Well‐Balanced Ambipolar Organic Single Crystals toward Highly Efficient Light‐Emitting Devices
Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 49 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability have been a bottleneck for the high performance of organic single crystal‐based devices. Here, well‐balanced ambipolar organic single crystals are developed by mixing of n‐ and p‐type molecules with maintained single‐crystalline structures. Carrier mobility of the ambipolar single crystals is manipulated by tuning the mixing ratio, and nearly equal hole and electron mobility can be achieved. Highly efficient single crystal‐based organic light‐emitting devices (OLEDs) are demonstrated by employing the ambipolar crystals as the mixed host for a red emitter pentacene to realize efficient exciton confinement and energy transfer within the emissive layer. As a result, maximum luminance of 5467 cd m−2 and current efficiency of 2.82 cd A−1 are achieved, which represents, to the best of the authors’ knowledge, the record performance for the organic single crystal‐based OLEDs to date. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics.
Well‐balanced ambipolar organic single crystals are developed by mixing n‐type BTPB and p‐type BSB‐Me molecules, and the hole and electron mobilities are manipulated to be nearly equal. Organic light‐emitting devices based on these ambipolar crystals exhibit a record luminance, current efficiency, and external quantum efficiency. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics. |
---|---|
AbstractList | Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability have been a bottleneck for the high performance of organic single crystal‐based devices. Here, well‐balanced ambipolar organic single crystals are developed by mixing of n‐ and p‐type molecules with maintained single‐crystalline structures. Carrier mobility of the ambipolar single crystals is manipulated by tuning the mixing ratio, and nearly equal hole and electron mobility can be achieved. Highly efficient single crystal‐based organic light‐emitting devices (OLEDs) are demonstrated by employing the ambipolar crystals as the mixed host for a red emitter pentacene to realize efficient exciton confinement and energy transfer within the emissive layer. As a result, maximum luminance of 5467 cd m
−2
and current efficiency of 2.82 cd A
−1
are achieved, which represents, to the best of the authors’ knowledge, the record performance for the organic single crystal‐based OLEDs to date. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics. Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability have been a bottleneck for the high performance of organic single crystal‐based devices. Here, well‐balanced ambipolar organic single crystals are developed by mixing of n‐ and p‐type molecules with maintained single‐crystalline structures. Carrier mobility of the ambipolar single crystals is manipulated by tuning the mixing ratio, and nearly equal hole and electron mobility can be achieved. Highly efficient single crystal‐based organic light‐emitting devices (OLEDs) are demonstrated by employing the ambipolar crystals as the mixed host for a red emitter pentacene to realize efficient exciton confinement and energy transfer within the emissive layer. As a result, maximum luminance of 5467 cd m−2 and current efficiency of 2.82 cd A−1 are achieved, which represents, to the best of the authors’ knowledge, the record performance for the organic single crystal‐based OLEDs to date. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics. Well‐balanced ambipolar organic single crystals are developed by mixing n‐type BTPB and p‐type BSB‐Me molecules, and the hole and electron mobilities are manipulated to be nearly equal. Organic light‐emitting devices based on these ambipolar crystals exhibit a record luminance, current efficiency, and external quantum efficiency. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics. Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess much higher carrier mobility compared to amorphous films. However, unipolar properties with unbalanced hole and electron transporting ability have been a bottleneck for the high performance of organic single crystal‐based devices. Here, well‐balanced ambipolar organic single crystals are developed by mixing of n‐ and p‐type molecules with maintained single‐crystalline structures. Carrier mobility of the ambipolar single crystals is manipulated by tuning the mixing ratio, and nearly equal hole and electron mobility can be achieved. Highly efficient single crystal‐based organic light‐emitting devices (OLEDs) are demonstrated by employing the ambipolar crystals as the mixed host for a red emitter pentacene to realize efficient exciton confinement and energy transfer within the emissive layer. As a result, maximum luminance of 5467 cd m−2 and current efficiency of 2.82 cd A−1 are achieved, which represents, to the best of the authors’ knowledge, the record performance for the organic single crystal‐based OLEDs to date. The strategy to manipulate the charge‐transport properties of the organic single crystals in this work represents a significant step toward practical applications of the organic single crystals in optoelectronics. |
Author | Liu, Yu Wang, Wei An, Ming‐Hui Sun, Hong‐Bo Du, Ming‐Xu Xu, Mei‐Li Chen, Shuo‐Nan Ye, Gao‐Da Zhu, Qin‐Cheng Feng, Jing Ding, Ran Wang, Hai Xu, Ting |
Author_xml | – sequence: 1 givenname: Ming‐Hui surname: An fullname: An, Ming‐Hui organization: Jilin University – sequence: 2 givenname: Ran surname: Ding fullname: Ding, Ran organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Qin‐Cheng surname: Zhu fullname: Zhu, Qin‐Cheng organization: Jilin University – sequence: 4 givenname: Gao‐Da surname: Ye fullname: Ye, Gao‐Da organization: Jilin University – sequence: 5 givenname: Hai surname: Wang fullname: Wang, Hai organization: Jilin University – sequence: 6 givenname: Ming‐Xu surname: Du fullname: Du, Ming‐Xu organization: Jilin University – sequence: 7 givenname: Shuo‐Nan surname: Chen fullname: Chen, Shuo‐Nan organization: Jilin University – sequence: 8 givenname: Yu surname: Liu fullname: Liu, Yu organization: Jilin University – sequence: 9 givenname: Mei‐Li surname: Xu fullname: Xu, Mei‐Li organization: Jilin University – sequence: 10 givenname: Ting surname: Xu fullname: Xu, Ting organization: Jilin University – sequence: 11 givenname: Wei surname: Wang fullname: Wang, Wei organization: Jilin University – sequence: 12 givenname: Jing surname: Feng fullname: Feng, Jing email: jingfeng@jlu.edu.cn organization: Jilin University – sequence: 13 givenname: Hong‐Bo orcidid: 0000-0003-2127-8610 surname: Sun fullname: Sun, Hong‐Bo email: hbsun@tsinghua.edu.cn organization: Tsinghua University, Haidian |
BookMark | eNqFkEtLAzEUhYNUsFa3rgOup-Yxncey9mGFShcquhsymZuakpmpmdQyO3-Cv9FfYkqlgiCu7uFyvnPgnKJOVVeA0AUlfUoIuxKFKvuMMK9Dxo5Ql0Y0CjhhSeeg6fMJOm2aFSE0jnnYRfkTGPP5_nEtjKgkFHhY5npdG2Hxwi5FpSW-19XSAB7ZtnHCNNjVW2ELPNPLF9PiiVJaaqgcnvuH81GTUjvnGTyGNy2hOUPHynNw_n176HE6eRjNgvni5nY0nAeS05gFMUAMkiehSglPCohCnss0zGmhpEiAF4qGac4oh4GIeA5xKoAxqgqZxoKnivfQ5T53bevXDTQuW9UbW_nKjIXRIIoTP4t39fcuaeumsaCytdWlsG1GSbbbMdvtmB129ED4C5DaCafrylmhzd9Yuse22kD7T0k2HE_vftgvnxmM8A |
CitedBy_id | crossref_primary_10_1021_acsami_4c20265 crossref_primary_10_1016_j_orgel_2021_106089 crossref_primary_10_1002_adpr_202200227 crossref_primary_10_1002_adom_202403209 crossref_primary_10_1002_smm2_1329 crossref_primary_10_1039_D1TC01101D crossref_primary_10_1039_D2NJ03916H crossref_primary_10_1002_solr_202201037 crossref_primary_10_1002_admt_202302017 crossref_primary_10_1002_anie_202208768 crossref_primary_10_1038_s41377_024_01484_4 crossref_primary_10_1364_OL_462931 crossref_primary_10_1038_s41566_022_01138_0 crossref_primary_10_1016_j_optmat_2024_115497 crossref_primary_10_1039_D4TC01801J crossref_primary_10_1002_admi_202200194 crossref_primary_10_1364_OPTICA_442016 crossref_primary_10_1002_smll_202208174 crossref_primary_10_1021_acs_cgd_2c01501 crossref_primary_10_1016_j_orgel_2022_106670 crossref_primary_10_1002_advs_202101661 crossref_primary_10_1039_D3TC00320E crossref_primary_10_1063_5_0190042 crossref_primary_10_1039_D2QO00926A crossref_primary_10_1063_5_0045036 crossref_primary_10_3390_cryst13060861 crossref_primary_10_1002_ange_202208768 crossref_primary_10_1021_acs_jpclett_4c00743 crossref_primary_10_1021_acs_cgd_4c01057 crossref_primary_10_1002_adom_202402335 crossref_primary_10_1007_s40843_022_2079_3 crossref_primary_10_1039_D1SC03818D |
Cites_doi | 10.1063/1.2174093 10.1002/adma.201104269 10.1126/sciadv.aao1705 10.1002/adom.201200066 10.1002/adma.201102173 10.1021/acs.accounts.5b00438 10.1002/adma.200602922 10.1002/marc.201500026 10.1021/cr0501543 10.1002/adma.201104594 10.1038/s41377-020-0264-5 10.1002/adma.201801078 10.1039/C7TC03905K 10.1039/C3TC31998A 10.1063/1.2711393 10.1002/adfm.201604659 10.1002/anie.201408882 10.1038/srep12445 10.1063/1.1355007 10.1039/C7CS00490G 10.1002/1521-4095(20020705)14:13/14<975::AID-ADMA975>3.0.CO;2-D 10.1002/adfm.201702613 10.1038/s41377-019-0221-3 10.1016/j.solmat.2010.08.031 10.1002/pssa.201228199 10.1021/cg9007125 10.1002/adfm.200500424 10.1021/ja055686f 10.1002/adma.200601080 10.1002/adfm.201800116 10.1002/anie.201302396 10.1002/pssa.201228310 10.1063/1.2973151 10.1002/adma.200502164 10.1039/c3cc45169k 10.1143/JJAP.29.L1775 10.1016/j.susc.2006.02.012 10.1016/j.orgel.2016.11.041 10.1063/1.1785290 10.1002/adma.201304280 10.1063/1.2736208 10.1021/acsami.6b14438 10.1038/s41377-019-0218-y 10.1002/lpor.201900009 10.1002/anie.201601136 10.1103/PhysRevLett.91.157406 10.1016/j.orgel.2012.10.028 10.1002/lpor.201300222 10.1007/s00289-004-0329-2 10.1002/adma.201703063 10.1143/APEX.1.091801 10.1039/c3cp43800g 10.1002/adfm.201807606 10.1002/adfm.200902339 10.1063/1.2773941 10.1002/adma.200702145 10.1002/adma.201200234 10.1143/JJAP.44.L1367 10.1002/adma.200803588 10.1002/adfm.201400832 10.1002/adma.201302514 10.1021/jp110646n 10.1038/s41467-019-11883-6 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202002422 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202002422 ADFM202002422 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2015M581377 – fundername: National Key Research and Development Program of China funderid: 2017YFB0404500 – fundername: National Natural Science Foundation of China funderid: 61825402; 61590930; 61675085; 61705075; 61805096 – fundername: Hong Kong Scholars Program funderid: XJ2018004 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3172-7ee7ec384f9038de643bc94b1dfca8e3df149b213e5a63be79ae221fdc97a39f3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:01:05 EDT 2025 Tue Jul 01 04:12:20 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Wed Jan 22 16:33:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3172-7ee7ec384f9038de643bc94b1dfca8e3df149b213e5a63be79ae221fdc97a39f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2127-8610 |
PQID | 2465678422 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2465678422 crossref_primary_10_1002_adfm_202002422 crossref_citationtrail_10_1002_adfm_202002422 wiley_primary_10_1002_adfm_202002422_ADFM202002422 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 1, 2020 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 1, 2020 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2011; 115 2002; 14 2017; 42 2015; 36 2007; 107 2013; 25 2013; 1 2019; 10 2019; 13 2014; 26 2014; 24 2008; 1 2017; 9 2018; 47 2012; 209 2010; 20 2013; 15 2013; 14 2003; 91 2014; 2 2018; 4 2020; 9 2013; 52 2019; 29 2018; 30 2011; 23 2008; 20 2006; 600 2014; 8 2012; 24 2016; 49 2019; 8 2007; 19 2004; 85 2018; 28 2015; 5 2009; 21 2013; 49 2017; 27 2006; 16 2015; 54 2007; 90 2006; 18 2007; 91 2017; 29 2008; 93 2005; 44 2016; 55 1990; 29 2006; 88 2005; 127 2013; 210 2005; 53 2009; 9 2001; 78 2010; 94 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 19 start-page: 1791 year: 2007 publication-title: Adv. Mater. – volume: 91 year: 2007 publication-title: Appl. Phys. Lett. – volume: 600 start-page: 1559 year: 2006 publication-title: Surf. Sci. – volume: 5 year: 2017 publication-title: J. Mater. Chem. C – volume: 26 start-page: 1176 year: 2014 publication-title: Adv. Mater. – volume: 49 start-page: 9200 year: 2013 publication-title: Chem. Commun. – volume: 115 start-page: 9171 year: 2011 publication-title: J. Phys. Chem. C – volume: 24 start-page: 2332 year: 2012 publication-title: Adv. Mater. – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 36 start-page: 984 year: 2015 publication-title: Macromol. Rapid Commun. – volume: 13 year: 2019 publication-title: Laser Photonics Rev. – volume: 9 start-page: 31 year: 2020 publication-title: Light: Sci. Appl. – volume: 78 start-page: 1622 year: 2001 publication-title: Appl. Phys. Lett. – volume: 18 start-page: 2708 year: 2006 publication-title: Adv. Mater. – volume: 8 start-page: 114 year: 2019 publication-title: Light: Sci. Appl. – volume: 93 year: 2008 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 41 year: 2006 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 29 year: 1990 publication-title: Jpn. J. Appl. Phys. – volume: 44 year: 2005 publication-title: Jpn. J. Appl. Phys. – volume: 24 start-page: 7085 year: 2014 publication-title: Adv. Funct. Mater. – volume: 42 start-page: 379 year: 2017 publication-title: Org. Electron. – volume: 9 start-page: 3277 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 6158 year: 2013 publication-title: Adv. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 209 start-page: 1399 year: 2012 publication-title: Phys. Status Solidi A – volume: 1 year: 2008 publication-title: Appl. Phys. Express – volume: 24 start-page: 2768 year: 2012 publication-title: Adv. Mater. – volume: 53 start-page: 213 year: 2005 publication-title: Polym. Bull. – volume: 9 start-page: 4945 year: 2009 publication-title: Cryst. Growth Des. – volume: 90 year: 2007 publication-title: Appl. Phys. Lett. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 21 start-page: 4034 year: 2009 publication-title: Adv. Mater. – volume: 20 start-page: 1511 year: 2008 publication-title: Adv. Mater. – volume: 14 start-page: 975 year: 2002 publication-title: Adv. Mater. – volume: 8 start-page: 687 year: 2014 publication-title: Laser Photonics Rev. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 10 start-page: 3912 year: 2019 publication-title: Nat. Commun. – volume: 1 start-page: 422 year: 2013 publication-title: Adv. Opt. Mater. – volume: 24 start-page: 1535 year: 2012 publication-title: Adv. Mater. – volume: 14 start-page: 389 year: 2013 publication-title: Org. Electron. – volume: 54 start-page: 956 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 23 start-page: 4960 year: 2011 publication-title: Adv. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 47 start-page: 422 year: 2018 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 7751 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 107 start-page: 1296 year: 2007 publication-title: Chem. Rev. – volume: 8 start-page: 106 year: 2019 publication-title: Light: Sci. Appl. – volume: 85 start-page: 1613 year: 2004 publication-title: Appl. Phys. Lett. – volume: 55 start-page: 6864 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 1416 year: 2006 publication-title: Adv. Mater. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 20 start-page: 1610 year: 2010 publication-title: Adv. Funct. Mater. – volume: 49 start-page: 370 year: 2016 publication-title: Acc. Chem. Res. – volume: 210 start-page: 9 year: 2013 publication-title: Phys. Status Solidi A – volume: 2 start-page: 965 year: 2014 publication-title: J. Mater. Chem. C – volume: 94 start-page: 2416 year: 2010 publication-title: Sol. Energy Mater. Sol. Cells – volume: 15 start-page: 3527 year: 2013 publication-title: Phys. Chem. Chem. Phys. – ident: e_1_2_7_43_1 doi: 10.1063/1.2174093 – ident: e_1_2_7_56_1 doi: 10.1002/adma.201104269 – ident: e_1_2_7_11_1 doi: 10.1126/sciadv.aao1705 – ident: e_1_2_7_58_1 doi: 10.1002/adom.201200066 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201102173 – ident: e_1_2_7_51_1 doi: 10.1021/acs.accounts.5b00438 – ident: e_1_2_7_13_1 doi: 10.1002/adma.200602922 – ident: e_1_2_7_49_1 doi: 10.1002/marc.201500026 – ident: e_1_2_7_12_1 doi: 10.1021/cr0501543 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201104594 – ident: e_1_2_7_19_1 doi: 10.1038/s41377-020-0264-5 – ident: e_1_2_7_32_1 doi: 10.1002/adma.201801078 – ident: e_1_2_7_53_1 doi: 10.1039/C7TC03905K – ident: e_1_2_7_1_1 doi: 10.1039/C3TC31998A – ident: e_1_2_7_9_1 doi: 10.1063/1.2711393 – ident: e_1_2_7_31_1 doi: 10.1002/adfm.201604659 – ident: e_1_2_7_22_1 doi: 10.1002/anie.201408882 – ident: e_1_2_7_41_1 doi: 10.1038/srep12445 – ident: e_1_2_7_44_1 doi: 10.1063/1.1355007 – ident: e_1_2_7_4_1 doi: 10.1039/C7CS00490G – ident: e_1_2_7_45_1 doi: 10.1002/1521-4095(20020705)14:13/14<975::AID-ADMA975>3.0.CO;2-D – ident: e_1_2_7_62_1 doi: 10.1002/adfm.201702613 – ident: e_1_2_7_6_1 doi: 10.1038/s41377-019-0221-3 – ident: e_1_2_7_42_1 doi: 10.1016/j.solmat.2010.08.031 – ident: e_1_2_7_47_1 doi: 10.1002/pssa.201228199 – ident: e_1_2_7_54_1 doi: 10.1021/cg9007125 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.200500424 – ident: e_1_2_7_36_1 doi: 10.1021/ja055686f – ident: e_1_2_7_14_1 doi: 10.1002/adma.200601080 – ident: e_1_2_7_59_1 doi: 10.1002/adfm.201800116 – ident: e_1_2_7_50_1 doi: 10.1002/anie.201302396 – ident: e_1_2_7_48_1 doi: 10.1002/pssa.201228310 – ident: e_1_2_7_30_1 doi: 10.1063/1.2973151 – ident: e_1_2_7_15_1 doi: 10.1002/adma.200502164 – ident: e_1_2_7_23_1 doi: 10.1039/c3cc45169k – ident: e_1_2_7_10_1 doi: 10.1143/JJAP.29.L1775 – ident: e_1_2_7_38_1 doi: 10.1016/j.susc.2006.02.012 – ident: e_1_2_7_63_1 doi: 10.1016/j.orgel.2016.11.041 – ident: e_1_2_7_26_1 doi: 10.1063/1.1785290 – ident: e_1_2_7_3_1 doi: 10.1002/adma.201304280 – ident: e_1_2_7_8_1 doi: 10.1063/1.2736208 – ident: e_1_2_7_28_1 doi: 10.1021/acsami.6b14438 – ident: e_1_2_7_18_1 doi: 10.1038/s41377-019-0218-y – ident: e_1_2_7_7_1 doi: 10.1002/lpor.201900009 – ident: e_1_2_7_61_1 doi: 10.1002/anie.201601136 – ident: e_1_2_7_17_1 doi: 10.1103/PhysRevLett.91.157406 – ident: e_1_2_7_60_1 doi: 10.1016/j.orgel.2012.10.028 – ident: e_1_2_7_5_1 doi: 10.1002/lpor.201300222 – ident: e_1_2_7_39_1 doi: 10.1007/s00289-004-0329-2 – ident: e_1_2_7_52_1 doi: 10.1002/adma.201703063 – ident: e_1_2_7_34_1 doi: 10.1143/APEX.1.091801 – ident: e_1_2_7_55_1 doi: 10.1039/c3cp43800g – ident: e_1_2_7_33_1 doi: 10.1002/adfm.201807606 – ident: e_1_2_7_57_1 doi: 10.1002/adfm.200902339 – ident: e_1_2_7_46_1 doi: 10.1063/1.2773941 – ident: e_1_2_7_21_1 doi: 10.1002/adma.200702145 – ident: e_1_2_7_25_1 doi: 10.1002/adma.201200234 – ident: e_1_2_7_16_1 doi: 10.1143/JJAP.44.L1367 – ident: e_1_2_7_35_1 doi: 10.1002/adma.200803588 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.201400832 – ident: e_1_2_7_2_1 doi: 10.1002/adma.201302514 – ident: e_1_2_7_37_1 doi: 10.1021/jp110646n – ident: e_1_2_7_24_1 doi: 10.1038/s41467-019-11883-6 |
SSID | ssj0017734 |
Score | 2.4986534 |
Snippet | Carrier mobility is one of the key issues for applications of organic semiconductors in electronic and optoelectronic devices. Organic single crystals possess... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carrier mobility Crystal structure Current efficiency Electron mobility Electron transport Electronic devices Emitters Emitters (electron) Energy transfer Excitons Materials science molecular mixing Optoelectronic devices organic light‐emitting devices Organic semiconductors organic single crystals Single crystals Transport properties well‐balanced ambipolar transport |
Title | Well‐Balanced Ambipolar Organic Single Crystals toward Highly Efficient Light‐Emitting Devices |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202002422 https://www.proquest.com/docview/2465678422 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLVQWWDgjXjLAxJTShMndTwW2gohygBUdIv8lCrSgmgYYOIT-Ea-BF87DQUJIcGWKNdW_LzH9rnHCB0aOFxTXAUmDlUQS0IDQbkMiAilFEKblEI0cu-yedaPzwfJYCaK3-tDVBtuMDLcfA0DnIvJ8adoKFcGIskj52VgEgbCFqCiq0o_KqTUHys3QyB4hYOpamMjOv6a_KtX-oSas4DVeZzuMuLTf_VEk7v6UyHq8uWbjON_CrOClko4ilu-_6yiOT1eQ4szIoXrSNzqPH9_fTsBEqTUCrdGYvgAK2LsAzklvraGucanj88Wa-YTXDguLgYOSf6MO06lwjo3fAE7ATarzmjo6Na4rd1EtYH63c7N6VlQ3swQSIs3LCTXmmpJ0tiwBkmVtrBGSBaLUBnJU02UsQsvEYVEJ7xJhKaM6ygKjZKMcsIM2US18f1YbyFMIQ5MxobLlMXMNHjCZcIsiLCukwiabKNg2jKZLGXL4faMPPOCy1EGdZdVdbeNjir7By_Y8aPl3rShs3LgTrII9ONo6j5HrsV-ySVrtbu96m3nL4l20QI8e5LMHqoVj09630KdQhyg-Va7d3F94Lr1BwTE-jk |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CNaCvgA4pR2Yyfr5MBh6e5qS3d7gFbsLfhnLFWk26q7FVpOPAKvwqvwCDwJHuenLRJCQuqBYxLHSuwZz2f7m88ALxxtrlllI5fENkqMkJGWykRCx8ZojS6TlI082euODpK303S6At-bXJhKH6JdcCPPCOM1OTgtSG-dq4Yq6yiVnIcww2te5S4uP_tZ2_z1Tt938UvOh4P97VFUHywQGR8uPaJElGhElri8IzKLPiprkyc6ts6oDIV1ft6geSwwVV2hUeYKOY-dNblUInfC13sNrtMx4iTX33_XKlbFUlYb2d2YKGXxtNGJ7PCty997OQ6eg9uLEDnEuOEd-NG0TkVt-bR5ttCb5stvwpH_VfPdhds14ma9ykXuwQrO7sOtCzqMD0B_wLL8-fXbG-J5GrSsd6QPT2jSz6pcVcPe-4Ilsu3TpYfT5ZwtAt2YEU2mXLJBEOLw8ZuNabHDVzU4OgyMctbHMBY_hIMr-clHsDo7nuFjYJJS3UzilMnyJHcdlSqT5h4neXQgtEzXIGpMoTC1MjsdEFIWlaY0L6ivirav1uBVW_6k0iT5Y8mNxrKKemyaF5wk8mQWHvNgIn-ppej1h5P2av1fXnoON0b7k3Ex3tnbfQI36X7FCdqA1cXpGT71yG6hnwVfYvDxqq3vFxYzWPE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qrYRgQctLFNriBYhV2omdjOMFi2kzo5Y-hICK2QU_rqWq6XTUmQoNKz6BT-mv8At8SW3n0RYJISF1wTKJYyX2vb7H9rnHAK-s31wz0kQ2iU2UaMYjxaWOmIq1Vgptxn028v5Bd_sweTdMh3Nw0eTCVPoQ7YKb94wwXnsHHxu7cSUaKo31meQ0RBla0yp3cfbVTdomb3dy18OvKR30P21tR_W5ApF20dIBSkSOmmWJFR2WGXRBWWmRqNhYLTNkxrppg6Ixw1R2mUIuJFIaW6MFl0xY5uq9AwtJtyP8YRH5h1awKua82sfuxp5RFg8bmcgO3bj5vTfD4BW2vY6QQ4gbLMLPpnEqZsvx-vlUretvv-lG_k-ttwQParxNepWDPIQ5HD2C-9dUGB-D-oxl-ev7j03P8tRoSO9EHY39lJ9UmaqafHQFSyRbZzMHpssJmQayMfEkmXJG-kGGw0VvsueXOlxV_ZOjwCcnOYaR-Akc3spPPoX50ekInwHhPtFNJ1bqTCTCdmQqdSocSnLYgCmeLkPUWEKha112fzxIWVSK0rTwfVW0fbUMb9ry40qR5I8lVxrDKuqRaVJQL5DHs_CYBgv5Sy1FLx_st1fP_-Wll3D3fT4o9nYOdl_APX-7IgStwPz07BxXHaybqrXgSQS-3LbxXQKdYVeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well%E2%80%90Balanced+Ambipolar+Organic+Single+Crystals+toward+Highly+Efficient+Light%E2%80%90Emitting+Devices&rft.jtitle=Advanced+functional+materials&rft.au=An%2C+Ming%E2%80%90Hui&rft.au=Ding%2C+Ran&rft.au=Zhu%2C+Qin%E2%80%90Cheng&rft.au=Ye%2C+Gao%E2%80%90Da&rft.date=2020-12-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=49&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202002422&rft.externalDBID=10.1002%252Fadfm.202002422&rft.externalDocID=ADFM202002422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |