In Situ Atomic Force Microscopy and X‐ray Computed Tomography Characterization of All‐Solid‐State Lithium Batteries: Both Local and Overall

All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanic...

Full description

Saved in:
Bibliographic Details
Published inEnergy technology (Weinheim, Germany) Vol. 11; no. 4
Main Authors Chen, Weiheng, Chen, Xiaoping, Chen, Wenhua, Jiang, Zhongqing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanical, electrical, and electrochemical properties of a wide range of electrodes and electrolytes. However, because a cross‐section cut is necessary to define the solid–solid interface, true in situ analysis is not practical. The first part of this review will assess recent advancements in the study of ASSLBs utilizing AFM and other scanning probe microscopy techniques. The interior solid–solid interfaces can be illuminated in situ using X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques, whereas, in contrast, to deepen the subject, it is further examined how X‐CT vary from the use of other instruments for solid‐state battery characterization, compare the information that various methods may give, and assess how well they can accurately reflect real batteries. This review may serve as a reference and point researchers in the direction of future study on the solid–solid interface of ASSLBs. This review examines current advances in the examination of all‐solid‐state lithium batteries using atomic force microscopy (AFM). In contrast, X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques may offer considerable potential for revealing the interior solid–solid interfaces in situ. To go further into the topic, the information provided by different approaches are compared.
AbstractList All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanical, electrical, and electrochemical properties of a wide range of electrodes and electrolytes. However, because a cross‐section cut is necessary to define the solid–solid interface, true in situ analysis is not practical. The first part of this review will assess recent advancements in the study of ASSLBs utilizing AFM and other scanning probe microscopy techniques. The interior solid–solid interfaces can be illuminated in situ using X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques, whereas, in contrast, to deepen the subject, it is further examined how X‐CT vary from the use of other instruments for solid‐state battery characterization, compare the information that various methods may give, and assess how well they can accurately reflect real batteries. This review may serve as a reference and point researchers in the direction of future study on the solid–solid interface of ASSLBs. This review examines current advances in the examination of all‐solid‐state lithium batteries using atomic force microscopy (AFM). In contrast, X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques may offer considerable potential for revealing the interior solid–solid interfaces in situ. To go further into the topic, the information provided by different approaches are compared.
All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanical, electrical, and electrochemical properties of a wide range of electrodes and electrolytes. However, because a cross‐section cut is necessary to define the solid–solid interface, true in situ analysis is not practical. The first part of this review will assess recent advancements in the study of ASSLBs utilizing AFM and other scanning probe microscopy techniques. The interior solid–solid interfaces can be illuminated in situ using X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques, whereas, in contrast, to deepen the subject, it is further examined how X‐CT vary from the use of other instruments for solid‐state battery characterization, compare the information that various methods may give, and assess how well they can accurately reflect real batteries. This review may serve as a reference and point researchers in the direction of future study on the solid–solid interface of ASSLBs.
Author Chen, Weiheng
Chen, Xiaoping
Jiang, Zhongqing
Chen, Wenhua
Author_xml – sequence: 1
  givenname: Weiheng
  surname: Chen
  fullname: Chen, Weiheng
  organization: Ningbo University of Technology
– sequence: 2
  givenname: Xiaoping
  surname: Chen
  fullname: Chen, Xiaoping
  organization: Ningbo University of Technology
– sequence: 3
  givenname: Wenhua
  surname: Chen
  fullname: Chen, Wenhua
  email: chenwh@zstu.edu.cn
  organization: Zhejiang Sci-Tech University
– sequence: 4
  givenname: Zhongqing
  orcidid: 0000-0001-5465-3611
  surname: Jiang
  fullname: Jiang, Zhongqing
  email: zhongqingjiang@zstu.edu.cn
  organization: Zhejiang Sci-Tech University
BookMark eNqFkMFq3DAQhkVJoUmaa8-CnHc7kuy1nNtm2bSBbXPIBnozs_K4qyBbjiwnbE55hPYV-yS1syWFQslpxOj_5ofviB00viHGPgiYCgD5kZpIUwlSglCZfMMOpciTSSLz2cHLW-t37KTrbgFAQKpSUIfs52XDr23s-Tz62hp-4YMh_sWa4Dvj2x3HpuTffj39CLjjC1-3faSSr33tvwdst8NuiwFNpGAfMVrfcF_xuXMDce2dLccZMRJf2bi1fc3PMY5h6s74uY9bvvIG3XPL1T0FdO49e1uh6-jkzzxmNxfL9eLzZHX16XIxX02MEpmcbBJdUb4BTZUoN5hkKRiZY5pKVZYAWIosM9UMKj18UA5aaEmYa9CmRCVBHbPT_d02-Lueuljc-j40Q2Uhs3yWJSJRakhN96lRSBeoKtpgawy7QkAxmi9G88WL-QFI_gGMjc9mYkDr_o_le-zBOtq9UlIsv66Xf9nfgGCexw
CitedBy_id crossref_primary_10_1007_s11814_024_00277_0
crossref_primary_10_1002_tcr_202300206
crossref_primary_10_1039_D4EB00006D
crossref_primary_10_3390_wevj14110305
crossref_primary_10_1002_celc_202400219
crossref_primary_10_3390_en17164030
crossref_primary_10_1016_j_esci_2024_100278
crossref_primary_10_1021_acs_chemrev_4c00584
crossref_primary_10_1016_j_ensm_2025_104110
crossref_primary_10_1002_smll_202407983
Cites_doi 10.1016/j.matlet.2013.01.021
10.1002/adma.201700007
10.1021/acsenergylett.8b02381
10.1021/acs.jpcc.7b06363
10.1002/ente.202001096
10.1021/acsenergylett.9b00816
10.1016/j.nanoen.2021.105744
10.1021/acsenergylett.8b00249
10.1021/acsenergylett.2c00003
10.1021/acs.chemmater.7b02805
10.1002/aenm.201904119
10.1002/advs.202000362
10.1002/anie.202211626
10.1002/advs.201903088
10.1002/aenm.202000219
10.1038/s41563-021-00967-8
10.1002/adfm.202007564
10.1021/am505847s
10.1002/adma.201601273
10.1021/acsami.6b00831
10.1002/adma.201001190
10.1002/ente.202000580
10.1016/j.cej.2020.127031
10.1016/j.elecom.2015.05.001
10.1002/adma.201905784
10.1002/aenm.202101518
10.1002/smll.202101326
10.1021/jacs.0c10121
10.3762/bjnano.9.154
10.1016/j.nanoen.2018.04.062
10.1002/adma.201504526
10.1021/acsenergylett.0c00542
10.1021/acs.nanolett.6b01119
10.1007/s41918-020-00092-1
10.1088/0957-0233/22/12/125703
10.1002/aenm.201903922
10.1038/ncomms12909
10.1021/acsenergylett.7b01254
10.1021/am508111r
10.1002/aenm.202001139
10.1039/C7TA02730C
10.3390/ma13030668
10.1016/j.jpowsour.2014.07.001
10.1126/science.aap8787
10.1016/j.jpowsour.2018.11.036
10.1016/S0378-7753(98)00151-7
10.1016/j.jpowsour.2011.08.115
10.1016/j.apsusc.2018.02.014
10.1038/s41565-022-01081-9
10.1126/science.1241882
10.1016/j.joule.2020.11.008
10.1021/nn305648j
10.1021/acsami.5b08238
10.1021/acs.chemmater.5b03854
10.1021/acsami.8b17223
10.1038/nnano.2017.45
10.1021/acsaem.0c02607
10.1016/j.polymertesting.2013.01.011
10.1002/aenm.201903311
10.1016/j.nanoen.2019.103925
10.1021/jacs.0c09602
10.1002/aenm.201901597
10.1002/aenm.201200932
10.1016/j.joule.2017.12.008
10.1016/S0378-7753(01)00871-0
10.1021/acs.nanolett.0c03074
10.1002/aenm.201701003
10.1126/science.abc3167
10.1016/j.joule.2020.03.012
10.1002/aenm.201903993
10.1002/aenm.202003811
10.1016/j.nanoen.2016.12.001
10.1149/1.1837248
10.1021/acsami.0c11683
10.1016/j.ensm.2021.04.028
10.1002/celc.201300022
10.1039/C8EE00001H
10.1007/s11581-017-2314-4
10.1016/j.nanoen.2020.104545
10.1021/acsami.2c10589
10.1016/j.mattod.2019.05.019
10.1149/2.0681613jes
10.1016/j.jpowsour.2018.04.092
10.1039/D2TA02378D
10.1038/s41467-020-19528-9
10.1016/j.joule.2019.11.015
10.1002/aenm.201803947
10.1039/C9NR02176K
10.1016/j.jpowsour.2019.227440
10.1038/ncomms8496
10.1002/smtd.201800387
10.1002/adfm.202009925
10.1021/acsnano.8b07254
10.1021/acsami.8b04204
10.1038/s41565-019-0604-x
10.1038/s41560-018-0104-5
10.1016/j.jpowsour.2016.12.070
10.1002/advs.201700369
10.1088/0022-3727/44/46/464003
10.1002/smtd.201700298
10.1016/j.jpowsour.2014.11.120
10.1039/C7EE00385D
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1002/ente.202201372
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2194-4296
EndPage n/a
ExternalDocumentID 10_1002_ente_202201372
ENTE202201372
Genre article
GrantInformation_xml – fundername: Zhejiang Provincial Natural Science Foundation
  funderid: LR22E070001
– fundername: National Natural Science Foundation of China
  funderid: 12275239 and 11975205
GroupedDBID 05W
0R~
1OC
31~
33P
50Y
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BFHJK
BMXJE
BRXPI
D-B
DCZOG
EBS
EDH
EJD
G-S
GODZA
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c3172-b48fe9b08ef1dba4750c29a5523dd00ad177cf60f850ce908182ea9808cda3203
ISSN 2194-4288
IngestDate Fri Jul 25 03:20:40 EDT 2025
Tue Jul 01 04:10:45 EDT 2025
Thu Apr 24 22:58:36 EDT 2025
Wed Jan 22 16:23:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3172-b48fe9b08ef1dba4750c29a5523dd00ad177cf60f850ce908182ea9808cda3203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5465-3611
PQID 2796741433
PQPubID 2034361
PageCount 15
ParticipantIDs proquest_journals_2796741433
crossref_primary_10_1002_ente_202201372
crossref_citationtrail_10_1002_ente_202201372
wiley_primary_10_1002_ente_202201372_ENTE202201372
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Energy technology (Weinheim, Germany)
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2018; 441
2013; 3
2021; 20
2020; 20
2019; 11
2019; 13
2021; 405
2020; 448
2020; 15
2020; 13
2020; 12
1996; 143
2020; 11
2020; 10
2013; 7
2018; 49
2020; 8
2014; 1
2020; 7
2010; 22
2018; 9
2011; 169
2020; 5
2020; 4
2018; 3
2021; 31
2018; 2
2018; 5
2021; 33
2019; 65
2017; 32
2021; 39
2020; 370
2013; 96
2011; 22
2002; 104
2017; 121
2021; 82
2014; 6
2021; 9
2015; 57
2019; 9
2019; 4
2021; 5
2015; 6
2021; 4
2019; 3
2019; 31
2020; 142
2013; 342
2017; 29
2021; 143
2016; 16
2015; 7
2016; 163
2018; 24
2016; 7
2012; 197
2018; 393
2021; 11
2018; 359
2013; 32
2022; 61
2022; 7
2015; 277
2020; 70
2021; 17
2017; 10
2017; 12
2019; 412
2022; 14
2011; 44
2022; 10
2017; 342
2016; 28
2018; 11
2018; 10
1998; 76
2016; 8
2022; 17
2014; 269
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_90_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_5_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_47_1
Kalinin S. V. (e_1_2_7_89_1) 2011; 169
e_1_2_7_28_1
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 812
  year: 2020
  publication-title: Joule
– volume: 7
  start-page: 25441
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 2003811
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 455
  year: 2013
  publication-title: Polym. Test.
– volume: 14
  start-page: 44292
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 370
  start-page: 1313
  year: 2020
  publication-title: Science
– volume: 24
  start-page: 1271
  year: 2018
  publication-title: Ionics
– volume: 3
  start-page: 1056
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 1475
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 1904119
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 295
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 860
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 489
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 23740
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 228
  year: 2021
  publication-title: Joule
– volume: 121
  start-page: 26163
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 28
  start-page: 6631
  year: 2016
  publication-title: Adv. Mater.
– volume: 342
  start-page: 904
  year: 2017
  publication-title: J. Power Sources
– volume: 10
  start-page: 16602
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 2000362
  year: 2020
  publication-title: Adv. Sci.
– volume: 9
  start-page: 1901597
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 2001139
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 1903088
  year: 2020
  publication-title: Adv. Sci.
– volume: 49
  start-page: 434
  year: 2018
  publication-title: Nano Energy
– volume: 10
  start-page: 1903922
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 464
  year: 2018
  publication-title: Joule
– volume: 7
  start-page: 1492
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 393
  start-page: 67
  year: 2018
  publication-title: J. Power Sources
– volume: 29
  start-page: 9639
  year: 2017
  publication-title: Chem. Mater.
– volume: 13
  start-page: 668
  year: 2020
  publication-title: Materials
– volume: 441
  start-page: 265
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 143
  start-page: 839
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 94
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 2001096
  year: 2021
  publication-title: Energy Technol.
– volume: 17
  start-page: 446
  year: 2022
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 9929
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1700298
  year: 2018
  publication-title: Small Methods
– volume: 11
  start-page: 2101518
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 44
  start-page: 464003
  year: 2011
  publication-title: J. Phys. Appl. Phys.
– volume: 96
  start-page: 117
  year: 2013
  publication-title: Mater. Lett.
– volume: 32
  start-page: 271
  year: 2017
  publication-title: Nano Energy
– volume: 405
  start-page: 127031
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 536
  year: 2019
  publication-title: ACS Nano
– volume: 342
  start-page: 716
  year: 2013
  publication-title: Science
– volume: 11
  start-page: 5700
  year: 2020
  publication-title: Nat. Commun.
– volume: 31
  start-page: 2009925
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 412
  start-page: 78
  year: 2019
  publication-title: J. Power Sources
– volume: 143
  start-page: 3525
  year: 1996
  publication-title: J. Electrochem. Soc.
– volume: 20
  start-page: 1121
  year: 2021
  publication-title: Nat. Mater.
– volume: 16
  start-page: 3760
  year: 2016
  publication-title: Nano Lett.
– volume: 7
  start-page: 1701003
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 27
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 142
  start-page: 20752
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 227
  year: 2018
  publication-title: Nat. Energy
– volume: 5
  start-page: 1700369
  year: 2018
  publication-title: Adv. Sci.
– volume: 269
  start-page: 334
  year: 2014
  publication-title: J. Power Sources
– volume: 163
  start-page: A2636
  year: 2016
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 1903311
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 10617
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 41538
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 104
  start-page: 13
  year: 2002
  publication-title: J. Power Sources
– volume: 20
  start-page: 8081
  year: 2020
  publication-title: Nano Lett.
– volume: 22
  start-page: E193
  year: 2010
  publication-title: Adv. Mater.
– volume: 6
  start-page: 20317
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 356
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 17
  start-page: 2101326
  year: 2021
  publication-title: Small
– volume: 39
  start-page: 271
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 277
  start-page: 169
  year: 2015
  publication-title: J. Power Sources
– volume: 10
  start-page: 1377
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1623
  year: 2018
  publication-title: Beilstein J. Nanotechnol.
– volume: 10
  start-page: 2000219
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 7496
  year: 2015
  publication-title: Nat. Commun.
– volume: 4
  start-page: 169
  year: 2021
  publication-title: Electrochem. Energy Rev.
– volume: 65
  start-page: 103925
  year: 2019
  publication-title: Nano Energy
– volume: 4
  start-page: 1346
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 197
  start-page: 224
  year: 2012
  publication-title: J. Power Sources
– volume: 9
  start-page: 1803947
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 169
  start-page: 30
  year: 2011
  publication-title: Adv. Mater. Processes
– volume: 31
  start-page: 2007564
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1700007
  year: 2017
  publication-title: Adv. Mater.
– volume: 70
  start-page: 104545
  year: 2020
  publication-title: Nano Energy
– volume: 8
  start-page: 2000580
  year: 2020
  publication-title: Energy Technol.
– volume: 7
  start-page: 12909
  year: 2016
  publication-title: Nat. Commun.
– volume: 10
  start-page: 38151
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 1666
  year: 2013
  publication-title: ACS Nano
– volume: 10
  start-page: 1903993
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 197
  year: 2016
  publication-title: Chem. Mater.
– volume: 82
  start-page: 105744
  year: 2021
  publication-title: Nano Energy
– volume: 76
  start-page: 159
  year: 1998
  publication-title: J. Power Sources
– volume: 22
  start-page: 125703
  year: 2011
  publication-title: Meas. Sci. Technol.
– volume: 61
  start-page: e202211626
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 845
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 33
  start-page: 1905784
  year: 2021
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2073
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 359
  start-page: 1513
  year: 2018
  publication-title: Science
– volume: 448
  start-page: 227440
  year: 2020
  publication-title: J. Power Sources
– volume: 4
  start-page: 207
  year: 2020
  publication-title: Joule
– volume: 31
  start-page: 69
  year: 2019
  publication-title: Mater. Today
– volume: 28
  start-page: 1853
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1456
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 1
  start-page: 375
  year: 2014
  publication-title: ChemElectroChem
– volume: 3
  start-page: 1800387
  year: 2019
  publication-title: Small Methods
– volume: 11
  start-page: 18730
  year: 2019
  publication-title: Nanoscale
– ident: e_1_2_7_15_1
  doi: 10.1016/j.matlet.2013.01.021
– ident: e_1_2_7_70_1
  doi: 10.1002/adma.201700007
– ident: e_1_2_7_32_1
  doi: 10.1021/acsenergylett.8b02381
– ident: e_1_2_7_50_1
  doi: 10.1021/acs.jpcc.7b06363
– ident: e_1_2_7_5_1
  doi: 10.1002/ente.202001096
– ident: e_1_2_7_97_1
  doi: 10.1021/acsenergylett.9b00816
– ident: e_1_2_7_99_1
  doi: 10.1016/j.nanoen.2021.105744
– ident: e_1_2_7_7_1
  doi: 10.1021/acsenergylett.8b00249
– ident: e_1_2_7_13_1
  doi: 10.1021/acsenergylett.2c00003
– ident: e_1_2_7_20_1
  doi: 10.1021/acs.chemmater.7b02805
– ident: e_1_2_7_103_1
  doi: 10.1002/aenm.201904119
– ident: e_1_2_7_65_1
  doi: 10.1002/advs.202000362
– ident: e_1_2_7_83_1
  doi: 10.1002/anie.202211626
– ident: e_1_2_7_11_1
  doi: 10.1002/advs.201903088
– ident: e_1_2_7_86_1
  doi: 10.1002/aenm.202000219
– ident: e_1_2_7_102_1
  doi: 10.1038/s41563-021-00967-8
– ident: e_1_2_7_98_1
  doi: 10.1002/adfm.202007564
– ident: e_1_2_7_48_1
  doi: 10.1021/am505847s
– ident: e_1_2_7_63_1
  doi: 10.1002/adma.201601273
– ident: e_1_2_7_19_1
  doi: 10.1021/acsami.6b00831
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201001190
– volume: 169
  start-page: 30
  year: 2011
  ident: e_1_2_7_89_1
  publication-title: Adv. Mater. Processes
– ident: e_1_2_7_10_1
  doi: 10.1002/ente.202000580
– ident: e_1_2_7_82_1
  doi: 10.1016/j.cej.2020.127031
– ident: e_1_2_7_6_1
  doi: 10.1016/j.elecom.2015.05.001
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201905784
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.202101518
– ident: e_1_2_7_24_1
  doi: 10.1002/smll.202101326
– ident: e_1_2_7_77_1
  doi: 10.1021/jacs.0c10121
– ident: e_1_2_7_43_1
  doi: 10.3762/bjnano.9.154
– ident: e_1_2_7_80_1
  doi: 10.1016/j.nanoen.2018.04.062
– ident: e_1_2_7_69_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_7_75_1
  doi: 10.1021/acsenergylett.0c00542
– ident: e_1_2_7_33_1
  doi: 10.1021/acs.nanolett.6b01119
– ident: e_1_2_7_4_1
  doi: 10.1007/s41918-020-00092-1
– ident: e_1_2_7_27_1
  doi: 10.1088/0957-0233/22/12/125703
– ident: e_1_2_7_41_1
  doi: 10.1002/aenm.201903922
– ident: e_1_2_7_60_1
  doi: 10.1038/ncomms12909
– ident: e_1_2_7_93_1
  doi: 10.1021/acsenergylett.7b01254
– ident: e_1_2_7_17_1
  doi: 10.1021/am508111r
– ident: e_1_2_7_49_1
  doi: 10.1002/aenm.202001139
– ident: e_1_2_7_96_1
  doi: 10.1039/C7TA02730C
– ident: e_1_2_7_39_1
  doi: 10.3390/ma13030668
– ident: e_1_2_7_59_1
  doi: 10.1016/j.jpowsour.2014.07.001
– ident: e_1_2_7_72_1
  doi: 10.1126/science.aap8787
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jpowsour.2018.11.036
– ident: e_1_2_7_67_1
  doi: 10.1016/S0378-7753(98)00151-7
– ident: e_1_2_7_88_1
  doi: 10.1016/j.jpowsour.2011.08.115
– ident: e_1_2_7_28_1
  doi: 10.1016/j.apsusc.2018.02.014
– ident: e_1_2_7_57_1
  doi: 10.1038/s41565-022-01081-9
– ident: e_1_2_7_58_1
  doi: 10.1126/science.1241882
– ident: e_1_2_7_56_1
  doi: 10.1016/j.joule.2020.11.008
– ident: e_1_2_7_91_1
  doi: 10.1021/nn305648j
– ident: e_1_2_7_29_1
  doi: 10.1021/acsami.5b08238
– ident: e_1_2_7_9_1
  doi: 10.1021/acs.chemmater.5b03854
– ident: e_1_2_7_16_1
  doi: 10.1021/acsami.8b17223
– ident: e_1_2_7_37_1
  doi: 10.1038/nnano.2017.45
– ident: e_1_2_7_100_1
  doi: 10.1021/acsaem.0c02607
– ident: e_1_2_7_26_1
  doi: 10.1016/j.polymertesting.2013.01.011
– ident: e_1_2_7_23_1
  doi: 10.1002/aenm.201903311
– ident: e_1_2_7_36_1
  doi: 10.1016/j.nanoen.2019.103925
– ident: e_1_2_7_47_1
  doi: 10.1021/jacs.0c09602
– ident: e_1_2_7_79_1
  doi: 10.1002/aenm.201901597
– ident: e_1_2_7_95_1
  doi: 10.1002/aenm.201200932
– ident: e_1_2_7_54_1
  doi: 10.1016/j.joule.2017.12.008
– ident: e_1_2_7_68_1
  doi: 10.1016/S0378-7753(01)00871-0
– ident: e_1_2_7_42_1
  doi: 10.1021/acs.nanolett.0c03074
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201701003
– ident: e_1_2_7_81_1
  doi: 10.1126/science.abc3167
– ident: e_1_2_7_2_1
  doi: 10.1016/j.joule.2020.03.012
– ident: e_1_2_7_76_1
  doi: 10.1002/aenm.201903993
– ident: e_1_2_7_78_1
  doi: 10.1002/aenm.202003811
– ident: e_1_2_7_71_1
  doi: 10.1016/j.nanoen.2016.12.001
– ident: e_1_2_7_66_1
  doi: 10.1149/1.1837248
– ident: e_1_2_7_3_1
  doi: 10.1021/acsami.0c11683
– ident: e_1_2_7_87_1
  doi: 10.1016/j.ensm.2021.04.028
– ident: e_1_2_7_18_1
  doi: 10.1002/celc.201300022
– ident: e_1_2_7_84_1
  doi: 10.1039/C8EE00001H
– ident: e_1_2_7_8_1
  doi: 10.1007/s11581-017-2314-4
– ident: e_1_2_7_14_1
  doi: 10.1016/j.nanoen.2020.104545
– ident: e_1_2_7_46_1
  doi: 10.1021/acsami.2c10589
– ident: e_1_2_7_53_1
  doi: 10.1016/j.mattod.2019.05.019
– ident: e_1_2_7_64_1
  doi: 10.1149/2.0681613jes
– ident: e_1_2_7_55_1
  doi: 10.1016/j.jpowsour.2018.04.092
– ident: e_1_2_7_101_1
  doi: 10.1039/D2TA02378D
– ident: e_1_2_7_104_1
  doi: 10.1038/s41467-020-19528-9
– ident: e_1_2_7_85_1
  doi: 10.1016/j.joule.2019.11.015
– ident: e_1_2_7_62_1
  doi: 10.1002/aenm.201803947
– ident: e_1_2_7_45_1
  doi: 10.1039/C9NR02176K
– ident: e_1_2_7_22_1
  doi: 10.1016/j.jpowsour.2019.227440
– ident: e_1_2_7_94_1
  doi: 10.1038/ncomms8496
– ident: e_1_2_7_34_1
  doi: 10.1002/smtd.201800387
– ident: e_1_2_7_12_1
  doi: 10.1002/adfm.202009925
– ident: e_1_2_7_92_1
  doi: 10.1021/acsnano.8b07254
– ident: e_1_2_7_31_1
  doi: 10.1021/acsami.8b04204
– ident: e_1_2_7_74_1
  doi: 10.1038/s41565-019-0604-x
– ident: e_1_2_7_73_1
  doi: 10.1038/s41560-018-0104-5
– ident: e_1_2_7_61_1
  doi: 10.1016/j.jpowsour.2016.12.070
– ident: e_1_2_7_52_1
  doi: 10.1002/advs.201700369
– ident: e_1_2_7_90_1
  doi: 10.1088/0022-3727/44/46/464003
– ident: e_1_2_7_30_1
  doi: 10.1002/smtd.201700298
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jpowsour.2014.11.120
– ident: e_1_2_7_51_1
  doi: 10.1039/C7EE00385D
SSID ssj0001053503
Score 2.2946422
SecondaryResourceType review_article
Snippet All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms all-solid-state lithium batteries
Atomic force microscopy
Batteries
Computed tomography
Electrochemical analysis
Electrochemistry
Electrolytes
Lithium
Lithium batteries
Microscopy
Nondestructive testing
Risk assessment
Scanning probe microscopy
solid–solid interface
Tomography
X-ray computed tomography
Title In Situ Atomic Force Microscopy and X‐ray Computed Tomography Characterization of All‐Solid‐State Lithium Batteries: Both Local and Overall
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202201372
https://www.proquest.com/docview/2796741433
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdKd4ED4q_oGMgHJA5VRuokTcKtjI5t2sZhnai4RE7irJG6BEqCxE58BPhWfA4-Ce_ZjpuWIgaXNHHtuOn72X7vxe_3CHkmXJ8HaQpmaioSy828DIOVQytz3djmA56E0qF_cjo8OHePpt600_nR2rVUV_FucrUxruR_pAplIFeMkv0HyZqbQgGcg3zhCBKG47VkfAhjM6_q_qjC2OL-frnAUYpb7DDYRDErTc12hgVXw79GJXNSXmqyavnGXXE2Xxn9cTSfm3Zn5RyezFyhdopcG7O8vuwres5cbax7BVLvH5cN_cDbz-jvmq_4_lWkYWX8-ajgvhN5MRMqq_MbXCiKLy3_xJ4OH4FacHaxXjzNuQz5-r16MavNknOUa7f4-1lZXHxs6mtvB3Nam2TkpAgTrGuByaTmbNEuU5lxzaw-aKHX3bhYKPJZpD7dZRhwPHBUFqFVVu611dLsYVR8zyzC9pFpf4NsMTBYWJdsjV6fHJ8t_X1IpCMTdZtHaDhEbfZi9Ues6khLw6dtPkn9Z3KH3NaGCx0pFN4lHVHcI7dadJb3yffDgiIeqcIjlXikSzxSQAWd_vz6DZBIGyTSJRLpOhJpmVFAIrSQGMRPRB_V6KMGfS8pYo9K7MleNPYekPP98WTvwNIpP6wEFFlmxW6QiTC2A5EN0pi7oM8mLOSex5w0tW2eDnw_yYZ2FsAXIkQ-RiZ4GNhBknKH2c5D0i3KQjwiFApBm-W2nwjmxmkGhjMXsR_GQQI2guP1iNX8yVGi-fAxLcs82izZHnlu6n9QTDB_rLnTyCzSs8WniPnhELR36LlHmJTjX-4SjU8nY3O1fe3eH5Oby4GzQ7rVohZPQHGu4qcak78AWpHCWw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Atomic+Force+Microscopy+and+X%E2%80%90ray+Computed+Tomography+Characterization+of+All%E2%80%90Solid%E2%80%90State+Lithium+Batteries%3A+Both+Local+and+Overall&rft.jtitle=Energy+technology+%28Weinheim%2C+Germany%29&rft.au=Chen%2C+Weiheng&rft.au=Chen%2C+Xiaoping&rft.au=Chen%2C+Wenhua&rft.au=Jiang%2C+Zhongqing&rft.date=2023-04-01&rft.issn=2194-4288&rft.eissn=2194-4296&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1002%2Fente.202201372&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ente_202201372
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-4288&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-4288&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-4288&client=summon