Photophysical Tuning of Imidazolium Tetrahalidomanganate(II) Complexes towards Highly Efficient Green Emitters with Near‐Unity Quantum Yield

Ten ionic manganese(II) complexes of [EMIm]2[MnX2Y2] (EMIm=1‐ethyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) and [BnMIm]2[MnX2Y2] (BnMIm=1‐benzyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) types were synthesized and studied in terms of their thermal and photophysical properties. Complexes with [BnM...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of inorganic chemistry Vol. 27; no. 5
Main Authors Sääsk, Verner, Chen, Yi‐An, Huang, Tse‐Fu, Ting, Li‐Yu, Luo, Ting‐An, Fujii, Saki, Põhako‐Esko, Kaija, Yoshida, Masaki, Kato, Masako, Wu, Tien‐Lin, Chou, Ho‐Hsiu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 12.02.2024
Subjects
Online AccessGet full text
ISSN1434-1948
1099-0682
DOI10.1002/ejic.202300562

Cover

Loading…
Abstract Ten ionic manganese(II) complexes of [EMIm]2[MnX2Y2] (EMIm=1‐ethyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) and [BnMIm]2[MnX2Y2] (BnMIm=1‐benzyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) types were synthesized and studied in terms of their thermal and photophysical properties. Complexes with [BnMIm]+ cation were found to exhibit higher crystallinity, owing to the aromatic π‐stacking, and superior photoluminescent quantum yields, promoted by the increased Mn⋅⋅⋅Mn distance. For complexes with chlorine and bromine ligands efficient tunability of photophysical parameters was demonstrated. Out of all complexes, [BnMIm]2[MnBr4] was found to have the highest photoluminescence quantum yield at room temperature (Φ=0.59). To highlight the importance of a large Mn⋅⋅⋅Mn distance for achieving high Φ values, a mixed‐anion analog of complex [BnMIm]2[MnBr4] was prepared, with the suggested formula of [BnMIm]4[MnBr4]Br2. The latter have shown a significant improvement in d–d absorption efficiency and a reduction in nonradiative deactivation, which led to an outstanding Φ value of 0.97. Finally, the optical band gap of [BnMIm]4[MnBr4]Br2 was estimated to describe its applicability as light‐emitting material. A family of luminescent tetrahalidomanganate(II) complexes with imidazolium‐based cations were synthesized and characterized in detail. Their good thermal stability and photophysical tunability were demonstrated. In particular, [BnMIm]4[MnBr4]Br2, the complex with a novel mixed‐anion structure, showed exceptionally high photoluminescence quantum yield at room temperature, which suggests its future application as light‐emitting material in optoelectronic devices.
AbstractList Ten ionic manganese(II) complexes of [EMIm] 2 [Mn X 2 Y 2 ] (EMIm=1‐ethyl‐3‐methylimidazolium ion; X , Y =Cl, Br or I) and [BnMIm] 2 [Mn X 2 Y 2 ] (BnMIm=1‐benzyl‐3‐methylimidazolium ion; X , Y =Cl, Br or I) types were synthesized and studied in terms of their thermal and photophysical properties. Complexes with [BnMIm] + cation were found to exhibit higher crystallinity, owing to the aromatic π‐stacking, and superior photoluminescent quantum yields, promoted by the increased Mn⋅⋅⋅Mn distance. For complexes with chlorine and bromine ligands efficient tunability of photophysical parameters was demonstrated. Out of all complexes, [BnMIm] 2 [MnBr 4 ] was found to have the highest photoluminescence quantum yield at room temperature ( Φ =0.59). To highlight the importance of a large Mn⋅⋅⋅Mn distance for achieving high Φ values, a mixed‐anion analog of complex [BnMIm] 2 [MnBr 4 ] was prepared, with the suggested formula of [BnMIm] 4 [MnBr 4 ]Br 2 . The latter have shown a significant improvement in d–d absorption efficiency and a reduction in nonradiative deactivation, which led to an outstanding Φ value of 0.97. Finally, the optical band gap of [BnMIm] 4 [MnBr 4 ]Br 2 was estimated to describe its applicability as light‐emitting material.
Ten ionic manganese(II) complexes of [EMIm]2[MnX2Y2] (EMIm=1‐ethyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) and [BnMIm]2[MnX2Y2] (BnMIm=1‐benzyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) types were synthesized and studied in terms of their thermal and photophysical properties. Complexes with [BnMIm]+ cation were found to exhibit higher crystallinity, owing to the aromatic π‐stacking, and superior photoluminescent quantum yields, promoted by the increased Mn⋅⋅⋅Mn distance. For complexes with chlorine and bromine ligands efficient tunability of photophysical parameters was demonstrated. Out of all complexes, [BnMIm]2[MnBr4] was found to have the highest photoluminescence quantum yield at room temperature (Φ=0.59). To highlight the importance of a large Mn⋅⋅⋅Mn distance for achieving high Φ values, a mixed‐anion analog of complex [BnMIm]2[MnBr4] was prepared, with the suggested formula of [BnMIm]4[MnBr4]Br2. The latter have shown a significant improvement in d–d absorption efficiency and a reduction in nonradiative deactivation, which led to an outstanding Φ value of 0.97. Finally, the optical band gap of [BnMIm]4[MnBr4]Br2 was estimated to describe its applicability as light‐emitting material.
Ten ionic manganese(II) complexes of [EMIm]2[MnX2Y2] (EMIm=1‐ethyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) and [BnMIm]2[MnX2Y2] (BnMIm=1‐benzyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) types were synthesized and studied in terms of their thermal and photophysical properties. Complexes with [BnMIm]+ cation were found to exhibit higher crystallinity, owing to the aromatic π‐stacking, and superior photoluminescent quantum yields, promoted by the increased Mn⋅⋅⋅Mn distance. For complexes with chlorine and bromine ligands efficient tunability of photophysical parameters was demonstrated. Out of all complexes, [BnMIm]2[MnBr4] was found to have the highest photoluminescence quantum yield at room temperature (Φ=0.59). To highlight the importance of a large Mn⋅⋅⋅Mn distance for achieving high Φ values, a mixed‐anion analog of complex [BnMIm]2[MnBr4] was prepared, with the suggested formula of [BnMIm]4[MnBr4]Br2. The latter have shown a significant improvement in d–d absorption efficiency and a reduction in nonradiative deactivation, which led to an outstanding Φ value of 0.97. Finally, the optical band gap of [BnMIm]4[MnBr4]Br2 was estimated to describe its applicability as light‐emitting material. A family of luminescent tetrahalidomanganate(II) complexes with imidazolium‐based cations were synthesized and characterized in detail. Their good thermal stability and photophysical tunability were demonstrated. In particular, [BnMIm]4[MnBr4]Br2, the complex with a novel mixed‐anion structure, showed exceptionally high photoluminescence quantum yield at room temperature, which suggests its future application as light‐emitting material in optoelectronic devices.
Author Ting, Li‐Yu
Fujii, Saki
Luo, Ting‐An
Chen, Yi‐An
Chou, Ho‐Hsiu
Põhako‐Esko, Kaija
Kato, Masako
Huang, Tse‐Fu
Sääsk, Verner
Yoshida, Masaki
Wu, Tien‐Lin
Author_xml – sequence: 1
  givenname: Verner
  orcidid: 0000-0003-1023-2086
  surname: Sääsk
  fullname: Sääsk, Verner
  email: verner@saask.ee
  organization: Kyushu University
– sequence: 2
  givenname: Yi‐An
  surname: Chen
  fullname: Chen, Yi‐An
  organization: National Tsing Hua University
– sequence: 3
  givenname: Tse‐Fu
  surname: Huang
  fullname: Huang, Tse‐Fu
  organization: National Tsing Hua University
– sequence: 4
  givenname: Li‐Yu
  surname: Ting
  fullname: Ting, Li‐Yu
  organization: National Tsing Hua University
– sequence: 5
  givenname: Ting‐An
  surname: Luo
  fullname: Luo, Ting‐An
  organization: National Tsing Hua University
– sequence: 6
  givenname: Saki
  surname: Fujii
  fullname: Fujii, Saki
  organization: Kwansei Gakuin University
– sequence: 7
  givenname: Kaija
  orcidid: 0000-0003-1928-5141
  surname: Põhako‐Esko
  fullname: Põhako‐Esko, Kaija
  organization: University of Tartu
– sequence: 8
  givenname: Masaki
  orcidid: 0000-0002-4744-2805
  surname: Yoshida
  fullname: Yoshida, Masaki
  organization: Kwansei Gakuin University
– sequence: 9
  givenname: Masako
  orcidid: 0000-0002-6932-9758
  surname: Kato
  fullname: Kato, Masako
  email: katom@kwansei.ac.jp
  organization: Kwansei Gakuin University
– sequence: 10
  givenname: Tien‐Lin
  orcidid: 0000-0001-9061-6279
  surname: Wu
  fullname: Wu, Tien‐Lin
  email: tlwu@mx.nthu.edu.tw
  organization: National Tsing Hua University
– sequence: 11
  givenname: Ho‐Hsiu
  orcidid: 0000-0003-3777-2277
  surname: Chou
  fullname: Chou, Ho‐Hsiu
  email: hhchou@mx.nthu.edu.tw
  organization: National Tsing Hua University
BookMark eNqFkM2K1EAUhYOM4Mzo1nWBG12kvamqzs9SmnYmMvgDPQtXobpy07lNpaqtqtDGlU8wzDP6JGZoURDE1b2L850D30VyZp3FJHmewSID4K9xT3rBgQuAZc4fJecZVFUKecnP5l8KmWaVLJ8kFyHsAUCAyM-Tu4-9i-7QT4G0MmwzWrI75jpWD9Sqb87QOLANRq96Zah1g7I7ZVXEl3X9iq3ccDD4FQOL7qh8G9g17XozsXXXkSa0kV15RMvWA8WIPrAjxZ69R-V_fL-_tRQn9mlUNs4jnwlN-zR53CkT8Nmve5ncvl1vVtfpzYerevXmJtUiK3haciG2oJdCVwUvoMvFVi-Ry-1ScKWxRJ0JmeNWyYLLLuOtEFpLkXcIhZ5D4jJ5ceo9ePdlxBCbvRu9nScbXnFZVhxymFOLU0p7F4LHrjl4GpSfmgyaB-fNg_Pmt_MZkH8BmqKK5OwskMy_seqEHcng9J-RZv2uXv1hfwK5TZvn
CitedBy_id crossref_primary_10_1002_smll_202407346
crossref_primary_10_1107_S2056989024006042
crossref_primary_10_1039_D3DT03838F
Cites_doi 10.1039/D0DT01659D
10.1002/adfm.202011191
10.1016/j.jssc.2020.121576
10.1039/C7DT04535B
10.1021/jp110586e
10.1016/j.optmat.2015.01.008
10.1021/j100855a027
10.1016/j.tca.2010.03.001
10.1016/j.cej.2019.123479
10.1039/C4DT03694H
10.1039/D1TC01902C
10.1016/S0277-5387(00)84539-8
10.1107/S2053273314022207
10.1021/ja00484a007
10.1021/ar50129a003
10.1039/D1CC02353E
10.1039/D1TC05680H
10.1107/S2053229614024218
10.1021/acs.inorgchem.7b02476
10.1002/adpr.202200351
10.1088/1361-648X/ac4aaa
10.1016/j.jlumin.2021.118069
10.1039/C7TC01520H
10.1021/jacs.9b00886
10.1021/jacs.0c06039
10.1021/jp509412z
10.1039/D0RA08795E
10.1063/1.1725145
10.1016/j.ccr.2020.213331
10.1021/cg400988m
10.1021/ic50166a026
10.1039/C8SC04711A
10.1021/jacs.9b04262
10.1002/adom.202000985
10.1002/adma.202005630
10.1039/C8QI00793D
10.1002/chem.200802660
10.1016/j.molstruc.2018.01.093
10.1016/j.matt.2019.08.016
10.1016/0301-0104(74)80097-2
10.1021/acs.chemmater.9b03782
10.1107/S2053273314026370
10.1039/C5TC04114G
10.1039/C8QI01054D
10.1107/S1600576719014092
10.1038/s41598-020-66946-2
10.1016/j.cej.2022.138881
10.1002/adfm.202100855
10.1002/crat.201800236
10.1021/acs.chemmater.0c00078
10.1021/ic500400y
10.1039/C8CC08665F
10.1002/adom.201801160
10.1016/0022-2313(78)90088-1
10.1143/JPSJ.9.753
10.1016/S0010-8545(00)80030-2
10.1039/jr9590002003
10.1039/B920046K
10.1039/D1TC02550C
10.1016/j.tca.2008.10.003
10.1002/adma.201605739
10.1002/adfm.202009973
10.1021/acs.jpclett.8b02892
10.1107/S0021889808042726
10.3390/ma12223764
10.1039/C9CC03038G
10.1039/C7DT04489E
10.1016/j.orgel.2021.106334
10.1039/D2CE01643E
10.1039/C7CC01107E
10.1021/ja00861a008
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ejic.202300562
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0682
EndPage n/a
ExternalDocumentID 10_1002_ejic_202300562
EJIC202300562
Genre article
GrantInformation_xml – fundername: National Science and Technology Council of Taiwan
  funderid: 111-2221-E-007-004; 111-2628-E-007-009; 111-2622-8-007-011; 112-2223-E-007-006-MY3; 110-2113-M-007-028-MY3
– fundername: JSPS KAKENHI
  funderid: JP22H02098
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACNCT
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
ACUHS
AEYWJ
AGHNM
AGYGG
CITATION
1OB
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3172-8233b0c53c97270f63bc5e24b532ace8ec1346eba4724f12d33cc436fe07cb533
IEDL.DBID DR2
ISSN 1434-1948
IngestDate Wed Aug 13 08:51:51 EDT 2025
Tue Jul 01 03:58:07 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Wed Jan 22 16:14:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-8233b0c53c97270f63bc5e24b532ace8ec1346eba4724f12d33cc436fe07cb533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3777-2277
0000-0001-9061-6279
0000-0003-1023-2086
0000-0002-6932-9758
0000-0003-1928-5141
0000-0002-4744-2805
PQID 2924892060
PQPubID 2030176
PageCount 7
ParticipantIDs proquest_journals_2924892060
crossref_primary_10_1002_ejic_202300562
crossref_citationtrail_10_1002_ejic_202300562
wiley_primary_10_1002_ejic_202300562_EJIC202300562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 12, 2024
PublicationDateYYYYMMDD 2024-02-12
PublicationDate_xml – month: 02
  year: 2024
  text: February 12, 2024
  day: 12
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle European journal of inorganic chemistry
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2010; 12
2011; 115
2010; 16
2009; 42
2023; 4
2015; 71
2019; 55
2019; 54
2019; 10
2019; 12
1987; 6
2010; 503–504
2020; 10
1964; 40
2018; 47
1974; 4
2020; 8
2018; 9
2021; 31
2023; 25
2018; 5
2021; 33
2020; 53
2013; 13
2021; 236
2015; 42
2020; 290
2015; 44
2023; 451
2022; 34
2020; 49
1978; 100
2009; 481
1954; 9
1962; 84
2020; 416
2014; 53
2021; 9
2019; 7
1972; 8
2019; 6
2019; 31
1978; 11
2020; 142
2019; 1
1978; 17
2017; 29
2020; 32
2019; 141
1959
2016; 4
2021; 57
2017; 53
2021; 11
2021; 99
2018; 1161
2020; 391
2015; 119
2022; 10
1968; 72
2018; 54
1976; 15
2018; 57
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
Ferreira T. J. (e_1_2_9_19_1) 2020; 8
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 391
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 428
  year: 2019
  publication-title: Inorg. Chem. Front.
– volume: 10
  start-page: 3836
  year: 2019
  publication-title: Chem. Sci.
– volume: 481
  start-page: 46
  year: 2009
  publication-title: Thermochim. Acta
– volume: 53
  start-page: 5954
  year: 2017
  publication-title: Chem. Commun.
– volume: 54
  year: 2019
  publication-title: Cryst. Res. Technol.
– volume: 10
  start-page: 9915
  year: 2020
  publication-title: Sci. Rep.
– volume: 17
  start-page: 225
  year: 1978
  publication-title: J. Lumin.
– volume: 416
  year: 2020
  publication-title: Coord. Chem. Rev.
– volume: 5
  start-page: 2615
  year: 2018
  publication-title: Inorg. Chem. Front.
– volume: 100
  start-page: 4964
  year: 1978
  publication-title: J. Am. Chem. Soc.
– volume: 503–504
  start-page: 21
  year: 2010
  publication-title: Thermochim. Acta
– volume: 8
  year: 2020
  publication-title: Adv. Opt. Mater.
– volume: 44
  start-page: 3289
  year: 2015
  publication-title: Dalton Trans.
– volume: 236
  year: 2021
  publication-title: J. Lumin.
– volume: 53
  start-page: 226
  year: 2020
  publication-title: J. Appl. Crystallogr.
– volume: 72
  start-page: 3251
  year: 1968
  publication-title: J. Phys. Chem.
– volume: 34
  year: 2022
  publication-title: J. Phys. Condens. Matter
– volume: 142
  start-page: 13582
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 141
  start-page: 12619
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 6814
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 141
  start-page: 4474
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2020
  publication-title: Front. Chem.
– volume: 57
  start-page: 3017
  year: 2018
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 295
  year: 1974
  publication-title: Chem. Phys.
– volume: 4
  start-page: 1881
  year: 2016
  publication-title: J. Mater. Chem. C
– volume: 12
  start-page: 1675
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 753
  year: 1954
  publication-title: J. Phys. Soc. Jpn.
– volume: 11
  start-page: 334
  year: 1978
  publication-title: Acc. Chem. Res.
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 5458
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 115
  start-page: 1423
  year: 2011
  publication-title: J. Phys. Chem. A
– volume: 99
  year: 2021
  publication-title: Org. Electron.
– volume: 53
  start-page: 6054
  year: 2014
  publication-title: Inorg. Chem.
– volume: 1161
  start-page: 262
  year: 2018
  publication-title: J. Mol. Struct.
– volume: 10
  start-page: 2095
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 290
  year: 2020
  publication-title: J. Solid State Chem.
– volume: 47
  start-page: 1657
  year: 2018
  publication-title: Dalton Trans.
– start-page: 2003
  year: 1959
  publication-title: J. Chem. Soc.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 42
  start-page: 339
  year: 2009
  publication-title: J. Appl. Crystallogr.
– volume: 1
  start-page: 1644
  year: 2019
  publication-title: Matter
– volume: 84
  start-page: 167
  year: 1962
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 7525
  year: 2020
  publication-title: Dalton Trans.
– volume: 55
  start-page: 7303
  year: 2019
  publication-title: Chem. Commun.
– volume: 47
  start-page: 2344
  year: 2018
  publication-title: Dalton Trans.
– volume: 6
  start-page: 2003
  year: 1987
  publication-title: Polyhedron
– volume: 71
  start-page: 3
  year: 2015
  publication-title: Acta Crystallogr. Sect. C
– volume: 16
  start-page: 3355
  year: 2010
  publication-title: Chem. Eur. J.
– volume: 12
  start-page: 3764
  year: 2019
  publication-title: Materials
– volume: 31
  start-page: 10161
  year: 2019
  publication-title: Chem. Mater.
– volume: 4
  year: 2023
  publication-title: Adv. Photonics Res.
– volume: 54
  start-page: 13961
  year: 2018
  publication-title: Chem. Commun.
– volume: 71
  start-page: 3
  year: 2015
  publication-title: Acta Crystallogr. Sect. A
– volume: 119
  start-page: 9173
  year: 2015
  publication-title: J. Phys. Chem. B
– volume: 13
  start-page: 4145
  year: 2013
  publication-title: Cryst. Growth Des.
– volume: 42
  start-page: 193
  year: 2015
  publication-title: Opt. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 11314
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 15
  start-page: 3061
  year: 1976
  publication-title: Inorg. Chem.
– volume: 32
  start-page: 2583
  year: 2020
  publication-title: Chem. Mater.
– volume: 8
  start-page: 241
  year: 1972
  publication-title: Coord. Chem. Rev.
– volume: 9
  start-page: 13276
  year: 2021
  publication-title: J. Mater. Chem. C
– volume: 25
  start-page: 1763
  year: 2023
  publication-title: CrystEngComm
– volume: 71
  start-page: 59
  year: 2015
  publication-title: Acta Crystallogr. Sect. A
– volume: 11
  start-page: 2329
  year: 2021
  publication-title: RSC Adv.
– volume: 57
  start-page: 6907
  year: 2021
  publication-title: Chem. Commun.
– volume: 40
  start-page: 507
  year: 1964
  publication-title: J. Chem. Phys.
– ident: e_1_2_9_14_1
  doi: 10.1039/D0DT01659D
– ident: e_1_2_9_32_1
  doi: 10.1002/adfm.202011191
– ident: e_1_2_9_63_1
  doi: 10.1016/j.jssc.2020.121576
– ident: e_1_2_9_6_1
  doi: 10.1039/C7DT04535B
– ident: e_1_2_9_52_1
  doi: 10.1021/jp110586e
– ident: e_1_2_9_61_1
  doi: 10.1016/j.optmat.2015.01.008
– ident: e_1_2_9_67_1
  doi: 10.1021/j100855a027
– ident: e_1_2_9_51_1
  doi: 10.1016/j.tca.2010.03.001
– ident: e_1_2_9_65_1
  doi: 10.1016/j.cej.2019.123479
– ident: e_1_2_9_3_1
  doi: 10.1039/C4DT03694H
– ident: e_1_2_9_20_1
  doi: 10.1039/D1TC01902C
– ident: e_1_2_9_46_1
  doi: 10.1016/S0277-5387(00)84539-8
– ident: e_1_2_9_68_1
  doi: 10.1107/S2053273314022207
– ident: e_1_2_9_58_1
  doi: 10.1021/ja00484a007
– ident: e_1_2_9_57_1
  doi: 10.1021/ar50129a003
– ident: e_1_2_9_42_1
  doi: 10.1039/D1CC02353E
– ident: e_1_2_9_30_1
  doi: 10.1039/D1TC05680H
– ident: e_1_2_9_71_1
  doi: 10.1107/S2053229614024218
– ident: e_1_2_9_7_1
  doi: 10.1021/acs.inorgchem.7b02476
– ident: e_1_2_9_35_1
  doi: 10.1002/adpr.202200351
– ident: e_1_2_9_25_1
  doi: 10.1088/1361-648X/ac4aaa
– ident: e_1_2_9_55_1
  doi: 10.1016/j.jlumin.2021.118069
– ident: e_1_2_9_5_1
  doi: 10.1039/C7TC01520H
– ident: e_1_2_9_22_1
  doi: 10.1021/jacs.9b00886
– ident: e_1_2_9_41_1
  doi: 10.1021/jacs.0c06039
– ident: e_1_2_9_43_1
  doi: 10.1021/jp509412z
– ident: e_1_2_9_26_1
  doi: 10.1039/D0RA08795E
– ident: e_1_2_9_56_1
  doi: 10.1063/1.1725145
– ident: e_1_2_9_15_1
  doi: 10.1016/j.ccr.2020.213331
– ident: e_1_2_9_48_1
  doi: 10.1021/cg400988m
– ident: e_1_2_9_39_1
  doi: 10.1021/ic50166a026
– ident: e_1_2_9_12_1
  doi: 10.1039/C8SC04711A
– ident: e_1_2_9_49_1
  doi: 10.1021/jacs.9b04262
– ident: e_1_2_9_16_1
  doi: 10.1002/adom.202000985
– ident: e_1_2_9_60_1
  doi: 10.1002/adma.202005630
– volume: 8
  year: 2020
  ident: e_1_2_9_19_1
  publication-title: Front. Chem.
– ident: e_1_2_9_8_1
  doi: 10.1039/C8QI00793D
– ident: e_1_2_9_1_1
  doi: 10.1002/chem.200802660
– ident: e_1_2_9_33_1
  doi: 10.1016/j.molstruc.2018.01.093
– ident: e_1_2_9_23_1
  doi: 10.1016/j.matt.2019.08.016
– ident: e_1_2_9_37_1
  doi: 10.1016/0301-0104(74)80097-2
– ident: e_1_2_9_40_1
  doi: 10.1021/acs.chemmater.9b03782
– ident: e_1_2_9_69_1
  doi: 10.1107/S2053273314026370
– ident: e_1_2_9_4_1
  doi: 10.1039/C5TC04114G
– ident: e_1_2_9_13_1
  doi: 10.1039/C8QI01054D
– ident: e_1_2_9_72_1
  doi: 10.1107/S1600576719014092
– ident: e_1_2_9_64_1
  doi: 10.1038/s41598-020-66946-2
– ident: e_1_2_9_44_1
  doi: 10.1016/j.cej.2022.138881
– ident: e_1_2_9_29_1
  doi: 10.1002/adfm.202100855
– ident: e_1_2_9_11_1
  doi: 10.1002/crat.201800236
– ident: e_1_2_9_59_1
  doi: 10.1021/acs.chemmater.0c00078
– ident: e_1_2_9_2_1
  doi: 10.1021/ic500400y
– ident: e_1_2_9_9_1
  doi: 10.1039/C8CC08665F
– ident: e_1_2_9_28_1
  doi: 10.1002/adom.201801160
– ident: e_1_2_9_38_1
  doi: 10.1016/0022-2313(78)90088-1
– ident: e_1_2_9_53_1
  doi: 10.1143/JPSJ.9.753
– ident: e_1_2_9_54_1
  doi: 10.1016/S0010-8545(00)80030-2
– ident: e_1_2_9_45_1
  doi: 10.1039/jr9590002003
– ident: e_1_2_9_17_1
  doi: 10.1039/B920046K
– ident: e_1_2_9_34_1
  doi: 10.1039/D1TC02550C
– ident: e_1_2_9_50_1
  doi: 10.1016/j.tca.2008.10.003
– ident: e_1_2_9_27_1
  doi: 10.1002/adma.201605739
– ident: e_1_2_9_31_1
  doi: 10.1002/adfm.202009973
– ident: e_1_2_9_62_1
  doi: 10.1021/acs.jpclett.8b02892
– ident: e_1_2_9_70_1
  doi: 10.1107/S0021889808042726
– ident: e_1_2_9_18_1
  doi: 10.3390/ma12223764
– ident: e_1_2_9_10_1
  doi: 10.1039/C9CC03038G
– ident: e_1_2_9_24_1
  doi: 10.1039/C7DT04489E
– ident: e_1_2_9_66_1
  doi: 10.1016/j.orgel.2021.106334
– ident: e_1_2_9_47_1
  doi: 10.1039/D2CE01643E
– ident: e_1_2_9_21_1
  doi: 10.1039/C7CC01107E
– ident: e_1_2_9_36_1
  doi: 10.1021/ja00861a008
SSID ssj0003036
Score 2.4264703
Snippet Ten ionic manganese(II) complexes of [EMIm]2[MnX2Y2] (EMIm=1‐ethyl‐3‐methylimidazolium ion; X, Y=Cl, Br or I) and [BnMIm]2[MnX2Y2]...
Ten ionic manganese(II) complexes of [EMIm] 2 [Mn X 2 Y 2 ] (EMIm=1‐ethyl‐3‐methylimidazolium ion; X , Y =Cl, Br or I) and [BnMIm] 2 [Mn X 2 Y 2 ]...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bromine
Chlorine
Emitters
hybrid halides
light-emitting diodes
luminescence
Manganese
Photoluminescence
Room temperature
tetrahalidomanganates
transition metal complexes
Title Photophysical Tuning of Imidazolium Tetrahalidomanganate(II) Complexes towards Highly Efficient Green Emitters with Near‐Unity Quantum Yield
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fejic.202300562
https://www.proquest.com/docview/2924892060
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqLu2l0B_UbbeVD5VKD4bEdrLeY7VaxCIVlWqR6CmyHQdCs0nFJhJw4gmqPmOfpDPOZheQKiS4JZKdH49n5htr5htCPmahHmqIdhg4Y86k1ZopK4fMgetVOgxjJbHe-etBvHck94-j4xtV_C0_xPLADTXD22tUcG3mOyvSUHeWIwUhR751b4QxYQtR0fcVfxTaZ19eJCSDaF11rI0B37k9_bZXWkHNm4DVe5zddaK7b20TTX5uN7XZtld3aBwf8zMb5PkCjtIv7f55QZ648iV5Ouq6wL0iv7-dVsg90EqTThs8R6FVRiezPNVXVZE3Mzp1NRZcF3lazXR5oksAsFuTyWeK1qZwF25Oa5-eO6eYV1Jc0rFnrgCHR33iDx3Pcs_zSfFcmB6A-v29_oN4-JIeNiB8eMkPzLV7TY52x9PRHlv0cGAWkAkYWy6ECWwk7BCQUpDFwtjIcWkiwbV1ytlQyNgZLQdcZiFPhbBWijhzwcDCILFJ1sqqdG8IlcqA6zQqFBGMBlgnBpFLQxelGcT4RvUI62SY2AXBOfbZKJKWmpknuMrJcpV75NNy_K-W2uO_I_vdlkgWKj5POESuasiDOOgR7mV7z1OS8f5ktLx7-5BJ78gzuJbMN6Tpk7X6vHHvARTV5oPf-P8AZ3cFQg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOZQL_4iFAj4gAQe3ie1kvUe0bLUp7QrQVoJTZDtOCWQTxCYS7YknqPqMPAkzzmaXIiEkOCYa58f2zHxjzXxDyNM81CMN0Q4DZ8yZtFozZeWIOXC9SodhrCTWOx_N4umxPHgf9dmEWAvT8UOsD9xQM7y9RgXHA-m9DWuo-1QgByFHwnW0wlexrTc2MXj1bsMghRbaFxgJySBeVz1vY8D3Lo-_7Jc2YPNXyOp9zv4NYvqv7VJNPu-2jdm1Z78ROf7X79wk11eIlL7sttAtcsVVt8n2uG8Ed4ecv_lYI_1At6B03uJRCq1zmiyKTJ_VZdEu6Nw1WHNdFlm90NWJrgDDPk-SFxQNTum-uSVtfIbukmJqSXlKJ568Anwe9bk_dLIoPNUnxaNhOgMN_PH9AiHxKX3bwvrDSz5gut1dcrw_mY-nbNXGgVkAJ2BvuRAmsJGwIwBLQR4LYyPHpYkE19YpZ0MhY2e0HHKZhzwTwlop4twFQwtC4h7ZqurK3SdUKgPe06hQRCANyE4MI5eFLspyCPONGhDWL2JqVxzn2GqjTDt2Zp7iLKfrWR6QZ2v5Lx27xx8ld_o9ka60fJlyCF7ViAdxMCDcL-5fnpJODpLx-urBvwx6Qran86PD9DCZvX5IrsF9yXx_mh2y1Xxt3SPASI157LXgJ7JfCVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQkYAL_6gLBXxAAg5uE9vJeo9o2VVTYFXQViqnyHYcCGSTik0k2hNPgHhGnoQZZ7PbIiEkOCay8-PxzHxjzXxDyJM81CMN0Q4DZ8yZtFozZeWIOXC9SodhrCTWO7-ZxftH8uA4Oj5Xxd_xQ6wP3FAzvL1GBT_J8r0Naaj7VCAFIUe-dTTCl2UMGoOw6N2GQAoNtK8vEpJBuK562saA712cf9EtbbDmecTqXc70BtH9x3aZJp9328bs2rPfeBz_529ukusrPEpfdBvoFrnkqtvk6rhvA3eHfD_8WCP5QCdOOm_xIIXWOU0WRabP6rJoF3TuGqy4LousXujqg64AwT5LkucUzU3pvrolbXx-7pJiYkl5SieeugI8HvWZP3SyKDzRJ8WDYToD_fv57QcC4lP6tgXpw0veY7LdXXI0nczH-2zVxIFZgCZgbbkQJrCRsCOASkEeC2Mjx6WJBNfWKWdDIWNntBxymYc8E8JaKeLcBUMLg8Q9slXVldsmVCoDvtOoUEQwGnCdGEYuC12U5RDkGzUgrJdhalcM59hoo0w7bmae4iqn61UekKfr8Scdt8cfR-70WyJd6fgy5RC6qhEP4mBAuJftX56STg6S8frq_r9MekyuHL6cpq-T2asH5Brclsw3p9khW82X1j0EgNSYR14HfgGpgAgU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photophysical+Tuning+of+Imidazolium+Tetrahalidomanganate%28II%29+Complexes+towards+Highly+Efficient+Green+Emitters+with+Near%E2%80%90Unity+Quantum+Yield&rft.jtitle=European+journal+of+inorganic+chemistry&rft.au=Verner+S%C3%A4%C3%A4sk&rft.au=Yi%E2%80%90An+Chen&rft.au=Tse%E2%80%90Fu+Huang&rft.au=Li%E2%80%90Yu+Ting&rft.date=2024-02-12&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1434-1948&rft.eissn=1099-0682&rft.volume=27&rft.issue=5&rft_id=info:doi/10.1002%2Fejic.202300562&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-1948&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-1948&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-1948&client=summon