Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Co‐free High‐Entropy Spinel Oxide Anodes for Lithium‐Ion Batteries
High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new e...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 17 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new electrode materials. This study synthesizes a series of Co‐free spinel‐type HEOs via a facile hydrothermal method. Based on quaternary medium‐entropy (CrNiMnFe)3O4, the fifth elements of V, Mg, and Cu are added, and their ability to form single‐phase HEOs is investigated. It is demonstrated that the chemical composition of HEOs is critical to the phase purity and corresponding charge–discharge performance. The oxygen vacancy concentration seems to be decisive for the rate capability and reversibility of the HEO electrodes. An inactive spectator element is not necessary for achieving high cyclability, given that the phase purity of the HEO is wisely controlled. The single‐phase (CrNiMnFeCu)3O4 shows a great high‐rate capacity of 480 mAh g−1 at 2000 mA g−1 and almost no capacity decay after 400 cycles. Its phase transition behavior during the lithiation/delithiation process is characterized with operando X‐ray diffraction. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell is constructed with 590 Wh kg−1 (based on electrode materials) gravimetric energy density.
A series of Co‐free spinel‐type HEO anodes are fabricated via a facile hydrothermal method. Chemical composition of HEOs is critical to phase purity and oxygen vacancies. Entropy stabilization effects sustain the crystalline framework and electrode reversibility. An inactive spectator element is not needed for the high cyclability of HEO electrodes. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell shows an energy density of 590 Wh kg−1. |
---|---|
AbstractList | High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new electrode materials. This study synthesizes a series of Co‐free spinel‐type HEOs via a facile hydrothermal method. Based on quaternary medium‐entropy (CrNiMnFe)3O4, the fifth elements of V, Mg, and Cu are added, and their ability to form single‐phase HEOs is investigated. It is demonstrated that the chemical composition of HEOs is critical to the phase purity and corresponding charge–discharge performance. The oxygen vacancy concentration seems to be decisive for the rate capability and reversibility of the HEO electrodes. An inactive spectator element is not necessary for achieving high cyclability, given that the phase purity of the HEO is wisely controlled. The single‐phase (CrNiMnFeCu)3O4 shows a great high‐rate capacity of 480 mAh g−1 at 2000 mA g−1 and almost no capacity decay after 400 cycles. Its phase transition behavior during the lithiation/delithiation process is characterized with operando X‐ray diffraction. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell is constructed with 590 Wh kg−1 (based on electrode materials) gravimetric energy density.
A series of Co‐free spinel‐type HEO anodes are fabricated via a facile hydrothermal method. Chemical composition of HEOs is critical to phase purity and oxygen vacancies. Entropy stabilization effects sustain the crystalline framework and electrode reversibility. An inactive spectator element is not needed for the high cyclability of HEO electrodes. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell shows an energy density of 590 Wh kg−1. High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new electrode materials. This study synthesizes a series of Co‐free spinel‐type HEOs via a facile hydrothermal method. Based on quaternary medium‐entropy (CrNiMnFe)3O4, the fifth elements of V, Mg, and Cu are added, and their ability to form single‐phase HEOs is investigated. It is demonstrated that the chemical composition of HEOs is critical to the phase purity and corresponding charge–discharge performance. The oxygen vacancy concentration seems to be decisive for the rate capability and reversibility of the HEO electrodes. An inactive spectator element is not necessary for achieving high cyclability, given that the phase purity of the HEO is wisely controlled. The single‐phase (CrNiMnFeCu)3O4 shows a great high‐rate capacity of 480 mAh g−1 at 2000 mA g−1 and almost no capacity decay after 400 cycles. Its phase transition behavior during the lithiation/delithiation process is characterized with operando X‐ray diffraction. A (CrNiMnFeCu)3O4||LiNi0.8Co0.1Mn0.1O2 cell is constructed with 590 Wh kg−1 (based on electrode materials) gravimetric energy density. High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the unique tailorable properties with respect to tunable chemical composition, which enables the use of infinite element combinations to develop new electrode materials. This study synthesizes a series of Co‐free spinel‐type HEOs via a facile hydrothermal method. Based on quaternary medium‐entropy (CrNiMnFe) 3 O 4 , the fifth elements of V, Mg, and Cu are added, and their ability to form single‐phase HEOs is investigated. It is demonstrated that the chemical composition of HEOs is critical to the phase purity and corresponding charge–discharge performance. The oxygen vacancy concentration seems to be decisive for the rate capability and reversibility of the HEO electrodes. An inactive spectator element is not necessary for achieving high cyclability, given that the phase purity of the HEO is wisely controlled. The single‐phase (CrNiMnFeCu) 3 O 4 shows a great high‐rate capacity of 480 mAh g −1 at 2000 mA g −1 and almost no capacity decay after 400 cycles. Its phase transition behavior during the lithiation/delithiation process is characterized with operando X‐ray diffraction. A (CrNiMnFeCu) 3 O 4 ||LiNi 0.8 Co 0.1 Mn 0.1 O 2 cell is constructed with 590 Wh kg −1 (based on electrode materials) gravimetric energy density. |
Author | Li, Ju Chang, Jeng‐Kuei Clemens, Oliver Tsai, Chia‐Chien Nguyen, Thi Xuyen Chen, Hsin‐Yi Tiffany Patra, Jagabandhu Lee, Chih‐Heng Pal, Pratibha Chan, Weng Kent Ting, Jyh‐Ming |
Author_xml | – sequence: 1 givenname: Jagabandhu orcidid: 0000-0002-9783-3097 surname: Patra fullname: Patra, Jagabandhu organization: National Cheng Kung University – sequence: 2 givenname: Thi Xuyen surname: Nguyen fullname: Nguyen, Thi Xuyen organization: National Cheng Kung University – sequence: 3 givenname: Chia‐Chien surname: Tsai fullname: Tsai, Chia‐Chien organization: National Cheng Kung University – sequence: 4 givenname: Oliver surname: Clemens fullname: Clemens, Oliver organization: Chemische Materialsynthese – sequence: 5 givenname: Ju orcidid: 0000-0002-7841-8058 surname: Li fullname: Li, Ju organization: Massachusetts Institute of Technology – sequence: 6 givenname: Pratibha surname: Pal fullname: Pal, Pratibha organization: National Cheng Kung University – sequence: 7 givenname: Weng Kent surname: Chan fullname: Chan, Weng Kent organization: National Tsing Hua University – sequence: 8 givenname: Chih‐Heng surname: Lee fullname: Lee, Chih‐Heng organization: National Tsing Hua University – sequence: 9 givenname: Hsin‐Yi Tiffany surname: Chen fullname: Chen, Hsin‐Yi Tiffany organization: National Tsing Hua University – sequence: 10 givenname: Jyh‐Ming surname: Ting fullname: Ting, Jyh‐Ming email: jting@mail.ncku.edu.tw organization: National Cheng Kung University – sequence: 11 givenname: Jeng‐Kuei orcidid: 0000-0002-8359-5817 surname: Chang fullname: Chang, Jeng‐Kuei email: jkchang@nctu.edu.tw organization: National Cheng Kung University |
BookMark | eNqFkM1qGzEUhUVJoUmabdeCru3qb2aspeM4P-AQQxPIbpClq1phRppoNCTe9RGyzuP1SSrHIYFCKAh0F985B74DtOeDB4S-UTKmhLAfyth2zAijlEjJPqF9WtJyxAmb7L3d9PYLOuj7O0JoVXGxj57n1oJOPQ4WzxtowSfV4MtghkYlFzzOb7lWPeDlEF3aYOXNFtQpBr2G1umML2PoICYHLzWz8Of3k40A-Nz9Wud77jPcbfDPznlo8NWjM4CnPpjM2xDxwqW1G9pMXuS1Y5USxNz1FX22qunh6PU_RDen8-vZ-WhxdXYxmy5GmtOKjcpyAlbolVGGGcElFxNpLbcGVoWsZFbBuRbSWMaVXnEpaFGsQFWmkIYIY_kh-r7r7WK4H6BP9V0Yos-TNSsLQUTJBc_UeEfpGPo-gq276FoVNzUl9dZ_vfVfv_nPAfFPQLv04jRF5ZqPY3IXe3ANbP4zUk9PTi_fs38Bb76iPA |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_149509 crossref_primary_10_1007_s12598_024_02852_0 crossref_primary_10_1016_j_nanoen_2024_109482 crossref_primary_10_1016_j_pmatsci_2024_101385 crossref_primary_10_1039_D4SC05539J crossref_primary_10_3390_cryst14030218 crossref_primary_10_1039_D3YA00319A crossref_primary_10_1016_j_pmatsci_2024_101382 crossref_primary_10_1002_adma_202207436 crossref_primary_10_1016_j_mtcomm_2023_106315 crossref_primary_10_1016_j_est_2023_108211 crossref_primary_10_1002_celc_202300606 crossref_primary_10_1021_acscatal_4c05997 crossref_primary_10_3390_batteries9010054 crossref_primary_10_1002_smll_202305998 crossref_primary_10_1016_j_surfin_2024_104054 crossref_primary_10_1016_j_jpowsour_2024_234418 crossref_primary_10_1016_j_jelechem_2024_118922 crossref_primary_10_1002_anie_202309934 crossref_primary_10_1002_eom2_12261 crossref_primary_10_1039_D4EE04442H crossref_primary_10_1016_j_jallcom_2023_171428 crossref_primary_10_1002_adma_202312583 crossref_primary_10_1002_adfm_202422809 crossref_primary_10_1002_advs_202300271 crossref_primary_10_1016_j_ensm_2024_103954 crossref_primary_10_1016_j_cej_2023_145495 crossref_primary_10_1016_j_ensm_2024_103718 crossref_primary_10_1016_j_jelechem_2024_118910 crossref_primary_10_1039_D4RA06878E crossref_primary_10_1016_j_ceramint_2023_09_173 crossref_primary_10_1016_j_jpowsour_2024_235207 crossref_primary_10_1016_j_jeurceramsoc_2024_05_028 crossref_primary_10_1088_1361_6528_acec4f crossref_primary_10_1016_j_ceramint_2025_01_233 crossref_primary_10_1016_j_seppur_2023_126024 crossref_primary_10_1002_adfm_202313168 crossref_primary_10_1021_acsami_2c11038 crossref_primary_10_1016_j_est_2023_107419 crossref_primary_10_1016_j_nanoen_2023_109153 crossref_primary_10_26599_JAC_2023_9220751 crossref_primary_10_1016_j_mser_2024_100921 crossref_primary_10_1039_D3DT00909B crossref_primary_10_1088_1361_6528_ad40b4 crossref_primary_10_1039_D4TA04156A crossref_primary_10_1016_j_est_2024_112186 crossref_primary_10_1039_D4QI02173H crossref_primary_10_1016_j_cej_2024_153829 crossref_primary_10_1039_D3EE03821A crossref_primary_10_3390_ma17071542 crossref_primary_10_1016_j_electacta_2024_144653 crossref_primary_10_1016_j_ceramint_2024_04_054 crossref_primary_10_1016_j_cej_2024_158269 crossref_primary_10_1016_j_compositesb_2025_112175 crossref_primary_10_1007_s10853_023_08498_0 crossref_primary_10_1016_j_jallcom_2024_176515 crossref_primary_10_1002_adfm_202315603 crossref_primary_10_1002_smll_202304585 crossref_primary_10_1016_j_ensm_2024_103408 crossref_primary_10_1002_aic_18470 crossref_primary_10_1016_j_cej_2023_143951 crossref_primary_10_1002_cssc_202401517 crossref_primary_10_1039_D3NR04006B crossref_primary_10_1016_j_jallcom_2022_168610 crossref_primary_10_1016_j_est_2025_115641 crossref_primary_10_1016_j_est_2023_110325 crossref_primary_10_1002_adfm_202412177 crossref_primary_10_1016_j_joule_2023_10_016 crossref_primary_10_1016_j_jpowsour_2024_235259 crossref_primary_10_1039_D3CC04225A crossref_primary_10_3390_coatings13081461 crossref_primary_10_1016_j_cej_2024_149791 crossref_primary_10_1002_adfm_202300509 crossref_primary_10_1038_s41467_024_52531_y crossref_primary_10_1039_D4NR03918A crossref_primary_10_1039_D4EE03708A crossref_primary_10_3390_polym16091251 crossref_primary_10_1016_j_jallcom_2023_172135 crossref_primary_10_1016_j_est_2024_114796 crossref_primary_10_1002_adfm_202307923 crossref_primary_10_1016_j_est_2024_113185 crossref_primary_10_1002_aesr_202400146 crossref_primary_10_1002_adem_202300585 crossref_primary_10_1002_advs_202309155 crossref_primary_10_1016_j_jcis_2024_06_239 crossref_primary_10_1002_adfm_202503977 crossref_primary_10_1016_j_jechem_2023_06_041 crossref_primary_10_1039_D4EE02227K crossref_primary_10_1016_j_ensm_2024_103468 crossref_primary_10_1039_D3TA08101J crossref_primary_10_6023_A23020046 crossref_primary_10_1016_j_ceramint_2024_12_003 crossref_primary_10_26599_JAC_2023_9220793 crossref_primary_10_1016_j_cej_2024_159046 crossref_primary_10_1016_j_nanoen_2024_110121 crossref_primary_10_1002_ange_202309934 crossref_primary_10_1039_D2SC04900G crossref_primary_10_1016_j_cej_2023_146881 |
Cites_doi | 10.1002/aenm.201902485 10.1016/j.jallcom.2018.11.049 10.1021/am501512j 10.1039/C8EE00050F 10.1016/j.apsusc.2018.02.114 10.1016/j.mattod.2014.10.040 10.1021/acsnano.9b07222 10.1021/cr3001884 10.1016/j.isci.2021.102177 10.1002/adfm.202101632 10.1007/s10853-021-05805-5 10.1016/j.chempr.2018.01.003 10.1002/batt.202000164 10.1016/j.apsusc.2007.09.063 10.1016/j.ceramint.2021.08.303 10.1038/s41467-020-15355-0 10.1002/celc.201300182 10.1039/D0TA09578H 10.1038/ncomms9485 10.1039/D0SE00175A 10.1002/aenm.201401421 10.1039/C8EE00927A 10.1002/advs.201600051 10.1016/S0926-3373(99)00093-4 10.1016/j.ensm.2018.04.022 10.1002/adma.201000717 10.1039/D0TA04844E 10.1016/j.cej.2021.129838 10.1002/adma.202002718 10.1016/j.cej.2021.132658 10.1039/D0TA06455F 10.1002/adma.201806236 10.1126/science.aba9168 10.1038/s41467-020-19991-4 10.1002/cssc.201801962 10.1002/sia.1984 10.1021/ja501866r 10.1021/acsami.5b00617 10.1002/smll.201502299 10.1002/pssr.201600043 10.1039/D0TA02517H 10.1039/C7DT02077E 10.1016/j.electacta.2019.07.019 10.1021/acsami.0c13161 10.1002/adma.202101342 10.1016/j.jallcom.2020.156158 10.1016/j.nanoen.2019.06.036 10.1021/cm7033855 10.1021/acsami.6b06359 10.1016/j.ceramint.2021.08.091 10.1016/j.jallcom.2019.151954 10.1039/C4TA03788J 10.1021/es012364c 10.1039/C9EE00368A 10.1021/acsaem.1c00571 10.1039/C3TA14377E 10.1016/j.apsusc.2021.151160 10.1016/j.actamat.2016.08.081 10.1038/s41467-018-05774-5 10.1016/j.cej.2015.02.077 10.1039/c1ee02168k 10.1039/D1EE00505G 10.1039/D0RA00255K 10.1021/acsomega.8b00188 10.1016/j.electacta.2016.04.152 10.1039/D0DT04154H 10.1021/acs.chemmater.6b02982 10.1021/nn504806h |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202110992 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202110992 ADFM202110992 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3172-668ef4cbdad2d4393489ff3fdeb597999233c49df23acb394155bea7d59d04df3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:03:33 EDT 2025 Tue Jul 01 00:30:25 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:25:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3172-668ef4cbdad2d4393489ff3fdeb597999233c49df23acb394155bea7d59d04df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7841-8058 0000-0002-9783-3097 0000-0002-8359-5817 |
PQID | 2654046343 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2654046343 crossref_primary_10_1002_adfm_202110992 crossref_citationtrail_10_1002_adfm_202110992 wiley_primary_10_1002_adfm_202110992_ADFM202110992 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 24 2018; 441 2019; 13 2019; 12 2017; 46 2019; 16 2020; 844 2020; 12 2020; 11 2020; 367 2020; 10 2014; 136 2020; 8 2014; 1 2010; 22 2018; 9 2020; 4 2018; 3 2021; 31 2018; 4 2021; 33 2014; 2 2019; 63 2019; 319 2004; 36 2013; 113 2008; 20 2017; 122 2014; 8 2014; 6 2021; 9 2021; 47 2015; 6 2021; 4 2015; 5 2015; 18 2019; 31 2021; 420 2000; 24 2016; 206 2016; 10 2009 2020; 32 2021; 50 2011; 4 2015; 7 2016; 12 2021; 14 2015; 271 2021; 56 2016; 3 2021; 570 2020; 430 2019; 777 2019; 810 2013 2016; 28 2018; 11 2008; 254 2001; 35 2016; 8 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 Garche J. (e_1_2_8_56_1) 2009 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 Spies P. (e_1_2_8_57_1) 2013 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – year: 2009 – volume: 11 start-page: 2858 year: 2018 publication-title: Energy Environ. Sci. – volume: 24 start-page: 45 year: 2000 publication-title: Appl. Catal. B: Environ. – volume: 3 start-page: 4591 year: 2018 publication-title: ACS Omega – volume: 9 start-page: 3400 year: 2018 publication-title: Nat. Commun. – volume: 810 year: 2019 publication-title: J. Alloys Compd. – volume: 844 year: 2020 publication-title: J. Alloys Compd. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 6279 year: 2020 publication-title: Nat. Commun. – volume: 254 start-page: 2441 year: 2008 publication-title: Appl. Surf. Sci. – volume: 28 start-page: 6689 year: 2016 publication-title: Chem. Mater. – volume: 8 start-page: 7733 year: 2020 publication-title: J. Mater. Chem. A – volume: 122 start-page: 448 year: 2017 publication-title: Acta Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 46 year: 2017 publication-title: Dalton Trans. – volume: 11 start-page: 3923 year: 2018 publication-title: ChemSusChem – volume: 10 start-page: 328 year: 2016 publication-title: Phys. Status Solidi RRL – volume: 13 start-page: 2062 year: 2019 publication-title: ACS Nano – volume: 1 start-page: 733 year: 2014 publication-title: ChemElectroChem – volume: 14 start-page: 2883 year: 2021 publication-title: Energy Environ. Sci. – volume: 367 start-page: 979 year: 2020 publication-title: Science – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 4 start-page: 195 year: 2021 publication-title: Batteries Supercaps – volume: 10 start-page: 9736 year: 2020 publication-title: RSC Adv. – volume: 18 start-page: 252 year: 2015 publication-title: Mater. Today – volume: 24 year: 2021 publication-title: iScience – volume: 56 start-page: 8127 year: 2021 publication-title: J. Mater. Sci. – volume: 12 start-page: 2146 year: 2016 publication-title: Small – volume: 441 start-page: 1048 year: 2018 publication-title: Appl. Surf. Sci. – volume: 16 start-page: 146 year: 2019 publication-title: Energy Storage Mater. – volume: 20 start-page: 3617 year: 2008 publication-title: Chem. Mater. – volume: 4 start-page: 5387 year: 2020 publication-title: Sustainable Energy Fuels – volume: 4 start-page: 4954 year: 2011 publication-title: Energy Environ. Sci. – volume: 7 start-page: 6300 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 47 year: 2021 publication-title: Ceram. Int. – volume: 63 year: 2019 publication-title: Nano Energy – volume: 11 start-page: 1550 year: 2020 publication-title: Nat. Commun. – volume: 777 start-page: 767 year: 2019 publication-title: J. Alloys Compd. – volume: 11 start-page: 2172 year: 2018 publication-title: Energy Environ. Sci. – volume: 36 start-page: 1564 year: 2004 publication-title: Surf. Interface Anal. – volume: 9 start-page: 782 year: 2021 publication-title: J. Mater. Chem. A. – volume: 271 start-page: 173 year: 2015 publication-title: Chem. Eng. J. – volume: 4 start-page: 5738 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 136 start-page: 6826 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 35 start-page: 226 year: 2001 publication-title: Environ. Sci. Technol. – volume: 8 year: 2014 publication-title: ACS Nano – volume: 22 start-page: E170 year: 2010 publication-title: Adv. Mater. – volume: 6 start-page: 9256 year: 2014 publication-title: ACS Appl. Mater. Interface – volume: 570 year: 2021 publication-title: Appl. Surf. Sci. – volume: 4 start-page: 972 year: 2018 publication-title: Chem – volume: 113 start-page: 5364 year: 2013 publication-title: Chem. Rev. – volume: 12 start-page: 2433 year: 2019 publication-title: Energy Environ. Sci – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 50 start-page: 1973 year: 2021 publication-title: Dalton Trans. – volume: 2 start-page: 1627 year: 2014 publication-title: J. Mater. Chem. A – volume: 430 year: 2020 publication-title: Chem. Eng. J. – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 6 start-page: 8485 year: 2015 publication-title: Nat. Commun. – volume: 206 start-page: 374 year: 2016 publication-title: Electrochim. Acta – volume: 319 start-page: 518 year: 2019 publication-title: Electrochim. Acta – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – year: 2013 – ident: e_1_2_8_5_1 doi: 10.1002/aenm.201902485 – ident: e_1_2_8_24_1 doi: 10.1016/j.jallcom.2018.11.049 – ident: e_1_2_8_51_1 doi: 10.1021/am501512j – ident: e_1_2_8_21_1 doi: 10.1039/C8EE00050F – ident: e_1_2_8_39_1 doi: 10.1016/j.apsusc.2018.02.114 – ident: e_1_2_8_11_1 doi: 10.1016/j.mattod.2014.10.040 – ident: e_1_2_8_61_1 doi: 10.1021/acsnano.9b07222 – ident: e_1_2_8_4_1 doi: 10.1021/cr3001884 – ident: e_1_2_8_16_1 doi: 10.1016/j.isci.2021.102177 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.202101632 – ident: e_1_2_8_44_1 doi: 10.1007/s10853-021-05805-5 – ident: e_1_2_8_8_1 doi: 10.1016/j.chempr.2018.01.003 – ident: e_1_2_8_47_1 doi: 10.1002/batt.202000164 – volume-title: Handbook of Energy Harvesting Power Supplies and Applications year: 2013 ident: e_1_2_8_57_1 – ident: e_1_2_8_37_1 doi: 10.1016/j.apsusc.2007.09.063 – ident: e_1_2_8_33_1 doi: 10.1016/j.ceramint.2021.08.303 – ident: e_1_2_8_2_1 doi: 10.1038/s41467-020-15355-0 – ident: e_1_2_8_50_1 doi: 10.1002/celc.201300182 – ident: e_1_2_8_13_1 doi: 10.1039/D0TA09578H – ident: e_1_2_8_15_1 doi: 10.1038/ncomms9485 – ident: e_1_2_8_3_1 doi: 10.1039/D0SE00175A – ident: e_1_2_8_69_1 doi: 10.1002/aenm.201401421 – ident: e_1_2_8_41_1 doi: 10.1039/C8EE00927A – ident: e_1_2_8_6_1 doi: 10.1002/advs.201600051 – ident: e_1_2_8_35_1 doi: 10.1016/S0926-3373(99)00093-4 – ident: e_1_2_8_58_1 doi: 10.1016/j.ensm.2018.04.022 – ident: e_1_2_8_7_1 doi: 10.1002/adma.201000717 – ident: e_1_2_8_26_1 doi: 10.1039/D0TA04844E – ident: e_1_2_8_27_1 doi: 10.1016/j.cej.2021.129838 – ident: e_1_2_8_30_1 doi: 10.1002/adma.202002718 – ident: e_1_2_8_63_1 doi: 10.1016/j.cej.2021.132658 – ident: e_1_2_8_28_1 doi: 10.1039/D0TA06455F – ident: e_1_2_8_12_1 doi: 10.1002/adma.201806236 – ident: e_1_2_8_29_1 doi: 10.1126/science.aba9168 – ident: e_1_2_8_1_1 doi: 10.1038/s41467-020-19991-4 – ident: e_1_2_8_59_1 doi: 10.1002/cssc.201801962 – ident: e_1_2_8_38_1 doi: 10.1002/sia.1984 – ident: e_1_2_8_42_1 doi: 10.1021/ja501866r – ident: e_1_2_8_53_1 doi: 10.1021/acsami.5b00617 – ident: e_1_2_8_9_1 doi: 10.1002/smll.201502299 – ident: e_1_2_8_18_1 doi: 10.1002/pssr.201600043 – ident: e_1_2_8_65_1 doi: 10.1039/D0TA02517H – ident: e_1_2_8_20_1 doi: 10.1039/C7DT02077E – ident: e_1_2_8_36_1 doi: 10.1016/j.electacta.2019.07.019 – ident: e_1_2_8_25_1 doi: 10.1021/acsami.0c13161 – ident: e_1_2_8_31_1 doi: 10.1002/adma.202101342 – ident: e_1_2_8_55_1 doi: 10.1016/j.jallcom.2020.156158 – ident: e_1_2_8_68_1 doi: 10.1016/j.nanoen.2019.06.036 – ident: e_1_2_8_49_1 doi: 10.1021/cm7033855 – ident: e_1_2_8_66_1 doi: 10.1021/acsami.6b06359 – ident: e_1_2_8_32_1 doi: 10.1016/j.ceramint.2021.08.091 – ident: e_1_2_8_40_1 doi: 10.1016/j.jallcom.2019.151954 – ident: e_1_2_8_62_1 doi: 10.1039/C4TA03788J – ident: e_1_2_8_34_1 doi: 10.1021/es012364c – ident: e_1_2_8_45_1 doi: 10.1039/C9EE00368A – ident: e_1_2_8_60_1 doi: 10.1021/acsaem.1c00571 – ident: e_1_2_8_67_1 doi: 10.1039/C3TA14377E – ident: e_1_2_8_43_1 doi: 10.1016/j.apsusc.2021.151160 – ident: e_1_2_8_22_1 doi: 10.1016/j.actamat.2016.08.081 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-018-05774-5 – volume-title: Encyclopedia of Electrochemical Power Sources year: 2009 ident: e_1_2_8_56_1 – ident: e_1_2_8_48_1 doi: 10.1016/j.cej.2015.02.077 – ident: e_1_2_8_52_1 doi: 10.1039/c1ee02168k – ident: e_1_2_8_14_1 doi: 10.1039/D1EE00505G – ident: e_1_2_8_54_1 doi: 10.1039/D0RA00255K – ident: e_1_2_8_46_1 doi: 10.1021/acsomega.8b00188 – ident: e_1_2_8_64_1 doi: 10.1016/j.electacta.2016.04.152 – ident: e_1_2_8_19_1 doi: 10.1039/D0DT04154H – ident: e_1_2_8_10_1 doi: 10.1021/acs.chemmater.6b02982 – ident: e_1_2_8_70_1 doi: 10.1021/nn504806h |
SSID | ssj0017734 |
Score | 2.6533318 |
Snippet | High entropy oxide (HEO) is a new class of lithium‐ion battery anode with high specific capacity and excellent cyclability. The beauty of HEO lies in the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Chemical composition cycling stability Electrochemical analysis Electrode materials Entropy entropy stabilization effects Flux density full cell performance high capacity in operando X‐ray diffraction Infinite elements Lithium Lithium-ion batteries Materials science Phase transitions Purity Spinel |
Title | Effects of Elemental Modulation on Phase Purity and Electrochemical Properties of Co‐free High‐Entropy Spinel Oxide Anodes for Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202110992 https://www.proquest.com/docview/2654046343 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5KemkOfSbErRv2UMhJfuyuJOto_CAtdmviGnwT-8QmqWT8gDan_ISe-_PySzIjybJdCIUUdJBgdlf7nG92Z78h5JNiYehE6HugXh0YKCFyQEruWZ8rzlFhG7woPPwaXE7El6k_3bvFn_NDlBtuODOy9RonuFSr-o40VBqHN8nRgIkiXITRYQtR0VXJH9UMw_xYOWiig1dzumVtbLD6YfJDrbSDmvuANdM4_VdEbv81dzS5rm3WqqZv_6Jx_J_KvCYvCzhK2_n4eUOe2eQtOd4jKXxH_uQExyuaOtornM1v6DA1ReAvCs9oBsqQjrJIeFQmBgUxuo4u6AjoCPf8l0jeitl00vu7325pLUU3E3jvob_84hcdL7Am9NvPubG0naQG5AFV08F8PZtvfoDkZygt5wSFvE7IpN_73rn0iogOngacwrwgaFkntDLSMANQiItW5Bx3xiofzxcBbXItIuMYl1rxCNGOsjI0fmQawjh-So6SNLFnhCoBQBWMR5APhG6Bygm0AHNX-w0bSsYrxNv2aKwLunOMunET50TNLMY2j8s2r5CLUn6RE308KlndDpC4mPCrmAUAfUXABRTMsp7-Ry5xu9sfll_vn5LoA3nB8DJG5kdUJUfr5cZ-BIi0Vufkebs7HIzPs-nwANcWDX0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcgAOUB4VhVL2AOLkNtld2_GBQ9QkSmhSImil3Iz3pUYUO8pDUE78BM78C_4KP4FfwoxfbZEQElIPSD7Y0nhtzT6-md2ZbwCeKR6GToa-h_Dq0EEJiQMyEZ71hRKCANtQovDoMOgfy1cTf7IG36tcmIIfot5wo5mRr9c0wWlDeu-cNTQxjlLJyYOJIl7GVR7Ys4_otS1eDjrYxc8573WP9vteWVjA0wiX3AuClnVSK5MYbhCRhWxFzglnrPLpmAuNHqFlZBwXiVYiItBVNgmNH5mGNE5gu9fgOpURJ7r-zpuasaoZhsVBdtCkkLLmpOKJbPC9y_97GQfPjduLJnKOcb078KPSThHa8n53tVS7-vNvxJH_lfo24HZpcbN2MUXuwppN78GtCzyM9-FbweG8YJlj3TKe_pSNMlPWNmN4jU8Q79k4L_bHktSQIBUQ0iXjAhvTscac-Gmpmf3s55evbm4to0gavO9SSsDsjL2dkerY609TY1k7zQzKo-PAhtPlyXT1ASUH-LWC9hTbegDHV6KcTVhPs9Q-BKYk2uLoH6N8IHULUTXQEj167TdsmHCxBV41hGJdMrpTYZHTuOCi5jH1cVz38Ra8qOVnBZfJHyW3qxEZl2vaIuYBWvcyEBI_zPOh9ZdW4nanN6qfHv3LS0_hRv9oNIyHg8ODx3CTU-5JHja1DevL-co-QYtwqXbyOcjg3VWP2l-UK2s8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VIiE48EYUCuwBxMltsrtexwcOUZOooU2JgEq5Ge9LjSh2lIegnPgJnPkV_BX-Ar-EGb_aIiEkpB6QfLCl8a41-_hmvDPfADzVPIq8jMIA4dWjgxIRB2QqAhcKLQQBtqVE4dGB2j2ULyfhZA2-17kwJT9E88ONVkaxX9MCn1m_fUoamlpPmeTkwMQxr8Iq99zJR3TaFi-GPRzhZ5wP-m93doOqrkBgEC15oFTHeWm0TS23CMhCdmLvhbdOh3TKhTaPMDK2novUaBET5mqXRjaMbUtaL7DdS3BZqlZMxSJ6rxvCqnYUlefYqk0RZe1JTRPZ4tvnv_c8DJ7atmct5ALiBjfgR62cMrLl_dZqqbfM5994I_8n7d2E65W9zbrlArkFay67DdfOsDDegW8lg_OC5Z71q2j6YzbKbVXZjOE1PkK0Z-Oi1B9LM0uCVD7IVHwLbEyHGnNip6VmdvKfX776uXOM4mjwvk8JAbMT9mZGmmOvPk2tY90styiPbgPbny6PpqsPKDnE3krSU2zrLhxeiHLuwXqWZ-4-MC3REkfvGOWVNB3EVGUk-vMmbLko5WIDgnoGJabic6eyIsdJyUTNExrjpBnjDXjeyM9KJpM_Sm7WEzKpdrRFwhXa9lIJiR3zYmb9pZWk2xuMmqcH__LSE7gy7g2S_eHB3kO4yinxpIiZ2oT15XzlHqE5uNSPixXI4N1FT9pf1wdp6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Elemental+Modulation+on+Phase+Purity+and+Electrochemical+Properties+of+Co%E2%80%90free+High%E2%80%90Entropy+Spinel+Oxide+Anodes+for+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Patra%2C+Jagabandhu&rft.au=Nguyen%2C+Thi+Xuyen&rft.au=Chia%E2%80%90Chien+Tsai&rft.au=Clemens%2C+Oliver&rft.date=2022-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=17&rft_id=info:doi/10.1002%2Fadfm.202110992&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |