A Platelet Graphitic Nanofiber‐Carbon Nanotube Hybrid for Efficient Oxygen Evolution Reaction
Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected...
Saved in:
Published in | ChemCatChem Vol. 12; no. 1; pp. 360 - 365 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
08.01.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1867-3880 1867-3899 |
DOI | 10.1002/cctc.201901462 |
Cover
Loading…
Abstract | Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected CNTs and nanofibers consisting of graphitized carbon layers stacked at different angles to the fiber axis with a large number of exposed edges. These unique structural characteristics give the hybrid a high density of active sites, fast electron transfer and a large number of mass transport paths. As a result, the material has an excellent electrocatalytic activity for OER with an overpotential of 0.28 V at a current density of 10 mA cm−2, which is much better than those of Ir/C and previously‐reported carbonaceous catalysts.
OER catalysis: A platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid for OER catalysis, the PGNF composed of stacked carbon flakes with numerous exposed edges provides sufficient active sites, while CNTs function as a pathway permitting fast electron transport. |
---|---|
AbstractList | Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected CNTs and nanofibers consisting of graphitized carbon layers stacked at different angles to the fiber axis with a large number of exposed edges. These unique structural characteristics give the hybrid a high density of active sites, fast electron transfer and a large number of mass transport paths. As a result, the material has an excellent electrocatalytic activity for OER with an overpotential of 0.28 V at a current density of 10 mA cm
−2
, which is much better than those of Ir/C and previously‐reported carbonaceous catalysts. Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected CNTs and nanofibers consisting of graphitized carbon layers stacked at different angles to the fiber axis with a large number of exposed edges. These unique structural characteristics give the hybrid a high density of active sites, fast electron transfer and a large number of mass transport paths. As a result, the material has an excellent electrocatalytic activity for OER with an overpotential of 0.28 V at a current density of 10 mA cm−2, which is much better than those of Ir/C and previously‐reported carbonaceous catalysts. Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid electrocatalyst prepared by chemical vapor deposition. The material is composed of interconnected CNTs and nanofibers consisting of graphitized carbon layers stacked at different angles to the fiber axis with a large number of exposed edges. These unique structural characteristics give the hybrid a high density of active sites, fast electron transfer and a large number of mass transport paths. As a result, the material has an excellent electrocatalytic activity for OER with an overpotential of 0.28 V at a current density of 10 mA cm−2, which is much better than those of Ir/C and previously‐reported carbonaceous catalysts. OER catalysis: A platelet graphitic nanofiber‐carbon nanotube (PGNF‐CNT) hybrid for OER catalysis, the PGNF composed of stacked carbon flakes with numerous exposed edges provides sufficient active sites, while CNTs function as a pathway permitting fast electron transport. |
Author | Majeed, Abdul Mehmood, Mazhar Ahmad, Jamil Hou, Peng‐Xiang Tabassum, Hassina Ali, Zulfiqar Li, Xin Liu, Chang |
Author_xml | – sequence: 1 givenname: Zulfiqar surname: Ali fullname: Ali, Zulfiqar organization: Pakistan Institute of Engineering and Applied Sciences – sequence: 2 givenname: Mazhar surname: Mehmood fullname: Mehmood, Mazhar organization: Pakistan Institute of Engineering and Applied Sciences – sequence: 3 givenname: Jamil surname: Ahmad fullname: Ahmad, Jamil organization: Pakistan Institute of Engineering and Applied Sciences – sequence: 4 givenname: Xin surname: Li fullname: Li, Xin organization: Chinese Academy of Sciences – sequence: 5 givenname: Abdul surname: Majeed fullname: Majeed, Abdul organization: Chinese Academy of Sciences – sequence: 6 givenname: Hassina surname: Tabassum fullname: Tabassum, Hassina organization: Peking University – sequence: 7 givenname: Peng‐Xiang surname: Hou fullname: Hou, Peng‐Xiang email: pxhou@imr.ac.cn organization: Chinese Academy of Sciences – sequence: 8 givenname: Chang orcidid: 0000-0003-3016-3997 surname: Liu fullname: Liu, Chang email: cliu@imr.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNqFkMFKAzEQhoNUsK1ePS943ppJtsnmWJbaCsWK1HPIpommrLs1m6p78xF8Rp_EXSsKgniaYfi-meEfoF5ZlQahU8AjwJicax30iGAQGBJGDlAfUsZjmgrR--5TfIQGdb3BmAnKx30kJ9F1oYIpTIhmXm3vXXA6ulJlZV1u_PvrW6Z8XpWfo7DLTTRvcu_Wka18NLXWaWfKEC1fmjtTRtOnqtgF1-I3RumuOUaHVhW1OfmqQ3R7MV1l83ixnF1mk0WsKXASC1AwJowbwoQAzJI85Qy04DxhKQEi0jW3Y5zTnAEYRoziJk_AWmaBCkvpEJ3t92599bgzdZCbaufL9qQklCYcIMWspZI9pX1V195YqV1Q3Z_BK1dIwLKLUnZRyu8oW230S9t696B887cg9sKzK0zzDy2zbJX9uB98b4js |
CitedBy_id | crossref_primary_10_1007_s00339_021_04822_0 crossref_primary_10_1007_s10800_021_01600_x crossref_primary_10_1016_j_cej_2023_143402 crossref_primary_10_1016_j_cej_2023_145524 crossref_primary_10_1016_j_surfin_2025_106116 crossref_primary_10_1088_1361_6528_abecb6 crossref_primary_10_1515_revic_2021_0019 crossref_primary_10_1016_j_matlet_2021_130838 crossref_primary_10_1016_j_cej_2024_154120 crossref_primary_10_1016_j_ceramint_2020_04_251 crossref_primary_10_1088_1361_6528_ac1195 crossref_primary_10_1016_j_micromeso_2023_112836 crossref_primary_10_1007_s10934_020_00934_9 crossref_primary_10_1007_s13369_022_07280_9 crossref_primary_10_1088_2053_1591_abdf1c crossref_primary_10_1007_s10854_021_05519_z crossref_primary_10_1002_pssa_202000199 crossref_primary_10_1016_j_matchemphys_2023_128793 crossref_primary_10_1016_j_mset_2023_03_005 crossref_primary_10_1016_j_cej_2023_141575 crossref_primary_10_1088_2399_1984_ac9022 crossref_primary_10_1016_j_cej_2022_137190 crossref_primary_10_1016_j_molstruc_2023_134929 crossref_primary_10_1002_slct_202200196 crossref_primary_10_1007_s13369_020_04866_z crossref_primary_10_1016_j_cej_2024_149376 |
Cites_doi | 10.1088/2053-1591/ab41d4 10.1016/j.jcis.2018.11.017 10.1007/s10853-005-6519-y 10.1021/acsenergylett.6b00681 10.1016/j.carbon.2005.09.015 10.1016/S0022-0248(00)00877-0 10.1016/j.carbon.2019.04.002 10.1002/anie.201206720 10.1016/j.jaap.2011.11.012 10.1007/s11051-010-0040-1 10.1126/sciadv.1500564 10.1002/ange.201206720 10.1016/j.ijhydene.2018.03.146 10.1039/C9QM00385A 10.1002/adma.201605957 10.1039/b9ay00312f 10.1016/j.apcatb.2018.10.013 10.1016/j.jallcom.2010.04.032 10.1039/C6TA02334G 10.1002/adma.201806128 10.1002/smll.201303715 10.1002/anie.201509982 10.1016/j.electacta.2014.08.001 10.1021/acsaem.9b00431 10.1007/s12206-016-1031-7 10.1007/s10973-010-1017-0 10.1002/cssc.201600323 10.1016/j.jpowsour.2014.12.092 10.17159/0379-4350/2015/v68a22 10.1016/j.carbon.2008.02.012 10.1016/j.carbon.2018.11.041 10.1016/j.nanoen.2017.11.004 10.1021/nn500880v 10.1021/ja509879r 10.1002/ange.201509982 10.1016/j.surfcoat.2011.04.100 10.1039/C8TA05822A 10.1002/advs.201802177 10.1039/C8TA11407B 10.1002/adma.201602270 10.1039/C8TA09130G |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/cctc.201901462 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1867-3899 |
EndPage | 365 |
ExternalDocumentID | 10_1002_cctc_201901462 CCTC201901462 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51625203, 51772303 and 51872293 – fundername: International Research Support Initiative Programme (IRSIP) funderid: 1-8/HEC/HRD/2018/8229 – fundername: Higher Education Commission of Pakistan (HEC) – fundername: Ministry of Science and Technology of China funderid: 2016YFA0200102 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3172-91a15267e26991064b8761c97746821298d7f50b3b611e62ea7eb41ff6f139f33 |
ISSN | 1867-3880 |
IngestDate | Fri Jul 25 12:07:28 EDT 2025 Tue Jul 01 00:42:24 EDT 2025 Thu Apr 24 22:57:17 EDT 2025 Wed Jan 22 17:20:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3172-91a15267e26991064b8761c97746821298d7f50b3b611e62ea7eb41ff6f139f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3016-3997 |
PQID | 2334711806 |
PQPubID | 986343 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2334711806 crossref_citationtrail_10_1002_cctc_201901462 crossref_primary_10_1002_cctc_201901462 wiley_primary_10_1002_cctc_201901462_CCTC201901462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 8, 2020 |
PublicationDateYYYYMMDD | 2020-01-08 |
PublicationDate_xml | – month: 01 year: 2020 text: January 8, 2020 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemCatChem |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 1 2019; 7 2017; 42 2001; 222 2019; 3 2017; 2 2019; 6 2019; 31 2019; 2 2010; 501 2010; 102 2019; 148 2005; 40 2016; 30 2011; 13 2017; 29 2018; 43 2019; 243 2019; 143 2016; 4 2012; 94 2015; 68 2018; 6 2016 2016; 55 128 2011; 205 2015; 137 2015; 278 2006; 44 2012 2012; 51 124 2019 2008; 46 2019; 537 2014; 143 2016; 28 2014; 8 2010; 2 2016; 9 2014; 10 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_2 e_1_2_7_26_1 e_1_2_7_47_2 e_1_2_7_28_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_33_3 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_40_1 e_1_2_7_14_2 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_2 e_1_2_7_10_1 e_1_2_7_46_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_30_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 94 start-page: 91 year: 2012 end-page: 98 publication-title: J. Anal. Appl. Pyrolysis – volume: 9 start-page: 1835 year: 2016 end-page: 1842 publication-title: ChemSusChem – volume: 2 start-page: 202 year: 2010 publication-title: Anal. Methods – volume: 205 start-page: 4896 year: 2011 end-page: 4901 publication-title: Surf. Coat. Technol. – volume: 42 start-page: 334 year: 2017 end-page: 340 publication-title: Nano Energy – volume: 40 start-page: 999 year: 2005 end-page: 1003 publication-title: Mater. Sci. – volume: 148 start-page: 496 year: 2019 end-page: 503 publication-title: Carbon – volume: 143 start-page: 457 year: 2019 end-page: 466 publication-title: Carbon – volume: 243 start-page: 151 year: 2019 end-page: 160 publication-title: Appl. Catal. B – volume: 143 start-page: 291 year: 2014 end-page: 296 publication-title: Electrochim. Acta – volume: 28 start-page: 9266 year: 2016 end-page: 9291 publication-title: Adv. Mater. – volume: 10 start-page: 2251 year: 2014 end-page: 2259 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 44 start-page: 742 year: 2006 end-page: 746 publication-title: Carbon – volume: 537 start-page: 280 year: 2019 end-page: 294 publication-title: J. Colloid Interface Sci. – volume: 501 start-page: 77 year: 2010 end-page: 84 publication-title: J. Alloys Compd. – volume: 7 start-page: 2536 year: 2019 end-page: 2540 publication-title: J. Mater. Chem. A – volume: 51 124 start-page: 11496 11664 year: 2012 2012 end-page: 11500 11668 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 294 year: 2017 end-page: 300 publication-title: ACS Energy Lett. – volume: 6 start-page: 105627 year: 2019 publication-title: Mater. Res. Express – volume: 43 start-page: 8623 year: 2018 end-page: 8631 publication-title: Int. J. Hydrogen Energy – volume: 30 start-page: 5135 year: 2016 end-page: 5141 publication-title: J. Mech. Sci. Technol. – volume: 46 start-page: 833 year: 2008 end-page: 840 publication-title: Carbon – volume: 102 start-page: 641 year: 2010 end-page: 646 publication-title: J. Therm. Anal. Calorim. – volume: 3 start-page: 1849 year: 2019 end-page: 1858 publication-title: Mater. Chem. Front. – volume: 13 start-page: 375 year: 2011 end-page: 384 publication-title: J. Nanopart. Res. – volume: 137 start-page: 2901 year: 2015 end-page: 2907 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 3970 year: 2014 end-page: 3978 publication-title: ACS Nano – volume: 4 start-page: 11973 year: 2016 end-page: 12000 publication-title: J. Mater. Chem. A – start-page: 1802177 year: 2019 publication-title: Adv. Sci. – volume: 278 start-page: 464 year: 2015 end-page: 472 publication-title: J. Power Sources – volume: 68 year: 2015 publication-title: S. Afr. J. Chem. – volume: 2 start-page: 4188 year: 2019 end-page: 4194 publication-title: ACS Appl. Energy Mater. – volume: 1 year: 2015 publication-title: Sci. Adv. – volume: 7 start-page: 764 year: 2019 end-page: 774 publication-title: J. Mater. Chem. A – volume: 55 128 start-page: 11736 11910 year: 2016 2016 end-page: 11758 11933 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 222 start-page: 163 year: 2001 end-page: 169 publication-title: J. Cryst. Growth – volume: 6 start-page: 20411 year: 2018 end-page: 20420 publication-title: J. Mater. Chem. A – volume: 29 start-page: 1605957 year: 2017 publication-title: Adv. Mater. – ident: e_1_2_7_14_2 doi: 10.1088/2053-1591/ab41d4 – ident: e_1_2_7_20_1 – ident: e_1_2_7_44_2 doi: 10.1016/j.jcis.2018.11.017 – ident: e_1_2_7_29_2 doi: 10.1007/s10853-005-6519-y – ident: e_1_2_7_34_2 doi: 10.1021/acsenergylett.6b00681 – ident: e_1_2_7_27_2 doi: 10.1016/j.carbon.2005.09.015 – ident: e_1_2_7_28_2 doi: 10.1016/S0022-0248(00)00877-0 – ident: e_1_2_7_5_2 doi: 10.1016/j.carbon.2019.04.002 – ident: e_1_2_7_33_2 doi: 10.1002/anie.201206720 – ident: e_1_2_7_31_1 doi: 10.1016/j.jaap.2011.11.012 – ident: e_1_2_7_24_1 doi: 10.1007/s11051-010-0040-1 – ident: e_1_2_7_8_2 doi: 10.1126/sciadv.1500564 – ident: e_1_2_7_33_3 doi: 10.1002/ange.201206720 – ident: e_1_2_7_13_2 doi: 10.1016/j.ijhydene.2018.03.146 – ident: e_1_2_7_32_1 – ident: e_1_2_7_21_2 doi: 10.1039/C9QM00385A – ident: e_1_2_7_41_1 doi: 10.1002/adma.201605957 – ident: e_1_2_7_30_2 doi: 10.1039/b9ay00312f – ident: e_1_2_7_43_1 – ident: e_1_2_7_45_2 doi: 10.1016/j.apcatb.2018.10.013 – ident: e_1_2_7_39_1 doi: 10.1016/j.jallcom.2010.04.032 – ident: e_1_2_7_3_2 doi: 10.1039/C6TA02334G – ident: e_1_2_7_9_2 doi: 10.1002/adma.201806128 – ident: e_1_2_7_42_1 doi: 10.1002/smll.201303715 – ident: e_1_2_7_2_2 doi: 10.1002/anie.201509982 – ident: e_1_2_7_17_2 doi: 10.1016/j.electacta.2014.08.001 – ident: e_1_2_7_22_2 doi: 10.1021/acsaem.9b00431 – ident: e_1_2_7_25_1 doi: 10.1007/s12206-016-1031-7 – ident: e_1_2_7_38_1 doi: 10.1007/s10973-010-1017-0 – ident: e_1_2_7_10_1 doi: 10.1002/cssc.201600323 – ident: e_1_2_7_18_2 doi: 10.1016/j.jpowsour.2014.12.092 – ident: e_1_2_7_1_1 – ident: e_1_2_7_37_1 doi: 10.17159/0379-4350/2015/v68a22 – ident: e_1_2_7_35_1 doi: 10.1016/j.carbon.2008.02.012 – ident: e_1_2_7_4_2 doi: 10.1016/j.carbon.2018.11.041 – ident: e_1_2_7_40_1 doi: 10.1016/j.nanoen.2017.11.004 – ident: e_1_2_7_11_1 doi: 10.1021/nn500880v – ident: e_1_2_7_19_1 doi: 10.1021/ja509879r – ident: e_1_2_7_2_3 doi: 10.1002/ange.201509982 – ident: e_1_2_7_36_1 doi: 10.1016/j.surfcoat.2011.04.100 – ident: e_1_2_7_6_1 – ident: e_1_2_7_46_2 doi: 10.1039/C8TA05822A – ident: e_1_2_7_16_2 doi: 10.1002/advs.201802177 – ident: e_1_2_7_23_2 doi: 10.1039/C8TA11407B – ident: e_1_2_7_7_2 doi: 10.1002/adma.201602270 – ident: e_1_2_7_26_1 – ident: e_1_2_7_12_1 – ident: e_1_2_7_47_2 doi: 10.1039/C8TA09130G – ident: e_1_2_7_15_1 |
SSID | ssj0069375 |
Score | 2.396656 |
Snippet | Carbon nanostructures with a high‐density of active sites are needed as catalysts for the oxygen evolution reaction (OER). Here we report a platelet graphitic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 360 |
SubjectTerms | Alcogel electrolysis Carbon Carbon nanaotube Carbon nanotubes Catalysts Chemical vapor deposition CVD Electron transfer Graphitization Nanofibers OER electrocatalysis Organic chemistry Oxygen evolution reactions Platelet graphitic nanofiber |
Title | A Platelet Graphitic Nanofiber‐Carbon Nanotube Hybrid for Efficient Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.201901462 https://www.proquest.com/docview/2334711806 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AAXxFOEFrQHJA6Rwdm11-bompSoInBJpYiLtWuvlUpNgOJUtOLAT-A38kuY8T7i0CIKFydZ22vH83keq5lvCHmGXUR4rOJAliqBAEXwQFaiDngUVZqFcSrbdkDTd2JyFB3O43mv961bXdKoF-XFlXUl_yNVGAO5YpXsP0jWTwoD8B3kC1uQMGyvJeMMew41YDia4RsknsZMNtSXMKkCUbg8hlyeKhAy7mjWSg8n51im1SYYjlsGCcwHeP_1HK4zHJ_ZO8b0-tJLzXEZLPQylw1-eKSY-uoP65P6-LP0qb5TvVjabJ6pvFhsdmSLpUHVIS6tuNG37SRzSwNuVyFY2K5CdBVnCgoXiWWMXemOmQZIXtuyS6gyqpOLsGOFuekgcUnBG8LYsmzpJ9GZiawy32LS_s3C-bxDw9HMCjy_8OffIDsMgoywT3ay_df7B86SC3DdMAXW_zdH-hmyl9t3sO3UbCKVbrzTOiyzO-S2jTRoZmBzl_T06h65mbsGf_dJkVEHH-rhQz18fn7_YYBDHXCoAQ4F4FAPHGqAQz1wqAPOA3J0MJ7lk8D22whK8CIZ2D0J3pxINBMQNYCvqsBUjkqMEEQKLs6rtErqOFRcidFIC6ZlolU0qmtRQxxRc_6Q9FcfV_oRoQm2tAb3UaQQbyPzbMW5jsHzgfBIhroakMA9sKK0ZPTYE-WkuFpEA_LcH__J0LD88cg99_wL-6p-KRjn4ISN0lAMCGtl8pdZijyf5f7X42tffZfc2rwde6TfnK71E_BaG_XUgusXeImQfA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Platelet+Graphitic+Nanofiber%E2%80%90Carbon+Nanotube+Hybrid+for+Efficient+Oxygen+Evolution+Reaction&rft.jtitle=ChemCatChem&rft.au=Ali%2C+Zulfiqar&rft.au=Mehmood%2C+Mazhar&rft.au=Ahmad%2C+Jamil&rft.au=Li%2C+Xin&rft.date=2020-01-08&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=12&rft.issue=1&rft.spage=360&rft.epage=365&rft_id=info:doi/10.1002%2Fcctc.201901462&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cctc_201901462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |