In Situ Atomic Force Microscopy and X‐ray Computed Tomography Characterization of All‐Solid‐State Lithium Batteries: Both Local and Overall
All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanic...
Saved in:
Published in | Energy technology (Weinheim, Germany) Vol. 11; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanical, electrical, and electrochemical properties of a wide range of electrodes and electrolytes. However, because a cross‐section cut is necessary to define the solid–solid interface, true in situ analysis is not practical. The first part of this review will assess recent advancements in the study of ASSLBs utilizing AFM and other scanning probe microscopy techniques. The interior solid–solid interfaces can be illuminated in situ using X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques, whereas, in contrast, to deepen the subject, it is further examined how X‐CT vary from the use of other instruments for solid‐state battery characterization, compare the information that various methods may give, and assess how well they can accurately reflect real batteries. This review may serve as a reference and point researchers in the direction of future study on the solid–solid interface of ASSLBs.
This review examines current advances in the examination of all‐solid‐state lithium batteries using atomic force microscopy (AFM). In contrast, X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques may offer considerable potential for revealing the interior solid–solid interfaces in situ. To go further into the topic, the information provided by different approaches are compared. |
---|---|
AbstractList | All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanical, electrical, and electrochemical properties of a wide range of electrodes and electrolytes. However, because a cross‐section cut is necessary to define the solid–solid interface, true in situ analysis is not practical. The first part of this review will assess recent advancements in the study of ASSLBs utilizing AFM and other scanning probe microscopy techniques. The interior solid–solid interfaces can be illuminated in situ using X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques, whereas, in contrast, to deepen the subject, it is further examined how X‐CT vary from the use of other instruments for solid‐state battery characterization, compare the information that various methods may give, and assess how well they can accurately reflect real batteries. This review may serve as a reference and point researchers in the direction of future study on the solid–solid interface of ASSLBs.
This review examines current advances in the examination of all‐solid‐state lithium batteries using atomic force microscopy (AFM). In contrast, X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques may offer considerable potential for revealing the interior solid–solid interfaces in situ. To go further into the topic, the information provided by different approaches are compared. All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun. Atomic force microscopy (AFM) and related techniques have had an impact on ASSLBs research by elucidating the interfacial, morphological, mechanical, electrical, and electrochemical properties of a wide range of electrodes and electrolytes. However, because a cross‐section cut is necessary to define the solid–solid interface, true in situ analysis is not practical. The first part of this review will assess recent advancements in the study of ASSLBs utilizing AFM and other scanning probe microscopy techniques. The interior solid–solid interfaces can be illuminated in situ using X‐ray computed tomography (X‐CT) and other nondestructive characterization techniques, whereas, in contrast, to deepen the subject, it is further examined how X‐CT vary from the use of other instruments for solid‐state battery characterization, compare the information that various methods may give, and assess how well they can accurately reflect real batteries. This review may serve as a reference and point researchers in the direction of future study on the solid–solid interface of ASSLBs. |
Author | Chen, Weiheng Chen, Xiaoping Jiang, Zhongqing Chen, Wenhua |
Author_xml | – sequence: 1 givenname: Weiheng surname: Chen fullname: Chen, Weiheng organization: Ningbo University of Technology – sequence: 2 givenname: Xiaoping surname: Chen fullname: Chen, Xiaoping organization: Ningbo University of Technology – sequence: 3 givenname: Wenhua surname: Chen fullname: Chen, Wenhua email: chenwh@zstu.edu.cn organization: Zhejiang Sci-Tech University – sequence: 4 givenname: Zhongqing orcidid: 0000-0001-5465-3611 surname: Jiang fullname: Jiang, Zhongqing email: zhongqingjiang@zstu.edu.cn organization: Zhejiang Sci-Tech University |
BookMark | eNqFkMFq3DAQhkVJoUmaa8-CnHc7kuy1nNtm2bSBbXPIBnozs_K4qyBbjiwnbE55hPYV-yS1syWFQslpxOj_5ofviB00viHGPgiYCgD5kZpIUwlSglCZfMMOpciTSSLz2cHLW-t37KTrbgFAQKpSUIfs52XDr23s-Tz62hp-4YMh_sWa4Dvj2x3HpuTffj39CLjjC1-3faSSr33tvwdst8NuiwFNpGAfMVrfcF_xuXMDce2dLccZMRJf2bi1fc3PMY5h6s74uY9bvvIG3XPL1T0FdO49e1uh6-jkzzxmNxfL9eLzZHX16XIxX02MEpmcbBJdUb4BTZUoN5hkKRiZY5pKVZYAWIosM9UMKj18UA5aaEmYa9CmRCVBHbPT_d02-Lueuljc-j40Q2Uhs3yWJSJRakhN96lRSBeoKtpgawy7QkAxmi9G88WL-QFI_gGMjc9mYkDr_o_le-zBOtq9UlIsv66Xf9nfgGCexw |
CitedBy_id | crossref_primary_10_1007_s11814_024_00277_0 crossref_primary_10_1002_tcr_202300206 crossref_primary_10_1039_D4EB00006D crossref_primary_10_3390_wevj14110305 crossref_primary_10_1002_celc_202400219 crossref_primary_10_3390_en17164030 crossref_primary_10_1016_j_esci_2024_100278 crossref_primary_10_1021_acs_chemrev_4c00584 crossref_primary_10_1016_j_ensm_2025_104110 crossref_primary_10_1002_smll_202407983 |
Cites_doi | 10.1016/j.matlet.2013.01.021 10.1002/adma.201700007 10.1021/acsenergylett.8b02381 10.1021/acs.jpcc.7b06363 10.1002/ente.202001096 10.1021/acsenergylett.9b00816 10.1016/j.nanoen.2021.105744 10.1021/acsenergylett.8b00249 10.1021/acsenergylett.2c00003 10.1021/acs.chemmater.7b02805 10.1002/aenm.201904119 10.1002/advs.202000362 10.1002/anie.202211626 10.1002/advs.201903088 10.1002/aenm.202000219 10.1038/s41563-021-00967-8 10.1002/adfm.202007564 10.1021/am505847s 10.1002/adma.201601273 10.1021/acsami.6b00831 10.1002/adma.201001190 10.1002/ente.202000580 10.1016/j.cej.2020.127031 10.1016/j.elecom.2015.05.001 10.1002/adma.201905784 10.1002/aenm.202101518 10.1002/smll.202101326 10.1021/jacs.0c10121 10.3762/bjnano.9.154 10.1016/j.nanoen.2018.04.062 10.1002/adma.201504526 10.1021/acsenergylett.0c00542 10.1021/acs.nanolett.6b01119 10.1007/s41918-020-00092-1 10.1088/0957-0233/22/12/125703 10.1002/aenm.201903922 10.1038/ncomms12909 10.1021/acsenergylett.7b01254 10.1021/am508111r 10.1002/aenm.202001139 10.1039/C7TA02730C 10.3390/ma13030668 10.1016/j.jpowsour.2014.07.001 10.1126/science.aap8787 10.1016/j.jpowsour.2018.11.036 10.1016/S0378-7753(98)00151-7 10.1016/j.jpowsour.2011.08.115 10.1016/j.apsusc.2018.02.014 10.1038/s41565-022-01081-9 10.1126/science.1241882 10.1016/j.joule.2020.11.008 10.1021/nn305648j 10.1021/acsami.5b08238 10.1021/acs.chemmater.5b03854 10.1021/acsami.8b17223 10.1038/nnano.2017.45 10.1021/acsaem.0c02607 10.1016/j.polymertesting.2013.01.011 10.1002/aenm.201903311 10.1016/j.nanoen.2019.103925 10.1021/jacs.0c09602 10.1002/aenm.201901597 10.1002/aenm.201200932 10.1016/j.joule.2017.12.008 10.1016/S0378-7753(01)00871-0 10.1021/acs.nanolett.0c03074 10.1002/aenm.201701003 10.1126/science.abc3167 10.1016/j.joule.2020.03.012 10.1002/aenm.201903993 10.1002/aenm.202003811 10.1016/j.nanoen.2016.12.001 10.1149/1.1837248 10.1021/acsami.0c11683 10.1016/j.ensm.2021.04.028 10.1002/celc.201300022 10.1039/C8EE00001H 10.1007/s11581-017-2314-4 10.1016/j.nanoen.2020.104545 10.1021/acsami.2c10589 10.1016/j.mattod.2019.05.019 10.1149/2.0681613jes 10.1016/j.jpowsour.2018.04.092 10.1039/D2TA02378D 10.1038/s41467-020-19528-9 10.1016/j.joule.2019.11.015 10.1002/aenm.201803947 10.1039/C9NR02176K 10.1016/j.jpowsour.2019.227440 10.1038/ncomms8496 10.1002/smtd.201800387 10.1002/adfm.202009925 10.1021/acsnano.8b07254 10.1021/acsami.8b04204 10.1038/s41565-019-0604-x 10.1038/s41560-018-0104-5 10.1016/j.jpowsour.2016.12.070 10.1002/advs.201700369 10.1088/0022-3727/44/46/464003 10.1002/smtd.201700298 10.1016/j.jpowsour.2014.11.120 10.1039/C7EE00385D |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1002/ente.202201372 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2194-4296 |
EndPage | n/a |
ExternalDocumentID | 10_1002_ente_202201372 ENTE202201372 |
Genre | article |
GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation funderid: LR22E070001 – fundername: National Natural Science Foundation of China funderid: 12275239 and 11975205 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 50Y 8-1 A00 AAESR AAHHS AAHQN AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BFHJK BMXJE BRXPI D-B DCZOG EBS EDH EJD G-S GODZA HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c3172-b48fe9b08ef1dba4750c29a5523dd00ad177cf60f850ce908182ea9808cda3203 |
ISSN | 2194-4288 |
IngestDate | Fri Jul 25 03:20:40 EDT 2025 Tue Jul 01 04:10:45 EDT 2025 Thu Apr 24 22:58:36 EDT 2025 Wed Jan 22 16:23:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3172-b48fe9b08ef1dba4750c29a5523dd00ad177cf60f850ce908182ea9808cda3203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5465-3611 |
PQID | 2796741433 |
PQPubID | 2034361 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2796741433 crossref_primary_10_1002_ente_202201372 crossref_citationtrail_10_1002_ente_202201372 wiley_primary_10_1002_ente_202201372_ENTE202201372 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Energy technology (Weinheim, Germany) |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2018; 441 2013; 3 2021; 20 2020; 20 2019; 11 2019; 13 2021; 405 2020; 448 2020; 15 2020; 13 2020; 12 1996; 143 2020; 11 2020; 10 2013; 7 2018; 49 2020; 8 2014; 1 2020; 7 2010; 22 2018; 9 2011; 169 2020; 5 2020; 4 2018; 3 2021; 31 2018; 2 2018; 5 2021; 33 2019; 65 2017; 32 2021; 39 2020; 370 2013; 96 2011; 22 2002; 104 2017; 121 2021; 82 2014; 6 2021; 9 2015; 57 2019; 9 2019; 4 2021; 5 2015; 6 2021; 4 2019; 3 2019; 31 2020; 142 2013; 342 2017; 29 2021; 143 2016; 16 2015; 7 2016; 163 2018; 24 2016; 7 2012; 197 2018; 393 2021; 11 2018; 359 2013; 32 2022; 61 2022; 7 2015; 277 2020; 70 2021; 17 2017; 10 2017; 12 2019; 412 2022; 14 2011; 44 2022; 10 2017; 342 2016; 28 2018; 11 2018; 10 1998; 76 2016; 8 2022; 17 2014; 269 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_90_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_5_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_47_1 Kalinin S. V. (e_1_2_7_89_1) 2011; 169 e_1_2_7_28_1 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_80_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_38_1 |
References_xml | – volume: 4 start-page: 812 year: 2020 publication-title: Joule – volume: 7 start-page: 25441 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 2003811 year: 2021 publication-title: Adv. Energy Mater. – volume: 32 start-page: 455 year: 2013 publication-title: Polym. Test. – volume: 14 start-page: 44292 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 370 start-page: 1313 year: 2020 publication-title: Science – volume: 24 start-page: 1271 year: 2018 publication-title: Ionics – volume: 3 start-page: 1056 year: 2018 publication-title: ACS Energy Lett. – volume: 4 start-page: 1475 year: 2019 publication-title: ACS Energy Lett. – volume: 10 start-page: 1904119 year: 2020 publication-title: Adv. Energy Mater. – volume: 12 start-page: 295 year: 2017 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 860 year: 2018 publication-title: Energy Environ. Sci. – volume: 4 start-page: 489 year: 2019 publication-title: ACS Energy Lett. – volume: 10 start-page: 23740 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 228 year: 2021 publication-title: Joule – volume: 121 start-page: 26163 year: 2017 publication-title: J. Phys. Chem. C – volume: 28 start-page: 6631 year: 2016 publication-title: Adv. Mater. – volume: 342 start-page: 904 year: 2017 publication-title: J. Power Sources – volume: 10 start-page: 16602 year: 2022 publication-title: J. Mater. Chem. A – volume: 7 start-page: 2000362 year: 2020 publication-title: Adv. Sci. – volume: 9 start-page: 1901597 year: 2019 publication-title: Adv. Energy Mater. – volume: 10 start-page: 2001139 year: 2020 publication-title: Adv. Energy Mater. – volume: 7 start-page: 1903088 year: 2020 publication-title: Adv. Sci. – volume: 49 start-page: 434 year: 2018 publication-title: Nano Energy – volume: 10 start-page: 1903922 year: 2020 publication-title: Adv. Energy Mater. – volume: 2 start-page: 464 year: 2018 publication-title: Joule – volume: 7 start-page: 1492 year: 2022 publication-title: ACS Energy Lett. – volume: 393 start-page: 67 year: 2018 publication-title: J. Power Sources – volume: 29 start-page: 9639 year: 2017 publication-title: Chem. Mater. – volume: 13 start-page: 668 year: 2020 publication-title: Materials – volume: 441 start-page: 265 year: 2018 publication-title: Appl. Surf. Sci. – volume: 143 start-page: 839 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 94 year: 2020 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 2001096 year: 2021 publication-title: Energy Technol. – volume: 17 start-page: 446 year: 2022 publication-title: Nat. Nanotechnol. – volume: 5 start-page: 9929 year: 2017 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1700298 year: 2018 publication-title: Small Methods – volume: 11 start-page: 2101518 year: 2021 publication-title: Adv. Energy Mater. – volume: 44 start-page: 464003 year: 2011 publication-title: J. Phys. Appl. Phys. – volume: 96 start-page: 117 year: 2013 publication-title: Mater. Lett. – volume: 32 start-page: 271 year: 2017 publication-title: Nano Energy – volume: 405 start-page: 127031 year: 2021 publication-title: Chem. Eng. J. – volume: 13 start-page: 536 year: 2019 publication-title: ACS Nano – volume: 342 start-page: 716 year: 2013 publication-title: Science – volume: 11 start-page: 5700 year: 2020 publication-title: Nat. Commun. – volume: 31 start-page: 2009925 year: 2021 publication-title: Adv. Funct. Mater. – volume: 412 start-page: 78 year: 2019 publication-title: J. Power Sources – volume: 143 start-page: 3525 year: 1996 publication-title: J. Electrochem. Soc. – volume: 20 start-page: 1121 year: 2021 publication-title: Nat. Mater. – volume: 16 start-page: 3760 year: 2016 publication-title: Nano Lett. – volume: 7 start-page: 1701003 year: 2017 publication-title: Adv. Energy Mater. – volume: 57 start-page: 27 year: 2015 publication-title: Electrochem. Commun. – volume: 142 start-page: 20752 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 227 year: 2018 publication-title: Nat. Energy – volume: 5 start-page: 1700369 year: 2018 publication-title: Adv. Sci. – volume: 269 start-page: 334 year: 2014 publication-title: J. Power Sources – volume: 163 start-page: A2636 year: 2016 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 1903311 year: 2020 publication-title: Adv. Energy Mater. – volume: 8 start-page: 10617 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 41538 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 104 start-page: 13 year: 2002 publication-title: J. Power Sources – volume: 20 start-page: 8081 year: 2020 publication-title: Nano Lett. – volume: 22 start-page: E193 year: 2010 publication-title: Adv. Mater. – volume: 6 start-page: 20317 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 356 year: 2018 publication-title: ACS Energy Lett. – volume: 17 start-page: 2101326 year: 2021 publication-title: Small – volume: 39 start-page: 271 year: 2021 publication-title: Energy Storage Mater. – volume: 277 start-page: 169 year: 2015 publication-title: J. Power Sources – volume: 10 start-page: 1377 year: 2017 publication-title: Energy Environ. Sci. – volume: 9 start-page: 1623 year: 2018 publication-title: Beilstein J. Nanotechnol. – volume: 10 start-page: 2000219 year: 2020 publication-title: Adv. Energy Mater. – volume: 6 start-page: 7496 year: 2015 publication-title: Nat. Commun. – volume: 4 start-page: 169 year: 2021 publication-title: Electrochem. Energy Rev. – volume: 65 start-page: 103925 year: 2019 publication-title: Nano Energy – volume: 4 start-page: 1346 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 197 start-page: 224 year: 2012 publication-title: J. Power Sources – volume: 9 start-page: 1803947 year: 2019 publication-title: Adv. Energy Mater. – volume: 169 start-page: 30 year: 2011 publication-title: Adv. Mater. Processes – volume: 31 start-page: 2007564 year: 2021 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1700007 year: 2017 publication-title: Adv. Mater. – volume: 70 start-page: 104545 year: 2020 publication-title: Nano Energy – volume: 8 start-page: 2000580 year: 2020 publication-title: Energy Technol. – volume: 7 start-page: 12909 year: 2016 publication-title: Nat. Commun. – volume: 10 start-page: 38151 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1666 year: 2013 publication-title: ACS Nano – volume: 10 start-page: 1903993 year: 2020 publication-title: Adv. Energy Mater. – volume: 28 start-page: 197 year: 2016 publication-title: Chem. Mater. – volume: 82 start-page: 105744 year: 2021 publication-title: Nano Energy – volume: 76 start-page: 159 year: 1998 publication-title: J. Power Sources – volume: 22 start-page: 125703 year: 2011 publication-title: Meas. Sci. Technol. – volume: 61 start-page: e202211626 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 845 year: 2013 publication-title: Adv. Energy Mater. – volume: 33 start-page: 1905784 year: 2021 publication-title: Adv. Mater. – volume: 7 start-page: 2073 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 359 start-page: 1513 year: 2018 publication-title: Science – volume: 448 start-page: 227440 year: 2020 publication-title: J. Power Sources – volume: 4 start-page: 207 year: 2020 publication-title: Joule – volume: 31 start-page: 69 year: 2019 publication-title: Mater. Today – volume: 28 start-page: 1853 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 1456 year: 2020 publication-title: ACS Energy Lett. – volume: 1 start-page: 375 year: 2014 publication-title: ChemElectroChem – volume: 3 start-page: 1800387 year: 2019 publication-title: Small Methods – volume: 11 start-page: 18730 year: 2019 publication-title: Nanoscale – ident: e_1_2_7_15_1 doi: 10.1016/j.matlet.2013.01.021 – ident: e_1_2_7_70_1 doi: 10.1002/adma.201700007 – ident: e_1_2_7_32_1 doi: 10.1021/acsenergylett.8b02381 – ident: e_1_2_7_50_1 doi: 10.1021/acs.jpcc.7b06363 – ident: e_1_2_7_5_1 doi: 10.1002/ente.202001096 – ident: e_1_2_7_97_1 doi: 10.1021/acsenergylett.9b00816 – ident: e_1_2_7_99_1 doi: 10.1016/j.nanoen.2021.105744 – ident: e_1_2_7_7_1 doi: 10.1021/acsenergylett.8b00249 – ident: e_1_2_7_13_1 doi: 10.1021/acsenergylett.2c00003 – ident: e_1_2_7_20_1 doi: 10.1021/acs.chemmater.7b02805 – ident: e_1_2_7_103_1 doi: 10.1002/aenm.201904119 – ident: e_1_2_7_65_1 doi: 10.1002/advs.202000362 – ident: e_1_2_7_83_1 doi: 10.1002/anie.202211626 – ident: e_1_2_7_11_1 doi: 10.1002/advs.201903088 – ident: e_1_2_7_86_1 doi: 10.1002/aenm.202000219 – ident: e_1_2_7_102_1 doi: 10.1038/s41563-021-00967-8 – ident: e_1_2_7_98_1 doi: 10.1002/adfm.202007564 – ident: e_1_2_7_48_1 doi: 10.1021/am505847s – ident: e_1_2_7_63_1 doi: 10.1002/adma.201601273 – ident: e_1_2_7_19_1 doi: 10.1021/acsami.6b00831 – ident: e_1_2_7_40_1 doi: 10.1002/adma.201001190 – volume: 169 start-page: 30 year: 2011 ident: e_1_2_7_89_1 publication-title: Adv. Mater. Processes – ident: e_1_2_7_10_1 doi: 10.1002/ente.202000580 – ident: e_1_2_7_82_1 doi: 10.1016/j.cej.2020.127031 – ident: e_1_2_7_6_1 doi: 10.1016/j.elecom.2015.05.001 – ident: e_1_2_7_35_1 doi: 10.1002/adma.201905784 – ident: e_1_2_7_38_1 doi: 10.1002/aenm.202101518 – ident: e_1_2_7_24_1 doi: 10.1002/smll.202101326 – ident: e_1_2_7_77_1 doi: 10.1021/jacs.0c10121 – ident: e_1_2_7_43_1 doi: 10.3762/bjnano.9.154 – ident: e_1_2_7_80_1 doi: 10.1016/j.nanoen.2018.04.062 – ident: e_1_2_7_69_1 doi: 10.1002/adma.201504526 – ident: e_1_2_7_75_1 doi: 10.1021/acsenergylett.0c00542 – ident: e_1_2_7_33_1 doi: 10.1021/acs.nanolett.6b01119 – ident: e_1_2_7_4_1 doi: 10.1007/s41918-020-00092-1 – ident: e_1_2_7_27_1 doi: 10.1088/0957-0233/22/12/125703 – ident: e_1_2_7_41_1 doi: 10.1002/aenm.201903922 – ident: e_1_2_7_60_1 doi: 10.1038/ncomms12909 – ident: e_1_2_7_93_1 doi: 10.1021/acsenergylett.7b01254 – ident: e_1_2_7_17_1 doi: 10.1021/am508111r – ident: e_1_2_7_49_1 doi: 10.1002/aenm.202001139 – ident: e_1_2_7_96_1 doi: 10.1039/C7TA02730C – ident: e_1_2_7_39_1 doi: 10.3390/ma13030668 – ident: e_1_2_7_59_1 doi: 10.1016/j.jpowsour.2014.07.001 – ident: e_1_2_7_72_1 doi: 10.1126/science.aap8787 – ident: e_1_2_7_21_1 doi: 10.1016/j.jpowsour.2018.11.036 – ident: e_1_2_7_67_1 doi: 10.1016/S0378-7753(98)00151-7 – ident: e_1_2_7_88_1 doi: 10.1016/j.jpowsour.2011.08.115 – ident: e_1_2_7_28_1 doi: 10.1016/j.apsusc.2018.02.014 – ident: e_1_2_7_57_1 doi: 10.1038/s41565-022-01081-9 – ident: e_1_2_7_58_1 doi: 10.1126/science.1241882 – ident: e_1_2_7_56_1 doi: 10.1016/j.joule.2020.11.008 – ident: e_1_2_7_91_1 doi: 10.1021/nn305648j – ident: e_1_2_7_29_1 doi: 10.1021/acsami.5b08238 – ident: e_1_2_7_9_1 doi: 10.1021/acs.chemmater.5b03854 – ident: e_1_2_7_16_1 doi: 10.1021/acsami.8b17223 – ident: e_1_2_7_37_1 doi: 10.1038/nnano.2017.45 – ident: e_1_2_7_100_1 doi: 10.1021/acsaem.0c02607 – ident: e_1_2_7_26_1 doi: 10.1016/j.polymertesting.2013.01.011 – ident: e_1_2_7_23_1 doi: 10.1002/aenm.201903311 – ident: e_1_2_7_36_1 doi: 10.1016/j.nanoen.2019.103925 – ident: e_1_2_7_47_1 doi: 10.1021/jacs.0c09602 – ident: e_1_2_7_79_1 doi: 10.1002/aenm.201901597 – ident: e_1_2_7_95_1 doi: 10.1002/aenm.201200932 – ident: e_1_2_7_54_1 doi: 10.1016/j.joule.2017.12.008 – ident: e_1_2_7_68_1 doi: 10.1016/S0378-7753(01)00871-0 – ident: e_1_2_7_42_1 doi: 10.1021/acs.nanolett.0c03074 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201701003 – ident: e_1_2_7_81_1 doi: 10.1126/science.abc3167 – ident: e_1_2_7_2_1 doi: 10.1016/j.joule.2020.03.012 – ident: e_1_2_7_76_1 doi: 10.1002/aenm.201903993 – ident: e_1_2_7_78_1 doi: 10.1002/aenm.202003811 – ident: e_1_2_7_71_1 doi: 10.1016/j.nanoen.2016.12.001 – ident: e_1_2_7_66_1 doi: 10.1149/1.1837248 – ident: e_1_2_7_3_1 doi: 10.1021/acsami.0c11683 – ident: e_1_2_7_87_1 doi: 10.1016/j.ensm.2021.04.028 – ident: e_1_2_7_18_1 doi: 10.1002/celc.201300022 – ident: e_1_2_7_84_1 doi: 10.1039/C8EE00001H – ident: e_1_2_7_8_1 doi: 10.1007/s11581-017-2314-4 – ident: e_1_2_7_14_1 doi: 10.1016/j.nanoen.2020.104545 – ident: e_1_2_7_46_1 doi: 10.1021/acsami.2c10589 – ident: e_1_2_7_53_1 doi: 10.1016/j.mattod.2019.05.019 – ident: e_1_2_7_64_1 doi: 10.1149/2.0681613jes – ident: e_1_2_7_55_1 doi: 10.1016/j.jpowsour.2018.04.092 – ident: e_1_2_7_101_1 doi: 10.1039/D2TA02378D – ident: e_1_2_7_104_1 doi: 10.1038/s41467-020-19528-9 – ident: e_1_2_7_85_1 doi: 10.1016/j.joule.2019.11.015 – ident: e_1_2_7_62_1 doi: 10.1002/aenm.201803947 – ident: e_1_2_7_45_1 doi: 10.1039/C9NR02176K – ident: e_1_2_7_22_1 doi: 10.1016/j.jpowsour.2019.227440 – ident: e_1_2_7_94_1 doi: 10.1038/ncomms8496 – ident: e_1_2_7_34_1 doi: 10.1002/smtd.201800387 – ident: e_1_2_7_12_1 doi: 10.1002/adfm.202009925 – ident: e_1_2_7_92_1 doi: 10.1021/acsnano.8b07254 – ident: e_1_2_7_31_1 doi: 10.1021/acsami.8b04204 – ident: e_1_2_7_74_1 doi: 10.1038/s41565-019-0604-x – ident: e_1_2_7_73_1 doi: 10.1038/s41560-018-0104-5 – ident: e_1_2_7_61_1 doi: 10.1016/j.jpowsour.2016.12.070 – ident: e_1_2_7_52_1 doi: 10.1002/advs.201700369 – ident: e_1_2_7_90_1 doi: 10.1088/0022-3727/44/46/464003 – ident: e_1_2_7_30_1 doi: 10.1002/smtd.201700298 – ident: e_1_2_7_44_1 doi: 10.1016/j.jpowsour.2014.11.120 – ident: e_1_2_7_51_1 doi: 10.1039/C7EE00385D |
SSID | ssj0001053503 |
Score | 2.2946422 |
SecondaryResourceType | review_article |
Snippet | All‐solid‐state lithium batteries (ASSLBs) are promising due to their high‐energy output and low‐risk profile, but their development has only just begun.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | all-solid-state lithium batteries Atomic force microscopy Batteries Computed tomography Electrochemical analysis Electrochemistry Electrolytes Lithium Lithium batteries Microscopy Nondestructive testing Risk assessment Scanning probe microscopy solid–solid interface Tomography X-ray computed tomography |
Title | In Situ Atomic Force Microscopy and X‐ray Computed Tomography Characterization of All‐Solid‐State Lithium Batteries: Both Local and Overall |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fente.202201372 https://www.proquest.com/docview/2796741433 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLdKd4ED4q_oGMgHJA5VRuokTcKtjI5t2sZhnai4RE7irJG6BEqCxE58BPhWfA4-Ce_ZjpuWIgaXNHHtuOn72X7vxe_3CHkmXJ8HaQpmaioSy828DIOVQytz3djmA56E0qF_cjo8OHePpt600_nR2rVUV_FucrUxruR_pAplIFeMkv0HyZqbQgGcg3zhCBKG47VkfAhjM6_q_qjC2OL-frnAUYpb7DDYRDErTc12hgVXw79GJXNSXmqyavnGXXE2Xxn9cTSfm3Zn5RyezFyhdopcG7O8vuwres5cbax7BVLvH5cN_cDbz-jvmq_4_lWkYWX8-ajgvhN5MRMqq_MbXCiKLy3_xJ4OH4FacHaxXjzNuQz5-r16MavNknOUa7f4-1lZXHxs6mtvB3Nam2TkpAgTrGuByaTmbNEuU5lxzaw-aKHX3bhYKPJZpD7dZRhwPHBUFqFVVu611dLsYVR8zyzC9pFpf4NsMTBYWJdsjV6fHJ8t_X1IpCMTdZtHaDhEbfZi9Ues6khLw6dtPkn9Z3KH3NaGCx0pFN4lHVHcI7dadJb3yffDgiIeqcIjlXikSzxSQAWd_vz6DZBIGyTSJRLpOhJpmVFAIrSQGMRPRB_V6KMGfS8pYo9K7MleNPYekPP98WTvwNIpP6wEFFlmxW6QiTC2A5EN0pi7oM8mLOSex5w0tW2eDnw_yYZ2FsAXIkQ-RiZ4GNhBknKH2c5D0i3KQjwiFApBm-W2nwjmxmkGhjMXsR_GQQI2guP1iNX8yVGi-fAxLcs82izZHnlu6n9QTDB_rLnTyCzSs8WniPnhELR36LlHmJTjX-4SjU8nY3O1fe3eH5Oby4GzQ7rVohZPQHGu4qcak78AWpHCWw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Atomic+Force+Microscopy+and+X%E2%80%90ray+Computed+Tomography+Characterization+of+All%E2%80%90Solid%E2%80%90State+Lithium+Batteries%3A+Both+Local+and+Overall&rft.jtitle=Energy+technology+%28Weinheim%2C+Germany%29&rft.au=Chen%2C+Weiheng&rft.au=Chen%2C+Xiaoping&rft.au=Chen%2C+Wenhua&rft.au=Jiang%2C+Zhongqing&rft.date=2023-04-01&rft.issn=2194-4288&rft.eissn=2194-4296&rft.volume=11&rft.issue=4&rft_id=info:doi/10.1002%2Fente.202201372&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ente_202201372 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-4288&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-4288&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-4288&client=summon |