Well‐Balanced Ambipolar Organic Single Crystals toward Highly Efficient Light‐Emitting Devices

Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 49
Main Authors An, Ming‐Hui, Ding, Ran, Zhu, Qin‐Cheng, Ye, Gao‐Da, Wang, Hai, Du, Ming‐Xu, Chen, Shuo‐Nan, Liu, Yu, Xu, Mei‐Li, Xu, Ting, Wang, Wei, Feng, Jing, Sun, Hong‐Bo
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability have been a bottleneck for the high performance of organic single crystal‐based devices. Here, well‐balanced ambipolar organic single crystals are developed by mixing of n‐ and p‐type molecules with maintained single‐crystalline structures. Carrier mobility of the ambipolar single crystals is manipulated by tuning the mixing ratio, and nearly equal hole and electron mobility can be achieved. Highly efficient single crystal‐based organic light‐emitting devices (OLEDs) are demonstrated by employing the ambipolar crystals as the mixed host for a red emitter pentacene to realize efficient exciton confinement and energy transfer within the emissive layer. As a result, maximum luminance of 5467 cd m−2 and current efficiency of 2.82 cd A−1 are achieved, which represents, to the best of the authors’ knowledge, the record performance for the organic single crystal‐based OLEDs to date. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics. Well‐balanced ambipolar organic single crystals are developed by mixing n‐type BTPB and p‐type BSB‐Me molecules, and the hole and electron mobilities are manipulated to be nearly equal. Organic light‐emitting devices based on these ambipolar crystals exhibit a record luminance, current efficiency, and external quantum efficiency. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics.
AbstractList Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability have been a bottleneck for the high performance of organic single crystal‐based devices. Here, well‐balanced ambipolar organic single crystals are developed by mixing of n‐ and p‐type molecules with maintained single‐crystalline structures. Carrier mobility of the ambipolar single crystals is manipulated by tuning the mixing ratio, and nearly equal hole and electron mobility can be achieved. Highly efficient single crystal‐based organic light‐emitting devices (OLEDs) are demonstrated by employing the ambipolar crystals as the mixed host for a red emitter pentacene to realize efficient exciton confinement and energy transfer within the emissive layer. As a result, maximum luminance of 5467 cd m −2 and current efficiency of 2.82 cd A −1 are achieved, which represents, to the best of the authors’ knowledge, the record performance for the organic single crystal‐based OLEDs to date. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics.
Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability have been a bottleneck for the high performance of organic single crystal‐based devices. Here, well‐balanced ambipolar organic single crystals are developed by mixing of n‐ and p‐type molecules with maintained single‐crystalline structures. Carrier mobility of the ambipolar single crystals is manipulated by tuning the mixing ratio, and nearly equal hole and electron mobility can be achieved. Highly efficient single crystal‐based organic light‐emitting devices (OLEDs) are demonstrated by employing the ambipolar crystals as the mixed host for a red emitter pentacene to realize efficient exciton confinement and energy transfer within the emissive layer. As a result, maximum luminance of 5467 cd m−2 and current efficiency of 2.82 cd A−1 are achieved, which represents, to the best of the authors’ knowledge, the record performance for the organic single crystal‐based OLEDs to date. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics. Well‐balanced ambipolar organic single crystals are developed by mixing n‐type BTPB and p‐type BSB‐Me molecules, and the hole and electron mobilities are manipulated to be nearly equal. Organic light‐emitting devices based on these ambipolar crystals exhibit a record luminance, current efficiency, and external quantum efficiency. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics.
Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability have been a bottleneck for the high performance of organic single crystal‐based devices. Here, well‐balanced ambipolar organic single crystals are developed by mixing of n‐ and p‐type molecules with maintained single‐crystalline structures. Carrier mobility of the ambipolar single crystals is manipulated by tuning the mixing ratio, and nearly equal hole and electron mobility can be achieved. Highly efficient single crystal‐based organic light‐emitting devices (OLEDs) are demonstrated by employing the ambipolar crystals as the mixed host for a red emitter pentacene to realize efficient exciton confinement and energy transfer within the emissive layer. As a result, maximum luminance of 5467 cd m−2 and current efficiency of 2.82 cd A−1 are achieved, which represents, to the best of the authors’ knowledge, the record performance for the organic single crystal‐based OLEDs to date. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics.
Author Liu, Yu
Wang, Wei
An, Ming‐Hui
Sun, Hong‐Bo
Du, Ming‐Xu
Xu, Mei‐Li
Chen, Shuo‐Nan
Ye, Gao‐Da
Zhu, Qin‐Cheng
Feng, Jing
Ding, Ran
Wang, Hai
Xu, Ting
Author_xml – sequence: 1
  givenname: Ming‐Hui
  surname: An
  fullname: An, Ming‐Hui
  organization: Jilin University
– sequence: 2
  givenname: Ran
  surname: Ding
  fullname: Ding, Ran
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Qin‐Cheng
  surname: Zhu
  fullname: Zhu, Qin‐Cheng
  organization: Jilin University
– sequence: 4
  givenname: Gao‐Da
  surname: Ye
  fullname: Ye, Gao‐Da
  organization: Jilin University
– sequence: 5
  givenname: Hai
  surname: Wang
  fullname: Wang, Hai
  organization: Jilin University
– sequence: 6
  givenname: Ming‐Xu
  surname: Du
  fullname: Du, Ming‐Xu
  organization: Jilin University
– sequence: 7
  givenname: Shuo‐Nan
  surname: Chen
  fullname: Chen, Shuo‐Nan
  organization: Jilin University
– sequence: 8
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: Jilin University
– sequence: 9
  givenname: Mei‐Li
  surname: Xu
  fullname: Xu, Mei‐Li
  organization: Jilin University
– sequence: 10
  givenname: Ting
  surname: Xu
  fullname: Xu, Ting
  organization: Jilin University
– sequence: 11
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Jilin University
– sequence: 12
  givenname: Jing
  surname: Feng
  fullname: Feng, Jing
  email: jingfeng@jlu.edu.cn
  organization: Jilin University
– sequence: 13
  givenname: Hong‐Bo
  orcidid: 0000-0003-2127-8610
  surname: Sun
  fullname: Sun, Hong‐Bo
  email: hbsun@tsinghua.edu.cn
  organization: Tsinghua University, Haidian
BookMark eNqFkEtLAzEUhYNUsFa3rgOup-Yxncey9mGFShcquhsymZuakpmpmdQyO3-Cv9FfYkqlgiCu7uFyvnPgnKJOVVeA0AUlfUoIuxKFKvuMMK9Dxo5Ql0Y0CjhhSeeg6fMJOm2aFSE0jnnYRfkTGPP5_nEtjKgkFHhY5npdG2Hxwi5FpSW-19XSAB7ZtnHCNNjVW2ELPNPLF9PiiVJaaqgcnvuH81GTUjvnGTyGNy2hOUPHynNw_n176HE6eRjNgvni5nY0nAeS05gFMUAMkiehSglPCohCnss0zGmhpEiAF4qGac4oh4GIeA5xKoAxqgqZxoKnivfQ5T53bevXDTQuW9UbW_nKjIXRIIoTP4t39fcuaeumsaCytdWlsG1GSbbbMdvtmB129ED4C5DaCafrylmhzd9Yuse22kD7T0k2HE_vftgvnxmM8A
CitedBy_id crossref_primary_10_1021_acsami_4c20265
crossref_primary_10_1016_j_orgel_2021_106089
crossref_primary_10_1002_adpr_202200227
crossref_primary_10_1002_adom_202403209
crossref_primary_10_1002_smm2_1329
crossref_primary_10_1039_D1TC01101D
crossref_primary_10_1039_D2NJ03916H
crossref_primary_10_1002_solr_202201037
crossref_primary_10_1002_admt_202302017
crossref_primary_10_1002_anie_202208768
crossref_primary_10_1038_s41377_024_01484_4
crossref_primary_10_1364_OL_462931
crossref_primary_10_1038_s41566_022_01138_0
crossref_primary_10_1016_j_optmat_2024_115497
crossref_primary_10_1039_D4TC01801J
crossref_primary_10_1002_admi_202200194
crossref_primary_10_1364_OPTICA_442016
crossref_primary_10_1002_smll_202208174
crossref_primary_10_1021_acs_cgd_2c01501
crossref_primary_10_1016_j_orgel_2022_106670
crossref_primary_10_1002_advs_202101661
crossref_primary_10_1039_D3TC00320E
crossref_primary_10_1063_5_0190042
crossref_primary_10_1039_D2QO00926A
crossref_primary_10_1063_5_0045036
crossref_primary_10_3390_cryst13060861
crossref_primary_10_1002_ange_202208768
crossref_primary_10_1021_acs_jpclett_4c00743
crossref_primary_10_1021_acs_cgd_4c01057
crossref_primary_10_1002_adom_202402335
crossref_primary_10_1007_s40843_022_2079_3
crossref_primary_10_1039_D1SC03818D
Cites_doi 10.1063/1.2174093
10.1002/adma.201104269
10.1126/sciadv.aao1705
10.1002/adom.201200066
10.1002/adma.201102173
10.1021/acs.accounts.5b00438
10.1002/adma.200602922
10.1002/marc.201500026
10.1021/cr0501543
10.1002/adma.201104594
10.1038/s41377-020-0264-5
10.1002/adma.201801078
10.1039/C7TC03905K
10.1039/C3TC31998A
10.1063/1.2711393
10.1002/adfm.201604659
10.1002/anie.201408882
10.1038/srep12445
10.1063/1.1355007
10.1039/C7CS00490G
10.1002/1521-4095(20020705)14:13/14<975::AID-ADMA975>3.0.CO;2-D
10.1002/adfm.201702613
10.1038/s41377-019-0221-3
10.1016/j.solmat.2010.08.031
10.1002/pssa.201228199
10.1021/cg9007125
10.1002/adfm.200500424
10.1021/ja055686f
10.1002/adma.200601080
10.1002/adfm.201800116
10.1002/anie.201302396
10.1002/pssa.201228310
10.1063/1.2973151
10.1002/adma.200502164
10.1039/c3cc45169k
10.1143/JJAP.29.L1775
10.1016/j.susc.2006.02.012
10.1016/j.orgel.2016.11.041
10.1063/1.1785290
10.1002/adma.201304280
10.1063/1.2736208
10.1021/acsami.6b14438
10.1038/s41377-019-0218-y
10.1002/lpor.201900009
10.1002/anie.201601136
10.1103/PhysRevLett.91.157406
10.1016/j.orgel.2012.10.028
10.1002/lpor.201300222
10.1007/s00289-004-0329-2
10.1002/adma.201703063
10.1143/APEX.1.091801
10.1039/c3cp43800g
10.1002/adfm.201807606
10.1002/adfm.200902339
10.1063/1.2773941
10.1002/adma.200702145
10.1002/adma.201200234
10.1143/JJAP.44.L1367
10.1002/adma.200803588
10.1002/adfm.201400832
10.1002/adma.201302514
10.1021/jp110646n
10.1038/s41467-019-11883-6
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202002422
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202002422
ADFM202002422
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2015M581377
– fundername: National Key Research and Development Program of China
  funderid: 2017YFB0404500
– fundername: National Natural Science Foundation of China
  funderid: 61825402; 61590930; 61675085; 61705075; 61805096
– fundername: Hong Kong Scholars Program
  funderid: XJ2018004
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3172-7ee7ec384f9038de643bc94b1dfca8e3df149b213e5a63be79ae221fdc97a39f3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 04:01:05 EDT 2025
Tue Jul 01 04:12:20 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Wed Jan 22 16:33:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-7ee7ec384f9038de643bc94b1dfca8e3df149b213e5a63be79ae221fdc97a39f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2127-8610
PQID 2465678422
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2465678422
crossref_primary_10_1002_adfm_202002422
crossref_citationtrail_10_1002_adfm_202002422
wiley_primary_10_1002_adfm_202002422_ADFM202002422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 1, 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 1, 2020
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2011; 115
2002; 14
2017; 42
2015; 36
2007; 107
2013; 25
2013; 1
2019; 10
2019; 13
2014; 26
2014; 24
2008; 1
2017; 9
2018; 47
2012; 209
2010; 20
2013; 15
2013; 14
2003; 91
2014; 2
2018; 4
2020; 9
2013; 52
2019; 29
2018; 30
2011; 23
2008; 20
2006; 600
2014; 8
2012; 24
2016; 49
2019; 8
2007; 19
2004; 85
2018; 28
2015; 5
2009; 21
2013; 49
2017; 27
2006; 16
2015; 54
2007; 90
2006; 18
2007; 91
2017; 29
2008; 93
2005; 44
2016; 55
1990; 29
2006; 88
2005; 127
2013; 210
2005; 53
2009; 9
2001; 78
2010; 94
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 91
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 19
  start-page: 1791
  year: 2007
  publication-title: Adv. Mater.
– volume: 91
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 600
  start-page: 1559
  year: 2006
  publication-title: Surf. Sci.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 26
  start-page: 1176
  year: 2014
  publication-title: Adv. Mater.
– volume: 49
  start-page: 9200
  year: 2013
  publication-title: Chem. Commun.
– volume: 115
  start-page: 9171
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 2332
  year: 2012
  publication-title: Adv. Mater.
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 36
  start-page: 984
  year: 2015
  publication-title: Macromol. Rapid Commun.
– volume: 13
  year: 2019
  publication-title: Laser Photonics Rev.
– volume: 9
  start-page: 31
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 78
  start-page: 1622
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 2708
  year: 2006
  publication-title: Adv. Mater.
– volume: 8
  start-page: 114
  year: 2019
  publication-title: Light: Sci. Appl.
– volume: 93
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 41
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 1990
  publication-title: Jpn. J. Appl. Phys.
– volume: 44
  year: 2005
  publication-title: Jpn. J. Appl. Phys.
– volume: 24
  start-page: 7085
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 42
  start-page: 379
  year: 2017
  publication-title: Org. Electron.
– volume: 9
  start-page: 3277
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 6158
  year: 2013
  publication-title: Adv. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 209
  start-page: 1399
  year: 2012
  publication-title: Phys. Status Solidi A
– volume: 1
  year: 2008
  publication-title: Appl. Phys. Express
– volume: 24
  start-page: 2768
  year: 2012
  publication-title: Adv. Mater.
– volume: 53
  start-page: 213
  year: 2005
  publication-title: Polym. Bull.
– volume: 9
  start-page: 4945
  year: 2009
  publication-title: Cryst. Growth Des.
– volume: 90
  year: 2007
  publication-title: Appl. Phys. Lett.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 21
  start-page: 4034
  year: 2009
  publication-title: Adv. Mater.
– volume: 20
  start-page: 1511
  year: 2008
  publication-title: Adv. Mater.
– volume: 14
  start-page: 975
  year: 2002
  publication-title: Adv. Mater.
– volume: 8
  start-page: 687
  year: 2014
  publication-title: Laser Photonics Rev.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 10
  start-page: 3912
  year: 2019
  publication-title: Nat. Commun.
– volume: 1
  start-page: 422
  year: 2013
  publication-title: Adv. Opt. Mater.
– volume: 24
  start-page: 1535
  year: 2012
  publication-title: Adv. Mater.
– volume: 14
  start-page: 389
  year: 2013
  publication-title: Org. Electron.
– volume: 54
  start-page: 956
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 23
  start-page: 4960
  year: 2011
  publication-title: Adv. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 47
  start-page: 422
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 7751
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 107
  start-page: 1296
  year: 2007
  publication-title: Chem. Rev.
– volume: 8
  start-page: 106
  year: 2019
  publication-title: Light: Sci. Appl.
– volume: 85
  start-page: 1613
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 55
  start-page: 6864
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 1416
  year: 2006
  publication-title: Adv. Mater.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 20
  start-page: 1610
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 49
  start-page: 370
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 210
  start-page: 9
  year: 2013
  publication-title: Phys. Status Solidi A
– volume: 2
  start-page: 965
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 94
  start-page: 2416
  year: 2010
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 15
  start-page: 3527
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– ident: e_1_2_7_43_1
  doi: 10.1063/1.2174093
– ident: e_1_2_7_56_1
  doi: 10.1002/adma.201104269
– ident: e_1_2_7_11_1
  doi: 10.1126/sciadv.aao1705
– ident: e_1_2_7_58_1
  doi: 10.1002/adom.201200066
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201102173
– ident: e_1_2_7_51_1
  doi: 10.1021/acs.accounts.5b00438
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.200602922
– ident: e_1_2_7_49_1
  doi: 10.1002/marc.201500026
– ident: e_1_2_7_12_1
  doi: 10.1021/cr0501543
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201104594
– ident: e_1_2_7_19_1
  doi: 10.1038/s41377-020-0264-5
– ident: e_1_2_7_32_1
  doi: 10.1002/adma.201801078
– ident: e_1_2_7_53_1
  doi: 10.1039/C7TC03905K
– ident: e_1_2_7_1_1
  doi: 10.1039/C3TC31998A
– ident: e_1_2_7_9_1
  doi: 10.1063/1.2711393
– ident: e_1_2_7_31_1
  doi: 10.1002/adfm.201604659
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.201408882
– ident: e_1_2_7_41_1
  doi: 10.1038/srep12445
– ident: e_1_2_7_44_1
  doi: 10.1063/1.1355007
– ident: e_1_2_7_4_1
  doi: 10.1039/C7CS00490G
– ident: e_1_2_7_45_1
  doi: 10.1002/1521-4095(20020705)14:13/14<975::AID-ADMA975>3.0.CO;2-D
– ident: e_1_2_7_62_1
  doi: 10.1002/adfm.201702613
– ident: e_1_2_7_6_1
  doi: 10.1038/s41377-019-0221-3
– ident: e_1_2_7_42_1
  doi: 10.1016/j.solmat.2010.08.031
– ident: e_1_2_7_47_1
  doi: 10.1002/pssa.201228199
– ident: e_1_2_7_54_1
  doi: 10.1021/cg9007125
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.200500424
– ident: e_1_2_7_36_1
  doi: 10.1021/ja055686f
– ident: e_1_2_7_14_1
  doi: 10.1002/adma.200601080
– ident: e_1_2_7_59_1
  doi: 10.1002/adfm.201800116
– ident: e_1_2_7_50_1
  doi: 10.1002/anie.201302396
– ident: e_1_2_7_48_1
  doi: 10.1002/pssa.201228310
– ident: e_1_2_7_30_1
  doi: 10.1063/1.2973151
– ident: e_1_2_7_15_1
  doi: 10.1002/adma.200502164
– ident: e_1_2_7_23_1
  doi: 10.1039/c3cc45169k
– ident: e_1_2_7_10_1
  doi: 10.1143/JJAP.29.L1775
– ident: e_1_2_7_38_1
  doi: 10.1016/j.susc.2006.02.012
– ident: e_1_2_7_63_1
  doi: 10.1016/j.orgel.2016.11.041
– ident: e_1_2_7_26_1
  doi: 10.1063/1.1785290
– ident: e_1_2_7_3_1
  doi: 10.1002/adma.201304280
– ident: e_1_2_7_8_1
  doi: 10.1063/1.2736208
– ident: e_1_2_7_28_1
  doi: 10.1021/acsami.6b14438
– ident: e_1_2_7_18_1
  doi: 10.1038/s41377-019-0218-y
– ident: e_1_2_7_7_1
  doi: 10.1002/lpor.201900009
– ident: e_1_2_7_61_1
  doi: 10.1002/anie.201601136
– ident: e_1_2_7_17_1
  doi: 10.1103/PhysRevLett.91.157406
– ident: e_1_2_7_60_1
  doi: 10.1016/j.orgel.2012.10.028
– ident: e_1_2_7_5_1
  doi: 10.1002/lpor.201300222
– ident: e_1_2_7_39_1
  doi: 10.1007/s00289-004-0329-2
– ident: e_1_2_7_52_1
  doi: 10.1002/adma.201703063
– ident: e_1_2_7_34_1
  doi: 10.1143/APEX.1.091801
– ident: e_1_2_7_55_1
  doi: 10.1039/c3cp43800g
– ident: e_1_2_7_33_1
  doi: 10.1002/adfm.201807606
– ident: e_1_2_7_57_1
  doi: 10.1002/adfm.200902339
– ident: e_1_2_7_46_1
  doi: 10.1063/1.2773941
– ident: e_1_2_7_21_1
  doi: 10.1002/adma.200702145
– ident: e_1_2_7_25_1
  doi: 10.1002/adma.201200234
– ident: e_1_2_7_16_1
  doi: 10.1143/JJAP.44.L1367
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.200803588
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.201400832
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201302514
– ident: e_1_2_7_37_1
  doi: 10.1021/jp110646n
– ident: e_1_2_7_24_1
  doi: 10.1038/s41467-019-11883-6
SSID ssj0017734
Score 2.4986534
Snippet Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carrier mobility
Crystal structure
Current efficiency
Electron mobility
Electron transport
Electronic devices
Emitters
Emitters (electron)
Energy transfer
Excitons
Materials science
molecular mixing
Optoelectronic devices
organic light‐emitting devices
Organic semiconductors
organic single crystals
Single crystals
Transport properties
well‐balanced ambipolar transport
Title Well‐Balanced Ambipolar Organic Single Crystals toward Highly Efficient Light‐Emitting Devices
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202002422
https://www.proquest.com/docview/2465678422
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQWWDgjXjLAxJTShMndTwW2gohygBUdIv8lCrSgmgYYOIT-Ea-BF87DQUJIcGWKNdW_LzH9rnHCB0aOFxTXAUmDlUQS0IDQbkMiAilFEKblEI0cu-yedaPzwfJYCaK3-tDVBtuMDLcfA0DnIvJ8adoKFcGIskj52VgEgbCFqCiq0o_KqTUHys3QyB4hYOpamMjOv6a_KtX-oSas4DVeZzuMuLTf_VEk7v6UyHq8uWbjON_CrOClko4ilu-_6yiOT1eQ4szIoXrSNzqPH9_fTsBEqTUCrdGYvgAK2LsAzklvraGucanj88Wa-YTXDguLgYOSf6MO06lwjo3fAE7ATarzmjo6Na4rd1EtYH63c7N6VlQ3swQSIs3LCTXmmpJ0tiwBkmVtrBGSBaLUBnJU02UsQsvEYVEJ7xJhKaM6ygKjZKMcsIM2US18f1YbyFMIQ5MxobLlMXMNHjCZcIsiLCukwiabKNg2jKZLGXL4faMPPOCy1EGdZdVdbeNjir7By_Y8aPl3rShs3LgTrII9ONo6j5HrsV-ySVrtbu96m3nL4l20QI8e5LMHqoVj09630KdQhyg-Va7d3F94Lr1BwTE-jk
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CNaCvgA4pR2Yyfr5MBh6e5qS3d7gFbsLfhnLFWk26q7FVpOPAKvwqvwCDwJHuenLRJCQuqBYxLHSuwZz2f7m88ALxxtrlllI5fENkqMkJGWykRCx8ZojS6TlI082euODpK303S6At-bXJhKH6JdcCPPCOM1OTgtSG-dq4Yq6yiVnIcww2te5S4uP_tZ2_z1Tt938UvOh4P97VFUHywQGR8uPaJElGhElri8IzKLPiprkyc6ts6oDIV1ft6geSwwVV2hUeYKOY-dNblUInfC13sNrtMx4iTX33_XKlbFUlYb2d2YKGXxtNGJ7PCty997OQ6eg9uLEDnEuOEd-NG0TkVt-bR5ttCb5stvwpH_VfPdhds14ma9ykXuwQrO7sOtCzqMD0B_wLL8-fXbG-J5GrSsd6QPT2jSz6pcVcPe-4Ilsu3TpYfT5ZwtAt2YEU2mXLJBEOLw8ZuNabHDVzU4OgyMctbHMBY_hIMr-clHsDo7nuFjYJJS3UzilMnyJHcdlSqT5h4neXQgtEzXIGpMoTC1MjsdEFIWlaY0L6ivirav1uBVW_6k0iT5Y8mNxrKKemyaF5wk8mQWHvNgIn-ppej1h5P2av1fXnoON0b7k3Ex3tnbfQI36X7FCdqA1cXpGT71yG6hnwVfYvDxqq3vFxYzWPE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qrYRgQctLFNriBYhV2omdjOMFi2kzo5Y-hICK2QU_rqWq6XTUmQoNKz6BT-mv8At8SW3n0RYJISF1wTKJYyX2vb7H9rnHAK-s31wz0kQ2iU2UaMYjxaWOmIq1Vgptxn028v5Bd_sweTdMh3Nw0eTCVPoQ7YKb94wwXnsHHxu7cSUaKo31meQ0RBla0yp3cfbVTdomb3dy18OvKR30P21tR_W5ApF20dIBSkSOmmWJFR2WGXRBWWmRqNhYLTNkxrppg6Ixw1R2mUIuJFIaW6MFl0xY5uq9AwtJtyP8YRH5h1awKua82sfuxp5RFg8bmcgO3bj5vTfD4BW2vY6QQ4gbLMLPpnEqZsvx-vlUretvv-lG_k-ttwQParxNepWDPIQ5HD2C-9dUGB-D-oxl-ev7j03P8tRoSO9EHY39lJ9UmaqafHQFSyRbZzMHpssJmQayMfEkmXJG-kGGw0VvsueXOlxV_ZOjwCcnOYaR-Akc3spPPoX50ekInwHhPtFNJ1bqTCTCdmQqdSocSnLYgCmeLkPUWEKha112fzxIWVSK0rTwfVW0fbUMb9ry40qR5I8lVxrDKuqRaVJQL5DHs_CYBgv5Sy1FLx_st1fP_-Wll3D3fT4o9nYOdl_APX-7IgStwPz07BxXHaybqrXgSQS-3LbxXQKdYVeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well%E2%80%90Balanced+Ambipolar+Organic+Single+Crystals+toward+Highly+Efficient+Light%E2%80%90Emitting+Devices&rft.jtitle=Advanced+functional+materials&rft.au=An%2C+Ming%E2%80%90Hui&rft.au=Ding%2C+Ran&rft.au=Zhu%2C+Qin%E2%80%90Cheng&rft.au=Ye%2C+Gao%E2%80%90Da&rft.date=2020-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=49&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202002422&rft.externalDBID=10.1002%252Fadfm.202002422&rft.externalDocID=ADFM202002422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon