Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Co‐free High‐Entropy Spinel Oxide Anodes for Lithium‐Ion Batteries

High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new e...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 17
Main Authors Patra, Jagabandhu, Nguyen, Thi Xuyen, Tsai, Chia‐Chien, Clemens, Oliver, Li, Ju, Pal, Pratibha, Chan, Weng Kent, Lee, Chih‐Heng, Chen, Hsin‐Yi Tiffany, Ting, Jyh‐Ming, Chang, Jeng‐Kuei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new electrode materials. This study synthesizes a series of Co‐free spinel‐type HEOs via a facile hydrothermal method. Based on quaternary medium‐entropy (CrNiMnFe)3O4, the fifth elements of V, Mg, and Cu are added, and their ability to form single‐phase HEOs is investigated. It is demonstrated that the chemical composition of HEOs is critical to the phase purity and corresponding charge–discharge performance. The oxygen vacancy concentration seems to be decisive for the rate capability and reversibility of the HEO electrodes. An inactive spectator element is not necessary for achieving high cyclability, given that the phase purity of the HEO is wisely controlled. The single‐phase (CrNiMnFeCu)3O4 shows a great high‐rate capacity of 480 mAh g−1 at 2000 mA g−1 and almost no capacity decay after 400 cycles. Its phase transition behavior during the lithiation/delithiation process is characterized with operando X‐ray diffraction. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell is constructed with 590 Wh kg−1 (based on electrode materials) gravimetric energy density. A series of Co‐free spinel‐type HEO anodes are fabricated via a facile hydrothermal method. Chemical composition of HEOs is critical to phase purity and oxygen vacancies. Entropy stabilization effects sustain the crystalline framework and electrode reversibility. An inactive spectator element is not needed for the high cyclability of HEO electrodes. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell shows an energy density of 590 Wh kg−1.
AbstractList High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new electrode materials. This study synthesizes a series of Co‐free spinel‐type HEOs via a facile hydrothermal method. Based on quaternary medium‐entropy (CrNiMnFe)3O4, the fifth elements of V, Mg, and Cu are added, and their ability to form single‐phase HEOs is investigated. It is demonstrated that the chemical composition of HEOs is critical to the phase purity and corresponding charge–discharge performance. The oxygen vacancy concentration seems to be decisive for the rate capability and reversibility of the HEO electrodes. An inactive spectator element is not necessary for achieving high cyclability, given that the phase purity of the HEO is wisely controlled. The single‐phase (CrNiMnFeCu)3O4 shows a great high‐rate capacity of 480 mAh g−1 at 2000 mA g−1 and almost no capacity decay after 400 cycles. Its phase transition behavior during the lithiation/delithiation process is characterized with operando X‐ray diffraction. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell is constructed with 590 Wh kg−1 (based on electrode materials) gravimetric energy density. A series of Co‐free spinel‐type HEO anodes are fabricated via a facile hydrothermal method. Chemical composition of HEOs is critical to phase purity and oxygen vacancies. Entropy stabilization effects sustain the crystalline framework and electrode reversibility. An inactive spectator element is not needed for the high cyclability of HEO electrodes. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell shows an energy density of 590 Wh kg−1.
High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new electrode materials. This study synthesizes a series of Co‐free spinel‐type HEOs via a facile hydrothermal method. Based on quaternary medium‐entropy (CrNiMnFe)3O4, the fifth elements of V, Mg, and Cu are added, and their ability to form single‐phase HEOs is investigated. It is demonstrated that the chemical composition of HEOs is critical to the phase purity and corresponding charge–discharge performance. The oxygen vacancy concentration seems to be decisive for the rate capability and reversibility of the HEO electrodes. An inactive spectator element is not necessary for achieving high cyclability, given that the phase purity of the HEO is wisely controlled. The single‐phase (CrNiMnFeCu)3O4 shows a great high‐rate capacity of 480 mAh g−1 at 2000 mA g−1 and almost no capacity decay after 400 cycles. Its phase transition behavior during the lithiation/delithiation process is characterized with operando X‐ray diffraction. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell is constructed with 590 Wh kg−1 (based on electrode materials) gravimetric energy density.
High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new electrode materials. This study synthesizes a series of Co‐free spinel‐type HEOs via a facile hydrothermal method. Based on quaternary medium‐entropy (CrNiMnFe) 3 O 4 , the fifth elements of V, Mg, and Cu are added, and their ability to form single‐phase HEOs is investigated. It is demonstrated that the chemical composition of HEOs is critical to the phase purity and corresponding charge–discharge performance. The oxygen vacancy concentration seems to be decisive for the rate capability and reversibility of the HEO electrodes. An inactive spectator element is not necessary for achieving high cyclability, given that the phase purity of the HEO is wisely controlled. The single‐phase (CrNiMnFeCu) 3 O 4 shows a great high‐rate capacity of 480 mAh g −1 at 2000 mA g −1 and almost no capacity decay after 400 cycles. Its phase transition behavior during the lithiation/delithiation process is characterized with operando X‐ray diffraction. A (CrNiMnFeCu) 3 O 4 ||LiNi 0.8 Co 0.1 Mn 0.1 O 2 cell is constructed with 590 Wh kg −1 (based on electrode materials) gravimetric energy density.
Author Li, Ju
Chang, Jeng‐Kuei
Clemens, Oliver
Tsai, Chia‐Chien
Nguyen, Thi Xuyen
Chen, Hsin‐Yi Tiffany
Patra, Jagabandhu
Lee, Chih‐Heng
Pal, Pratibha
Chan, Weng Kent
Ting, Jyh‐Ming
Author_xml – sequence: 1
  givenname: Jagabandhu
  orcidid: 0000-0002-9783-3097
  surname: Patra
  fullname: Patra, Jagabandhu
  organization: National Cheng Kung University
– sequence: 2
  givenname: Thi Xuyen
  surname: Nguyen
  fullname: Nguyen, Thi Xuyen
  organization: National Cheng Kung University
– sequence: 3
  givenname: Chia‐Chien
  surname: Tsai
  fullname: Tsai, Chia‐Chien
  organization: National Cheng Kung University
– sequence: 4
  givenname: Oliver
  surname: Clemens
  fullname: Clemens, Oliver
  organization: Chemische Materialsynthese
– sequence: 5
  givenname: Ju
  orcidid: 0000-0002-7841-8058
  surname: Li
  fullname: Li, Ju
  organization: Massachusetts Institute of Technology
– sequence: 6
  givenname: Pratibha
  surname: Pal
  fullname: Pal, Pratibha
  organization: National Cheng Kung University
– sequence: 7
  givenname: Weng Kent
  surname: Chan
  fullname: Chan, Weng Kent
  organization: National Tsing Hua University
– sequence: 8
  givenname: Chih‐Heng
  surname: Lee
  fullname: Lee, Chih‐Heng
  organization: National Tsing Hua University
– sequence: 9
  givenname: Hsin‐Yi Tiffany
  surname: Chen
  fullname: Chen, Hsin‐Yi Tiffany
  organization: National Tsing Hua University
– sequence: 10
  givenname: Jyh‐Ming
  surname: Ting
  fullname: Ting, Jyh‐Ming
  email: jting@mail.ncku.edu.tw
  organization: National Cheng Kung University
– sequence: 11
  givenname: Jeng‐Kuei
  orcidid: 0000-0002-8359-5817
  surname: Chang
  fullname: Chang, Jeng‐Kuei
  email: jkchang@nctu.edu.tw
  organization: National Cheng Kung University
BookMark eNqFkM1qGzEUhUVJoUmabdeCru3qb2aspeM4P-AQQxPIbpClq1phRppoNCTe9RGyzuP1SSrHIYFCKAh0F985B74DtOeDB4S-UTKmhLAfyth2zAijlEjJPqF9WtJyxAmb7L3d9PYLOuj7O0JoVXGxj57n1oJOPQ4WzxtowSfV4MtghkYlFzzOb7lWPeDlEF3aYOXNFtQpBr2G1umML2PoICYHLzWz8Of3k40A-Nz9Wud77jPcbfDPznlo8NWjM4CnPpjM2xDxwqW1G9pMXuS1Y5USxNz1FX22qunh6PU_RDen8-vZ-WhxdXYxmy5GmtOKjcpyAlbolVGGGcElFxNpLbcGVoWsZFbBuRbSWMaVXnEpaFGsQFWmkIYIY_kh-r7r7WK4H6BP9V0Yos-TNSsLQUTJBc_UeEfpGPo-gq276FoVNzUl9dZ_vfVfv_nPAfFPQLv04jRF5ZqPY3IXe3ANbP4zUk9PTi_fs38Bb76iPA
CitedBy_id crossref_primary_10_1016_j_cej_2024_149509
crossref_primary_10_1007_s12598_024_02852_0
crossref_primary_10_1016_j_nanoen_2024_109482
crossref_primary_10_1016_j_pmatsci_2024_101385
crossref_primary_10_1039_D4SC05539J
crossref_primary_10_3390_cryst14030218
crossref_primary_10_1039_D3YA00319A
crossref_primary_10_1016_j_pmatsci_2024_101382
crossref_primary_10_1002_adma_202207436
crossref_primary_10_1016_j_mtcomm_2023_106315
crossref_primary_10_1016_j_est_2023_108211
crossref_primary_10_1002_celc_202300606
crossref_primary_10_1021_acscatal_4c05997
crossref_primary_10_3390_batteries9010054
crossref_primary_10_1002_smll_202305998
crossref_primary_10_1016_j_surfin_2024_104054
crossref_primary_10_1016_j_jpowsour_2024_234418
crossref_primary_10_1016_j_jelechem_2024_118922
crossref_primary_10_1002_anie_202309934
crossref_primary_10_1002_eom2_12261
crossref_primary_10_1039_D4EE04442H
crossref_primary_10_1016_j_jallcom_2023_171428
crossref_primary_10_1002_adma_202312583
crossref_primary_10_1002_adfm_202422809
crossref_primary_10_1002_advs_202300271
crossref_primary_10_1016_j_ensm_2024_103954
crossref_primary_10_1016_j_cej_2023_145495
crossref_primary_10_1016_j_ensm_2024_103718
crossref_primary_10_1016_j_jelechem_2024_118910
crossref_primary_10_1039_D4RA06878E
crossref_primary_10_1016_j_ceramint_2023_09_173
crossref_primary_10_1016_j_jpowsour_2024_235207
crossref_primary_10_1016_j_jeurceramsoc_2024_05_028
crossref_primary_10_1088_1361_6528_acec4f
crossref_primary_10_1016_j_ceramint_2025_01_233
crossref_primary_10_1016_j_seppur_2023_126024
crossref_primary_10_1002_adfm_202313168
crossref_primary_10_1021_acsami_2c11038
crossref_primary_10_1016_j_est_2023_107419
crossref_primary_10_1016_j_nanoen_2023_109153
crossref_primary_10_26599_JAC_2023_9220751
crossref_primary_10_1016_j_mser_2024_100921
crossref_primary_10_1039_D3DT00909B
crossref_primary_10_1088_1361_6528_ad40b4
crossref_primary_10_1039_D4TA04156A
crossref_primary_10_1016_j_est_2024_112186
crossref_primary_10_1039_D4QI02173H
crossref_primary_10_1016_j_cej_2024_153829
crossref_primary_10_1039_D3EE03821A
crossref_primary_10_3390_ma17071542
crossref_primary_10_1016_j_electacta_2024_144653
crossref_primary_10_1016_j_ceramint_2024_04_054
crossref_primary_10_1016_j_cej_2024_158269
crossref_primary_10_1016_j_compositesb_2025_112175
crossref_primary_10_1007_s10853_023_08498_0
crossref_primary_10_1016_j_jallcom_2024_176515
crossref_primary_10_1002_adfm_202315603
crossref_primary_10_1002_smll_202304585
crossref_primary_10_1016_j_ensm_2024_103408
crossref_primary_10_1002_aic_18470
crossref_primary_10_1016_j_cej_2023_143951
crossref_primary_10_1002_cssc_202401517
crossref_primary_10_1039_D3NR04006B
crossref_primary_10_1016_j_jallcom_2022_168610
crossref_primary_10_1016_j_est_2025_115641
crossref_primary_10_1016_j_est_2023_110325
crossref_primary_10_1002_adfm_202412177
crossref_primary_10_1016_j_joule_2023_10_016
crossref_primary_10_1016_j_jpowsour_2024_235259
crossref_primary_10_1039_D3CC04225A
crossref_primary_10_3390_coatings13081461
crossref_primary_10_1016_j_cej_2024_149791
crossref_primary_10_1002_adfm_202300509
crossref_primary_10_1038_s41467_024_52531_y
crossref_primary_10_1039_D4NR03918A
crossref_primary_10_1039_D4EE03708A
crossref_primary_10_3390_polym16091251
crossref_primary_10_1016_j_jallcom_2023_172135
crossref_primary_10_1016_j_est_2024_114796
crossref_primary_10_1002_adfm_202307923
crossref_primary_10_1016_j_est_2024_113185
crossref_primary_10_1002_aesr_202400146
crossref_primary_10_1002_adem_202300585
crossref_primary_10_1002_advs_202309155
crossref_primary_10_1016_j_jcis_2024_06_239
crossref_primary_10_1002_adfm_202503977
crossref_primary_10_1016_j_jechem_2023_06_041
crossref_primary_10_1039_D4EE02227K
crossref_primary_10_1016_j_ensm_2024_103468
crossref_primary_10_1039_D3TA08101J
crossref_primary_10_6023_A23020046
crossref_primary_10_1016_j_ceramint_2024_12_003
crossref_primary_10_26599_JAC_2023_9220793
crossref_primary_10_1016_j_cej_2024_159046
crossref_primary_10_1016_j_nanoen_2024_110121
crossref_primary_10_1002_ange_202309934
crossref_primary_10_1039_D2SC04900G
crossref_primary_10_1016_j_cej_2023_146881
Cites_doi 10.1002/aenm.201902485
10.1016/j.jallcom.2018.11.049
10.1021/am501512j
10.1039/C8EE00050F
10.1016/j.apsusc.2018.02.114
10.1016/j.mattod.2014.10.040
10.1021/acsnano.9b07222
10.1021/cr3001884
10.1016/j.isci.2021.102177
10.1002/adfm.202101632
10.1007/s10853-021-05805-5
10.1016/j.chempr.2018.01.003
10.1002/batt.202000164
10.1016/j.apsusc.2007.09.063
10.1016/j.ceramint.2021.08.303
10.1038/s41467-020-15355-0
10.1002/celc.201300182
10.1039/D0TA09578H
10.1038/ncomms9485
10.1039/D0SE00175A
10.1002/aenm.201401421
10.1039/C8EE00927A
10.1002/advs.201600051
10.1016/S0926-3373(99)00093-4
10.1016/j.ensm.2018.04.022
10.1002/adma.201000717
10.1039/D0TA04844E
10.1016/j.cej.2021.129838
10.1002/adma.202002718
10.1016/j.cej.2021.132658
10.1039/D0TA06455F
10.1002/adma.201806236
10.1126/science.aba9168
10.1038/s41467-020-19991-4
10.1002/cssc.201801962
10.1002/sia.1984
10.1021/ja501866r
10.1021/acsami.5b00617
10.1002/smll.201502299
10.1002/pssr.201600043
10.1039/D0TA02517H
10.1039/C7DT02077E
10.1016/j.electacta.2019.07.019
10.1021/acsami.0c13161
10.1002/adma.202101342
10.1016/j.jallcom.2020.156158
10.1016/j.nanoen.2019.06.036
10.1021/cm7033855
10.1021/acsami.6b06359
10.1016/j.ceramint.2021.08.091
10.1016/j.jallcom.2019.151954
10.1039/C4TA03788J
10.1021/es012364c
10.1039/C9EE00368A
10.1021/acsaem.1c00571
10.1039/C3TA14377E
10.1016/j.apsusc.2021.151160
10.1016/j.actamat.2016.08.081
10.1038/s41467-018-05774-5
10.1016/j.cej.2015.02.077
10.1039/c1ee02168k
10.1039/D1EE00505G
10.1039/D0RA00255K
10.1021/acsomega.8b00188
10.1016/j.electacta.2016.04.152
10.1039/D0DT04154H
10.1021/acs.chemmater.6b02982
10.1021/nn504806h
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202110992
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202110992
ADFM202110992
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3172-668ef4cbdad2d4393489ff3fdeb597999233c49df23acb394155bea7d59d04df3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:03:33 EDT 2025
Tue Jul 01 00:30:25 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jan 22 16:25:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-668ef4cbdad2d4393489ff3fdeb597999233c49df23acb394155bea7d59d04df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7841-8058
0000-0002-9783-3097
0000-0002-8359-5817
PQID 2654046343
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2654046343
crossref_primary_10_1002_adfm_202110992
crossref_citationtrail_10_1002_adfm_202110992
wiley_primary_10_1002_adfm_202110992_ADFM202110992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 24
2018; 441
2019; 13
2019; 12
2017; 46
2019; 16
2020; 844
2020; 12
2020; 11
2020; 367
2020; 10
2014; 136
2020; 8
2014; 1
2010; 22
2018; 9
2020; 4
2018; 3
2021; 31
2018; 4
2021; 33
2014; 2
2019; 63
2019; 319
2004; 36
2013; 113
2008; 20
2017; 122
2014; 8
2014; 6
2021; 9
2021; 47
2015; 6
2021; 4
2015; 5
2015; 18
2019; 31
2021; 420
2000; 24
2016; 206
2016; 10
2009
2020; 32
2021; 50
2011; 4
2015; 7
2016; 12
2021; 14
2015; 271
2021; 56
2016; 3
2021; 570
2020; 430
2019; 777
2019; 810
2013
2016; 28
2018; 11
2008; 254
2001; 35
2016; 8
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Garche J. (e_1_2_8_56_1) 2009
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
Spies P. (e_1_2_8_57_1) 2013
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– year: 2009
– volume: 11
  start-page: 2858
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 45
  year: 2000
  publication-title: Appl. Catal. B: Environ.
– volume: 3
  start-page: 4591
  year: 2018
  publication-title: ACS Omega
– volume: 9
  start-page: 3400
  year: 2018
  publication-title: Nat. Commun.
– volume: 810
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 844
  year: 2020
  publication-title: J. Alloys Compd.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 6279
  year: 2020
  publication-title: Nat. Commun.
– volume: 254
  start-page: 2441
  year: 2008
  publication-title: Appl. Surf. Sci.
– volume: 28
  start-page: 6689
  year: 2016
  publication-title: Chem. Mater.
– volume: 8
  start-page: 7733
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 122
  start-page: 448
  year: 2017
  publication-title: Acta Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 46
  year: 2017
  publication-title: Dalton Trans.
– volume: 11
  start-page: 3923
  year: 2018
  publication-title: ChemSusChem
– volume: 10
  start-page: 328
  year: 2016
  publication-title: Phys. Status Solidi RRL
– volume: 13
  start-page: 2062
  year: 2019
  publication-title: ACS Nano
– volume: 1
  start-page: 733
  year: 2014
  publication-title: ChemElectroChem
– volume: 14
  start-page: 2883
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 367
  start-page: 979
  year: 2020
  publication-title: Science
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 4
  start-page: 195
  year: 2021
  publication-title: Batteries Supercaps
– volume: 10
  start-page: 9736
  year: 2020
  publication-title: RSC Adv.
– volume: 18
  start-page: 252
  year: 2015
  publication-title: Mater. Today
– volume: 24
  year: 2021
  publication-title: iScience
– volume: 56
  start-page: 8127
  year: 2021
  publication-title: J. Mater. Sci.
– volume: 12
  start-page: 2146
  year: 2016
  publication-title: Small
– volume: 441
  start-page: 1048
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 16
  start-page: 146
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 20
  start-page: 3617
  year: 2008
  publication-title: Chem. Mater.
– volume: 4
  start-page: 5387
  year: 2020
  publication-title: Sustainable Energy Fuels
– volume: 4
  start-page: 4954
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 6300
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 47
  year: 2021
  publication-title: Ceram. Int.
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 11
  start-page: 1550
  year: 2020
  publication-title: Nat. Commun.
– volume: 777
  start-page: 767
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 11
  start-page: 2172
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 36
  start-page: 1564
  year: 2004
  publication-title: Surf. Interface Anal.
– volume: 9
  start-page: 782
  year: 2021
  publication-title: J. Mater. Chem. A.
– volume: 271
  start-page: 173
  year: 2015
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 5738
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 136
  start-page: 6826
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 35
  start-page: 226
  year: 2001
  publication-title: Environ. Sci. Technol.
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 22
  start-page: E170
  year: 2010
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9256
  year: 2014
  publication-title: ACS Appl. Mater. Interface
– volume: 570
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 4
  start-page: 972
  year: 2018
  publication-title: Chem
– volume: 113
  start-page: 5364
  year: 2013
  publication-title: Chem. Rev.
– volume: 12
  start-page: 2433
  year: 2019
  publication-title: Energy Environ. Sci
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 50
  start-page: 1973
  year: 2021
  publication-title: Dalton Trans.
– volume: 2
  start-page: 1627
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 430
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 8485
  year: 2015
  publication-title: Nat. Commun.
– volume: 206
  start-page: 374
  year: 2016
  publication-title: Electrochim. Acta
– volume: 319
  start-page: 518
  year: 2019
  publication-title: Electrochim. Acta
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– year: 2013
– ident: e_1_2_8_5_1
  doi: 10.1002/aenm.201902485
– ident: e_1_2_8_24_1
  doi: 10.1016/j.jallcom.2018.11.049
– ident: e_1_2_8_51_1
  doi: 10.1021/am501512j
– ident: e_1_2_8_21_1
  doi: 10.1039/C8EE00050F
– ident: e_1_2_8_39_1
  doi: 10.1016/j.apsusc.2018.02.114
– ident: e_1_2_8_11_1
  doi: 10.1016/j.mattod.2014.10.040
– ident: e_1_2_8_61_1
  doi: 10.1021/acsnano.9b07222
– ident: e_1_2_8_4_1
  doi: 10.1021/cr3001884
– ident: e_1_2_8_16_1
  doi: 10.1016/j.isci.2021.102177
– ident: e_1_2_8_17_1
  doi: 10.1002/adfm.202101632
– ident: e_1_2_8_44_1
  doi: 10.1007/s10853-021-05805-5
– ident: e_1_2_8_8_1
  doi: 10.1016/j.chempr.2018.01.003
– ident: e_1_2_8_47_1
  doi: 10.1002/batt.202000164
– volume-title: Handbook of Energy Harvesting Power Supplies and Applications
  year: 2013
  ident: e_1_2_8_57_1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.apsusc.2007.09.063
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ceramint.2021.08.303
– ident: e_1_2_8_2_1
  doi: 10.1038/s41467-020-15355-0
– ident: e_1_2_8_50_1
  doi: 10.1002/celc.201300182
– ident: e_1_2_8_13_1
  doi: 10.1039/D0TA09578H
– ident: e_1_2_8_15_1
  doi: 10.1038/ncomms9485
– ident: e_1_2_8_3_1
  doi: 10.1039/D0SE00175A
– ident: e_1_2_8_69_1
  doi: 10.1002/aenm.201401421
– ident: e_1_2_8_41_1
  doi: 10.1039/C8EE00927A
– ident: e_1_2_8_6_1
  doi: 10.1002/advs.201600051
– ident: e_1_2_8_35_1
  doi: 10.1016/S0926-3373(99)00093-4
– ident: e_1_2_8_58_1
  doi: 10.1016/j.ensm.2018.04.022
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.201000717
– ident: e_1_2_8_26_1
  doi: 10.1039/D0TA04844E
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cej.2021.129838
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.202002718
– ident: e_1_2_8_63_1
  doi: 10.1016/j.cej.2021.132658
– ident: e_1_2_8_28_1
  doi: 10.1039/D0TA06455F
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201806236
– ident: e_1_2_8_29_1
  doi: 10.1126/science.aba9168
– ident: e_1_2_8_1_1
  doi: 10.1038/s41467-020-19991-4
– ident: e_1_2_8_59_1
  doi: 10.1002/cssc.201801962
– ident: e_1_2_8_38_1
  doi: 10.1002/sia.1984
– ident: e_1_2_8_42_1
  doi: 10.1021/ja501866r
– ident: e_1_2_8_53_1
  doi: 10.1021/acsami.5b00617
– ident: e_1_2_8_9_1
  doi: 10.1002/smll.201502299
– ident: e_1_2_8_18_1
  doi: 10.1002/pssr.201600043
– ident: e_1_2_8_65_1
  doi: 10.1039/D0TA02517H
– ident: e_1_2_8_20_1
  doi: 10.1039/C7DT02077E
– ident: e_1_2_8_36_1
  doi: 10.1016/j.electacta.2019.07.019
– ident: e_1_2_8_25_1
  doi: 10.1021/acsami.0c13161
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.202101342
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jallcom.2020.156158
– ident: e_1_2_8_68_1
  doi: 10.1016/j.nanoen.2019.06.036
– ident: e_1_2_8_49_1
  doi: 10.1021/cm7033855
– ident: e_1_2_8_66_1
  doi: 10.1021/acsami.6b06359
– ident: e_1_2_8_32_1
  doi: 10.1016/j.ceramint.2021.08.091
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jallcom.2019.151954
– ident: e_1_2_8_62_1
  doi: 10.1039/C4TA03788J
– ident: e_1_2_8_34_1
  doi: 10.1021/es012364c
– ident: e_1_2_8_45_1
  doi: 10.1039/C9EE00368A
– ident: e_1_2_8_60_1
  doi: 10.1021/acsaem.1c00571
– ident: e_1_2_8_67_1
  doi: 10.1039/C3TA14377E
– ident: e_1_2_8_43_1
  doi: 10.1016/j.apsusc.2021.151160
– ident: e_1_2_8_22_1
  doi: 10.1016/j.actamat.2016.08.081
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-018-05774-5
– volume-title: Encyclopedia of Electrochemical Power Sources
  year: 2009
  ident: e_1_2_8_56_1
– ident: e_1_2_8_48_1
  doi: 10.1016/j.cej.2015.02.077
– ident: e_1_2_8_52_1
  doi: 10.1039/c1ee02168k
– ident: e_1_2_8_14_1
  doi: 10.1039/D1EE00505G
– ident: e_1_2_8_54_1
  doi: 10.1039/D0RA00255K
– ident: e_1_2_8_46_1
  doi: 10.1021/acsomega.8b00188
– ident: e_1_2_8_64_1
  doi: 10.1016/j.electacta.2016.04.152
– ident: e_1_2_8_19_1
  doi: 10.1039/D0DT04154H
– ident: e_1_2_8_10_1
  doi: 10.1021/acs.chemmater.6b02982
– ident: e_1_2_8_70_1
  doi: 10.1021/nn504806h
SSID ssj0017734
Score 2.6533318
Snippet High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Chemical composition
cycling stability
Electrochemical analysis
Electrode materials
Entropy
entropy stabilization effects
Flux density
full cell performance
high capacity
in operando X‐ray diffraction
Infinite elements
Lithium
Lithium-ion batteries
Materials science
Phase transitions
Purity
Spinel
Title Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Co‐free High‐Entropy Spinel Oxide Anodes for Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202110992
https://www.proquest.com/docview/2654046343
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5KemkOfSbErRv2UMhJfuyuJOto_CAtdmviGnwT-8QmqWT8gDan_ISe-_PySzIjybJdCIUUdJBgdlf7nG92Z78h5JNiYehE6HugXh0YKCFyQEruWZ8rzlFhG7woPPwaXE7El6k_3bvFn_NDlBtuODOy9RonuFSr-o40VBqHN8nRgIkiXITRYQtR0VXJH9UMw_xYOWiig1dzumVtbLD6YfJDrbSDmvuANdM4_VdEbv81dzS5rm3WqqZv_6Jx_J_KvCYvCzhK2_n4eUOe2eQtOd4jKXxH_uQExyuaOtornM1v6DA1ReAvCs9oBsqQjrJIeFQmBgUxuo4u6AjoCPf8l0jeitl00vu7325pLUU3E3jvob_84hcdL7Am9NvPubG0naQG5AFV08F8PZtvfoDkZygt5wSFvE7IpN_73rn0iogOngacwrwgaFkntDLSMANQiItW5Bx3xiofzxcBbXItIuMYl1rxCNGOsjI0fmQawjh-So6SNLFnhCoBQBWMR5APhG6Bygm0AHNX-w0bSsYrxNv2aKwLunOMunET50TNLMY2j8s2r5CLUn6RE308KlndDpC4mPCrmAUAfUXABRTMsp7-Ry5xu9sfll_vn5LoA3nB8DJG5kdUJUfr5cZ-BIi0Vufkebs7HIzPs-nwANcWDX0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcgAOUB4VhVL2AOLkNtld2_GBQ9QkSmhSImil3Iz3pUYUO8pDUE78BM78C_4KP4FfwoxfbZEQElIPSD7Y0nhtzT6-md2ZbwCeKR6GToa-h_Dq0EEJiQMyEZ71hRKCANtQovDoMOgfy1cTf7IG36tcmIIfot5wo5mRr9c0wWlDeu-cNTQxjlLJyYOJIl7GVR7Ys4_otS1eDjrYxc8573WP9vteWVjA0wiX3AuClnVSK5MYbhCRhWxFzglnrPLpmAuNHqFlZBwXiVYiItBVNgmNH5mGNE5gu9fgOpURJ7r-zpuasaoZhsVBdtCkkLLmpOKJbPC9y_97GQfPjduLJnKOcb078KPSThHa8n53tVS7-vNvxJH_lfo24HZpcbN2MUXuwppN78GtCzyM9-FbweG8YJlj3TKe_pSNMlPWNmN4jU8Q79k4L_bHktSQIBUQ0iXjAhvTscac-Gmpmf3s55evbm4to0gavO9SSsDsjL2dkerY609TY1k7zQzKo-PAhtPlyXT1ASUH-LWC9hTbegDHV6KcTVhPs9Q-BKYk2uLoH6N8IHULUTXQEj167TdsmHCxBV41hGJdMrpTYZHTuOCi5jH1cVz38Ra8qOVnBZfJHyW3qxEZl2vaIuYBWvcyEBI_zPOh9ZdW4nanN6qfHv3LS0_hRv9oNIyHg8ODx3CTU-5JHja1DevL-co-QYtwqXbyOcjg3VWP2l-UK2s8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIiE48EYUCuwBxMltsrtexwcOUZOooU2JgEq5Ge9LjSh2lIegnPgJnPkV_BX-Ar-EGb_aIiEkpB6QfLCl8a41-_hmvDPfADzVPIq8jMIA4dWjgxIRB2QqAhcKLQQBtqVE4dGB2j2ULyfhZA2-17kwJT9E88ONVkaxX9MCn1m_fUoamlpPmeTkwMQxr8Iq99zJR3TaFi-GPRzhZ5wP-m93doOqrkBgEC15oFTHeWm0TS23CMhCdmLvhbdOh3TKhTaPMDK2novUaBET5mqXRjaMbUtaL7DdS3BZqlZMxSJ6rxvCqnYUlefYqk0RZe1JTRPZ4tvnv_c8DJ7atmct5ALiBjfgR62cMrLl_dZqqbfM5994I_8n7d2E65W9zbrlArkFay67DdfOsDDegW8lg_OC5Z71q2j6YzbKbVXZjOE1PkK0Z-Oi1B9LM0uCVD7IVHwLbEyHGnNip6VmdvKfX776uXOM4mjwvk8JAbMT9mZGmmOvPk2tY90styiPbgPbny6PpqsPKDnE3krSU2zrLhxeiHLuwXqWZ-4-MC3REkfvGOWVNB3EVGUk-vMmbLko5WIDgnoGJabic6eyIsdJyUTNExrjpBnjDXjeyM9KJpM_Sm7WEzKpdrRFwhXa9lIJiR3zYmb9pZWk2xuMmqcH__LSE7gy7g2S_eHB3kO4yinxpIiZ2oT15XzlHqE5uNSPixXI4N1FT9pf1wdp6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Elemental+Modulation+on+Phase+Purity+and+Electrochemical+Properties+of+Co%E2%80%90free+High%E2%80%90Entropy+Spinel+Oxide+Anodes+for+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Patra%2C+Jagabandhu&rft.au=Nguyen%2C+Thi+Xuyen&rft.au=Chia%E2%80%90Chien+Tsai&rft.au=Clemens%2C+Oliver&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=17&rft_id=info:doi/10.1002%2Fadfm.202110992&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon