Photonic Neuromorphic Pattern Recognition with a Spiking DFB‐SA Laser Subject to Incoherent Optical Injection
Photonic neuromorphic computing is a competitive paradigm to overcome the bottleneck of von Neumann architectures. Incoherent and coherent synaptic networks are two popular schemes realizing photonic weighting functions. Previous works have proved the distributed feedback (DFB) laser with an intraca...
Saved in:
Published in | Laser & photonics reviews Vol. 19; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1863-8880 1863-8899 |
DOI | 10.1002/lpor.202400482 |
Cover
Loading…
Abstract | Photonic neuromorphic computing is a competitive paradigm to overcome the bottleneck of von Neumann architectures. Incoherent and coherent synaptic networks are two popular schemes realizing photonic weighting functions. Previous works have proved the distributed feedback (DFB) laser with an intracavity saturable absorber (DFB‐SA) can behavior like a spiking neuron. However, the compatibility with the incoherent synaptic architecture has not yet been demonstrated. Here the neuron‐like dynamics of a DFB‐SA laser subject to single‐wavelength and multiple‐wavelengths incoherent optical injections are experimentally demonstrated. The results show that, for the DFB‐SA laser subject to single‐wavelength incoherent injection, the neuron‐like dynamics including threshold, temporal integration, and refractory period are achieved. Besides, the range of injection wavelength that leads to a successful neuron‐like response is identified. For the DFB‐SA laser with four‐wavelength incoherent optical injection, the neuron‐like dynamics can also be achieved. In addition, the effect of wavelength interval is also considered. The logic XOR operation and Iris recognition tasks are successfully implemented. Furthermore, the feasibility of a cascaded system for the DFB‐SA lasers with four‐wavelengths incoherent optical injection is demonstrated. This work provides a feasible scheme for the system integration of photonic spiking neurons and incoherent synaptic networks.
Neuron‐like dynamics in a DFB‐SA laser with single‐wavelength and multiple‐wavelengths incoherent optical injections, and successfully implemented logic XOR operations and Iris recognition are experimentally demonstrated. Additionally, The feasibility of a cascaded DFB‐SA laser system with four‐wavelengths incoherent optical injection is demonstrated. This work offers a viable scheme for integrating photonic spiking neurons and incoherent synaptic networks. |
---|---|
AbstractList | Photonic neuromorphic computing is a competitive paradigm to overcome the bottleneck of von Neumann architectures. Incoherent and coherent synaptic networks are two popular schemes realizing photonic weighting functions. Previous works have proved the distributed feedback (DFB) laser with an intracavity saturable absorber (DFB‐SA) can behavior like a spiking neuron. However, the compatibility with the incoherent synaptic architecture has not yet been demonstrated. Here the neuron‐like dynamics of a DFB‐SA laser subject to single‐wavelength and multiple‐wavelengths incoherent optical injections are experimentally demonstrated. The results show that, for the DFB‐SA laser subject to single‐wavelength incoherent injection, the neuron‐like dynamics including threshold, temporal integration, and refractory period are achieved. Besides, the range of injection wavelength that leads to a successful neuron‐like response is identified. For the DFB‐SA laser with four‐wavelength incoherent optical injection, the neuron‐like dynamics can also be achieved. In addition, the effect of wavelength interval is also considered. The logic XOR operation and Iris recognition tasks are successfully implemented. Furthermore, the feasibility of a cascaded system for the DFB‐SA lasers with four‐wavelengths incoherent optical injection is demonstrated. This work provides a feasible scheme for the system integration of photonic spiking neurons and incoherent synaptic networks. Photonic neuromorphic computing is a competitive paradigm to overcome the bottleneck of von Neumann architectures. Incoherent and coherent synaptic networks are two popular schemes realizing photonic weighting functions. Previous works have proved the distributed feedback (DFB) laser with an intracavity saturable absorber (DFB‐SA) can behavior like a spiking neuron. However, the compatibility with the incoherent synaptic architecture has not yet been demonstrated. Here the neuron‐like dynamics of a DFB‐SA laser subject to single‐wavelength and multiple‐wavelengths incoherent optical injections are experimentally demonstrated. The results show that, for the DFB‐SA laser subject to single‐wavelength incoherent injection, the neuron‐like dynamics including threshold, temporal integration, and refractory period are achieved. Besides, the range of injection wavelength that leads to a successful neuron‐like response is identified. For the DFB‐SA laser with four‐wavelength incoherent optical injection, the neuron‐like dynamics can also be achieved. In addition, the effect of wavelength interval is also considered. The logic XOR operation and Iris recognition tasks are successfully implemented. Furthermore, the feasibility of a cascaded system for the DFB‐SA lasers with four‐wavelengths incoherent optical injection is demonstrated. This work provides a feasible scheme for the system integration of photonic spiking neurons and incoherent synaptic networks. Neuron‐like dynamics in a DFB‐SA laser with single‐wavelength and multiple‐wavelengths incoherent optical injections, and successfully implemented logic XOR operations and Iris recognition are experimentally demonstrated. Additionally, The feasibility of a cascaded DFB‐SA laser system with four‐wavelengths incoherent optical injection is demonstrated. This work offers a viable scheme for integrating photonic spiking neurons and incoherent synaptic networks. |
Author | Han, Yanan Guo, Xingxing Yu, Chengyang Zhang, Yahui Shi, Yuechun Gao, Shuang Hao, Yue Zhang, Yuna Xiang, Shuiying |
Author_xml | – sequence: 1 givenname: Yuna surname: Zhang fullname: Zhang, Yuna organization: Xidian University – sequence: 2 givenname: Shuiying orcidid: 0000-0002-1698-2083 surname: Xiang fullname: Xiang, Shuiying email: syxiang@xidian.edu.cn organization: Xidian University – sequence: 3 givenname: Chengyang surname: Yu fullname: Yu, Chengyang organization: Xidian University – sequence: 4 givenname: Shuang surname: Gao fullname: Gao, Shuang organization: Xidian University – sequence: 5 givenname: Yanan surname: Han fullname: Han, Yanan organization: Xidian University – sequence: 6 givenname: Xingxing surname: Guo fullname: Guo, Xingxing organization: Xidian University – sequence: 7 givenname: Yahui surname: Zhang fullname: Zhang, Yahui organization: Xidian University – sequence: 8 givenname: Yuechun surname: Shi fullname: Shi, Yuechun organization: Yongjiang Laboratory – sequence: 9 givenname: Yue surname: Hao fullname: Hao, Yue organization: Xidian University |
BookMark | eNqFkFFLwzAQx4MouE1ffQ74vJkmbdI-zul0UNzY9LmkabpmdklNU8be_Ah-Rj-JLZMJgpiXy939f3fHvw9OtdESgCsPjTyE8E1ZGTvCCPsI-SE-AT0vpGQYhlF0evyH6Bz063qDUNA-2gNmURhntBLwSTbWbI2tijZZcOek1XAphVlr5ZTRcKdcATlcVepV6TW8m95-vn-sxjDmtbRw1aQbKRx0Bs60MIW0Ujs4r5wSvGxLXbOdcgHOcl7W8vI7DsDL9P558jiM5w-zyTgeCuIxPKQyDzKGCSGZz3KOc5KiHIvMz6kXsAz5jAqU0SygJMIIMZx5LGUZJoykmOaMDMD1YW5lzVsja5dsTGN1uzIhXoD9KEQ0bFX-QSWsqWsr80Qox7s7neWqTDyUdNYmnbXJ0doWG_3CKqu23O7_BqIDsFOl3P-jTuLFfPnDfgGgiI_N |
CitedBy_id | crossref_primary_10_1364_OE_559380 |
Cites_doi | 10.1364/PRJ.413742 10.29026/oea.2023.230140 10.1109/JPHOT.2016.2614104 10.1038/srep19126 10.1016/j.optcom.2023.129870 10.1038/srep07377 10.1109/JSTQE.2017.2685140 10.1364/OPTICA.468347 10.24251/HICSS.2019.770 10.1364/OE.21.026182 10.1063/1.4937730 10.1109/JLT.2023.3331252 10.1126/science.1254642 10.1080/02626669609491511 10.1364/OE.21.020931 10.1364/OL.36.004476 10.1007/s11432-023-3810-9 10.1002/lpor.202300424 10.1364/OL.34.000440 10.1136/svn-2017-000101 10.1038/s41551-018-0305-z 10.1109/TKDE.2006.183 10.1109/JSTQE.2017.2678170 10.1364/OL.42.001560 10.1103/PhysRevLett.88.063901 10.1364/PRJ.485941 10.1109/JSTQE.2013.2257700 10.1109/JLT.2023.3322628 10.1103/PhysRevE.84.036209 10.1103/PhysRevA.82.023807 10.1103/PhysRevLett.98.153903 10.1364/OL.39.001254 10.1063/1.3692726 10.1109/TNN.2009.2023653 10.1109/JPROC.2014.2304638 10.1038/ncomms6915 10.1109/ISLC.2014.215 10.1103/PhysRevA.94.033839 10.1109/TNNLS.2015.2404938 10.1109/TCSI.2020.3010723 10.1109/TNNLS.2020.3006263 10.1038/nature14539 10.1007/s11082-014-9884-4 10.1038/srep19510 10.1103/PhysRevE.88.022923 10.1109/ACCESS.2020.2988510 10.1364/OE.21.028922 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202400482 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | 10_1002_lpor_202400482 LPOR202400482 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: The Fundamental Research Funds for the Central Universities funderid: JB210114; QTZX23041 – fundername: National Outstanding Youth Science Fund Project of National Natural Science Foundation of China funderid: 62022062 – fundername: National Natural Science Foundation of China funderid: 61974177; 61674119 – fundername: National Key Research and Development Program of China funderid: 2021YFB2801904; 2021YFB2801900; 2021YFB2801901; 2021YFB2801902 |
GroupedDBID | 05W 0R~ 1OC 33P 3SF 3WU 4.4 52U 66C 8-1 A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR WYJ XV2 ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 LW6 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-c3172-6ef5d72333d47fa2f3b0f2cd4f6157d0476c0d6d563920072d17b7d2373b26f73 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Thu Aug 14 02:12:09 EDT 2025 Tue Jul 01 04:32:47 EDT 2025 Thu Apr 24 23:05:41 EDT 2025 Wed Jan 22 17:13:05 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3172-6ef5d72333d47fa2f3b0f2cd4f6157d0476c0d6d563920072d17b7d2373b26f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1698-2083 |
PQID | 3152498068 |
PQPubID | 1016358 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3152498068 crossref_citationtrail_10_1002_lpor_202400482 crossref_primary_10_1002_lpor_202400482 wiley_primary_10_1002_lpor_202400482_LPOR202400482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2023; 10 2017; 42 2015; 6 2017; 2 2012; 100 2023; 11 2009; 20 2023; 17 2013; 88 2013; 21 2015; 521 2023; 6 2011; 84 2017; 23 2006; 18 2014; 46 2016; 94 2023; 549 2015; 107 2011; 36 2020; 32 2007; 98 2022; 29 2010; 82 2020; 8 2009; 34 2023; 42 2013; 19 2016; 6 2015; 26 2018; 2 2014; 4 2019; 40 2002; 88 2019 1996; 41 2020; 67 2014 2024; 67 2014; 39 2010; 4 2014; 345 2016; 8 2020; 29 2014; 102 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 e_1_2_9_33_1 Mogaji E. (e_1_2_9_4_1) 2020; 29 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_2_1 Basu J. K. (e_1_2_9_13_1) 2010; 4 e_1_2_9_26_1 e_1_2_9_49_1 Song Z. (e_1_2_9_47_1) 2022; 29 e_1_2_9_28_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 39 start-page: 1254 year: 2014 publication-title: Opt. Lett. – volume: 8 start-page: 1 year: 2016 publication-title: IEEE Phot. J. – volume: 345 start-page: 668 year: 2014 publication-title: Science – volume: 2 start-page: 719 year: 2018 publication-title: Nat. Biomed. Eng. – volume: 32 start-page: 2494 year: 2020 publication-title: IEEE Trans. on Neur. Netw. Learn. Syst. – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 42 start-page: 1497 year: 2023 publication-title: J. Lightwave Technol. – volume: 40 start-page: 81 year: 2019 – volume: 84 year: 2011 publication-title: Phys. Rev. E – volume: 20 start-page: 1417 year: 2009 publication-title: IEEE Trans. Neural. Netw. – volume: 10 start-page: 162 year: 2023 – volume: 19 start-page: 1 year: 2013 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 23 start-page: 1 year: 2017 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 18 start-page: 1696 year: 2006 publication-title: IEEE Trans. Knowl. Data. Eng. – volume: 8 year: 2020 publication-title: Ieee Access – volume: 4 start-page: 7377 year: 2014 publication-title: Sci. Rep. – volume: 88 year: 2013 publication-title: Phys. Rev. E – volume: 102 start-page: 652 year: 2014 publication-title: Proc. IEEE – volume: 46 start-page: 1353 year: 2014 publication-title: Opt. Quant. Electron. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – start-page: 6408 year: 2019 – volume: 521 start-page: 436 year: 2015 publication-title: Nature – volume: 42 start-page: 1560 year: 2017 publication-title: Opt. Lett. – volume: 11 start-page: 1382 year: 2023 publication-title: Phot. Res. – start-page: 165 year: 2014 – volume: 21 year: 2013 publication-title: Opt. Express – volume: 88 year: 2002 publication-title: Phys. Rev. Lett. – volume: 67 year: 2024 publication-title: Sci.e China Inform. Sci. – volume: 67 start-page: 4932 year: 2020 publication-title: IEEE Trans. Circ. Syst. I: Regular Papers – volume: 2 start-page: 8 year: 2017 publication-title: Stroke Vasc. Neurol. – volume: 29 start-page: 1 year: 2022 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 9 start-page: B119 year: 2021 publication-title: Phot. Res. – volume: 34 start-page: 440 year: 2009 publication-title: Opt. Lett. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 6 year: 2023 publication-title: Opto‐Electronic Advances – volume: 42 start-page: 2026 year: 2023 publication-title: J. Lightwave Technol. – volume: 6 start-page: 5915 year: 2015 publication-title: Nat. Commun. – volume: 82 year: 2010 publication-title: Phys. Rev. A – volume: 549 year: 2023 publication-title: Opt. Commun. – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 3137 year: 2015 publication-title: IEEE Trans. on Neur. Netw. Learn. Syst. – volume: 29 start-page: 003 year: 2020 publication-title: Australasian Marketing J. – volume: 4 start-page: 1 year: 2010 publication-title: Int. J. Softw. Eng. Appl. – volume: 41 start-page: 399 year: 1996 publication-title: Hydrol. Sci. J. – volume: 36 start-page: 4476 year: 2011 publication-title: Opt. Lett. – volume: 94 year: 2016 publication-title: Phys. Rev. A – ident: e_1_2_9_50_1 doi: 10.1364/PRJ.413742 – ident: e_1_2_9_42_1 doi: 10.29026/oea.2023.230140 – ident: e_1_2_9_29_1 doi: 10.1109/JPHOT.2016.2614104 – volume: 4 start-page: 1 year: 2010 ident: e_1_2_9_13_1 publication-title: Int. J. Softw. Eng. Appl. – ident: e_1_2_9_24_1 doi: 10.1038/srep19126 – ident: e_1_2_9_11_1 doi: 10.1016/j.optcom.2023.129870 – ident: e_1_2_9_52_1 doi: 10.1038/srep07377 – ident: e_1_2_9_30_1 doi: 10.1109/JSTQE.2017.2685140 – ident: e_1_2_9_41_1 doi: 10.1364/OPTICA.468347 – ident: e_1_2_9_3_1 doi: 10.24251/HICSS.2019.770 – ident: e_1_2_9_36_1 doi: 10.1364/OE.21.026182 – ident: e_1_2_9_28_1 doi: 10.1063/1.4937730 – ident: e_1_2_9_45_1 doi: 10.1109/JLT.2023.3331252 – ident: e_1_2_9_9_1 doi: 10.1126/science.1254642 – volume: 29 start-page: 003 year: 2020 ident: e_1_2_9_4_1 publication-title: Australasian Marketing J. – ident: e_1_2_9_15_1 doi: 10.1080/02626669609491511 – ident: e_1_2_9_25_1 doi: 10.1364/OE.21.020931 – ident: e_1_2_9_38_1 doi: 10.1364/OL.36.004476 – ident: e_1_2_9_43_1 doi: 10.1007/s11432-023-3810-9 – ident: e_1_2_9_7_1 doi: 10.1002/lpor.202300424 – ident: e_1_2_9_33_1 doi: 10.1364/OL.34.000440 – ident: e_1_2_9_1_1 doi: 10.1136/svn-2017-000101 – ident: e_1_2_9_2_1 doi: 10.1038/s41551-018-0305-z – ident: e_1_2_9_14_1 doi: 10.1109/TKDE.2006.183 – ident: e_1_2_9_31_1 doi: 10.1109/JSTQE.2017.2678170 – ident: e_1_2_9_32_1 doi: 10.1364/OL.42.001560 – ident: e_1_2_9_40_1 doi: 10.1364/OL.36.004476 – ident: e_1_2_9_19_1 doi: 10.1103/PhysRevLett.88.063901 – ident: e_1_2_9_6_1 – ident: e_1_2_9_44_1 doi: 10.1364/PRJ.485941 – ident: e_1_2_9_49_1 doi: 10.1109/JSTQE.2013.2257700 – ident: e_1_2_9_46_1 doi: 10.1109/JLT.2023.3322628 – ident: e_1_2_9_37_1 doi: 10.1103/PhysRevE.84.036209 – ident: e_1_2_9_34_1 doi: 10.1103/PhysRevA.82.023807 – ident: e_1_2_9_20_1 doi: 10.1103/PhysRevLett.98.153903 – ident: e_1_2_9_22_1 doi: 10.1364/OL.39.001254 – ident: e_1_2_9_26_1 doi: 10.1063/1.3692726 – ident: e_1_2_9_8_1 doi: 10.1109/TNN.2009.2023653 – volume: 29 start-page: 1 year: 2022 ident: e_1_2_9_47_1 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: e_1_2_9_10_1 doi: 10.1109/JPROC.2014.2304638 – ident: e_1_2_9_17_1 doi: 10.1038/ncomms6915 – ident: e_1_2_9_27_1 doi: 10.1109/ISLC.2014.215 – ident: e_1_2_9_39_1 doi: 10.1103/PhysRevA.94.033839 – ident: e_1_2_9_51_1 doi: 10.1109/TNNLS.2015.2404938 – ident: e_1_2_9_16_1 doi: 10.1109/TCSI.2020.3010723 – ident: e_1_2_9_48_1 doi: 10.1109/TNNLS.2020.3006263 – ident: e_1_2_9_12_1 doi: 10.1038/nature14539 – ident: e_1_2_9_23_1 doi: 10.1007/s11082-014-9884-4 – ident: e_1_2_9_18_1 doi: 10.1038/srep19510 – ident: e_1_2_9_21_1 doi: 10.1103/PhysRevE.88.022923 – ident: e_1_2_9_5_1 doi: 10.1109/ACCESS.2020.2988510 – ident: e_1_2_9_35_1 doi: 10.1364/OE.21.028922 |
SSID | ssj0055556 |
Score | 2.4406812 |
SecondaryResourceType | review_article |
Snippet | Photonic neuromorphic computing is a competitive paradigm to overcome the bottleneck of von Neumann architectures. Incoherent and coherent synaptic networks... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Biometric recognition systems DFB‐SA laser Feasibility incoherent architecture Lasers multiple wavelengths optical injection Neuromorphic computing Pattern recognition photonic neuromorphic computing Photonics Refractory period Spiking spiking neural network Wavelengths Weighting functions |
Title | Photonic Neuromorphic Pattern Recognition with a Spiking DFB‐SA Laser Subject to Incoherent Optical Injection |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202400482 https://www.proquest.com/docview/3152498068 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQJy7siLLJByROAWMndntkqxACWhWQuEWxXYs1qWi4cOIT-Ea-hBlnaYuEkCA3R06UeDwzz6OZN4RsM2Ui27JIhqdcEFrJAq2iJBChkdpi7z2GxckXl_L0Jjy7jW7HqvgLfog64Iaa4e01Kniih3sj0tAnwKdwvuN-E6IRxoQtREW9mj8qgsuXFzWlCOCoxyrWRsb3Jh-f9EojqDkOWL3Hac-RpPrWItHkcfc117vm7RuN439-Zp7MlnCUHhT7Z4FM9dNFMldCU1oq_nCJZN27LEcWXerZPJ4zEA8Mup6dM6W9Kg0pSylGdmlCrwb3GIWnx-3Dz_ePqwN6Dv7yhYKhwsgPzTMKpim7w2rDnHYGPqQOtx58ali6TG7aJ9dHp0HZqyEwIGUeyL6LrOJCCBsql3AnNHPc2NABZFKWhUoaZqWNABFheJTbfaWV5UIJzaVTYoVMp1naXyXUASZC2yMSbULO9zV4TNtqOZ3A4Udz0yBBJavYlETm2E_jKS4omHmMqxnXq9kgO_X8QUHh8ePMjUr0canKw1gAwglbTSabDcK9DH95S3ze7fTq0dpfHlonMxz7DPtQzwaZzl9e-5sAfnK95Tf4F_mg_GE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxELYqOLSXAqWogQA-IHFaMPaunRxTIAptEqIAErfV2o4FLexGZHPhxCPwjH0SZrw_FKQKie7NK-9q1-OZ-Tya-YaQHaZMZNsWyfCUC0IrWaBVlAQiNFJb7L3HsDh5MJS9i_DHZVRlE2ItTMEPUQfcUDO8vUYFx4D0_jNr6A0AVDjgcb8LwQovYltvbGJwNK4ZpCK4fIFRS4oADnus4m1kfP_l8y_90jPY_Buyep_TXSK6-toi1eT33jzXe-b-FZHjf_3OMvlcIlLaKbbQCvkwSb-QpRKd0lL3Z6skG11lORLpUk_ocZuBhGAw8gSdKR1XmUhZSjG4SxN6Nr3GQDw96n7_8_B41qF9cJl3FGwVBn9onlGwTtkVFhzm9HTqo-pw65fPDku_kovu8flhLyjbNQQGBM0DOXGRVVwIYUPlEu6EZo4bGzpATcqyUEnDrLQRgCKMkHJ7oLSyXCihuXRKrJGFNEsn3wh1AIvQ_IhEm5DzAw1O07bbTidw_tHcNEhQCSs2JZc5ttS4iQsWZh7jasb1ajbIbj1_WrB4_HNms5J9XGrzLBYAcsJ2i8lWg3AvxDfeEvdHp-N6tP6eh7bJx975oB_3T4Y_N8gnjm2HfeSnSRbyu_lkE7BQrrf8bn8Cv1oAig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSIgLO6KsPiBxChjbsdsjW8VSoCogcYtiu1bZkqoNF058At_IlzB2FhYJIUFujuwo9nhmnkeeNwhtEKlD0zCODE_agBtBAiXDOGBcC2Vc7T3ikpPPzsXRNT-5CW8-ZfHn_BBVwM1phrfXTsH7xm5_kIY-AD6F8x31mxCM8BgXoDEOFnUqAqkQHp9fVBcsgLMeKWkbCd3-Ov6rW_rAmp8Rq3c5zSkUlz-b3zS533rK1JZ-_sbj-J_ZTKPJAo_i3XwDzaCRbjKLpgpsigvNH86htN1LM0ejiz2dx2MK8oFG29NzJrhT3kNKE-xCuzjGl_1bF4bHB829t5fXy13cAoc5wGCpXOgHZykG25T2XLphhi_6PqYOr-783bBkHl03D6_2j4KiWEOgQcw0EF0bGkkZY4ZLG1PLFLFUG24BM0lDuBSaGGFCgEQuPkrNjlTSUCaZosJKtoBGkzTpLiJsARQ548NipTmlOwpcpmk0rIrh9KOorqGglFWkCyZzV1DjIco5mGnkVjOqVrOGNqv-_ZzD48eeK6Xoo0KXhxEDiMMbdSLqNUS9DH_5StRqX3Sq1tJfBq2j8fZBM2odn58uownqag77sM8KGs0GT91VAEKZWvN7_R3Urf8z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonic+Neuromorphic+Pattern+Recognition+with+a+Spiking+DFB%E2%80%90SA+Laser+Subject+to+Incoherent+Optical+Injection&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Zhang%2C+Yuna&rft.au=Xiang%2C+Shuiying&rft.au=Yu%2C+Chengyang&rft.au=Gao%2C+Shuang&rft.date=2025-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1002%2Flpor.202400482&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |