Event‐Driven Neuroplasticity and Spiking Modulation in a Photoelectric Neuristor Configured by Threshold Switching Memristor and Optoelectronic Transistor
Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for energy‐efficient operation and decision making. In this work, a stacked artificial synapse and spiking neuron utilizing an indium gallium zinc...
Saved in:
Published in | Advanced functional materials Vol. 35; no. 2 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for energy‐efficient operation and decision making. In this work, a stacked artificial synapse and spiking neuron utilizing an indium gallium zinc oxide (IGZO) optosynaptic transistor paired with a vanadium‐based volatile threshold switching memristor are constructed. This compact neuristor encompasses multiple functionalities including the conversion of optical impulses into electrical signals, modifiable post‐synaptic current‐enhanced features, and the implementation of leaky integrate‐and‐fire (LIF) spiking generation behavior, showcasing the capability of information delivery in SNNs. The spiking activity within the proposed configuration can be effectively modulated through the interplay of optical and electrical stimuli. Additionally, the excitatory and inhibitory properties manifested by the spiking behavior underscore the gate‐tunable neuron excitability. Notably, the capacity for accommodating hybrid inputs operation makes achievement of spike‐based associative learning by reviving the Pavlov's dog experiment in the proposed device. Moreover, this research unveils the synaptic weight‐governed spiking activity, demonstrating the sophisticated input–output characteristics of spiking behavior. The stacked memristor and transistor assembly can advance the neuromorphic technologies and lay the foundation for the realization of physical SNNs.
A stacked memristor and transistor assembly is engineered to integrate optical‐to‐electrical signal conversion, adjustable current potentiation, and controlled spiking activity. This device enables spiking behavior modulation through optical and electrical inputs, facilitating associative learning via persistent photoconductivity and threshold switching. This study also demonstrates synaptic weight‐governed spiking activity using the leaky integrate‐and‐fire principle, highlighting its applicability for neuromorphic computing. |
---|---|
AbstractList | Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for energy‐efficient operation and decision making. In this work, a stacked artificial synapse and spiking neuron utilizing an indium gallium zinc oxide (IGZO) optosynaptic transistor paired with a vanadium‐based volatile threshold switching memristor are constructed. This compact neuristor encompasses multiple functionalities including the conversion of optical impulses into electrical signals, modifiable post‐synaptic current‐enhanced features, and the implementation of leaky integrate‐and‐fire (LIF) spiking generation behavior, showcasing the capability of information delivery in SNNs. The spiking activity within the proposed configuration can be effectively modulated through the interplay of optical and electrical stimuli. Additionally, the excitatory and inhibitory properties manifested by the spiking behavior underscore the gate‐tunable neuron excitability. Notably, the capacity for accommodating hybrid inputs operation makes achievement of spike‐based associative learning by reviving the Pavlov's dog experiment in the proposed device. Moreover, this research unveils the synaptic weight‐governed spiking activity, demonstrating the sophisticated input–output characteristics of spiking behavior. The stacked memristor and transistor assembly can advance the neuromorphic technologies and lay the foundation for the realization of physical SNNs.
A stacked memristor and transistor assembly is engineered to integrate optical‐to‐electrical signal conversion, adjustable current potentiation, and controlled spiking activity. This device enables spiking behavior modulation through optical and electrical inputs, facilitating associative learning via persistent photoconductivity and threshold switching. This study also demonstrates synaptic weight‐governed spiking activity using the leaky integrate‐and‐fire principle, highlighting its applicability for neuromorphic computing. Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for energy‐efficient operation and decision making. In this work, a stacked artificial synapse and spiking neuron utilizing an indium gallium zinc oxide (IGZO) optosynaptic transistor paired with a vanadium‐based volatile threshold switching memristor are constructed. This compact neuristor encompasses multiple functionalities including the conversion of optical impulses into electrical signals, modifiable post‐synaptic current‐enhanced features, and the implementation of leaky integrate‐and‐fire (LIF) spiking generation behavior, showcasing the capability of information delivery in SNNs. The spiking activity within the proposed configuration can be effectively modulated through the interplay of optical and electrical stimuli. Additionally, the excitatory and inhibitory properties manifested by the spiking behavior underscore the gate‐tunable neuron excitability. Notably, the capacity for accommodating hybrid inputs operation makes achievement of spike‐based associative learning by reviving the Pavlov's dog experiment in the proposed device. Moreover, this research unveils the synaptic weight‐governed spiking activity, demonstrating the sophisticated input–output characteristics of spiking behavior. The stacked memristor and transistor assembly can advance the neuromorphic technologies and lay the foundation for the realization of physical SNNs. |
Author | Lin, Pei‐Lin Huang, Ya‐Chi Chen, Jen‐Sue Chen, Shuai‐Ming Chen, Kuan‐Ting Liao, Zih‐Siao |
Author_xml | – sequence: 1 givenname: Kuan‐Ting orcidid: 0000-0002-5834-870X surname: Chen fullname: Chen, Kuan‐Ting organization: National Cheng Kung University – sequence: 2 givenname: Pei‐Lin surname: Lin fullname: Lin, Pei‐Lin organization: National Cheng Kung University – sequence: 3 givenname: Ya‐Chi surname: Huang fullname: Huang, Ya‐Chi organization: National Cheng Kung University – sequence: 4 givenname: Shuai‐Ming surname: Chen fullname: Chen, Shuai‐Ming organization: National Cheng Kung University – sequence: 5 givenname: Zih‐Siao surname: Liao fullname: Liao, Zih‐Siao organization: National Cheng Kung University – sequence: 6 givenname: Jen‐Sue orcidid: 0000-0002-5973-8670 surname: Chen fullname: Chen, Jen‐Sue email: jenschen@ncku.edu.tw organization: National Cheng Kung University |
BookMark | eNqFkctKAzEUhoMo2Fa3rgOuW5NMOpNZlmpVqBewgrshk2Ta1GkyJhlLdz6CD-DT-SROWy8giKscyP99B87fBrvGGgXAEUY9jBA54bJY9AgiFBPaJzughWMcdyNE2O73jB_2Qdv7OUI4SSLaAm9nz8qE95fXU6ebCV6r2tmq5D5oocMKciPhXaUftZnCKyvrkgdtDdQGcng7s8GqUongtNiQ2gfr4NCaQk9rpyTMV3Ayc8rPbNl4ljqI2cakFp_Ztf-m-tJY04gmjhu_-T0AewUvvTr8fDvgfnQ2GV50xzfnl8PBuCsinJBuH_NcMoyjlBNBIoExUzEmEYv7sWJSConynNFccpokgiOCijgVaU7jhHEqadQBx1tv5exTrXzI5rZ2plmZRbhPWIxSljSp3jYlnPXeqSKrnF5wt8owytYNZOsGsu8GGoD-ApqTbu4XHNfl31i6xZa6VKt_lmSD09HVD_sBBvOicQ |
CitedBy_id | crossref_primary_10_1002_adfm_202424382 |
Cites_doi | 10.1002/adfm.202302899 10.1002/adma.201805284 10.1146/annurev.neuro.23.1.649 10.1002/inf2.12473 10.1021/acs.nanolett.0c03652 10.1002/adfm.202002325 10.1038/s41427-018-0061-2 10.1038/s43588-021-00184-y 10.1002/aelm.202300098 10.1038/s41467-018-07052-w 10.1038/sj.npp.1301559 10.1038/nrn1327 10.1038/s41467-024-45992-8 10.1038/s41467-020-17215-3 10.1002/adom.202200558 10.1038/s41467-023-39143-8 10.1146/annurev.biophys.093008.131400 10.1038/nmat3256 10.1016/j.neuron.2007.11.008 10.1063/5.0185502 10.1126/science.1238411 10.1021/acs.nanolett.0c02892 10.1002/adfm.202111996 10.1038/s41467-017-02717-4 10.1002/smll.201900966 10.1002/adfm.202005582 10.1002/adfm.202314456 10.1021/acsnano.4c02278 10.1063/1.5037990 10.1063/1.3597299 10.1038/s41467-017-00869-x 10.1002/adma.202301924 10.1002/advs.202301323 10.1002/smll.202305234 10.1146/annurev.psych.48.1.573 10.1002/adma.202307334 10.1167/iovs.09-4396 10.1002/adma.202201895 10.1021/acsnano.3c10181 10.1155/2016/8607038 10.1002/adma.201302046 10.1038/nrn3708 10.1002/advs.202303447 10.1038/s41586-020-2735-5 10.1002/adfm.202302885 10.1016/j.neunet.2019.11.022 10.1021/acsnano.1c04676 10.1126/science.aas9160 10.1002/wcs.1225 10.1126/sciadv.ade4838 10.1016/j.matt.2022.11.022 10.1002/aelm.202201006 10.1109/LED.2019.2921656 10.1063/1.116699 10.1038/s41598-018-26580-5 10.1016/j.neuron.2009.12.009 10.1162/neco.2008.12-07-680 10.1063/1.3082005 10.1103/PhysRevApplied.6.054018 10.1038/s41563-017-0001-5 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202412452 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202412452 ADFM202412452 |
Genre | article |
GrantInformation_xml | – fundername: National Science and Technology Council funderid: 113‐2223‐E‐006‐004; 113‐2124‐M‐006‐008‐MY3; 112‐2926‐I‐006‐502‐G |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ 53G AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADMLS ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3172-51abd81139a2c23c118e61238656e8ddcd0bb84bda477ca020f69c9b4678a4d43 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Wed Aug 13 04:55:24 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Tue Jul 01 04:15:39 EDT 2025 Mon Aug 11 05:48:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3172-51abd81139a2c23c118e61238656e8ddcd0bb84bda477ca020f69c9b4678a4d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5973-8670 0000-0002-5834-870X |
PQID | 3152860987 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3152860987 crossref_primary_10_1002_adfm_202412452 crossref_citationtrail_10_1002_adfm_202412452 wiley_primary_10_1002_adfm_202412452_ADFM202412452 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 8 2023; 35 2013; 25 2013; 4 2018; 360 2023; 33 2020; 20 2023; 5 2023; 6 1997; 48 2023; 9 2019; 15 2019; 125 2011; 98 2004; 5 2016; 2016 2008; 33 2020; 123 2020; 11 2024; 34 2024; 36 2012; 11 2010; 65 2018; 9 2018; 8 2021; 31 2022; 34 2014; 15 2022; 32 1996; 68 2009; 3010 2004; 43 2023; 10 2023; 14 2009; 21 2019; 31 2000; 23 2010; 39 2023; 19 2013; 342 2020; 585 2024; 11 2009; 130 2024; 15 2007; 56 2024; 18 2016; 6 2018; 17 2021; 15 2019; 40 2020; 30 2022; 10 2022; 2 2018; 10 2010; 51 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 Chklovskii D. B. (e_1_2_8_45_1) 2004; 43 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 Linares‐Barranco B. (e_1_2_8_62_1) 2009; 3010 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 4 start-page: 237 year: 2013 publication-title: Cognit. Sci. – volume: 2016 year: 2016 publication-title: Neural Plast. – volume: 8 start-page: 8153 year: 2018 publication-title: Sci. Rep. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 11 start-page: 301 year: 2012 publication-title: Nat. Mater. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 43 start-page: 609 year: 2004 publication-title: Neuron – volume: 6 year: 2016 publication-title: Phys. Rev. Appl. – volume: 585 start-page: 518 year: 2020 publication-title: Nature – volume: 56 start-page: 771 year: 2007 publication-title: Neuron – volume: 130 year: 2009 publication-title: J. Chem. Phys. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 709 year: 2018 publication-title: Nat. Commun. – volume: 34 year: 2024 publication-title: Adv. Funct. Mater. – volume: 19 year: 2023 publication-title: Small – volume: 23 start-page: 649 year: 2000 publication-title: Annu. Rev. Neurosci. – volume: 39 start-page: 329 year: 2010 publication-title: Annu. Rev. Biophys. – volume: 342 year: 2013 publication-title: Science – volume: 18 year: 2024 publication-title: ACS Nano – volume: 9 year: 2023 publication-title: Adv. Electron. Mater. – volume: 2 start-page: 10 year: 2022 publication-title: Nat. Comput. Sci. – volume: 14 start-page: 3444 year: 2023 publication-title: Nat. Commun. – volume: 17 start-page: 335 year: 2018 publication-title: Nat. Mater. – volume: 20 start-page: 8015 year: 2020 publication-title: Nano Lett. – volume: 48 start-page: 573 year: 1997 publication-title: Annu. Rev. Psychol. – volume: 3010 start-page: 1 year: 2009 publication-title: Nat. Preced. – volume: 11 start-page: 3399 year: 2020 publication-title: Nat. Commun. – volume: 15 start-page: 250 year: 2014 publication-title: Nat. Rev. Neurosci. – volume: 15 start-page: 1693 year: 2024 publication-title: Nat. Commun. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 20 start-page: 8781 year: 2020 publication-title: Nano Lett. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 9 start-page: 4661 year: 2018 publication-title: Nat. Commun. – volume: 51 start-page: 1264 year: 2010 publication-title: Invest. Ophthalmol. Visual Sci. – volume: 6 start-page: 537 year: 2023 publication-title: Matter – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 360 start-page: 1447 year: 2018 publication-title: Science – volume: 25 start-page: 6128 year: 2013 publication-title: Adv. Mater. – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 125 year: 2019 publication-title: J. Appl. Phys. – volume: 68 start-page: 403 year: 1996 publication-title: Appl. Phys. Lett. – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 4838 year: 2023 publication-title: Sci. Adv. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 40 start-page: 1313 year: 2019 publication-title: IEEE Electron Device Lett. – volume: 10 start-page: 581 year: 2018 publication-title: NPG Asia Mater. – volume: 8 start-page: 882 year: 2017 publication-title: Nat. Commun. – volume: 21 start-page: 704 year: 2009 publication-title: Neural Comput. – volume: 5 start-page: 97 year: 2004 publication-title: Nat. Rev. Neurosci. – volume: 123 start-page: 38 year: 2020 publication-title: Neural Networks – volume: 18 start-page: 1241 year: 2024 publication-title: ACS Nano – volume: 11 year: 2024 publication-title: Appl. Phys. Rev. – volume: 33 start-page: 18 year: 2008 publication-title: Neuropsychopharmacology – volume: 65 start-page: 150 year: 2010 publication-title: Neuron – volume: 5 year: 2023 publication-title: InfoMat – ident: e_1_2_8_22_1 doi: 10.1002/adfm.202302899 – ident: e_1_2_8_43_1 doi: 10.1002/adma.201805284 – ident: e_1_2_8_46_1 doi: 10.1146/annurev.neuro.23.1.649 – ident: e_1_2_8_5_1 doi: 10.1002/inf2.12473 – ident: e_1_2_8_34_1 doi: 10.1021/acs.nanolett.0c03652 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.202002325 – ident: e_1_2_8_17_1 doi: 10.1038/s41427-018-0061-2 – ident: e_1_2_8_8_1 doi: 10.1038/s43588-021-00184-y – ident: e_1_2_8_24_1 doi: 10.1002/aelm.202300098 – ident: e_1_2_8_15_1 doi: 10.1038/s41467-018-07052-w – ident: e_1_2_8_48_1 doi: 10.1038/sj.npp.1301559 – ident: e_1_2_8_60_1 doi: 10.1038/nrn1327 – volume: 3010 start-page: 1 year: 2009 ident: e_1_2_8_62_1 publication-title: Nat. Preced. – ident: e_1_2_8_16_1 doi: 10.1038/s41467-024-45992-8 – ident: e_1_2_8_13_1 doi: 10.1038/s41467-020-17215-3 – ident: e_1_2_8_23_1 doi: 10.1002/adom.202200558 – ident: e_1_2_8_37_1 doi: 10.1038/s41467-023-39143-8 – ident: e_1_2_8_1_1 doi: 10.1146/annurev.biophys.093008.131400 – ident: e_1_2_8_56_1 doi: 10.1038/nmat3256 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuron.2007.11.008 – ident: e_1_2_8_21_1 doi: 10.1063/5.0185502 – ident: e_1_2_8_57_1 doi: 10.1126/science.1238411 – volume: 43 start-page: 609 year: 2004 ident: e_1_2_8_45_1 publication-title: Neuron – ident: e_1_2_8_35_1 doi: 10.1021/acs.nanolett.0c02892 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.202111996 – ident: e_1_2_8_49_1 doi: 10.1038/s41467-017-02717-4 – ident: e_1_2_8_20_1 doi: 10.1002/smll.201900966 – ident: e_1_2_8_26_1 doi: 10.1002/adfm.202005582 – ident: e_1_2_8_36_1 doi: 10.1002/adfm.202314456 – ident: e_1_2_8_27_1 doi: 10.1021/acsnano.4c02278 – ident: e_1_2_8_18_1 doi: 10.1063/1.5037990 – ident: e_1_2_8_25_1 doi: 10.1063/1.3597299 – ident: e_1_2_8_40_1 doi: 10.1038/s41467-017-00869-x – ident: e_1_2_8_11_1 doi: 10.1002/adma.202301924 – ident: e_1_2_8_9_1 doi: 10.1002/advs.202301323 – ident: e_1_2_8_31_1 doi: 10.1002/smll.202305234 – ident: e_1_2_8_59_1 doi: 10.1146/annurev.psych.48.1.573 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202307334 – ident: e_1_2_8_38_1 doi: 10.1167/iovs.09-4396 – ident: e_1_2_8_33_1 doi: 10.1002/adma.202201895 – ident: e_1_2_8_7_1 doi: 10.1021/acsnano.3c10181 – ident: e_1_2_8_47_1 doi: 10.1155/2016/8607038 – ident: e_1_2_8_39_1 doi: 10.1002/adma.201302046 – ident: e_1_2_8_44_1 doi: 10.1038/nrn3708 – ident: e_1_2_8_4_1 doi: 10.1002/advs.202303447 – ident: e_1_2_8_14_1 doi: 10.1038/s41586-020-2735-5 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.202302885 – ident: e_1_2_8_61_1 doi: 10.1016/j.neunet.2019.11.022 – ident: e_1_2_8_42_1 doi: 10.1021/acsnano.1c04676 – ident: e_1_2_8_3_1 doi: 10.1126/science.aas9160 – ident: e_1_2_8_58_1 doi: 10.1002/wcs.1225 – ident: e_1_2_8_30_1 doi: 10.1126/sciadv.ade4838 – ident: e_1_2_8_6_1 doi: 10.1016/j.matt.2022.11.022 – ident: e_1_2_8_10_1 doi: 10.1002/aelm.202201006 – ident: e_1_2_8_29_1 doi: 10.1109/LED.2019.2921656 – ident: e_1_2_8_52_1 doi: 10.1063/1.116699 – ident: e_1_2_8_55_1 doi: 10.1038/s41598-018-26580-5 – ident: e_1_2_8_2_1 doi: 10.1016/j.neuron.2009.12.009 – ident: e_1_2_8_50_1 doi: 10.1162/neco.2008.12-07-680 – ident: e_1_2_8_53_1 doi: 10.1063/1.3082005 – ident: e_1_2_8_54_1 doi: 10.1103/PhysRevApplied.6.054018 – ident: e_1_2_8_41_1 doi: 10.1038/s41563-017-0001-5 |
SSID | ssj0017734 |
Score | 2.4818192 |
Snippet | Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | artificial neuron associative learning Electrical stimuli Gallium Indium gallium zinc oxide leaky integrate‐and‐fire Memristors Neural networks Neuromorphic computing Neuroplasticity Optical properties Optoelectronics optosynapse Photoelectricity Spiking spiking neural network Transistors |
Title | Event‐Driven Neuroplasticity and Spiking Modulation in a Photoelectric Neuristor Configured by Threshold Switching Memristor and Optoelectronic Transistor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202412452 https://www.proquest.com/docview/3152860987 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA7iSQ-7vhbHFzkInlo76Uw_jqIOIoyKD5hbk6TSu81qzzDTg-jJn-AP8Nf5S0ylH47CsrB7bDopupOqypdK5StCdoNMMGEk85jm4Imwa20OVNcDHyDzVQKBwnhH_zw8vRVng-5g5hZ_xQ_RBtzQMpy_RgOXanLwQRoqIcOb5BzLJ3fRCWPCFqKiq5Y_ikVRdawcMkzwYoOGtdHnB5-7f16VPqDmLGB1K07vO5HNt1aJJr_3p6Xa109faBz_52eWyLcajtLDSn-WyZwpVsjiDEnhKnk9wZTIt-eX4zF6RuroPEYWdGM-dvlIZQH0epRjyJ32h1CXA6N5QSW9_DUsh1WlnVy7no6VhOI9w_zndGyAqkd6Y_Vpgsdg9PohL11yJ-2b-7otyr8YNWKQyZe6Bda9XSO3vZObo1OvrungaYtU7L6XSQUxs7hTcs0Dbfc3BhlgYosrTQygwVcqFgqkiCItLZjNwkQnyvrzWAoQwQ8yXwwLs06oRTYisugPhNQi04GSkQl0hi6FZyJhHeI1c5rqmvAc627cpRVVM09x1NN21Dtkr20_qqg-_thyq1GRtDb5SRpYJBSHfhJHHcLdXP9FSnp43Ou3Txv_0mmTLHCsR-xCQltkvhxPzbYFSaXacYbwDqAtDXc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqOBQOpS2gLlDqQ6WeArHjzc8RFVZLS2hVFolbZHscGkGzqyUrBCcegQfo0_VJ6nF-gEoIiR6j2FZie8afx-PvI-RjkAsmjGQe0xw8EfatzYHqe-AD5L5KIFAY70gPw-Gx-HLSb7MJ8S5MzQ_RBdzQMpy_RgPHgPT2HWuohByvknPUT-5bLzyPst5uV_WjY5BiUVQfLIcMU7zYScvb6PPth_Ufrkt3YPM-ZHVrzmCJqPZr61STs61Zpbb09T9Ejv_1O6_JqwaR0p16Cr0hL0z5lize4ylcJr_3MCvyz83t7hSdI3WMHhOLuzElu7qisgR6NCkw6k7TMTSKYLQoqaTff46rcS22U2hX0xGTULxqWJzOpgaouqIjO6Uu8CSMHl0WlcvvpKn51ZTF9r9N2maQzJe6Nda9XSHHg73R56HXyDp42oIVu_VlUkHMLPSUXPNA2y2OQRKY2EJLEwNo8JWKhQIpokhLi2fzMNGJsi49lgJEsErmynFp3hFqwY2ILAAEIbXIdaBkZAKdo1fhuUhYj3jtoGa64TxH6Y3zrGZr5hn2etb1eo986spParaPR0tutHMka6z-IgssGIpDP4mjHuFusJ9oJdvZHaTd09pzKn0gL4ej9CA72D_8uk4WOMoTuwjRBpmrpjPz3mKmSm06q_gLZh8Rkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkVB7KI9SsbC0PiD1lDZ2vHkcK3ZXbWFL1Ye0t8j2OCWCZqNtVqic-An8AH4dvwSP8-i2UoUExyi2ldgz48_jmW8IeRdkggkjmcc0B0-EA6tzoAYe-ACZrxIIFPo7JsfhwYU4mg6mS1n8NT9E53BDzXD2GhW8hGzvljRUQoaZ5BzLJw-sEX4sQj9GuR6edgRSLIrqe-WQYYQXm7a0jT7fu9v_7rZ0izWXEavbcsZPiWw_to40-bK7qNSu_n6Px_F__uYZWW_wKN2vBeg5eWSKF2RtiaVwg_waYUzk7x8_h3M0jdTxeZQWdWNAdnVDZQH0rMzR504nM2jqgdG8oJKefJ5Vs7rUTq5dT0dLQjHRML9czA1QdUPPrUBd4z0YPfuWVy66k07MVdMWx_9UtsMglS91O6x7-5JcjEfn7w-8pqiDpy1UsQdfJhXEzAJPyTUPtD3gGKSAiS2wNDGABl-pWCiQIoq0tGg2CxOdKGvQYylABJtkpZgV5hWhFtqIyMI_EFKLTAdKRibQGdoUnomE9YjXrmmqG8ZzLLzxNa25mnmKs552s94jO137sub6eLBlvxWRtNH56zSwUCgO_SSOeoS7tf7LKOn-cDzpnl7_S6dt8uRkOE4_Hh5_eENWOdYmdu6hPlmp5gvz1gKmSm05nfgDRLUQSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event%E2%80%90Driven+Neuroplasticity+and+Spiking+Modulation+in+a+Photoelectric+Neuristor+Configured+by+Threshold+Switching+Memristor+and+Optoelectronic+Transistor&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Kuan%E2%80%90Ting&rft.au=Lin%2C+Pei%E2%80%90Lin&rft.au=Huang%2C+Ya%E2%80%90Chi&rft.au=Chen%2C+Shuai%E2%80%90Ming&rft.date=2025-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=2&rft_id=info:doi/10.1002%2Fadfm.202412452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202412452 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |