Highly Ordered and Crystalline Cu Nanowires in Anodic Aluminum Oxide Membranes for Biomedical Applications
1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging, drug delivery, and biodevices. Herein, anodic aluminum oxide (AAO) template is used to electrochemically grow the highly crystalline Cu nanowire...
Saved in:
Published in | Physica status solidi. A, Applications and materials science Vol. 217; no. 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1862-6300 1862-6319 |
DOI | 10.1002/pssa.201900842 |
Cover
Loading…
Abstract | 1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging, drug delivery, and biodevices. Herein, anodic aluminum oxide (AAO) template is used to electrochemically grow the highly crystalline Cu nanowires. The electrodeposition potential for copper solution is identified by cyclic voltammetry. The Cu nanowire‐deposited AAO template is further characterized using field emission scanning electron microscope (FESEM), energy dispersive X‐ray (EDX) spectroscopy, wavelength dispersive X‐ray fluorescence (WDXRF) spectroscopy, X‐ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). The Cu‐deposited AAO template is tested for antibacterial activity against different microorganisms (including both gram positive as well as gram negative). Further, the assessment of the cytotoxic nature of Cu nanowires is a fundamental step for their application in the biomedical field. The favorable properties of Cu‐deposited AAO template in terms of excellent antibacterial effects and low cytotoxicity promote their application in the biomedical field, especially for medical diagnosis.
1D nanostructures have potential applications in biomedical field. Herein, highly crystalline Cu nanowires are electrodeposited inside anodic aluminum oxide membrane through cyclic voltammetry. The electrochemical impedance study shows capacitive behavior of Cu nanowires at higher frequencies beyond 100 kHz. The Cu nanowires exhibit excellent antibacterial activity. |
---|---|
AbstractList | 1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging, drug delivery, and biodevices. Herein, anodic aluminum oxide (AAO) template is used to electrochemically grow the highly crystalline Cu nanowires. The electrodeposition potential for copper solution is identified by cyclic voltammetry. The Cu nanowire‐deposited AAO template is further characterized using field emission scanning electron microscope (FESEM), energy dispersive X‐ray (EDX) spectroscopy, wavelength dispersive X‐ray fluorescence (WDXRF) spectroscopy, X‐ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). The Cu‐deposited AAO template is tested for antibacterial activity against different microorganisms (including both gram positive as well as gram negative). Further, the assessment of the cytotoxic nature of Cu nanowires is a fundamental step for their application in the biomedical field. The favorable properties of Cu‐deposited AAO template in terms of excellent antibacterial effects and low cytotoxicity promote their application in the biomedical field, especially for medical diagnosis.
1D nanostructures have potential applications in biomedical field. Herein, highly crystalline Cu nanowires are electrodeposited inside anodic aluminum oxide membrane through cyclic voltammetry. The electrochemical impedance study shows capacitive behavior of Cu nanowires at higher frequencies beyond 100 kHz. The Cu nanowires exhibit excellent antibacterial activity. 1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging, drug delivery, and biodevices. Herein, anodic aluminum oxide (AAO) template is used to electrochemically grow the highly crystalline Cu nanowires. The electrodeposition potential for copper solution is identified by cyclic voltammetry. The Cu nanowire‐deposited AAO template is further characterized using field emission scanning electron microscope (FESEM), energy dispersive X‐ray (EDX) spectroscopy, wavelength dispersive X‐ray fluorescence (WDXRF) spectroscopy, X‐ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). The Cu‐deposited AAO template is tested for antibacterial activity against different microorganisms (including both gram positive as well as gram negative). Further, the assessment of the cytotoxic nature of Cu nanowires is a fundamental step for their application in the biomedical field. The favorable properties of Cu‐deposited AAO template in terms of excellent antibacterial effects and low cytotoxicity promote their application in the biomedical field, especially for medical diagnosis. |
Author | Kumar, Sandeep Nehra, Monika Singhal, Nitin Kumar Dilbaghi, Ananya N. Singh, Vishal |
Author_xml | – sequence: 1 givenname: Monika surname: Nehra fullname: Nehra, Monika organization: Guru Jambheshwar University of Science and Technology – sequence: 2 givenname: Ananya N. surname: Dilbaghi fullname: Dilbaghi, Ananya N. organization: National Institute of Food Technology Entrepreneurship and Management – sequence: 3 givenname: Vishal surname: Singh fullname: Singh, Vishal organization: National Agri Food Biotechnology Institute – sequence: 4 givenname: Nitin Kumar surname: Singhal fullname: Singhal, Nitin Kumar organization: National Agri Food Biotechnology Institute – sequence: 5 givenname: Sandeep orcidid: 0000-0003-2797-0800 surname: Kumar fullname: Kumar, Sandeep email: sandeep2417@gjust.org, ksandeep36@yahoo.com organization: Guru Jambheshwar University of Science and Technology |
BookMark | eNqFkM1LAzEQxYNU0KpXzwHPrZNsuh_HtfgF1QrqeYmbiaZkkzXZRfvfu7WiIIineTDvN495YzJy3iEhxwymDICftjHKKQdWAOSC75B9lqd8kiasGH1rgD0yjnEFIGYiY_tkdWWeX-yaLoPCgIpKp-g8rGMnrTUO6bynt9L5NxMwUuNo6bwyNS1t3xjXN3T5bhTSG2yegnSDRftAz4xvcHBJS8u2tYPojHfxkOxqaSMefc0D8nhx_jC_miyWl9fzcjGpE5bxSS5SJRXUyJJM1DotFIJOZqCF1kxlOchMZynDXKkMcIZcDqsUQObFDKVIkwNysr3bBv_aY-yqle-DGyIrLjgvkiKBfHBNt646-BgD6qoNppFhXTGoNn1Wmz6r7z4HQPwCatN9ftYFaezfWLHF3ozF9T8h1d39ffnDfgCUMY3x |
CitedBy_id | crossref_primary_10_32604_cmes_2022_022093 crossref_primary_10_1016_j_cscee_2023_100428 crossref_primary_10_1007_s00396_020_04734_0 crossref_primary_10_1039_D3NJ00218G crossref_primary_10_1149_1945_7111_abb37e crossref_primary_10_1016_j_nanoen_2020_104991 |
Cites_doi | 10.1021/acsami.8b02665 10.1016/j.molliq.2019.111455 10.1016/j.jenvman.2018.04.072 10.1016/j.molliq.2016.04.045 10.1016/j.cis.2016.04.001 10.1039/c1nr10525f 10.1016/j.cplett.2017.07.018 10.1021/acscatal.8b03975 10.1016/j.cej.2014.09.096 10.1155/2013/460870 10.1016/j.apsusc.2018.12.034 10.1016/j.catcom.2008.07.022 10.1016/j.ijbiomac.2017.10.047 10.1002/adma.200305439 10.1016/j.ceramint.2017.01.152 10.1016/j.tsf.2012.04.070 10.1021/jp1086027 10.1021/nn2014358 10.1107/S0021889878012844 10.1038/nnano.2016.257 10.1021/cm100349c 10.1016/j.molliq.2017.09.034 10.1088/0957-4484/26/30/305503 10.1016/j.jcis.2018.01.109 10.12693/APhysPolA.117.369 10.1016/j.electacta.2013.07.153 10.1021/acsnano.5b00139 10.1088/1361-6528/aaa261 10.1007/s40572-014-0037-5 10.1021/cm503647k 10.1021/nn5024522 10.1016/j.envres.2018.09.024 10.1016/j.tsf.2014.03.014 10.1016/j.molliq.2017.07.072 10.1021/nl204203t 10.1016/j.trac.2018.06.004 10.1016/j.colsurfb.2011.11.006 10.2166/aqua.2017.104 10.1016/j.saa.2019.01.020 10.1021/cr300527g 10.1126/science.1062126 10.1021/acsnano.6b00704 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/pssa.201900842 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1862-6319 |
EndPage | n/a |
ExternalDocumentID | 10_1002_pssa_201900842 PSSA201900842 |
Genre | article |
GrantInformation_xml | – fundername: Haryana State Council for Science and Technology funderid: HSCST/R&D/2018/2103 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 33P 3SF 3WU 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BHBCM BMNLL BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 G-S G.N GNP GODZA GYQRN H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ V2E W8V W99 WBKPD WGJPS WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ~IA ~WT AAYXX AEYWJ AGQPQ AGYGG CITATION 1OB 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3172-846dad0ce1374cf69de0f350f4ff1d780a7f761e8dd70e5e2a0f4600a895ea463 |
IEDL.DBID | DR2 |
ISSN | 1862-6300 |
IngestDate | Wed Aug 13 06:13:33 EDT 2025 Tue Jul 01 00:55:14 EDT 2025 Thu Apr 24 23:05:23 EDT 2025 Wed Jan 22 16:32:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3172-846dad0ce1374cf69de0f350f4ff1d780a7f761e8dd70e5e2a0f4600a895ea463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2797-0800 |
PQID | 2422939308 |
PQPubID | 1036347 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2422939308 crossref_primary_10_1002_pssa_201900842 crossref_citationtrail_10_1002_pssa_201900842 wiley_primary_10_1002_pssa_201900842_PSSA201900842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Physica status solidi. A, Applications and materials science |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 262 2015; 2 2011; 115 2018; 29 2019; 9 2012; 520 2013; 109 1978; 11 2018; 105 2018; 107 2018; 223 2017; 66 2017; 43 2016; 10 2003; 15 2019; 168 2008; 10 2015; 9 2011; 3 2014; 570 2012; 12 2011; 5 2019; 2115 2010; 22 2012; 92 2015; 26 2001; 294 2015; 27 2013; 2013 2010; 117 2017; 12 2016; 234 2019; 212 2013; 113 2018; 518 2017; 242 2017; 684 2017; 244 2019; 471 2014; 8 2018; 10 2019; 292 2017; 225 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Nehra M. (e_1_2_7_20_1) 2019 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 2 start-page: 95 year: 2015 publication-title: Curr. Environ. Health Rep. – volume: 518 start-page: 34 year: 2018 publication-title: J. Colloid Interface Sci. – volume: 225 start-page: 936 year: 2017 publication-title: J. Mol. Liq. – volume: 12 start-page: 244 year: 2017 publication-title: Nat. Nanotechnol. – volume: 22 start-page: 5430 year: 2010 publication-title: Chem. Mater. – volume: 212 start-page: 330 year: 2019 publication-title: Spectrochim. Acta A – volume: 2013 start-page: 32 year: 2013 publication-title: J. Nanomater. – volume: 520 start-page: 5508 year: 2012 publication-title: Thin Solid Films – volume: 262 start-page: 999 year: 2015 publication-title: Chem. Eng. J. – volume: 9 start-page: 2454 year: 2015 publication-title: ACS Nano – volume: 9 start-page: 4573 year: 2019 publication-title: ACS Catal. – volume: 684 start-page: 378 year: 2017 publication-title: Chem. Phys. Lett. – volume: 10 start-page: 3823 year: 2016 publication-title: ACS Nano – volume: 113 start-page: 6234 year: 2013 publication-title: Chem. Rev. – volume: 234 start-page: 51 year: 2016 publication-title: Adv. Colloid Interface Sci. – volume: 92 start-page: 35 year: 2012 publication-title: Colloids Surf., B – volume: 168 start-page: 85 year: 2019 publication-title: Environ. Res. – volume: 66 start-page: 178 year: 2017 publication-title: J. Water Supply: Res. Technol. – volume: 15 start-page: 1754 year: 2003 publication-title: Adv. Mater. – volume: 12 start-page: 1845 year: 2012 publication-title: Nano Lett. – volume: 10 start-page: 11 year: 2008 publication-title: Catal. Commun. – volume: 223 start-page: 1086 year: 2018 publication-title: J. Environ. Manage. – volume: 8 start-page: 8182 year: 2014 publication-title: ACS Nano – volume: 29 start-page: 075301 year: 2018 publication-title: Nanotechnology – volume: 115 start-page: 5021 year: 2011 publication-title: J. Phys. Chem. C – volume: 294 start-page: 348 year: 2001 publication-title: Science – volume: 117 start-page: 369 year: 2010 publication-title: Acta Phys. Pol., A – volume: 107 start-page: 1773 year: 2018 publication-title: Int. J. Biol. Macromol. – volume: 105 start-page: 453 year: 2018 publication-title: TrAC Trends Anal. Chem. – volume: 5 start-page: 5242 year: 2011 publication-title: ACS Nano – volume: 43 start-page: 6075 year: 2017 publication-title: Ceram. Int. – volume: 471 start-page: 417 year: 2019 publication-title: Appl. Surf. Sci. – volume: 2115 start-page: 030202 year: 2019 – volume: 109 start-page: 602 year: 2013 publication-title: Electrochim. Acta – volume: 570 start-page: 303 year: 2014 publication-title: Thin Solid Films – volume: 27 start-page: 483 year: 2015 publication-title: Chem. Mater. – volume: 3 start-page: 4162 year: 2011 publication-title: Nanoscale – volume: 11 start-page: 102 year: 1978 publication-title: J. Appl. Crystallogr. – volume: 10 start-page: 16015 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 242 start-page: 966 year: 2017 publication-title: J. Mol. Liq. – volume: 26 start-page: 305503 year: 2015 publication-title: Nanotechnology – volume: 244 start-page: 506 year: 2017 publication-title: J. Mol. Liq. – volume: 292 start-page: 111455 year: 2019 publication-title: J. Mol. Liq. – ident: e_1_2_7_15_1 doi: 10.1021/acsami.8b02665 – ident: e_1_2_7_17_1 doi: 10.1016/j.molliq.2019.111455 – ident: e_1_2_7_21_1 doi: 10.1016/j.jenvman.2018.04.072 – ident: e_1_2_7_40_1 doi: 10.1016/j.molliq.2016.04.045 – ident: e_1_2_7_5_1 doi: 10.1016/j.cis.2016.04.001 – ident: e_1_2_7_11_1 doi: 10.1039/c1nr10525f – ident: e_1_2_7_8_1 doi: 10.1016/j.cplett.2017.07.018 – ident: e_1_2_7_23_1 doi: 10.1021/acscatal.8b03975 – ident: e_1_2_7_37_1 doi: 10.1016/j.cej.2014.09.096 – ident: e_1_2_7_38_1 doi: 10.1155/2013/460870 – ident: e_1_2_7_22_1 doi: 10.1016/j.apsusc.2018.12.034 – ident: e_1_2_7_24_1 doi: 10.1016/j.catcom.2008.07.022 – ident: e_1_2_7_43_1 doi: 10.1016/j.ijbiomac.2017.10.047 – ident: e_1_2_7_3_1 doi: 10.1002/adma.200305439 – ident: e_1_2_7_19_1 doi: 10.1016/j.ceramint.2017.01.152 – ident: e_1_2_7_31_1 doi: 10.1016/j.tsf.2012.04.070 – ident: e_1_2_7_34_1 doi: 10.1021/jp1086027 – ident: e_1_2_7_4_1 doi: 10.1021/nn2014358 – ident: e_1_2_7_32_1 doi: 10.1107/S0021889878012844 – ident: e_1_2_7_12_1 doi: 10.1038/nnano.2016.257 – ident: e_1_2_7_10_1 doi: 10.1021/cm100349c – ident: e_1_2_7_18_1 doi: 10.1016/j.molliq.2017.09.034 – ident: e_1_2_7_35_1 doi: 10.1088/0957-4484/26/30/305503 – ident: e_1_2_7_14_1 doi: 10.1016/j.jcis.2018.01.109 – ident: e_1_2_7_33_1 doi: 10.12693/APhysPolA.117.369 – ident: e_1_2_7_28_1 doi: 10.1016/j.electacta.2013.07.153 – ident: e_1_2_7_7_1 doi: 10.1021/acsnano.5b00139 – ident: e_1_2_7_6_1 doi: 10.1088/1361-6528/aaa261 – ident: e_1_2_7_42_1 doi: 10.1007/s40572-014-0037-5 – ident: e_1_2_7_29_1 doi: 10.1021/cm503647k – ident: e_1_2_7_26_1 doi: 10.1021/nn5024522 – ident: e_1_2_7_39_1 doi: 10.1016/j.envres.2018.09.024 – ident: e_1_2_7_9_1 doi: 10.1016/j.tsf.2014.03.014 – ident: e_1_2_7_16_1 doi: 10.1016/j.molliq.2017.07.072 – ident: e_1_2_7_27_1 doi: 10.1021/nl204203t – ident: e_1_2_7_44_1 doi: 10.1016/j.trac.2018.06.004 – ident: e_1_2_7_25_1 doi: 10.1016/j.colsurfb.2011.11.006 – ident: e_1_2_7_41_1 doi: 10.2166/aqua.2017.104 – start-page: 030202 volume-title: AIP Conf. Proc year: 2019 ident: e_1_2_7_20_1 – ident: e_1_2_7_30_1 doi: 10.1016/j.saa.2019.01.020 – ident: e_1_2_7_13_1 doi: 10.1021/cr300527g – ident: e_1_2_7_2_1 doi: 10.1126/science.1062126 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.6b00704 |
SSID | ssj0045471 |
Score | 2.3275185 |
Snippet | 1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aluminum oxide anodic aluminum oxide membranes Biocompatibility biomedical applications Biomedical materials Copper Crystal structure Crystallinity Drug delivery systems Electrochemical impedance spectroscopy electrodeposition Field emission microscopy Fluorescence Microorganisms Nanowires Spectrum analysis Toxicity |
Title | Highly Ordered and Crystalline Cu Nanowires in Anodic Aluminum Oxide Membranes for Biomedical Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.201900842 https://www.proquest.com/docview/2422939308 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDCIIv3sV5Iw-CT9UsTZPmsQ7HELzgBXwraS4wL52sG6if3pN0q1MQQR9Lk5LmnJz80578gtCBM6TgSttIUCMj5giLVFLQCKSrTKxKuA3szvML3rtjZ_fJ_cwu_poP0Xxw8yMjxGs_wFVRHX9CQ1-qynODYEIjKfNB2CdseVV03fCjPKwqrLhAtkeeLTWlNhJ6_LX611npU2rOCtYw43SXkZq2tU40eTwaj4oj_f4N4_ifl1lBSxM5irPaf1bRnC3X0EJIC9XVOnrwaSBPb_hyGM70xKo0uDN8A0XpUd4Wd8YYwvPA844r3C9xVg5MX-MMIl6_HD_jy9e-sfjcPkPbIKZiUMj4JGz4976Bs5m_5xvornt62-lFk9MZIg2aA8Io40YZom07Fkw7Lo0lLk6IY861jUiJEk7wtk2NEcQmliq4BfJKpd4JGI830Xw5KO0WwjQW0nHRlkw6xhItqSiYkWnhQO5xXbRQNLVOrifocn-CxlNeQ5dp7vsvb_qvhQ6b8i81tOPHkrtTY-eTwVvloFpABMmYpC1Eg9V-eUp-dXOTNVfbf6m0gxapX8mHROBdND8aju0eyJ1RsR9c-gM1M_eG |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT9wwEIatiqoql9IPEAu09QGpp4DXcez4mG6LtoWFqoDELUr8IS2FLNrsStBf3xlnE6ASQoJjlDhy7Jnxa2f8mJBtb1kpC-Mixa2OhGciKpKSRyBddeKKRLrA7hwdyuGp-HmWtNmEuBem4UN0C27oGSFeo4PjgvTuLTX0qq4RHAQjGksFROGXeKw3-ua33x1BCnFVYc4Fwj1CulTLbWR89375--PSrdi8K1nDmLO3Qsq2tk2qyZ-d-azcMX__Azk-63PekjcLRUqzxoTekReuek9ehcxQU38g55gJcnFDj6bhWE9aVJYOpjcgKpHm7ehgTiFCTxB5XNNxRbNqYseGZhD0xtX8kh5dj62jI3cJlYOwSkEk069hzz-aB83u_EBfJad7308Gw2hxQENkQHZAJBXSFpYZ14-VMF5q65iPE-aF932rUlYor2TfpdYq5hLHC7gFCqtI0Q6EjNfIUjWp3DqhPFbaS9XXQnshEqO5KoXVaelB8UlT9kjUdk9uFvRyPETjIm-4yzzH9su79uuRL93zVw2348Ent9rezhf-W-cgXEAH6ZilPcJDtz3ylvzX8XHWXW08pdBn8np4MjrID34c7m-SZY4T-5AXvEWWZtO5-wjqZ1Z-Cvb9D64n-58 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bT9swFIetCcTEC5dtiAJjfpi0p4DrOHb8mBUqNq4aQ-ItcnyRCiWtmlYC_nqOnTYUpGkSPEaxI8fn-Pjn5PgzQt-dIQVX2kaCGhkxR1ikkoJGIF1lYlXCbWB3np7xoyv2-zq5ntvFX_Mhmg9ufmSEeO0H-NC4_Wdo6LCqPDcIJjSSMgjCi4yT1C-_Dv40AClPqwpLLtDtkYdLzbCNhO6_rP9yWnrWmvOKNUw53VWkZo2tM01u9ybjYk8_vuI4vudt1tDKVI_irHagdfTBlp_QUsgL1dVndOPzQPoP-HwUDvXEqjS4M3oASelZ3hZ3Jhji88ADjyvcK3FWDkxP4wxCXq-c3OHz-56x-NTeQdsgqGKQyPhn2PHvnQNnc7_Pv6Cr7uHfzlE0PZ4h0iA6II4ybpQh2rZjwbTj0lji4oQ45lzbiJQo4QRv29QYQWxiqYJboK9U6r2A8XgDLZSD0m4iTGMhHRdtyaRjLNGSioIZmRYO9B7XRQtFM-vkesou90do9POaukxz3395038t9KMpP6ypHf8suTMzdj4dvVUOsgVUkIxJ2kI0WO0_T8kvLi-z5mrrLZW-oY8XB9385NfZ8TZapn5VH5KCd9DCeDSxX0H6jIvd4N1P1If6Vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Ordered+and+Crystalline+Cu+Nanowires+in+Anodic+Aluminum+Oxide+Membranes+for+Biomedical+Applications&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Nehra%2C+Monika&rft.au=Dilbaghi%2C+Ananya+N&rft.au=Singh%2C+Vishal&rft.au=Singhal%2C+Nitin+Kumar&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=217&rft.issue=13&rft_id=info:doi/10.1002%2Fpssa.201900842&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon |