achieve homogeneous and fast Li transport. In addition, the rich F and O groups on the Ti 3 C 2 T x surface are conducive to the formation of a uniform solid–electrolyte interphase layer, which plays an important role in regulating the nucleation and growth of Li metal. Consequently, the vertically aligned Ti 3 C 2 T x electrodes achieve high Coulombic efficiencies (98.8%) for more than 450 cycles at a fixed areal capacity of 1.0 mAh cm −2 with a current density of 1.0 mA cm −2 . Moreover, it can maintain stable lithium plating/striping behaviors even at an ultrahigh current density of 5.0 mA cm −2 and high areal capacity of 5.0 mAh cm −2 . Furthermore, full batteries (LiFePO 4 as cathode) paired with these vertically aligned Ti 3 C 2 T x electrodes show superior stability and rate performance than the horizontally aligned Ti 3 C 2 T x electrodes.
Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical application is restricted by uneven Li metal dendrite growth. Herein, vertically aligned Ti3C2Tx MXene nanosheet arrays synthesized by a facile ice template assisted blade coating method are adopted to regulate Li metal nucleation and guide Li metal deposition. This kind of vertical structure exhibits low tortuosity that can achieve homogeneous and fast Li transport. In addition, the rich F and O groups on the Ti3C2Tx surface are conducive to the formation of a uniform solid–electrolyte interphase layer, which plays an important role in regulating the nucleation and growth of Li metal. Consequently, the vertically aligned Ti3C2Tx electrodes achieve high Coulombic efficiencies (98.8%) for more than 450 cycles at a fixed areal capacity of 1.0 mAh cm−2 with a current density of 1.0 mA cm−2. Moreover, it can maintain stable lithium plating/striping behaviors even at an ultrahigh current density of 5.0 mA cm−2 and high areal capacity of 5.0 mAh cm−2. Furthermore, full batteries (LiFePO4 as cathode) paired with these vertically aligned Ti3C2Tx electrodes show superior stability and rate performance than the horizontally aligned Ti3C2Tx electrodes. A facile ice template assisted blade coating method is applied to prepare vertical MXene electrodes. The uniform SEI layer and homogeneous current density distribution enable the dendrite‐free Li plating/stripping behaviors on vertical MXene walls. The vertical MXene electrodes show significantly improved cycling stability and rate capability compared to the horizontal MXene electrodes in both half and full cells.
Author Wang, Xingguo
Liu, Wei
Zuo, Jinghan
Wei, Yi
Gong, Yongji
Chen, Qian
Yang, Zhilin
Gu, Xiaokang
Yang, Shubin
Yao, Yong
Zhao, Feifei
Zhang, Xiaokun
Wang, Fan
Author_xml – sequence: 1
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  organization: Beihang University
– sequence: 2
  givenname: Yi
  surname: Wei
  fullname: Wei, Yi
  organization: Beijing University of Chemical Technology
– sequence: 3
  givenname: Xiaokun
  surname: Zhang
  fullname: Zhang, Xiaokun
  email: zxk@uestc.edu.cn
  organization: University of Electronic Science and Technology of China
– sequence: 4
  givenname: Zhilin
  surname: Yang
  fullname: Yang, Zhilin
  organization: Beihang University
– sequence: 5
  givenname: Fan
  surname: Wang
  fullname: Wang, Fan
  organization: Beihang University
– sequence: 6
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Beihang University
– sequence: 7
  givenname: Jinghan
  surname: Zuo
  fullname: Zuo, Jinghan
  organization: Beihang University
– sequence: 8
  givenname: Xiaokang
  surname: Gu
  fullname: Gu, Xiaokang
  organization: Beihang University
– sequence: 9
  givenname: Yong
  surname: Yao
  fullname: Yao, Yong
  organization: Beihang University
– sequence: 10
  givenname: Xingguo
  surname: Wang
  fullname: Wang, Xingguo
  organization: Beihang University
– sequence: 11
  givenname: Feifei
  surname: Zhao
  fullname: Zhao, Feifei
  organization: Beihang University
– sequence: 12
  givenname: Shubin
  surname: Yang
  fullname: Yang, Shubin
  email: yangshubin@buaa.edu.cn
  organization: Beihang University
– sequence: 13
  givenname: Yongji
  orcidid: 0000-0003-1432-6813
  surname: Gong
  fullname: Gong, Yongji
  email: yongjigong@buaa.edu.cn
  organization: Beihang University
BookMark eNqFkEFLwzAUgINMcM5dPQc8byZp1jbHMqYTtgmi4i2k7cuW0aUzyZDe_An-Rn-JHZMJgnh67_B978F3jjq2toDQJSVDSgi7VmA3Q0YYI4Qk7AR1aUz5IE456Rz3iJ2hvvfrFiFcUBJFXbR4BhdMoaqqwVlllhZKPH8BC3ihbO1XAAFnzqnGY107PDXL1ef7x4MKgGcmrMxug-cQVIUzW5fgL9CpVpWH_vfsoaebyeN4Opjd396Ns9mgiGjCBrlm-UjrUQk84XkhIg0FKCGA6zynKhdlwmNIFWNRQlPKWCpaJdGFigGEHkU9dHW4u3X16w58kOt652z7UrI4ZixOKSctxQ9U4WrvHWhZmKCCqW1wylSSErmPJ_fx5DFeqw1_aVtnNso1fwviILyZCpp_aJlNFvMf9wt3ioUJ
CitedBy_id crossref_primary_10_1002_adma_202406034
crossref_primary_10_1021_acsanm_3c06242
crossref_primary_10_1039_D3TA03877G
crossref_primary_10_1002_adma_202300886
crossref_primary_10_1016_j_ensm_2024_103257
crossref_primary_10_1016_j_cej_2023_142555
crossref_primary_10_1002_eem2_12861
crossref_primary_10_1016_j_jechem_2023_01_035
crossref_primary_10_1016_j_cej_2024_150697
crossref_primary_10_1039_D2TA08057E
crossref_primary_10_1002_aesr_202300103
crossref_primary_10_1002_adfm_202310833
crossref_primary_10_1002_adfm_202303668
crossref_primary_10_1021_acsami_2c21451
crossref_primary_10_1002_cey2_359
crossref_primary_10_1021_acsami_2c13873
crossref_primary_10_1016_j_nanoen_2024_109645
crossref_primary_10_1007_s40820_023_01039_z
crossref_primary_10_1039_D2DT03024A
crossref_primary_10_1002_smll_202208095
crossref_primary_10_1002_smll_202206702
crossref_primary_10_1002_smll_202304290
crossref_primary_10_1002_aenm_202301349
crossref_primary_10_1016_j_cej_2024_150502
crossref_primary_10_1002_smll_202205653
crossref_primary_10_1039_D4TA05312E
crossref_primary_10_1016_j_ces_2025_121499
crossref_primary_10_1016_S1872_5805_23_60761_9
crossref_primary_10_1016_j_ensm_2024_103281
crossref_primary_10_1016_j_jcis_2025_01_151
crossref_primary_10_20517_energymater_2024_31
crossref_primary_10_1016_j_cej_2022_140468
crossref_primary_10_1002_slct_202202055
crossref_primary_10_1002_adma_202210111
crossref_primary_10_1039_D4DT03381G
crossref_primary_10_1002_cey2_603
crossref_primary_10_1016_j_ensm_2024_103837
crossref_primary_10_1016_j_ensm_2024_103958
crossref_primary_10_1039_D4EE05862C
crossref_primary_10_1002_ange_202413065
crossref_primary_10_1016_j_cej_2024_149431
crossref_primary_10_1016_j_ensm_2025_104200
crossref_primary_10_3390_mi13091534
crossref_primary_10_1016_j_electacta_2025_145849
crossref_primary_10_3390_ma16031138
crossref_primary_10_1002_advs_202203321
crossref_primary_10_3390_nano12213792
crossref_primary_10_1016_j_mattod_2022_06_006
crossref_primary_10_1039_D3QM00003F
crossref_primary_10_1021_acsami_2c21558
crossref_primary_10_1002_adfm_202309624
crossref_primary_10_20517_energymater_2023_94
crossref_primary_10_1002_adfm_202307404
crossref_primary_10_1002_smll_202104832
crossref_primary_10_1016_j_cossms_2023_101079
crossref_primary_10_1016_j_carbon_2024_119156
crossref_primary_10_1002_adfm_202413613
crossref_primary_10_1002_smtd_202201598
crossref_primary_10_1016_j_ensm_2022_06_033
crossref_primary_10_1002_advs_202300860
crossref_primary_10_1021_acsaem_2c02323
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_3390_nano13081400
crossref_primary_10_1002_anie_202413065
crossref_primary_10_1002_smtd_202200980
crossref_primary_10_1021_acsanm_4c01231
crossref_primary_10_1002_aenm_202300890
crossref_primary_10_1039_D2CC05911H
crossref_primary_10_1021_acsnano_4c15493
crossref_primary_10_1002_solr_202201125
crossref_primary_10_1071_CH23090
crossref_primary_10_1002_smll_202404810
crossref_primary_10_1016_j_enchem_2023_100110
crossref_primary_10_1002_adma_202209028
crossref_primary_10_1002_adma_202400888
crossref_primary_10_1002_adfm_202403091
crossref_primary_10_1002_adfm_202417923
crossref_primary_10_1007_s42114_023_00769_3
crossref_primary_10_1016_j_cej_2022_139139
crossref_primary_10_1016_j_ensm_2023_102900
crossref_primary_10_1016_S1872_5805_23_60767_X
crossref_primary_10_1016_j_jcis_2024_07_246
crossref_primary_10_1016_S1872_5805_23_60734_6
crossref_primary_10_1002_adma_202303780
crossref_primary_10_1016_j_est_2023_109555
crossref_primary_10_1002_adma_202210130
crossref_primary_10_1002_adma_202406349
crossref_primary_10_1002_smll_202305964
Cites_doi 10.1038/s41586-019-1481-z
10.1021/acs.chemmater.7b02847
10.1002/adma.201901820
10.1021/acsnano.9b07710
10.1007/s12274-017-1461-2
10.1021/cm901452z
10.1002/adma.202105962
10.1038/s41560-019-0338-x
10.1002/anie.202011482
10.1038/s41467-021-25848-1
10.1016/j.nanoen.2020.104817
10.1002/aenm.201800564
10.1002/aenm.202100046
10.1021/acs.nanolett.1c02521
10.1021/acs.nanolett.0c01085
10.1038/nnano.2017.129
10.1002/adma.202002193
10.1021/ja3091438
10.1038/nnano.2016.32
10.1002/smsc.202100021
10.1002/adma.201707334
10.1016/j.apsusc.2015.11.089
10.1038/s41560-018-0237-6
10.1021/acsnano.0c10558
10.1002/aenm.202003025
10.1002/adfm.202101194
10.1016/j.ensm.2019.12.022
10.1002/adfm.202004613
10.1002/aenm.202001257
10.1038/s41467-019-09932-1
10.1002/aenm.201903534
10.1002/adfm.201700348
10.1016/j.joule.2019.09.022
10.1016/j.joule.2020.03.008
10.1038/s41524-018-0064-0
10.1016/j.ensm.2020.01.005
10.1038/s41560-020-0634-5
10.1002/smll.201704371
10.1002/anie.201702099
10.1002/aenm.202002297
10.1038/s41586-018-0109-z
10.1002/adma.202006247
10.1016/j.ensm.2017.03.008
10.1002/aenm.202101712
10.1038/35104644
10.1039/C9TA00466A
10.1002/anie.201808714
10.1021/acsenergylett.0c00643
10.1016/j.ensm.2019.06.019
10.1039/D1EE00508A
10.1002/adma.201906739
10.1038/nnano.2017.16
10.1021/acsnano.9b08141
10.1002/adma.202103148
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202200072
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202200072
AENM202200072
Genre article
GrantInformation_xml – fundername: Key Technologies Research and Development Program of China
  funderid: 2018YFA0306900
– fundername: National Natural Science Foundation of China
  funderid: 51872012; 22171016; 52072014; 21905040
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3172-bf2b5ff5de474bc93fecea99e4fbb1ab9d746e8a22371812289bf27fca6ee9f53
ISSN 1614-6832
IngestDate Fri Jul 25 12:07:45 EDT 2025
Thu Apr 24 22:54:12 EDT 2025
Tue Jul 01 01:43:44 EDT 2025
Wed Jan 22 16:24:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3172-bf2b5ff5de474bc93fecea99e4fbb1ab9d746e8a22371812289bf27fca6ee9f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1432-6813
PQID 2662268140
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_2662268140
crossref_citationtrail_10_1002_aenm_202200072
crossref_primary_10_1002_aenm_202200072
wiley_primary_10_1002_aenm_202200072_AENM202200072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2019; 4
2021; 21
2019; 3
2020; 20
2019; 31
2017; 27
2019; 10
2019; 13
2020; 14
2017; 29
2020; 10
2020; 32
2021; 1
2016; 362
2016; 11
2021; 14
2010; 22
2020; 5
2018; 8
2021; 15
2020; 4
2018; 3
2020; 3
2021; 31
2021; 12
2021; 33
2021; 11
2018; 4
2018; 557
2020; 30
2020; 74
2021
2017; 10
2017; 12
2017; 56
2020; 26
2013; 135
2020; 24
2018; 30
2021; 60
2018; 10
2001; 414
2018; 14
2020; 29
2018; 57
2019; 572
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
Yang W. (e_1_2_7_34_1) 2020; 3
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 938
  year: 2020
  publication-title: Joule
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 3
  start-page: 889
  year: 2018
  publication-title: Nat. Energy
– volume: 29
  start-page: 361
  year: 2020
  publication-title: Energy Stor. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 60
  start-page: 4090
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 380
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 891
  year: 2020
  publication-title: ACS Nano
– volume: 12
  start-page: 993
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 526
  year: 2020
  publication-title: Nat. Energy.
– volume: 557
  start-page: 409
  year: 2018
  publication-title: Nature
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nature Nanotechnol
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 21
  start-page: 7715
  year: 2021
  publication-title: Nano Lett.
– volume: 5
  start-page: 1438
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 4
  start-page: 15
  year: 2018
  publication-title: NPJ Comput. Mater.
– volume: 10
  start-page: 1896
  year: 2019
  publication-title: Nat. Commun.
– volume: 12
  start-page: 5537
  year: 2021
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1356
  year: 2017
  publication-title: Nano Res.
– volume: 3
  start-page: 2647
  year: 2019
  publication-title: Joule
– volume: 20
  start-page: 3911
  year: 2020
  publication-title: Nano Lett.
– year: 2021
  publication-title: Adv. Mater.
– volume: 1
  year: 2021
  publication-title: Small Sci.
– volume: 26
  start-page: 223
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 10
  start-page: 199
  year: 2018
  publication-title: Energy Stor. Mater.
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 29
  start-page: 7633
  year: 2017
  publication-title: Chem. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 362
  start-page: 406
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 572
  start-page: 511
  year: 2019
  publication-title: Nature
– volume: 15
  start-page: 8407
  year: 2021
  publication-title: ACS Nano
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 5726
  year: 2019
  publication-title: J. Mater. Chem. A.
– volume: 24
  start-page: 700
  year: 2020
  publication-title: Energy Storrage Mater.
– volume: 4
  start-page: 180
  year: 2019
  publication-title: Nat. Energy
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 14
  start-page: 4115
  year: 2021
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_49_1
  doi: 10.1038/s41586-019-1481-z
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.chemmater.7b02847
– ident: e_1_2_7_30_1
  doi: 10.1002/adma.201901820
– ident: e_1_2_7_53_1
  doi: 10.1021/acsnano.9b07710
– ident: e_1_2_7_21_1
  doi: 10.1007/s12274-017-1461-2
– ident: e_1_2_7_4_1
  doi: 10.1021/cm901452z
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.202105962
– ident: e_1_2_7_3_1
  doi: 10.1038/s41560-019-0338-x
– ident: e_1_2_7_45_1
  doi: 10.1002/anie.202011482
– ident: e_1_2_7_42_1
  doi: 10.1038/s41467-021-25848-1
– ident: e_1_2_7_52_1
  doi: 10.1016/j.nanoen.2020.104817
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.201800564
– ident: e_1_2_7_44_1
  doi: 10.1002/aenm.202100046
– ident: e_1_2_7_46_1
  doi: 10.1021/acs.nanolett.1c02521
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.nanolett.0c01085
– ident: e_1_2_7_24_1
  doi: 10.1038/nnano.2017.129
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.202002193
– ident: e_1_2_7_2_1
  doi: 10.1021/ja3091438
– ident: e_1_2_7_23_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_7_54_1
  doi: 10.1002/smsc.202100021
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201707334
– ident: e_1_2_7_39_1
  doi: 10.1016/j.apsusc.2015.11.089
– ident: e_1_2_7_48_1
  doi: 10.1038/s41560-018-0237-6
– ident: e_1_2_7_28_1
  doi: 10.1021/acsnano.0c10558
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.202003025
– ident: e_1_2_7_55_1
  doi: 10.1002/adfm.202101194
– ident: e_1_2_7_11_1
  doi: 10.1016/j.ensm.2019.12.022
– ident: e_1_2_7_32_1
  doi: 10.1002/adfm.202004613
– ident: e_1_2_7_9_1
  doi: 10.1002/aenm.202001257
– ident: e_1_2_7_19_1
  doi: 10.1038/s41467-019-09932-1
– ident: e_1_2_7_29_1
  doi: 10.1002/aenm.201903534
– ident: e_1_2_7_17_1
  doi: 10.1002/adfm.201700348
– ident: e_1_2_7_43_1
  doi: 10.1016/j.joule.2019.09.022
– ident: e_1_2_7_47_1
  doi: 10.1016/j.joule.2020.03.008
– ident: e_1_2_7_41_1
  doi: 10.1038/s41524-018-0064-0
– ident: e_1_2_7_51_1
  doi: 10.1016/j.ensm.2020.01.005
– volume: 3
  start-page: 380
  year: 2020
  ident: e_1_2_7_34_1
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_13_1
  doi: 10.1038/s41560-020-0634-5
– ident: e_1_2_7_10_1
  doi: 10.1002/smll.201704371
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.202002297
– ident: e_1_2_7_33_1
  doi: 10.1038/s41586-018-0109-z
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.202006247
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ensm.2017.03.008
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.202101712
– ident: e_1_2_7_1_1
  doi: 10.1038/35104644
– ident: e_1_2_7_18_1
  doi: 10.1039/C9TA00466A
– ident: e_1_2_7_40_1
  doi: 10.1002/anie.201808714
– ident: e_1_2_7_15_1
  doi: 10.1021/acsenergylett.0c00643
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ensm.2019.06.019
– ident: e_1_2_7_7_1
  doi: 10.1039/D1EE00508A
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201906739
– ident: e_1_2_7_5_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_7_31_1
  doi: 10.1021/acsnano.9b08141
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.202103148
SSID ssj0000491033
Score 2.6247675
Snippet Lithium (Li) metal is considered as one of the best anode materials due to its high theoretical capacity and low reduction potential. However, its practical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Arrays
Blade coating
Current density
Dendritic structure
Electrode materials
Electrodes
ice template
Li metal anode
Lithium
low tortuosity
MXenes
Nanosheets
Nucleation
Ti 3C 2T x MXene
Tortuosity
vertical alignment
Title Vertically Aligned MXene Nanosheet Arrays for High‐Rate Lithium Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202200072
https://www.proquest.com/docview/2662268140
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2V9gIHBAVEoEV7qMQhMsRrO7aPVimqUB0JaCHlYu3aszQiOChNDu2pP6G_kV_S2Q-v3TaIwsWKV7t27HmefbOeeSZkB53hQCaB8JgvMEBJmfQESPBimaQiiPxkoLMq89Fw_yj8MI7GbQmBri5ZiDfl-cq6kv-xKrahXVWV7D9Y1h0UG_A32he3aGHc3snGX3RSNJ9Oz_rZdPIdPWY_H6PzUj5zdnqiXjdn8zk_05oLOqXD5TZ8Qo6pFDNOJsuf_RxUSWRWzyqbUdjI0jYJAmAqBJHdmstqkwKM1_rYAdlX0AkCx5Nba9LjCZ_9WLqOx7b5m1rTqbvLDxi5umQ_6zFxfveGiV2khG6b0WFybpZ14ZSsdN9GDpZDrTQCmKoiilk7UTUv52_MXy6r0Cgws0KNL9z4e2SDYQiBPnAje5cffHYrcBgb-YNAV2A019Coeg7Y2-t_4jpraUORbkCjGcnhI_LQhhI0M7h4TNag3iQPOgKTT8ioRQi1CKEaIdQhhBqEUEQIVQj5fXGpsEEtNqjGBjXYeEqO3u8d7u579gsaXom8kHlCMhFJGVUQxqEo00BCCTxNIZRC-FykVRwOIeHIEWNF9TD6xiGxLPkQIJVR8Iys17ManhMaQykqJQaUIKuTfsiRHEp1kirCINyPe8Rr7lBRWnl59ZWTabHaLD3y2vX_ZYRV_thzq7nhhX34TgvklRg4KLm2HmHaCH85SpHtjXK39-LOZ39J7rew3yLri_kStpGHLsQrC6grCkuCOw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertically+Aligned+MXene+Nanosheet+Arrays+for+High%E2%80%90Rate+Lithium+Metal+Anodes&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Qian&rft.au=Wei%2C+Yi&rft.au=Zhang%2C+Xiaokun&rft.au=Yang%2C+Zhilin&rft.date=2022-05-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=18&rft_id=info:doi/10.1002%2Faenm.202200072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202200072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon