A Platelet Graphitic Nanofiber‐Carbon Nanotube Hybrid for Efficient Oxygen Evolution Reaction

Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected...

Full description

Saved in:
Bibliographic Details
Published inChemCatChem Vol. 12; no. 1; pp. 360 - 365
Main Authors Ali, Zulfiqar, Mehmood, Mazhar, Ahmad, Jamil, Li, Xin, Majeed, Abdul, Tabassum, Hassina, Hou, Peng‐Xiang, Liu, Chang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 08.01.2020
Subjects
Online AccessGet full text
ISSN1867-3880
1867-3899
DOI10.1002/cctc.201901462

Cover

Loading…
Abstract Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected CNTs and nanofibers consisting of graphitized carbon layers stacked at different angles to the fiber axis with a large number of exposed edges. These unique structural characteristics give the hybrid a high density of active sites, fast electron transfer and a large number of mass transport paths. As a result, the material has an excellent electrocatalytic activity for OER with an overpotential of 0.28 V at a current density of 10 mA cm−2, which is much better than those of Ir/C and previously‐reported carbonaceous catalysts. OER catalysis: A platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid for OER catalysis, the PGNF composed of stacked carbon flakes with numerous exposed edges provides sufficient active sites, while CNTs function as a pathway permitting fast electron transport.
AbstractList Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected CNTs and nanofibers consisting of graphitized carbon layers stacked at different angles to the fiber axis with a large number of exposed edges. These unique structural characteristics give the hybrid a high density of active sites, fast electron transfer and a large number of mass transport paths. As a result, the material has an excellent electrocatalytic activity for OER with an overpotential of 0.28 V at a current density of 10 mA cm −2 , which is much better than those of Ir/C and previously‐reported carbonaceous catalysts.
Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected CNTs and nanofibers consisting of graphitized carbon layers stacked at different angles to the fiber axis with a large number of exposed edges. These unique structural characteristics give the hybrid a high density of active sites, fast electron transfer and a large number of mass transport paths. As a result, the material has an excellent electrocatalytic activity for OER with an overpotential of 0.28 V at a current density of 10 mA cm−2, which is much better than those of Ir/C and previously‐reported carbonaceous catalysts.
Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected CNTs and nanofibers consisting of graphitized carbon layers stacked at different angles to the fiber axis with a large number of exposed edges. These unique structural characteristics give the hybrid a high density of active sites, fast electron transfer and a large number of mass transport paths. As a result, the material has an excellent electrocatalytic activity for OER with an overpotential of 0.28 V at a current density of 10 mA cm−2, which is much better than those of Ir/C and previously‐reported carbonaceous catalysts. OER catalysis: A platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid for OER catalysis, the PGNF composed of stacked carbon flakes with numerous exposed edges provides sufficient active sites, while CNTs function as a pathway permitting fast electron transport.
Author Majeed, Abdul
Mehmood, Mazhar
Ahmad, Jamil
Hou, Peng‐Xiang
Tabassum, Hassina
Ali, Zulfiqar
Li, Xin
Liu, Chang
Author_xml – sequence: 1
  givenname: Zulfiqar
  surname: Ali
  fullname: Ali, Zulfiqar
  organization: Pakistan Institute of Engineering and Applied Sciences
– sequence: 2
  givenname: Mazhar
  surname: Mehmood
  fullname: Mehmood, Mazhar
  organization: Pakistan Institute of Engineering and Applied Sciences
– sequence: 3
  givenname: Jamil
  surname: Ahmad
  fullname: Ahmad, Jamil
  organization: Pakistan Institute of Engineering and Applied Sciences
– sequence: 4
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Abdul
  surname: Majeed
  fullname: Majeed, Abdul
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Hassina
  surname: Tabassum
  fullname: Tabassum, Hassina
  organization: Peking University
– sequence: 7
  givenname: Peng‐Xiang
  surname: Hou
  fullname: Hou, Peng‐Xiang
  email: pxhou@imr.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Chang
  orcidid: 0000-0003-3016-3997
  surname: Liu
  fullname: Liu, Chang
  email: cliu@imr.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNqFkMFKAzEQhoNUsK1ePS943ppJtsnmWJbaCsWK1HPIpommrLs1m6p78xF8Rp_EXSsKgniaYfi-meEfoF5ZlQahU8AjwJicax30iGAQGBJGDlAfUsZjmgrR--5TfIQGdb3BmAnKx30kJ9F1oYIpTIhmXm3vXXA6ulJlZV1u_PvrW6Z8XpWfo7DLTTRvcu_Wka18NLXWaWfKEC1fmjtTRtOnqtgF1-I3RumuOUaHVhW1OfmqQ3R7MV1l83ixnF1mk0WsKXASC1AwJowbwoQAzJI85Qy04DxhKQEi0jW3Y5zTnAEYRoziJk_AWmaBCkvpEJ3t92599bgzdZCbaufL9qQklCYcIMWspZI9pX1V195YqV1Q3Z_BK1dIwLKLUnZRyu8oW230S9t696B887cg9sKzK0zzDy2zbJX9uB98b4js
CitedBy_id crossref_primary_10_1007_s00339_021_04822_0
crossref_primary_10_1007_s10800_021_01600_x
crossref_primary_10_1016_j_cej_2023_143402
crossref_primary_10_1016_j_cej_2023_145524
crossref_primary_10_1016_j_surfin_2025_106116
crossref_primary_10_1088_1361_6528_abecb6
crossref_primary_10_1515_revic_2021_0019
crossref_primary_10_1016_j_matlet_2021_130838
crossref_primary_10_1016_j_cej_2024_154120
crossref_primary_10_1016_j_ceramint_2020_04_251
crossref_primary_10_1088_1361_6528_ac1195
crossref_primary_10_1016_j_micromeso_2023_112836
crossref_primary_10_1007_s10934_020_00934_9
crossref_primary_10_1007_s13369_022_07280_9
crossref_primary_10_1088_2053_1591_abdf1c
crossref_primary_10_1007_s10854_021_05519_z
crossref_primary_10_1002_pssa_202000199
crossref_primary_10_1016_j_matchemphys_2023_128793
crossref_primary_10_1016_j_mset_2023_03_005
crossref_primary_10_1016_j_cej_2023_141575
crossref_primary_10_1088_2399_1984_ac9022
crossref_primary_10_1016_j_cej_2022_137190
crossref_primary_10_1016_j_molstruc_2023_134929
crossref_primary_10_1002_slct_202200196
crossref_primary_10_1007_s13369_020_04866_z
crossref_primary_10_1016_j_cej_2024_149376
Cites_doi 10.1088/2053-1591/ab41d4
10.1016/j.jcis.2018.11.017
10.1007/s10853-005-6519-y
10.1021/acsenergylett.6b00681
10.1016/j.carbon.2005.09.015
10.1016/S0022-0248(00)00877-0
10.1016/j.carbon.2019.04.002
10.1002/anie.201206720
10.1016/j.jaap.2011.11.012
10.1007/s11051-010-0040-1
10.1126/sciadv.1500564
10.1002/ange.201206720
10.1016/j.ijhydene.2018.03.146
10.1039/C9QM00385A
10.1002/adma.201605957
10.1039/b9ay00312f
10.1016/j.apcatb.2018.10.013
10.1016/j.jallcom.2010.04.032
10.1039/C6TA02334G
10.1002/adma.201806128
10.1002/smll.201303715
10.1002/anie.201509982
10.1016/j.electacta.2014.08.001
10.1021/acsaem.9b00431
10.1007/s12206-016-1031-7
10.1007/s10973-010-1017-0
10.1002/cssc.201600323
10.1016/j.jpowsour.2014.12.092
10.17159/0379-4350/2015/v68a22
10.1016/j.carbon.2008.02.012
10.1016/j.carbon.2018.11.041
10.1016/j.nanoen.2017.11.004
10.1021/nn500880v
10.1021/ja509879r
10.1002/ange.201509982
10.1016/j.surfcoat.2011.04.100
10.1039/C8TA05822A
10.1002/advs.201802177
10.1039/C8TA11407B
10.1002/adma.201602270
10.1039/C8TA09130G
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/cctc.201901462
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage 365
ExternalDocumentID 10_1002_cctc_201901462
CCTC201901462
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51625203, 51772303 and 51872293
– fundername: International Research Support Initiative Programme (IRSIP)
  funderid: 1-8/HEC/HRD/2018/8229
– fundername: Higher Education Commission of Pakistan (HEC)
– fundername: Ministry of Science and Technology of China
  funderid: 2016YFA0200102
GroupedDBID 05W
0R~
1OC
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3172-91a15267e26991064b8761c97746821298d7f50b3b611e62ea7eb41ff6f139f33
ISSN 1867-3880
IngestDate Fri Jul 25 12:07:28 EDT 2025
Tue Jul 01 00:42:24 EDT 2025
Thu Apr 24 22:57:17 EDT 2025
Wed Jan 22 17:20:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3172-91a15267e26991064b8761c97746821298d7f50b3b611e62ea7eb41ff6f139f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3016-3997
PQID 2334711806
PQPubID 986343
PageCount 6
ParticipantIDs proquest_journals_2334711806
crossref_citationtrail_10_1002_cctc_201901462
crossref_primary_10_1002_cctc_201901462
wiley_primary_10_1002_cctc_201901462_CCTC201901462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 8, 2020
PublicationDateYYYYMMDD 2020-01-08
PublicationDate_xml – month: 01
  year: 2020
  text: January 8, 2020
  day: 08
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 1
2019; 7
2017; 42
2001; 222
2019; 3
2017; 2
2019; 6
2019; 31
2019; 2
2010; 501
2010; 102
2019; 148
2005; 40
2016; 30
2011; 13
2017; 29
2018; 43
2019; 243
2019; 143
2016; 4
2012; 94
2015; 68
2018; 6
2016 2016; 55 128
2011; 205
2015; 137
2015; 278
2006; 44
2012 2012; 51 124
2019
2008; 46
2019; 537
2014; 143
2016; 28
2014; 8
2010; 2
2016; 9
2014; 10
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_2
e_1_2_7_26_1
e_1_2_7_47_2
e_1_2_7_28_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_33_3
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_40_1
e_1_2_7_14_2
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_2
e_1_2_7_10_1
e_1_2_7_46_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_30_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 94
  start-page: 91
  year: 2012
  end-page: 98
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 9
  start-page: 1835
  year: 2016
  end-page: 1842
  publication-title: ChemSusChem
– volume: 2
  start-page: 202
  year: 2010
  publication-title: Anal. Methods
– volume: 205
  start-page: 4896
  year: 2011
  end-page: 4901
  publication-title: Surf. Coat. Technol.
– volume: 42
  start-page: 334
  year: 2017
  end-page: 340
  publication-title: Nano Energy
– volume: 40
  start-page: 999
  year: 2005
  end-page: 1003
  publication-title: Mater. Sci.
– volume: 148
  start-page: 496
  year: 2019
  end-page: 503
  publication-title: Carbon
– volume: 143
  start-page: 457
  year: 2019
  end-page: 466
  publication-title: Carbon
– volume: 243
  start-page: 151
  year: 2019
  end-page: 160
  publication-title: Appl. Catal. B
– volume: 143
  start-page: 291
  year: 2014
  end-page: 296
  publication-title: Electrochim. Acta
– volume: 28
  start-page: 9266
  year: 2016
  end-page: 9291
  publication-title: Adv. Mater.
– volume: 10
  start-page: 2251
  year: 2014
  end-page: 2259
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 44
  start-page: 742
  year: 2006
  end-page: 746
  publication-title: Carbon
– volume: 537
  start-page: 280
  year: 2019
  end-page: 294
  publication-title: J. Colloid Interface Sci.
– volume: 501
  start-page: 77
  year: 2010
  end-page: 84
  publication-title: J. Alloys Compd.
– volume: 7
  start-page: 2536
  year: 2019
  end-page: 2540
  publication-title: J. Mater. Chem. A
– volume: 51 124
  start-page: 11496 11664
  year: 2012 2012
  end-page: 11500 11668
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 294
  year: 2017
  end-page: 300
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 105627
  year: 2019
  publication-title: Mater. Res. Express
– volume: 43
  start-page: 8623
  year: 2018
  end-page: 8631
  publication-title: Int. J. Hydrogen Energy
– volume: 30
  start-page: 5135
  year: 2016
  end-page: 5141
  publication-title: J. Mech. Sci. Technol.
– volume: 46
  start-page: 833
  year: 2008
  end-page: 840
  publication-title: Carbon
– volume: 102
  start-page: 641
  year: 2010
  end-page: 646
  publication-title: J. Therm. Anal. Calorim.
– volume: 3
  start-page: 1849
  year: 2019
  end-page: 1858
  publication-title: Mater. Chem. Front.
– volume: 13
  start-page: 375
  year: 2011
  end-page: 384
  publication-title: J. Nanopart. Res.
– volume: 137
  start-page: 2901
  year: 2015
  end-page: 2907
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 3970
  year: 2014
  end-page: 3978
  publication-title: ACS Nano
– volume: 4
  start-page: 11973
  year: 2016
  end-page: 12000
  publication-title: J. Mater. Chem. A
– start-page: 1802177
  year: 2019
  publication-title: Adv. Sci.
– volume: 278
  start-page: 464
  year: 2015
  end-page: 472
  publication-title: J. Power Sources
– volume: 68
  year: 2015
  publication-title: S. Afr. J. Chem.
– volume: 2
  start-page: 4188
  year: 2019
  end-page: 4194
  publication-title: ACS Appl. Energy Mater.
– volume: 1
  year: 2015
  publication-title: Sci. Adv.
– volume: 7
  start-page: 764
  year: 2019
  end-page: 774
  publication-title: J. Mater. Chem. A
– volume: 55 128
  start-page: 11736 11910
  year: 2016 2016
  end-page: 11758 11933
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 222
  start-page: 163
  year: 2001
  end-page: 169
  publication-title: J. Cryst. Growth
– volume: 6
  start-page: 20411
  year: 2018
  end-page: 20420
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1605957
  year: 2017
  publication-title: Adv. Mater.
– ident: e_1_2_7_14_2
  doi: 10.1088/2053-1591/ab41d4
– ident: e_1_2_7_20_1
– ident: e_1_2_7_44_2
  doi: 10.1016/j.jcis.2018.11.017
– ident: e_1_2_7_29_2
  doi: 10.1007/s10853-005-6519-y
– ident: e_1_2_7_34_2
  doi: 10.1021/acsenergylett.6b00681
– ident: e_1_2_7_27_2
  doi: 10.1016/j.carbon.2005.09.015
– ident: e_1_2_7_28_2
  doi: 10.1016/S0022-0248(00)00877-0
– ident: e_1_2_7_5_2
  doi: 10.1016/j.carbon.2019.04.002
– ident: e_1_2_7_33_2
  doi: 10.1002/anie.201206720
– ident: e_1_2_7_31_1
  doi: 10.1016/j.jaap.2011.11.012
– ident: e_1_2_7_24_1
  doi: 10.1007/s11051-010-0040-1
– ident: e_1_2_7_8_2
  doi: 10.1126/sciadv.1500564
– ident: e_1_2_7_33_3
  doi: 10.1002/ange.201206720
– ident: e_1_2_7_13_2
  doi: 10.1016/j.ijhydene.2018.03.146
– ident: e_1_2_7_32_1
– ident: e_1_2_7_21_2
  doi: 10.1039/C9QM00385A
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201605957
– ident: e_1_2_7_30_2
  doi: 10.1039/b9ay00312f
– ident: e_1_2_7_43_1
– ident: e_1_2_7_45_2
  doi: 10.1016/j.apcatb.2018.10.013
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jallcom.2010.04.032
– ident: e_1_2_7_3_2
  doi: 10.1039/C6TA02334G
– ident: e_1_2_7_9_2
  doi: 10.1002/adma.201806128
– ident: e_1_2_7_42_1
  doi: 10.1002/smll.201303715
– ident: e_1_2_7_2_2
  doi: 10.1002/anie.201509982
– ident: e_1_2_7_17_2
  doi: 10.1016/j.electacta.2014.08.001
– ident: e_1_2_7_22_2
  doi: 10.1021/acsaem.9b00431
– ident: e_1_2_7_25_1
  doi: 10.1007/s12206-016-1031-7
– ident: e_1_2_7_38_1
  doi: 10.1007/s10973-010-1017-0
– ident: e_1_2_7_10_1
  doi: 10.1002/cssc.201600323
– ident: e_1_2_7_18_2
  doi: 10.1016/j.jpowsour.2014.12.092
– ident: e_1_2_7_1_1
– ident: e_1_2_7_37_1
  doi: 10.17159/0379-4350/2015/v68a22
– ident: e_1_2_7_35_1
  doi: 10.1016/j.carbon.2008.02.012
– ident: e_1_2_7_4_2
  doi: 10.1016/j.carbon.2018.11.041
– ident: e_1_2_7_40_1
  doi: 10.1016/j.nanoen.2017.11.004
– ident: e_1_2_7_11_1
  doi: 10.1021/nn500880v
– ident: e_1_2_7_19_1
  doi: 10.1021/ja509879r
– ident: e_1_2_7_2_3
  doi: 10.1002/ange.201509982
– ident: e_1_2_7_36_1
  doi: 10.1016/j.surfcoat.2011.04.100
– ident: e_1_2_7_6_1
– ident: e_1_2_7_46_2
  doi: 10.1039/C8TA05822A
– ident: e_1_2_7_16_2
  doi: 10.1002/advs.201802177
– ident: e_1_2_7_23_2
  doi: 10.1039/C8TA11407B
– ident: e_1_2_7_7_2
  doi: 10.1002/adma.201602270
– ident: e_1_2_7_26_1
– ident: e_1_2_7_12_1
– ident: e_1_2_7_47_2
  doi: 10.1039/C8TA09130G
– ident: e_1_2_7_15_1
SSID ssj0069375
Score 2.396656
Snippet Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 360
SubjectTerms Alcogel electrolysis
Carbon
Carbon nanaotube
Carbon nanotubes
Catalysts
Chemical vapor deposition
CVD
Electron transfer
Graphitization
Nanofibers
OER electrocatalysis
Organic chemistry
Oxygen evolution reactions
Platelet graphitic nanofiber
Title A Platelet Graphitic Nanofiber‐Carbon Nanotube Hybrid for Efficient Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201901462
https://www.proquest.com/docview/2334711806
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxFOEFrQHJA6Rwdm11-bompSoInBJpYiLtWuvlUpNgOJUtOLAT-A38kuY8T7i0CIKFydZ22vH83keq5lvCHmGXUR4rOJAliqBAEXwQFaiDngUVZqFcSrbdkDTd2JyFB3O43mv961bXdKoF-XFlXUl_yNVGAO5YpXsP0jWTwoD8B3kC1uQMGyvJeMMew41YDia4RsknsZMNtSXMKkCUbg8hlyeKhAy7mjWSg8n51im1SYYjlsGCcwHeP_1HK4zHJ_ZO8b0-tJLzXEZLPQylw1-eKSY-uoP65P6-LP0qb5TvVjabJ6pvFhsdmSLpUHVIS6tuNG37SRzSwNuVyFY2K5CdBVnCgoXiWWMXemOmQZIXtuyS6gyqpOLsGOFuekgcUnBG8LYsmzpJ9GZiawy32LS_s3C-bxDw9HMCjy_8OffIDsMgoywT3ay_df7B86SC3DdMAXW_zdH-hmyl9t3sO3UbCKVbrzTOiyzO-S2jTRoZmBzl_T06h65mbsGf_dJkVEHH-rhQz18fn7_YYBDHXCoAQ4F4FAPHGqAQz1wqAPOA3J0MJ7lk8D22whK8CIZ2D0J3pxINBMQNYCvqsBUjkqMEEQKLs6rtErqOFRcidFIC6ZlolU0qmtRQxxRc_6Q9FcfV_oRoQm2tAb3UaQQbyPzbMW5jsHzgfBIhroakMA9sKK0ZPTYE-WkuFpEA_LcH__J0LD88cg99_wL-6p-KRjn4ISN0lAMCGtl8pdZijyf5f7X42tffZfc2rwde6TfnK71E_BaG_XUgusXeImQfA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Platelet+Graphitic+Nanofiber%E2%80%90Carbon+Nanotube+Hybrid+for+Efficient+Oxygen+Evolution+Reaction&rft.jtitle=ChemCatChem&rft.au=Ali%2C+Zulfiqar&rft.au=Mehmood%2C+Mazhar&rft.au=Ahmad%2C+Jamil&rft.au=Li%2C+Xin&rft.date=2020-01-08&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=12&rft.issue=1&rft.spage=360&rft.epage=365&rft_id=info:doi/10.1002%2Fcctc.201901462&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cctc_201901462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon