Highly Ordered and Crystalline Cu Nanowires in Anodic Aluminum Oxide Membranes for Biomedical Applications

1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging, drug delivery, and biodevices. Herein, anodic aluminum oxide (AAO) template is used to electrochemically grow the highly crystalline Cu nanowire...

Full description

Saved in:
Bibliographic Details
Published inPhysica status solidi. A, Applications and materials science Vol. 217; no. 13
Main Authors Nehra, Monika, Dilbaghi, Ananya N., Singh, Vishal, Singhal, Nitin Kumar, Kumar, Sandeep
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text
ISSN1862-6300
1862-6319
DOI10.1002/pssa.201900842

Cover

Loading…
Abstract 1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging, drug delivery, and biodevices. Herein, anodic aluminum oxide (AAO) template is used to electrochemically grow the highly crystalline Cu nanowires. The electrodeposition potential for copper solution is identified by cyclic voltammetry. The Cu nanowire‐deposited AAO template is further characterized using field emission scanning electron microscope (FESEM), energy dispersive X‐ray (EDX) spectroscopy, wavelength dispersive X‐ray fluorescence (WDXRF) spectroscopy, X‐ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). The Cu‐deposited AAO template is tested for antibacterial activity against different microorganisms (including both gram positive as well as gram negative). Further, the assessment of the cytotoxic nature of Cu nanowires is a fundamental step for their application in the biomedical field. The favorable properties of Cu‐deposited AAO template in terms of excellent antibacterial effects and low cytotoxicity promote their application in the biomedical field, especially for medical diagnosis. 1D nanostructures have potential applications in biomedical field. Herein, highly crystalline Cu nanowires are electrodeposited inside anodic aluminum oxide membrane through cyclic voltammetry. The electrochemical impedance study shows capacitive behavior of Cu nanowires at higher frequencies beyond 100 kHz. The Cu nanowires exhibit excellent antibacterial activity.
AbstractList 1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging, drug delivery, and biodevices. Herein, anodic aluminum oxide (AAO) template is used to electrochemically grow the highly crystalline Cu nanowires. The electrodeposition potential for copper solution is identified by cyclic voltammetry. The Cu nanowire‐deposited AAO template is further characterized using field emission scanning electron microscope (FESEM), energy dispersive X‐ray (EDX) spectroscopy, wavelength dispersive X‐ray fluorescence (WDXRF) spectroscopy, X‐ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). The Cu‐deposited AAO template is tested for antibacterial activity against different microorganisms (including both gram positive as well as gram negative). Further, the assessment of the cytotoxic nature of Cu nanowires is a fundamental step for their application in the biomedical field. The favorable properties of Cu‐deposited AAO template in terms of excellent antibacterial effects and low cytotoxicity promote their application in the biomedical field, especially for medical diagnosis. 1D nanostructures have potential applications in biomedical field. Herein, highly crystalline Cu nanowires are electrodeposited inside anodic aluminum oxide membrane through cyclic voltammetry. The electrochemical impedance study shows capacitive behavior of Cu nanowires at higher frequencies beyond 100 kHz. The Cu nanowires exhibit excellent antibacterial activity.
1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging, drug delivery, and biodevices. Herein, anodic aluminum oxide (AAO) template is used to electrochemically grow the highly crystalline Cu nanowires. The electrodeposition potential for copper solution is identified by cyclic voltammetry. The Cu nanowire‐deposited AAO template is further characterized using field emission scanning electron microscope (FESEM), energy dispersive X‐ray (EDX) spectroscopy, wavelength dispersive X‐ray fluorescence (WDXRF) spectroscopy, X‐ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). The Cu‐deposited AAO template is tested for antibacterial activity against different microorganisms (including both gram positive as well as gram negative). Further, the assessment of the cytotoxic nature of Cu nanowires is a fundamental step for their application in the biomedical field. The favorable properties of Cu‐deposited AAO template in terms of excellent antibacterial effects and low cytotoxicity promote their application in the biomedical field, especially for medical diagnosis.
Author Kumar, Sandeep
Nehra, Monika
Singhal, Nitin Kumar
Dilbaghi, Ananya N.
Singh, Vishal
Author_xml – sequence: 1
  givenname: Monika
  surname: Nehra
  fullname: Nehra, Monika
  organization: Guru Jambheshwar University of Science and Technology
– sequence: 2
  givenname: Ananya N.
  surname: Dilbaghi
  fullname: Dilbaghi, Ananya N.
  organization: National Institute of Food Technology Entrepreneurship and Management
– sequence: 3
  givenname: Vishal
  surname: Singh
  fullname: Singh, Vishal
  organization: National Agri Food Biotechnology Institute
– sequence: 4
  givenname: Nitin Kumar
  surname: Singhal
  fullname: Singhal, Nitin Kumar
  organization: National Agri Food Biotechnology Institute
– sequence: 5
  givenname: Sandeep
  orcidid: 0000-0003-2797-0800
  surname: Kumar
  fullname: Kumar, Sandeep
  email: sandeep2417@gjust.org, ksandeep36@yahoo.com
  organization: Guru Jambheshwar University of Science and Technology
BookMark eNqFkM1LAzEQxYNU0KpXzwHPrZNsuh_HtfgF1QrqeYmbiaZkkzXZRfvfu7WiIIineTDvN495YzJy3iEhxwymDICftjHKKQdWAOSC75B9lqd8kiasGH1rgD0yjnEFIGYiY_tkdWWeX-yaLoPCgIpKp-g8rGMnrTUO6bynt9L5NxMwUuNo6bwyNS1t3xjXN3T5bhTSG2yegnSDRftAz4xvcHBJS8u2tYPojHfxkOxqaSMefc0D8nhx_jC_miyWl9fzcjGpE5bxSS5SJRXUyJJM1DotFIJOZqCF1kxlOchMZynDXKkMcIZcDqsUQObFDKVIkwNysr3bBv_aY-yqle-DGyIrLjgvkiKBfHBNt646-BgD6qoNppFhXTGoNn1Wmz6r7z4HQPwCatN9ftYFaezfWLHF3ozF9T8h1d39ffnDfgCUMY3x
CitedBy_id crossref_primary_10_32604_cmes_2022_022093
crossref_primary_10_1016_j_cscee_2023_100428
crossref_primary_10_1007_s00396_020_04734_0
crossref_primary_10_1039_D3NJ00218G
crossref_primary_10_1149_1945_7111_abb37e
crossref_primary_10_1016_j_nanoen_2020_104991
Cites_doi 10.1021/acsami.8b02665
10.1016/j.molliq.2019.111455
10.1016/j.jenvman.2018.04.072
10.1016/j.molliq.2016.04.045
10.1016/j.cis.2016.04.001
10.1039/c1nr10525f
10.1016/j.cplett.2017.07.018
10.1021/acscatal.8b03975
10.1016/j.cej.2014.09.096
10.1155/2013/460870
10.1016/j.apsusc.2018.12.034
10.1016/j.catcom.2008.07.022
10.1016/j.ijbiomac.2017.10.047
10.1002/adma.200305439
10.1016/j.ceramint.2017.01.152
10.1016/j.tsf.2012.04.070
10.1021/jp1086027
10.1021/nn2014358
10.1107/S0021889878012844
10.1038/nnano.2016.257
10.1021/cm100349c
10.1016/j.molliq.2017.09.034
10.1088/0957-4484/26/30/305503
10.1016/j.jcis.2018.01.109
10.12693/APhysPolA.117.369
10.1016/j.electacta.2013.07.153
10.1021/acsnano.5b00139
10.1088/1361-6528/aaa261
10.1007/s40572-014-0037-5
10.1021/cm503647k
10.1021/nn5024522
10.1016/j.envres.2018.09.024
10.1016/j.tsf.2014.03.014
10.1016/j.molliq.2017.07.072
10.1021/nl204203t
10.1016/j.trac.2018.06.004
10.1016/j.colsurfb.2011.11.006
10.2166/aqua.2017.104
10.1016/j.saa.2019.01.020
10.1021/cr300527g
10.1126/science.1062126
10.1021/acsnano.6b00704
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/pssa.201900842
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1862-6319
EndPage n/a
ExternalDocumentID 10_1002_pssa_201900842
PSSA201900842
Genre article
GrantInformation_xml – fundername: Haryana State Council for Science and Technology
  funderid: HSCST/R&D/2018/2103
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
33P
3SF
3WU
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
GYQRN
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W8V
W99
WBKPD
WGJPS
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
~IA
~WT
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
1OB
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3172-846dad0ce1374cf69de0f350f4ff1d780a7f761e8dd70e5e2a0f4600a895ea463
IEDL.DBID DR2
ISSN 1862-6300
IngestDate Wed Aug 13 06:13:33 EDT 2025
Tue Jul 01 00:55:14 EDT 2025
Thu Apr 24 23:05:23 EDT 2025
Wed Jan 22 16:32:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-846dad0ce1374cf69de0f350f4ff1d780a7f761e8dd70e5e2a0f4600a895ea463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2797-0800
PQID 2422939308
PQPubID 1036347
PageCount 7
ParticipantIDs proquest_journals_2422939308
crossref_primary_10_1002_pssa_201900842
crossref_citationtrail_10_1002_pssa_201900842
wiley_primary_10_1002_pssa_201900842_PSSA201900842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Physica status solidi. A, Applications and materials science
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 262
2015; 2
2011; 115
2018; 29
2019; 9
2012; 520
2013; 109
1978; 11
2018; 105
2018; 107
2018; 223
2017; 66
2017; 43
2016; 10
2003; 15
2019; 168
2008; 10
2015; 9
2011; 3
2014; 570
2012; 12
2011; 5
2019; 2115
2010; 22
2012; 92
2015; 26
2001; 294
2015; 27
2013; 2013
2010; 117
2017; 12
2016; 234
2019; 212
2013; 113
2018; 518
2017; 242
2017; 684
2017; 244
2019; 471
2014; 8
2018; 10
2019; 292
2017; 225
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Nehra M. (e_1_2_7_20_1) 2019
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 2
  start-page: 95
  year: 2015
  publication-title: Curr. Environ. Health Rep.
– volume: 518
  start-page: 34
  year: 2018
  publication-title: J. Colloid Interface Sci.
– volume: 225
  start-page: 936
  year: 2017
  publication-title: J. Mol. Liq.
– volume: 12
  start-page: 244
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 5430
  year: 2010
  publication-title: Chem. Mater.
– volume: 212
  start-page: 330
  year: 2019
  publication-title: Spectrochim. Acta A
– volume: 2013
  start-page: 32
  year: 2013
  publication-title: J. Nanomater.
– volume: 520
  start-page: 5508
  year: 2012
  publication-title: Thin Solid Films
– volume: 262
  start-page: 999
  year: 2015
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 2454
  year: 2015
  publication-title: ACS Nano
– volume: 9
  start-page: 4573
  year: 2019
  publication-title: ACS Catal.
– volume: 684
  start-page: 378
  year: 2017
  publication-title: Chem. Phys. Lett.
– volume: 10
  start-page: 3823
  year: 2016
  publication-title: ACS Nano
– volume: 113
  start-page: 6234
  year: 2013
  publication-title: Chem. Rev.
– volume: 234
  start-page: 51
  year: 2016
  publication-title: Adv. Colloid Interface Sci.
– volume: 92
  start-page: 35
  year: 2012
  publication-title: Colloids Surf., B
– volume: 168
  start-page: 85
  year: 2019
  publication-title: Environ. Res.
– volume: 66
  start-page: 178
  year: 2017
  publication-title: J. Water Supply: Res. Technol.
– volume: 15
  start-page: 1754
  year: 2003
  publication-title: Adv. Mater.
– volume: 12
  start-page: 1845
  year: 2012
  publication-title: Nano Lett.
– volume: 10
  start-page: 11
  year: 2008
  publication-title: Catal. Commun.
– volume: 223
  start-page: 1086
  year: 2018
  publication-title: J. Environ. Manage.
– volume: 8
  start-page: 8182
  year: 2014
  publication-title: ACS Nano
– volume: 29
  start-page: 075301
  year: 2018
  publication-title: Nanotechnology
– volume: 115
  start-page: 5021
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 294
  start-page: 348
  year: 2001
  publication-title: Science
– volume: 117
  start-page: 369
  year: 2010
  publication-title: Acta Phys. Pol., A
– volume: 107
  start-page: 1773
  year: 2018
  publication-title: Int. J. Biol. Macromol.
– volume: 105
  start-page: 453
  year: 2018
  publication-title: TrAC Trends Anal. Chem.
– volume: 5
  start-page: 5242
  year: 2011
  publication-title: ACS Nano
– volume: 43
  start-page: 6075
  year: 2017
  publication-title: Ceram. Int.
– volume: 471
  start-page: 417
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 2115
  start-page: 030202
  year: 2019
– volume: 109
  start-page: 602
  year: 2013
  publication-title: Electrochim. Acta
– volume: 570
  start-page: 303
  year: 2014
  publication-title: Thin Solid Films
– volume: 27
  start-page: 483
  year: 2015
  publication-title: Chem. Mater.
– volume: 3
  start-page: 4162
  year: 2011
  publication-title: Nanoscale
– volume: 11
  start-page: 102
  year: 1978
  publication-title: J. Appl. Crystallogr.
– volume: 10
  start-page: 16015
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 242
  start-page: 966
  year: 2017
  publication-title: J. Mol. Liq.
– volume: 26
  start-page: 305503
  year: 2015
  publication-title: Nanotechnology
– volume: 244
  start-page: 506
  year: 2017
  publication-title: J. Mol. Liq.
– volume: 292
  start-page: 111455
  year: 2019
  publication-title: J. Mol. Liq.
– ident: e_1_2_7_15_1
  doi: 10.1021/acsami.8b02665
– ident: e_1_2_7_17_1
  doi: 10.1016/j.molliq.2019.111455
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jenvman.2018.04.072
– ident: e_1_2_7_40_1
  doi: 10.1016/j.molliq.2016.04.045
– ident: e_1_2_7_5_1
  doi: 10.1016/j.cis.2016.04.001
– ident: e_1_2_7_11_1
  doi: 10.1039/c1nr10525f
– ident: e_1_2_7_8_1
  doi: 10.1016/j.cplett.2017.07.018
– ident: e_1_2_7_23_1
  doi: 10.1021/acscatal.8b03975
– ident: e_1_2_7_37_1
  doi: 10.1016/j.cej.2014.09.096
– ident: e_1_2_7_38_1
  doi: 10.1155/2013/460870
– ident: e_1_2_7_22_1
  doi: 10.1016/j.apsusc.2018.12.034
– ident: e_1_2_7_24_1
  doi: 10.1016/j.catcom.2008.07.022
– ident: e_1_2_7_43_1
  doi: 10.1016/j.ijbiomac.2017.10.047
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.200305439
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ceramint.2017.01.152
– ident: e_1_2_7_31_1
  doi: 10.1016/j.tsf.2012.04.070
– ident: e_1_2_7_34_1
  doi: 10.1021/jp1086027
– ident: e_1_2_7_4_1
  doi: 10.1021/nn2014358
– ident: e_1_2_7_32_1
  doi: 10.1107/S0021889878012844
– ident: e_1_2_7_12_1
  doi: 10.1038/nnano.2016.257
– ident: e_1_2_7_10_1
  doi: 10.1021/cm100349c
– ident: e_1_2_7_18_1
  doi: 10.1016/j.molliq.2017.09.034
– ident: e_1_2_7_35_1
  doi: 10.1088/0957-4484/26/30/305503
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jcis.2018.01.109
– ident: e_1_2_7_33_1
  doi: 10.12693/APhysPolA.117.369
– ident: e_1_2_7_28_1
  doi: 10.1016/j.electacta.2013.07.153
– ident: e_1_2_7_7_1
  doi: 10.1021/acsnano.5b00139
– ident: e_1_2_7_6_1
  doi: 10.1088/1361-6528/aaa261
– ident: e_1_2_7_42_1
  doi: 10.1007/s40572-014-0037-5
– ident: e_1_2_7_29_1
  doi: 10.1021/cm503647k
– ident: e_1_2_7_26_1
  doi: 10.1021/nn5024522
– ident: e_1_2_7_39_1
  doi: 10.1016/j.envres.2018.09.024
– ident: e_1_2_7_9_1
  doi: 10.1016/j.tsf.2014.03.014
– ident: e_1_2_7_16_1
  doi: 10.1016/j.molliq.2017.07.072
– ident: e_1_2_7_27_1
  doi: 10.1021/nl204203t
– ident: e_1_2_7_44_1
  doi: 10.1016/j.trac.2018.06.004
– ident: e_1_2_7_25_1
  doi: 10.1016/j.colsurfb.2011.11.006
– ident: e_1_2_7_41_1
  doi: 10.2166/aqua.2017.104
– start-page: 030202
  volume-title: AIP Conf. Proc
  year: 2019
  ident: e_1_2_7_20_1
– ident: e_1_2_7_30_1
  doi: 10.1016/j.saa.2019.01.020
– ident: e_1_2_7_13_1
  doi: 10.1021/cr300527g
– ident: e_1_2_7_2_1
  doi: 10.1126/science.1062126
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.6b00704
SSID ssj0045471
Score 2.3275185
Snippet 1D metallic nanostructures have become a subject of intensive research due to their potential application in the biomedical field such as sensing, imaging,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum oxide
anodic aluminum oxide membranes
Biocompatibility
biomedical applications
Biomedical materials
Copper
Crystal structure
Crystallinity
Drug delivery systems
Electrochemical impedance spectroscopy
electrodeposition
Field emission microscopy
Fluorescence
Microorganisms
Nanowires
Spectrum analysis
Toxicity
Title Highly Ordered and Crystalline Cu Nanowires in Anodic Aluminum Oxide Membranes for Biomedical Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpssa.201900842
https://www.proquest.com/docview/2422939308
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeDCIIv3sV5Iw-CT9UsTZPmsQ7HELzgBXwraS4wL52sG6if3pN0q1MQQR9Lk5LmnJz80578gtCBM6TgSttIUCMj5giLVFLQCKSrTKxKuA3szvML3rtjZ_fJ_cwu_poP0Xxw8yMjxGs_wFVRHX9CQ1-qynODYEIjKfNB2CdseVV03fCjPKwqrLhAtkeeLTWlNhJ6_LX611npU2rOCtYw43SXkZq2tU40eTwaj4oj_f4N4_ifl1lBSxM5irPaf1bRnC3X0EJIC9XVOnrwaSBPb_hyGM70xKo0uDN8A0XpUd4Wd8YYwvPA844r3C9xVg5MX-MMIl6_HD_jy9e-sfjcPkPbIKZiUMj4JGz4976Bs5m_5xvornt62-lFk9MZIg2aA8Io40YZom07Fkw7Lo0lLk6IY861jUiJEk7wtk2NEcQmliq4BfJKpd4JGI830Xw5KO0WwjQW0nHRlkw6xhItqSiYkWnhQO5xXbRQNLVOrifocn-CxlNeQ5dp7vsvb_qvhQ6b8i81tOPHkrtTY-eTwVvloFpABMmYpC1Eg9V-eUp-dXOTNVfbf6m0gxapX8mHROBdND8aju0eyJ1RsR9c-gM1M_eG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT9wwEIatiqoql9IPEAu09QGpp4DXcez4mG6LtoWFqoDELUr8IS2FLNrsStBf3xlnE6ASQoJjlDhy7Jnxa2f8mJBtb1kpC-Mixa2OhGciKpKSRyBddeKKRLrA7hwdyuGp-HmWtNmEuBem4UN0C27oGSFeo4PjgvTuLTX0qq4RHAQjGksFROGXeKw3-ua33x1BCnFVYc4Fwj1CulTLbWR89375--PSrdi8K1nDmLO3Qsq2tk2qyZ-d-azcMX__Azk-63PekjcLRUqzxoTekReuek9ehcxQU38g55gJcnFDj6bhWE9aVJYOpjcgKpHm7ehgTiFCTxB5XNNxRbNqYseGZhD0xtX8kh5dj62jI3cJlYOwSkEk069hzz-aB83u_EBfJad7308Gw2hxQENkQHZAJBXSFpYZ14-VMF5q65iPE-aF932rUlYor2TfpdYq5hLHC7gFCqtI0Q6EjNfIUjWp3DqhPFbaS9XXQnshEqO5KoXVaelB8UlT9kjUdk9uFvRyPETjIm-4yzzH9su79uuRL93zVw2348Ent9rezhf-W-cgXEAH6ZilPcJDtz3ylvzX8XHWXW08pdBn8np4MjrID34c7m-SZY4T-5AXvEWWZtO5-wjqZ1Z-Cvb9D64n-58
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3bT9swFIetCcTEC5dtiAJjfpi0p4DrOHb8mBUqNq4aQ-ItcnyRCiWtmlYC_nqOnTYUpGkSPEaxI8fn-Pjn5PgzQt-dIQVX2kaCGhkxR1ikkoJGIF1lYlXCbWB3np7xoyv2-zq5ntvFX_Mhmg9ufmSEeO0H-NC4_Wdo6LCqPDcIJjSSMgjCi4yT1C-_Dv40AClPqwpLLtDtkYdLzbCNhO6_rP9yWnrWmvOKNUw53VWkZo2tM01u9ybjYk8_vuI4vudt1tDKVI_irHagdfTBlp_QUsgL1dVndOPzQPoP-HwUDvXEqjS4M3oASelZ3hZ3Jhji88ADjyvcK3FWDkxP4wxCXq-c3OHz-56x-NTeQdsgqGKQyPhn2PHvnQNnc7_Pv6Cr7uHfzlE0PZ4h0iA6II4ybpQh2rZjwbTj0lji4oQ45lzbiJQo4QRv29QYQWxiqYJboK9U6r2A8XgDLZSD0m4iTGMhHRdtyaRjLNGSioIZmRYO9B7XRQtFM-vkesou90do9POaukxz3395038t9KMpP6ypHf8suTMzdj4dvVUOsgVUkIxJ2kI0WO0_T8kvLi-z5mrrLZW-oY8XB9385NfZ8TZapn5VH5KCd9DCeDSxX0H6jIvd4N1P1If6Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Ordered+and+Crystalline+Cu+Nanowires+in+Anodic+Aluminum+Oxide+Membranes+for+Biomedical+Applications&rft.jtitle=Physica+status+solidi.+A%2C+Applications+and+materials+science&rft.au=Nehra%2C+Monika&rft.au=Dilbaghi%2C+Ananya+N&rft.au=Singh%2C+Vishal&rft.au=Singhal%2C+Nitin+Kumar&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1862-6300&rft.eissn=1862-6319&rft.volume=217&rft.issue=13&rft_id=info:doi/10.1002%2Fpssa.201900842&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-6300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-6300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-6300&client=summon