pH Switchable Nanoplatform for In Vivo Persistent Luminescence Imaging and Precise Photothermal Therapy of Bacterial Infection
Photothermal therapy (PTT) is one of the most promising approaches to combat multidrug‐resistant bacteria with less potential to induce resistance and systemic toxicity. However, uncontrollable distribution of photothermal agents leads to lethal temperatures for normal cells, and failure to offer ti...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photothermal therapy (PTT) is one of the most promising approaches to combat multidrug‐resistant bacteria with less potential to induce resistance and systemic toxicity. However, uncontrollable distribution of photothermal agents leads to lethal temperatures for normal cells, and failure to offer timely and effective antibacterial stewardship. A pH switchable nanoplatform for persistent luminescence imaging‐guided precise PTT to selectively destroy only pathological cells while protecting nearby normal cells in bacterial infected microenvironment is shown. The PLNP@PANI‐GCS is fabricated by grafting polyaniline (PANI) and glycol chitosan (GCS) onto the surface of persistent luminescence nanoparticles (PLNPs). It takes advantage of the long persistent luminescence of PLNPs to realize autofluorescence‐free imaging, the pH‐dependent light–heat conversion property of PANI to get a stronger photothermal effect at pH 6.5 than pH 7.4, and the pH environment responsive surface charge transition of GCS. Consequently, PLNP@PANI‐GCS enables effective response to bacterial‐infected acid region and electrostatic bonding to bacteria in vivo, ensuring the spatial accuracy of near‐infrared light irradiation and specific heating directly to bacteria. In vivo imaging‐guided PTT to bacterial infection abscess shows effective treatment. PLNP@PANI‐GCS has great potential in treating multidrug‐resistant bacterial infection with low possibility of developing microbial drug resistance and little harm to normal cells.
A pH switchable nanoplatform is developed for in vivo persistent luminescent imaging and precise photothermal therapy of bacterial infections. This nanoplatform exhibits specific photothermal therapy to acidic bacterial‐infected regions but no damage to normal tissues. |
---|---|
AbstractList | Photothermal therapy (PTT) is one of the most promising approaches to combat multidrug‐resistant bacteria with less potential to induce resistance and systemic toxicity. However, uncontrollable distribution of photothermal agents leads to lethal temperatures for normal cells, and failure to offer timely and effective antibacterial stewardship. A pH switchable nanoplatform for persistent luminescence imaging‐guided precise PTT to selectively destroy only pathological cells while protecting nearby normal cells in bacterial infected microenvironment is shown. The PLNP@PANI‐GCS is fabricated by grafting polyaniline (PANI) and glycol chitosan (GCS) onto the surface of persistent luminescence nanoparticles (PLNPs). It takes advantage of the long persistent luminescence of PLNPs to realize autofluorescence‐free imaging, the pH‐dependent light–heat conversion property of PANI to get a stronger photothermal effect at pH 6.5 than pH 7.4, and the pH environment responsive surface charge transition of GCS. Consequently, PLNP@PANI‐GCS enables effective response to bacterial‐infected acid region and electrostatic bonding to bacteria in vivo, ensuring the spatial accuracy of near‐infrared light irradiation and specific heating directly to bacteria. In vivo imaging‐guided PTT to bacterial infection abscess shows effective treatment. PLNP@PANI‐GCS has great potential in treating multidrug‐resistant bacterial infection with low possibility of developing microbial drug resistance and little harm to normal cells.
A pH switchable nanoplatform is developed for in vivo persistent luminescent imaging and precise photothermal therapy of bacterial infections. This nanoplatform exhibits specific photothermal therapy to acidic bacterial‐infected regions but no damage to normal tissues. Photothermal therapy (PTT) is one of the most promising approaches to combat multidrug‐resistant bacteria with less potential to induce resistance and systemic toxicity. However, uncontrollable distribution of photothermal agents leads to lethal temperatures for normal cells, and failure to offer timely and effective antibacterial stewardship. A pH switchable nanoplatform for persistent luminescence imaging‐guided precise PTT to selectively destroy only pathological cells while protecting nearby normal cells in bacterial infected microenvironment is shown. The PLNP@PANI‐GCS is fabricated by grafting polyaniline (PANI) and glycol chitosan (GCS) onto the surface of persistent luminescence nanoparticles (PLNPs). It takes advantage of the long persistent luminescence of PLNPs to realize autofluorescence‐free imaging, the pH‐dependent light–heat conversion property of PANI to get a stronger photothermal effect at pH 6.5 than pH 7.4, and the pH environment responsive surface charge transition of GCS. Consequently, PLNP@PANI‐GCS enables effective response to bacterial‐infected acid region and electrostatic bonding to bacteria in vivo, ensuring the spatial accuracy of near‐infrared light irradiation and specific heating directly to bacteria. In vivo imaging‐guided PTT to bacterial infection abscess shows effective treatment. PLNP@PANI‐GCS has great potential in treating multidrug‐resistant bacterial infection with low possibility of developing microbial drug resistance and little harm to normal cells. |
Author | Yan, Li‐Xia Yan, Xiu‐Ping Zhao, Xu Chen, Li‐Jian |
Author_xml | – sequence: 1 givenname: Li‐Xia orcidid: 0000-0001-9953-7681 surname: Yan fullname: Yan, Li‐Xia organization: Jiangnan University – sequence: 2 givenname: Li‐Jian surname: Chen fullname: Chen, Li‐Jian organization: Jiangnan University – sequence: 3 givenname: Xu surname: Zhao fullname: Zhao, Xu organization: Jiangnan University – sequence: 4 givenname: Xiu‐Ping surname: Yan fullname: Yan, Xiu‐Ping email: xpyan@jiangnan.edu.cn organization: Ministry of Education |
BookMark | eNqFkM1LAzEQxYMo-Hn1HPDcmkm2u8nRbwtVC37gbUnTiY3sJmuSKr34t7tS0aOXecPjvRn47ZJNHzwScghsCIzxYz237ZAzUEyxgm-QHSihHAjG5ebvDs_bZDelV8agqkSxQz67a3r_4bJZ6FmD9Fb70DU62xBb2g869vTJvQc6xZhcyugznSxb5zEZ9AbpuNUvzr9Q7ed0GtG4hHS6CDnkBcZWN_ShV92taLD0VJuM0fXm2Fs02QW_T7asbhIe_Ogeeby8eDi7HkzursZnJ5OBEVDxgSrmCmcAVhRSjmwlQSqOYEBrruQcCibsaDSrVCVM2Ru8qBRnrERWFjPOpNgjR-u7XQxvS0y5fg3L6PuXNReyBBClVH1quE6ZGFKKaOsuulbHVQ2s_mZcfzOufxn3BbUufLgGV_-k65Pzy5u_7hdY0YIt |
CitedBy_id | crossref_primary_10_1016_j_bios_2022_115033 crossref_primary_10_1016_j_jare_2022_08_009 crossref_primary_10_1039_D2BM01920E crossref_primary_10_1021_acsami_4c00531 crossref_primary_10_1002_adhm_202101846 crossref_primary_10_1002_macp_202300105 crossref_primary_10_1021_acsanm_3c00101 crossref_primary_10_1103_PhysRevLett_125_033001 crossref_primary_10_1002_adfm_202107574 crossref_primary_10_1002_advs_202205048 crossref_primary_10_1002_adhm_202303876 crossref_primary_10_1002_EXP_20230124 crossref_primary_10_1016_j_ceramint_2023_02_249 crossref_primary_10_1016_j_jcis_2024_04_122 crossref_primary_10_3390_nano13152269 crossref_primary_10_1016_j_cej_2024_149468 crossref_primary_10_1016_j_mtbio_2022_100264 crossref_primary_10_1016_j_colsurfb_2023_113644 crossref_primary_10_1021_jacs_0c10771 crossref_primary_10_1002_asia_202100108 crossref_primary_10_1039_D1CS00074H crossref_primary_10_1021_acsbiomaterials_1c01520 crossref_primary_10_1002_advs_202103240 crossref_primary_10_1016_j_cej_2024_152073 crossref_primary_10_1021_acs_analchem_2c00877 crossref_primary_10_1016_j_talanta_2020_121968 crossref_primary_10_51847_npLVOycg9U crossref_primary_10_1016_j_jcis_2024_02_008 crossref_primary_10_1021_acsinfecdis_3c00389 crossref_primary_10_1016_j_addr_2021_114036 crossref_primary_10_1016_j_ijbiomac_2024_132080 crossref_primary_10_1039_D2TB02396B crossref_primary_10_1002_adma_202106842 crossref_primary_10_1002_adhm_202302955 crossref_primary_10_1039_D1BM00483B crossref_primary_10_1002_advs_202104843 crossref_primary_10_1016_j_ijbiomac_2023_126389 crossref_primary_10_1002_adfm_202106705 crossref_primary_10_1039_D0BM02057E crossref_primary_10_1002_advs_202306480 crossref_primary_10_1016_j_cej_2022_135084 crossref_primary_10_1021_acs_analchem_2c04788 crossref_primary_10_1021_acs_biomac_2c00950 crossref_primary_10_1002_advs_202105252 crossref_primary_10_1002_adom_202202382 crossref_primary_10_1016_j_cej_2021_132491 crossref_primary_10_1021_acs_inorgchem_0c02007 crossref_primary_10_1016_j_nantod_2022_101489 crossref_primary_10_1021_acsnano_3c12714 crossref_primary_10_1039_D2CS00993E crossref_primary_10_1002_adfm_202304974 crossref_primary_10_1021_acsanm_3c01725 crossref_primary_10_1002_admt_202201195 crossref_primary_10_1007_s12274_021_3417_4 crossref_primary_10_1021_acsbiomaterials_4c00296 crossref_primary_10_1126_sciadv_abm7077 crossref_primary_10_1002_adma_202307695 crossref_primary_10_1038_s41467_023_37827_9 crossref_primary_10_1021_acsami_3c01762 crossref_primary_10_1002_mabi_202000252 crossref_primary_10_1021_acsami_9b22587 crossref_primary_10_1002_adfm_202212803 crossref_primary_10_1021_acsapm_0c00680 crossref_primary_10_1016_j_ccr_2022_214701 crossref_primary_10_1016_j_jphotobiol_2022_112510 crossref_primary_10_1016_j_microc_2024_110577 crossref_primary_10_1021_acsabm_0c01341 crossref_primary_10_1016_j_jre_2023_03_008 crossref_primary_10_1021_acsapm_0c00718 crossref_primary_10_1021_acsami_0c14063 crossref_primary_10_1021_acsnano_2c03971 crossref_primary_10_1002_smll_202306135 crossref_primary_10_1021_acs_jmedchem_3c01841 crossref_primary_10_1002_adma_202104473 crossref_primary_10_1002_smll_202309593 crossref_primary_10_1021_acsabm_3c01199 crossref_primary_10_1021_acsami_2c00434 crossref_primary_10_1021_acsami_1c21318 crossref_primary_10_1002_smll_202200813 crossref_primary_10_1016_j_cej_2024_151581 crossref_primary_10_1016_j_colsurfa_2023_133060 crossref_primary_10_1002_adhm_202301375 crossref_primary_10_1002_advs_202303911 crossref_primary_10_1039_D1NR07629A crossref_primary_10_1016_j_mtchem_2022_100888 crossref_primary_10_1039_D0QM00014K crossref_primary_10_1016_j_bios_2023_115480 crossref_primary_10_1016_j_biomaterials_2021_120918 crossref_primary_10_1016_j_carbpol_2024_122233 crossref_primary_10_1021_acs_chemmater_0c00807 crossref_primary_10_1016_j_cej_2024_150424 crossref_primary_10_6023_A21120548 crossref_primary_10_1016_j_cej_2020_125688 crossref_primary_10_1021_acsmaterialslett_3c00914 crossref_primary_10_1039_D1TB00109D crossref_primary_10_1039_D2BM00550F crossref_primary_10_1002_adfm_202106577 crossref_primary_10_1039_D2BM01573K crossref_primary_10_1016_j_jcis_2021_10_132 crossref_primary_10_1016_j_actbio_2022_02_034 crossref_primary_10_1016_j_ccr_2022_214913 crossref_primary_10_1016_j_materresbull_2023_112352 crossref_primary_10_1021_acsapm_2c01287 crossref_primary_10_1002_adhm_202400593 crossref_primary_10_1016_j_cej_2020_126096 crossref_primary_10_1016_j_ijbiomac_2022_07_021 crossref_primary_10_1002_advs_202306056 crossref_primary_10_1016_j_cej_2023_147113 crossref_primary_10_1002_adhm_202201651 crossref_primary_10_3390_nano11123180 crossref_primary_10_1016_j_jcis_2021_11_125 crossref_primary_10_1016_j_foodchem_2023_135611 crossref_primary_10_1002_ange_202011553 crossref_primary_10_1016_j_cej_2023_144597 crossref_primary_10_1039_D2SC03443C crossref_primary_10_1039_D3QM01048A crossref_primary_10_1021_acs_jpcc_0c03686 crossref_primary_10_1016_j_cej_2021_131595 crossref_primary_10_1039_D2BM01570F crossref_primary_10_1016_j_pmatsci_2024_101246 crossref_primary_10_3390_bioengineering7030094 crossref_primary_10_1002_smll_202303594 crossref_primary_10_3389_fcimb_2023_1130506 crossref_primary_10_1002_adfm_202209579 crossref_primary_10_1016_j_apsb_2023_05_018 crossref_primary_10_1039_D2BM00374K crossref_primary_10_1021_acsami_2c04841 crossref_primary_10_2147_IJN_S380370 crossref_primary_10_1002_anie_202011553 crossref_primary_10_1039_D1TB01781K crossref_primary_10_1039_D3BM00142C crossref_primary_10_1016_j_xcrp_2020_100245 crossref_primary_10_3389_fmicb_2022_1028560 crossref_primary_10_1039_D0TB02177F crossref_primary_10_1021_acsami_2c05416 crossref_primary_10_1016_j_jcis_2021_11_108 crossref_primary_10_1021_acsnano_2c08262 crossref_primary_10_1016_j_ccr_2023_215171 crossref_primary_10_1002_smll_202310706 crossref_primary_10_1016_j_cej_2024_149014 crossref_primary_10_1021_acsami_1c08132 crossref_primary_10_1039_D0TC03212C crossref_primary_10_1186_s12951_021_01152_4 crossref_primary_10_3390_nano11040906 |
Cites_doi | 10.1021/nl903274q 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0 10.1021/acsami.7b03371 10.1021/acsami.6b11262 10.1016/j.nantod.2019.03.006 10.1016/j.addr.2015.12.018 10.1021/acs.analchem.6b00449 10.7150/thno.6062 10.1038/nmat3173 10.1016/j.actbio.2018.01.022 10.1021/cm304101n 10.1039/C7CS00522A 10.1002/anie.201005075 10.1002/marc.201500523 10.1038/nnano.2010.235 10.1021/jacs.6b11382 10.1021/jacs.5b00872 10.1038/nature.2017.21550 10.1002/adma.201703284 10.1039/C6NR00590J 10.1038/nmat3908 10.2217/nnm-2017-0367 10.1002/chem.201403480 10.1002/adma.201304497 10.1088/0957-4484/27/28/285102 10.1002/smll.201501412 10.1039/C4TB01738B 10.1021/acsami.6b10702 10.1115/1.3156800 10.1021/acs.chemrev.5b00008 10.1021/acsami.7b11062 10.1016/j.biomaterials.2013.11.074 10.1038/s41467-019-12142-4 10.1039/C5CC00286A 10.1016/j.biomaterials.2016.11.045 10.1002/adfm.201600159 10.1002/adfm.201403885 10.1021/cm403050q 10.1039/C4NR06340F 10.1021/acsnano.7b02643 10.1021/acsami.6b08391 10.1021/nn4017179 10.1021/jm4012565 10.1002/smll.201602293 10.1016/j.biomaterials.2013.08.075 10.1038/srep01998 10.1021/jacs.7b07818 10.1016/j.ijpharm.2017.08.127 10.1021/acsami.6b11378 10.1021/acsnano.7b04461 10.1021/acs.accounts.7b00619 10.1021/nn202863x 10.1002/advs.201700848 10.1039/C7TB01606A 10.1038/nature17042 10.1039/C5CS00582E 10.1038/nature06536 10.1016/j.addr.2012.10.007 10.1016/j.ajps.2015.11.123 10.1021/ja404243v |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201909042 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201909042 ADFM201909042 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21934002; 21804056; 21804057 – fundername: Postdoctoral Innovative Talent Support Program funderid: BX20180130 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20180581; BK20180584 – fundername: National First‐class Discipline Program of Food Science and Technology funderid: JUFSTR20180301 – fundername: China Postdoctoral Science Foundation funderid: 2018M630511; 2018M630509 – fundername: Fundamental Research Funds for the Central Universities funderid: JUSRP51714B; JUSRP11846 – fundername: Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMNL AAYXX ACBWZ ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3172-94d9eb11f34885f781892e1c1aa298d1403f55b7973c698d24792006e064b2083 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 18:24:50 EDT 2024 Thu Nov 21 23:31:53 EST 2024 Sat Aug 24 01:07:26 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3172-94d9eb11f34885f781892e1c1aa298d1403f55b7973c698d24792006e064b2083 |
ORCID | 0000-0001-9953-7681 |
PQID | 2386113689 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2386113689 crossref_primary_10_1002_adfm_201909042 wiley_primary_10_1002_adfm_201909042_ADFM201909042 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2016; 8 8 2017 2013 2016; 11 25 8 2013; 3 2015; 3 2016; 529 2015 2018 2013 2016 2016; 51 51 135 45 88 2008 2010 2017; 451 10 9 2017 2013 2011 2015; 5 34 50 7 2011; 6 2001; 40 2009 2016; 131 11 2015 2013 2014 2011; 11 56 35 5 2017; 116 2015 2018 2016 2014 2013; 25 69 27 20 7 2017 2017; 532 543 2017 2014 2018; 9 26 13 2016 2016; 8 37 2017 2013; 11 3 2015; 115 2019 2016; 10 26 2014; 13 2015 2012 2014 2013 2016; 137 11 26 65 8 2016 2018 2017 2018; 98 30 139 5 2017 2016; 139 12 2019 2018; 26 47 e_1_2_7_5_2 e_1_2_7_5_1 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_19_4 e_1_2_7_17_5 e_1_2_7_19_3 e_1_2_7_7_1 e_1_2_7_17_4 e_1_2_7_19_2 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_15_4 e_1_2_7_17_2 e_1_2_7_15_3 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_18_5 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_18_4 e_1_2_7_4_4 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_14_5 e_1_2_7_18_1 e_1_2_7_14_4 e_1_2_7_14_3 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_24_3 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 40 start-page: 2591 year: 2001 publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 3767 year: 2015 publication-title: J. Mater. Chem. B – volume: 532 543 start-page: 139 15 year: 2017 2017 publication-title: Int. J. Pharm. Nature – volume: 8 37 start-page: 149 year: 2016 2016 publication-title: ACS Appl. Mater. Interfaces Macromol. Rapid Commun. – volume: 6 start-page: 28 year: 2011 publication-title: Nat. Nanotechnol. – volume: 26 47 start-page: 108 2280 year: 2019 2018 publication-title: Nano Today Chem. Soc. Rev. – volume: 131 11 start-page: 349 year: 2009 2016 publication-title: J. Biomech. Eng. Asian J. Pharm. Sci. – volume: 3 start-page: 138 year: 2013 publication-title: Theranostics – volume: 11 25 8 start-page: 8010 1600 year: 2017 2013 2016 publication-title: ACS Nano Chem. Mater. ACS Appl. Mater. Interfaces – volume: 116 start-page: 1 year: 2017 publication-title: Biomaterials – volume: 9 26 13 start-page: 1886 1681 year: 2017 2014 2018 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Nanomedicine – volume: 13 start-page: 418 year: 2014 publication-title: Nat. Mater. – volume: 98 30 139 5 start-page: 99 year: 2016 2018 2017 2018 publication-title: Adv. Drug Deliv. Rev. Adv. Mater. J. Am. Chem. Soc. Adv. Sci. – volume: 529 start-page: 336 year: 2016 publication-title: Nature – volume: 51 51 135 45 88 start-page: 3903 1131 2090 4114 year: 2015 2018 2013 2016 2016 publication-title: Chem. Commun. Acc. Chem. Res. J. Am. Chem. Soc. Chem. Soc. Rev. Anal. Chem. – volume: 11 3 start-page: 9239 1998 year: 2017 2013 publication-title: ACS Nano Sci. Rep. – volume: 451 10 9 start-page: 990 202 year: 2008 2010 2017 publication-title: Nature Nano Lett. ACS Appl. Mater. Interfaces – volume: 5 34 50 7 start-page: 7099 9584 441 1661 year: 2017 2013 2011 2015 publication-title: J. Mater. Chem. B Biomaterials Angew. Chem. Int. Ed. Nanoscale – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 11 56 35 5 start-page: 4870 7862 2355 9592 year: 2015 2013 2014 2011 publication-title: Small J. Med. Chem. Biomaterials ACS Nano – volume: 10 26 start-page: 4418 2826 year: 2019 2016 publication-title: Nat. Commun. Adv. Funct. Mater. – volume: 8 8 year: 2016 2016 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 139 12 start-page: 1921 6243 year: 2017 2016 publication-title: J. Am. Chem. Soc. Small – volume: 137 11 26 65 8 start-page: 5304 58 1365 822 9798 year: 2015 2012 2014 2013 2016 publication-title: J. Am. Chem. Soc. Nat. Mater. Chem. Mater. Adv. Drug Deliv. Rev. Nanoscale – volume: 25 69 27 20 7 start-page: 1574 256 6782 year: 2015 2018 2016 2014 2013 publication-title: Adv. Funct. Mater. Acta Biomater. Nanotechnology Chem. Eur. J. ACS Nano – ident: e_1_2_7_1_2 doi: 10.1021/nl903274q – ident: e_1_2_7_16_1 doi: 10.1002/1521-3773(20010716)40:14<2591::AID-ANIE2591>3.0.CO;2-0 – ident: e_1_2_7_6_1 doi: 10.1021/acsami.7b03371 – ident: e_1_2_7_25_2 doi: 10.1021/acsami.6b11262 – ident: e_1_2_7_10_1 doi: 10.1016/j.nantod.2019.03.006 – ident: e_1_2_7_4_1 doi: 10.1016/j.addr.2015.12.018 – ident: e_1_2_7_17_5 doi: 10.1021/acs.analchem.6b00449 – ident: e_1_2_7_23_1 doi: 10.7150/thno.6062 – ident: e_1_2_7_18_2 doi: 10.1038/nmat3173 – ident: e_1_2_7_14_2 doi: 10.1016/j.actbio.2018.01.022 – ident: e_1_2_7_24_2 doi: 10.1021/cm304101n – ident: e_1_2_7_10_2 doi: 10.1039/C7CS00522A – ident: e_1_2_7_15_3 doi: 10.1002/anie.201005075 – ident: e_1_2_7_11_2 doi: 10.1002/marc.201500523 – ident: e_1_2_7_8_1 doi: 10.1038/nnano.2010.235 – ident: e_1_2_7_13_1 doi: 10.1021/jacs.6b11382 – ident: e_1_2_7_18_1 doi: 10.1021/jacs.5b00872 – ident: e_1_2_7_2_2 doi: 10.1038/nature.2017.21550 – ident: e_1_2_7_4_2 doi: 10.1002/adma.201703284 – ident: e_1_2_7_18_5 doi: 10.1039/C6NR00590J – ident: e_1_2_7_20_1 doi: 10.1038/nmat3908 – ident: e_1_2_7_6_3 doi: 10.2217/nnm-2017-0367 – ident: e_1_2_7_14_4 doi: 10.1002/chem.201403480 – ident: e_1_2_7_6_2 doi: 10.1002/adma.201304497 – ident: e_1_2_7_14_3 doi: 10.1088/0957-4484/27/28/285102 – ident: e_1_2_7_19_1 doi: 10.1002/smll.201501412 – ident: e_1_2_7_21_1 doi: 10.1039/C4TB01738B – ident: e_1_2_7_24_3 doi: 10.1021/acsami.6b10702 – ident: e_1_2_7_5_1 doi: 10.1115/1.3156800 – ident: e_1_2_7_7_1 doi: 10.1021/acs.chemrev.5b00008 – ident: e_1_2_7_1_3 doi: 10.1021/acsami.7b11062 – ident: e_1_2_7_19_3 doi: 10.1016/j.biomaterials.2013.11.074 – ident: e_1_2_7_12_1 doi: 10.1038/s41467-019-12142-4 – ident: e_1_2_7_17_1 doi: 10.1039/C5CC00286A – ident: e_1_2_7_22_1 doi: 10.1016/j.biomaterials.2016.11.045 – ident: e_1_2_7_12_2 doi: 10.1002/adfm.201600159 – ident: e_1_2_7_14_1 doi: 10.1002/adfm.201403885 – ident: e_1_2_7_18_3 doi: 10.1021/cm403050q – ident: e_1_2_7_15_4 doi: 10.1039/C4NR06340F – ident: e_1_2_7_24_1 doi: 10.1021/acsnano.7b02643 – ident: e_1_2_7_25_1 doi: 10.1021/acsami.6b08391 – ident: e_1_2_7_14_5 doi: 10.1021/nn4017179 – ident: e_1_2_7_19_2 doi: 10.1021/jm4012565 – ident: e_1_2_7_13_2 doi: 10.1002/smll.201602293 – ident: e_1_2_7_15_2 doi: 10.1016/j.biomaterials.2013.08.075 – ident: e_1_2_7_9_2 doi: 10.1038/srep01998 – ident: e_1_2_7_4_3 doi: 10.1021/jacs.7b07818 – ident: e_1_2_7_2_1 doi: 10.1016/j.ijpharm.2017.08.127 – ident: e_1_2_7_11_1 doi: 10.1021/acsami.6b11378 – ident: e_1_2_7_9_1 doi: 10.1021/acsnano.7b04461 – ident: e_1_2_7_17_2 doi: 10.1021/acs.accounts.7b00619 – ident: e_1_2_7_19_4 doi: 10.1021/nn202863x – ident: e_1_2_7_4_4 doi: 10.1002/advs.201700848 – ident: e_1_2_7_15_1 doi: 10.1039/C7TB01606A – ident: e_1_2_7_3_1 doi: 10.1038/nature17042 – ident: e_1_2_7_17_4 doi: 10.1039/C5CS00582E – ident: e_1_2_7_1_1 doi: 10.1038/nature06536 – ident: e_1_2_7_18_4 doi: 10.1016/j.addr.2012.10.007 – ident: e_1_2_7_5_2 doi: 10.1016/j.ajps.2015.11.123 – ident: e_1_2_7_17_3 doi: 10.1021/ja404243v |
SSID | ssj0017734 |
Score | 2.6778986 |
Snippet | Photothermal therapy (PTT) is one of the most promising approaches to combat multidrug‐resistant bacteria with less potential to induce resistance and systemic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Bacteria bacterial infection Bacterial infections Biocompatibility charge conversion Chitosan Drug resistance Electrostatic bonding Imaging imaging‐guided photothermal therapy Infections Infrared radiation Light irradiation Luminescence Materials science Microorganisms Nanoparticles persistent luminescence nanoparticles Photothermal conversion Polyanilines Surface charge Toxicity |
Title | pH Switchable Nanoplatform for In Vivo Persistent Luminescence Imaging and Precise Photothermal Therapy of Bacterial Infection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909042 https://www.proquest.com/docview/2386113689 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQT3BgR5RNPiBxSls7iVMf2aoWAarY1FtkO7aooElFU5A48O3MJG0pXJDgEimRnMUznnl23jwTcih1Q1uc5FjFnRdEie8pzYSnmRHWGR5qVbB8r0X7Prjohb25Kv5SH2K24IYjo4jXOMCVHtW_RENV4rCSHBKaBMeDIIzaeYiKbmb6USyKyt_KgiHBi_Wmqo0NXv_e_HtW-oKa84C1yDitFaKm71oSTZ5q41zXzPsPGcf_fMwqWZ7AUXpc-s8aWbDpOlmaEyncIB_DNr1964N1scqKQjjOhs8qR7BL4UA7KX3ov2YUufToM2lOL8cDZNMbjBq0Myg2QqIqTWgXtTRGlnYfs7wo_RrAw-9KYQOaOXpSakfDxc6EJJZukvvW-d1p25vs2uAZwCLck0EiIQEw50NsCF0EiEByywxTistmgvqALgx1JCPfCLjAg0jiuoYFcKQ5IMItUkmz1G4TyoyJhHMNI5QLuBJaa8V98B6_mYRhs1ElR1OrxcNSnCMuZZh5jD0az3q0SvamRo0ng3QUA1oRuKVNU1YJL6zzy13i47PW1exs5y-Ndskixxl7wf3ZI5X8ZWz3Adbk-qBw3U8gE_AO |
link.rule.ids | 315,782,786,1377,27931,27932,46301,46725 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH5q6aHtodBSxJTNh0qcAmMnccZHttEMDAjRoeIW2Y6tjsoko5IBqYf-dt5LJsNyQaKXSInkLH6LPzvf-wzwXZm2cTTJcVr4IEqyMNCGy8BwK523Ija6Yvmeyd5ldHwVN2xCqoWp9SHmC24UGVW-pgCnBendB9VQnXkqJccRTaHnvYV3GPOCWH2HF3MFKZ4k9Y9lyYnixa8a3ca22H3a_um49AA2H0PWaszpLoJp3rammvzemZZmx_59JuT4X5-zBJ9miJTt1S70Gd64_At8fKRTuAz_Jj32426EBqZCK4YZuZhc65LwLsMD6-fs5-i2YESnJ7fJSzaYjolQbylxsP642guJ6Txj5ySncePY-a-irKq_xvjwYa1twArP9mv5aLzYn_HE8q9w2T0aHvSC2cYNgUU4IgIVZQrHAO5DTA-xTxAUKOG45VoL1clIItDHsUlUElqJF0SUKFracIiPjEBQuAILeZG7VWDc2kR637ZS-0hoaYzRIkQHCjtZHHfaLdhuzJZOan2OtFZiFin1aDrv0RasN1ZNZ3F6kyJgkbSrTUe1QFTmeeEu6d5h93R-9u01jbbgfW94OkgH_bOTNfggaAJfUYHWYaH8M3UbiHJKs1n58T0vlfQr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkBAcWl4VS2nxAYlTYO0kzvoIpatdXlpRqPYW2Y6tIthkBdlW6qG_nZlkd1l6QYJLpERyHp7xzGfnm88Ae8o0jaNJjtPCB1GShYE2XAaGW-m8FbHRFcv3UnZuotN-3J-p4q_1IaYLbjQyqnhNA3yY-cNn0VCdeaokx4Sm0PHmYTGS6KwEi66mAlI8Ser_ypITw4v3J7KNTXH4sv3LtPSMNWcRa5Vy2h9BT162ZprcHYxKc2D__qfj-J6vWYUPYzzKjmoHWoM5l6_DyoxK4Qb8G3bYjz-3aF4qs2IYj4vhvS4J7TI8sG7Oft7-LhiR6clp8pKdjwZEp7cUNlh3UO2ExHSesR6JaTw61vtVlFXt1wAffl0rG7DCs-NaPBovdscssXwTbtrfr791gvG2DYFFMCICFWUKMwD3IQaH2CcICZRw3HKthWplJBDo49gkKgmtxAsiShQtbDhER0YgJPwEC3mRuy1g3NpEet-0UvtIaGmM0SJE9wlbWRy3mg3Yn1gtHdbqHGmtwyxS6tF02qMN2JkYNR2P0scU4YqkPW1aqgGiss4rd0mPTtoX07PttzTahaXeSTs9716efYZlQbP3ige0Awvlw8h9QYhTmq-VFz8BQDny0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=pH+Switchable+Nanoplatform+for+In+Vivo+Persistent+Luminescence+Imaging+and+Precise+Photothermal+Therapy+of+Bacterial+Infection&rft.jtitle=Advanced+functional+materials&rft.au=Li%E2%80%90Xia+Yan&rft.au=Li%E2%80%90Jian+Chen&rft.au=Zhao%2C+Xu&rft.au=Xiu%E2%80%90Ping+Yan&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=14&rft_id=info:doi/10.1002%2Fadfm.201909042&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |