Event‐Driven Neuroplasticity and Spiking Modulation in a Photoelectric Neuristor Configured by Threshold Switching Memristor and Optoelectronic Transistor

Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for energy‐efficient operation and decision making. In this work, a stacked artificial synapse and spiking neuron utilizing an indium gallium zinc...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 35; no. 2
Main Authors Chen, Kuan‐Ting, Lin, Pei‐Lin, Huang, Ya‐Chi, Chen, Shuai‐Ming, Liao, Zih‐Siao, Chen, Jen‐Sue
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for energy‐efficient operation and decision making. In this work, a stacked artificial synapse and spiking neuron utilizing an indium gallium zinc oxide (IGZO) optosynaptic transistor paired with a vanadium‐based volatile threshold switching memristor are constructed. This compact neuristor encompasses multiple functionalities including the conversion of optical impulses into electrical signals, modifiable post‐synaptic current‐enhanced features, and the implementation of leaky integrate‐and‐fire (LIF) spiking generation behavior, showcasing the capability of information delivery in SNNs. The spiking activity within the proposed configuration can be effectively modulated through the interplay of optical and electrical stimuli. Additionally, the excitatory and inhibitory properties manifested by the spiking behavior underscore the gate‐tunable neuron excitability. Notably, the capacity for accommodating hybrid inputs operation makes achievement of spike‐based associative learning by reviving the Pavlov's dog experiment in the proposed device. Moreover, this research unveils the synaptic weight‐governed spiking activity, demonstrating the sophisticated input–output characteristics of spiking behavior. The stacked memristor and transistor assembly can advance the neuromorphic technologies and lay the foundation for the realization of physical SNNs. A stacked memristor and transistor assembly is engineered to integrate optical‐to‐electrical signal conversion, adjustable current potentiation, and controlled spiking activity. This device enables spiking behavior modulation through optical and electrical inputs, facilitating associative learning via persistent photoconductivity and threshold switching. This study also demonstrates synaptic weight‐governed spiking activity using the leaky integrate‐and‐fire principle, highlighting its applicability for neuromorphic computing.
AbstractList Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for energy‐efficient operation and decision making. In this work, a stacked artificial synapse and spiking neuron utilizing an indium gallium zinc oxide (IGZO) optosynaptic transistor paired with a vanadium‐based volatile threshold switching memristor are constructed. This compact neuristor encompasses multiple functionalities including the conversion of optical impulses into electrical signals, modifiable post‐synaptic current‐enhanced features, and the implementation of leaky integrate‐and‐fire (LIF) spiking generation behavior, showcasing the capability of information delivery in SNNs. The spiking activity within the proposed configuration can be effectively modulated through the interplay of optical and electrical stimuli. Additionally, the excitatory and inhibitory properties manifested by the spiking behavior underscore the gate‐tunable neuron excitability. Notably, the capacity for accommodating hybrid inputs operation makes achievement of spike‐based associative learning by reviving the Pavlov's dog experiment in the proposed device. Moreover, this research unveils the synaptic weight‐governed spiking activity, demonstrating the sophisticated input–output characteristics of spiking behavior. The stacked memristor and transistor assembly can advance the neuromorphic technologies and lay the foundation for the realization of physical SNNs. A stacked memristor and transistor assembly is engineered to integrate optical‐to‐electrical signal conversion, adjustable current potentiation, and controlled spiking activity. This device enables spiking behavior modulation through optical and electrical inputs, facilitating associative learning via persistent photoconductivity and threshold switching. This study also demonstrates synaptic weight‐governed spiking activity using the leaky integrate‐and‐fire principle, highlighting its applicability for neuromorphic computing.
Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for energy‐efficient operation and decision making. In this work, a stacked artificial synapse and spiking neuron utilizing an indium gallium zinc oxide (IGZO) optosynaptic transistor paired with a vanadium‐based volatile threshold switching memristor are constructed. This compact neuristor encompasses multiple functionalities including the conversion of optical impulses into electrical signals, modifiable post‐synaptic current‐enhanced features, and the implementation of leaky integrate‐and‐fire (LIF) spiking generation behavior, showcasing the capability of information delivery in SNNs. The spiking activity within the proposed configuration can be effectively modulated through the interplay of optical and electrical stimuli. Additionally, the excitatory and inhibitory properties manifested by the spiking behavior underscore the gate‐tunable neuron excitability. Notably, the capacity for accommodating hybrid inputs operation makes achievement of spike‐based associative learning by reviving the Pavlov's dog experiment in the proposed device. Moreover, this research unveils the synaptic weight‐governed spiking activity, demonstrating the sophisticated input–output characteristics of spiking behavior. The stacked memristor and transistor assembly can advance the neuromorphic technologies and lay the foundation for the realization of physical SNNs.
Author Lin, Pei‐Lin
Huang, Ya‐Chi
Chen, Jen‐Sue
Chen, Shuai‐Ming
Chen, Kuan‐Ting
Liao, Zih‐Siao
Author_xml – sequence: 1
  givenname: Kuan‐Ting
  orcidid: 0000-0002-5834-870X
  surname: Chen
  fullname: Chen, Kuan‐Ting
  organization: National Cheng Kung University
– sequence: 2
  givenname: Pei‐Lin
  surname: Lin
  fullname: Lin, Pei‐Lin
  organization: National Cheng Kung University
– sequence: 3
  givenname: Ya‐Chi
  surname: Huang
  fullname: Huang, Ya‐Chi
  organization: National Cheng Kung University
– sequence: 4
  givenname: Shuai‐Ming
  surname: Chen
  fullname: Chen, Shuai‐Ming
  organization: National Cheng Kung University
– sequence: 5
  givenname: Zih‐Siao
  surname: Liao
  fullname: Liao, Zih‐Siao
  organization: National Cheng Kung University
– sequence: 6
  givenname: Jen‐Sue
  orcidid: 0000-0002-5973-8670
  surname: Chen
  fullname: Chen, Jen‐Sue
  email: jenschen@ncku.edu.tw
  organization: National Cheng Kung University
BookMark eNqFkctKAzEUhoMo2Fa3rgOuW5NMOpNZlmpVqBewgrshk2Ta1GkyJhlLdz6CD-DT-SROWy8giKscyP99B87fBrvGGgXAEUY9jBA54bJY9AgiFBPaJzughWMcdyNE2O73jB_2Qdv7OUI4SSLaAm9nz8qE95fXU6ebCV6r2tmq5D5oocMKciPhXaUftZnCKyvrkgdtDdQGcng7s8GqUongtNiQ2gfr4NCaQk9rpyTMV3Ayc8rPbNl4ljqI2cakFp_Ztf-m-tJY04gmjhu_-T0AewUvvTr8fDvgfnQ2GV50xzfnl8PBuCsinJBuH_NcMoyjlBNBIoExUzEmEYv7sWJSConynNFccpokgiOCijgVaU7jhHEqadQBx1tv5exTrXzI5rZ2plmZRbhPWIxSljSp3jYlnPXeqSKrnF5wt8owytYNZOsGsu8GGoD-ApqTbu4XHNfl31i6xZa6VKt_lmSD09HVD_sBBvOicQ
CitedBy_id crossref_primary_10_1002_adfm_202424382
Cites_doi 10.1002/adfm.202302899
10.1002/adma.201805284
10.1146/annurev.neuro.23.1.649
10.1002/inf2.12473
10.1021/acs.nanolett.0c03652
10.1002/adfm.202002325
10.1038/s41427-018-0061-2
10.1038/s43588-021-00184-y
10.1002/aelm.202300098
10.1038/s41467-018-07052-w
10.1038/sj.npp.1301559
10.1038/nrn1327
10.1038/s41467-024-45992-8
10.1038/s41467-020-17215-3
10.1002/adom.202200558
10.1038/s41467-023-39143-8
10.1146/annurev.biophys.093008.131400
10.1038/nmat3256
10.1016/j.neuron.2007.11.008
10.1063/5.0185502
10.1126/science.1238411
10.1021/acs.nanolett.0c02892
10.1002/adfm.202111996
10.1038/s41467-017-02717-4
10.1002/smll.201900966
10.1002/adfm.202005582
10.1002/adfm.202314456
10.1021/acsnano.4c02278
10.1063/1.5037990
10.1063/1.3597299
10.1038/s41467-017-00869-x
10.1002/adma.202301924
10.1002/advs.202301323
10.1002/smll.202305234
10.1146/annurev.psych.48.1.573
10.1002/adma.202307334
10.1167/iovs.09-4396
10.1002/adma.202201895
10.1021/acsnano.3c10181
10.1155/2016/8607038
10.1002/adma.201302046
10.1038/nrn3708
10.1002/advs.202303447
10.1038/s41586-020-2735-5
10.1002/adfm.202302885
10.1016/j.neunet.2019.11.022
10.1021/acsnano.1c04676
10.1126/science.aas9160
10.1002/wcs.1225
10.1126/sciadv.ade4838
10.1016/j.matt.2022.11.022
10.1002/aelm.202201006
10.1109/LED.2019.2921656
10.1063/1.116699
10.1038/s41598-018-26580-5
10.1016/j.neuron.2009.12.009
10.1162/neco.2008.12-07-680
10.1063/1.3082005
10.1103/PhysRevApplied.6.054018
10.1038/s41563-017-0001-5
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
2025 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
– notice: 2025 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202412452
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202412452
ADFM202412452
Genre article
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: 113‐2223‐E‐006‐004; 113‐2124‐M‐006‐008‐MY3; 112‐2926‐I‐006‐502‐G
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
53G
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADMLS
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3172-51abd81139a2c23c118e61238656e8ddcd0bb84bda477ca020f69c9b4678a4d43
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Wed Aug 13 04:55:24 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Tue Jul 01 04:15:39 EDT 2025
Mon Aug 11 05:48:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-51abd81139a2c23c118e61238656e8ddcd0bb84bda477ca020f69c9b4678a4d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5973-8670
0000-0002-5834-870X
PQID 3152860987
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3152860987
crossref_primary_10_1002_adfm_202412452
crossref_citationtrail_10_1002_adfm_202412452
wiley_primary_10_1002_adfm_202412452_ADFM202412452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 8
2023; 35
2013; 25
2013; 4
2018; 360
2023; 33
2020; 20
2023; 5
2023; 6
1997; 48
2023; 9
2019; 15
2019; 125
2011; 98
2004; 5
2016; 2016
2008; 33
2020; 123
2020; 11
2024; 34
2024; 36
2012; 11
2010; 65
2018; 9
2018; 8
2021; 31
2022; 34
2014; 15
2022; 32
1996; 68
2009; 3010
2004; 43
2023; 10
2023; 14
2009; 21
2019; 31
2000; 23
2010; 39
2023; 19
2013; 342
2020; 585
2024; 11
2009; 130
2024; 15
2007; 56
2024; 18
2016; 6
2018; 17
2021; 15
2019; 40
2020; 30
2022; 10
2022; 2
2018; 10
2010; 51
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
Chklovskii D. B. (e_1_2_8_45_1) 2004; 43
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Linares‐Barranco B. (e_1_2_8_62_1) 2009; 3010
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 4
  start-page: 237
  year: 2013
  publication-title: Cognit. Sci.
– volume: 2016
  year: 2016
  publication-title: Neural Plast.
– volume: 8
  start-page: 8153
  year: 2018
  publication-title: Sci. Rep.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 11
  start-page: 301
  year: 2012
  publication-title: Nat. Mater.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 43
  start-page: 609
  year: 2004
  publication-title: Neuron
– volume: 6
  year: 2016
  publication-title: Phys. Rev. Appl.
– volume: 585
  start-page: 518
  year: 2020
  publication-title: Nature
– volume: 56
  start-page: 771
  year: 2007
  publication-title: Neuron
– volume: 130
  year: 2009
  publication-title: J. Chem. Phys.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 709
  year: 2018
  publication-title: Nat. Commun.
– volume: 34
  year: 2024
  publication-title: Adv. Funct. Mater.
– volume: 19
  year: 2023
  publication-title: Small
– volume: 23
  start-page: 649
  year: 2000
  publication-title: Annu. Rev. Neurosci.
– volume: 39
  start-page: 329
  year: 2010
  publication-title: Annu. Rev. Biophys.
– volume: 342
  year: 2013
  publication-title: Science
– volume: 18
  year: 2024
  publication-title: ACS Nano
– volume: 9
  year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 2
  start-page: 10
  year: 2022
  publication-title: Nat. Comput. Sci.
– volume: 14
  start-page: 3444
  year: 2023
  publication-title: Nat. Commun.
– volume: 17
  start-page: 335
  year: 2018
  publication-title: Nat. Mater.
– volume: 20
  start-page: 8015
  year: 2020
  publication-title: Nano Lett.
– volume: 48
  start-page: 573
  year: 1997
  publication-title: Annu. Rev. Psychol.
– volume: 3010
  start-page: 1
  year: 2009
  publication-title: Nat. Preced.
– volume: 11
  start-page: 3399
  year: 2020
  publication-title: Nat. Commun.
– volume: 15
  start-page: 250
  year: 2014
  publication-title: Nat. Rev. Neurosci.
– volume: 15
  start-page: 1693
  year: 2024
  publication-title: Nat. Commun.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 20
  start-page: 8781
  year: 2020
  publication-title: Nano Lett.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 9
  start-page: 4661
  year: 2018
  publication-title: Nat. Commun.
– volume: 51
  start-page: 1264
  year: 2010
  publication-title: Invest. Ophthalmol. Visual Sci.
– volume: 6
  start-page: 537
  year: 2023
  publication-title: Matter
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 360
  start-page: 1447
  year: 2018
  publication-title: Science
– volume: 25
  start-page: 6128
  year: 2013
  publication-title: Adv. Mater.
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 125
  year: 2019
  publication-title: J. Appl. Phys.
– volume: 68
  start-page: 403
  year: 1996
  publication-title: Appl. Phys. Lett.
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 4838
  year: 2023
  publication-title: Sci. Adv.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 1313
  year: 2019
  publication-title: IEEE Electron Device Lett.
– volume: 10
  start-page: 581
  year: 2018
  publication-title: NPG Asia Mater.
– volume: 8
  start-page: 882
  year: 2017
  publication-title: Nat. Commun.
– volume: 21
  start-page: 704
  year: 2009
  publication-title: Neural Comput.
– volume: 5
  start-page: 97
  year: 2004
  publication-title: Nat. Rev. Neurosci.
– volume: 123
  start-page: 38
  year: 2020
  publication-title: Neural Networks
– volume: 18
  start-page: 1241
  year: 2024
  publication-title: ACS Nano
– volume: 11
  year: 2024
  publication-title: Appl. Phys. Rev.
– volume: 33
  start-page: 18
  year: 2008
  publication-title: Neuropsychopharmacology
– volume: 65
  start-page: 150
  year: 2010
  publication-title: Neuron
– volume: 5
  year: 2023
  publication-title: InfoMat
– ident: e_1_2_8_22_1
  doi: 10.1002/adfm.202302899
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.201805284
– ident: e_1_2_8_46_1
  doi: 10.1146/annurev.neuro.23.1.649
– ident: e_1_2_8_5_1
  doi: 10.1002/inf2.12473
– ident: e_1_2_8_34_1
  doi: 10.1021/acs.nanolett.0c03652
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.202002325
– ident: e_1_2_8_17_1
  doi: 10.1038/s41427-018-0061-2
– ident: e_1_2_8_8_1
  doi: 10.1038/s43588-021-00184-y
– ident: e_1_2_8_24_1
  doi: 10.1002/aelm.202300098
– ident: e_1_2_8_15_1
  doi: 10.1038/s41467-018-07052-w
– ident: e_1_2_8_48_1
  doi: 10.1038/sj.npp.1301559
– ident: e_1_2_8_60_1
  doi: 10.1038/nrn1327
– volume: 3010
  start-page: 1
  year: 2009
  ident: e_1_2_8_62_1
  publication-title: Nat. Preced.
– ident: e_1_2_8_16_1
  doi: 10.1038/s41467-024-45992-8
– ident: e_1_2_8_13_1
  doi: 10.1038/s41467-020-17215-3
– ident: e_1_2_8_23_1
  doi: 10.1002/adom.202200558
– ident: e_1_2_8_37_1
  doi: 10.1038/s41467-023-39143-8
– ident: e_1_2_8_1_1
  doi: 10.1146/annurev.biophys.093008.131400
– ident: e_1_2_8_56_1
  doi: 10.1038/nmat3256
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuron.2007.11.008
– ident: e_1_2_8_21_1
  doi: 10.1063/5.0185502
– ident: e_1_2_8_57_1
  doi: 10.1126/science.1238411
– volume: 43
  start-page: 609
  year: 2004
  ident: e_1_2_8_45_1
  publication-title: Neuron
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.nanolett.0c02892
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.202111996
– ident: e_1_2_8_49_1
  doi: 10.1038/s41467-017-02717-4
– ident: e_1_2_8_20_1
  doi: 10.1002/smll.201900966
– ident: e_1_2_8_26_1
  doi: 10.1002/adfm.202005582
– ident: e_1_2_8_36_1
  doi: 10.1002/adfm.202314456
– ident: e_1_2_8_27_1
  doi: 10.1021/acsnano.4c02278
– ident: e_1_2_8_18_1
  doi: 10.1063/1.5037990
– ident: e_1_2_8_25_1
  doi: 10.1063/1.3597299
– ident: e_1_2_8_40_1
  doi: 10.1038/s41467-017-00869-x
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202301924
– ident: e_1_2_8_9_1
  doi: 10.1002/advs.202301323
– ident: e_1_2_8_31_1
  doi: 10.1002/smll.202305234
– ident: e_1_2_8_59_1
  doi: 10.1146/annurev.psych.48.1.573
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202307334
– ident: e_1_2_8_38_1
  doi: 10.1167/iovs.09-4396
– ident: e_1_2_8_33_1
  doi: 10.1002/adma.202201895
– ident: e_1_2_8_7_1
  doi: 10.1021/acsnano.3c10181
– ident: e_1_2_8_47_1
  doi: 10.1155/2016/8607038
– ident: e_1_2_8_39_1
  doi: 10.1002/adma.201302046
– ident: e_1_2_8_44_1
  doi: 10.1038/nrn3708
– ident: e_1_2_8_4_1
  doi: 10.1002/advs.202303447
– ident: e_1_2_8_14_1
  doi: 10.1038/s41586-020-2735-5
– ident: e_1_2_8_19_1
  doi: 10.1002/adfm.202302885
– ident: e_1_2_8_61_1
  doi: 10.1016/j.neunet.2019.11.022
– ident: e_1_2_8_42_1
  doi: 10.1021/acsnano.1c04676
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aas9160
– ident: e_1_2_8_58_1
  doi: 10.1002/wcs.1225
– ident: e_1_2_8_30_1
  doi: 10.1126/sciadv.ade4838
– ident: e_1_2_8_6_1
  doi: 10.1016/j.matt.2022.11.022
– ident: e_1_2_8_10_1
  doi: 10.1002/aelm.202201006
– ident: e_1_2_8_29_1
  doi: 10.1109/LED.2019.2921656
– ident: e_1_2_8_52_1
  doi: 10.1063/1.116699
– ident: e_1_2_8_55_1
  doi: 10.1038/s41598-018-26580-5
– ident: e_1_2_8_2_1
  doi: 10.1016/j.neuron.2009.12.009
– ident: e_1_2_8_50_1
  doi: 10.1162/neco.2008.12-07-680
– ident: e_1_2_8_53_1
  doi: 10.1063/1.3082005
– ident: e_1_2_8_54_1
  doi: 10.1103/PhysRevApplied.6.054018
– ident: e_1_2_8_41_1
  doi: 10.1038/s41563-017-0001-5
SSID ssj0017734
Score 2.4818192
Snippet Integrating and implementing spiking neurons and synapse into neuromorphic hardware aligned with spiking neural networks (SNNs) offer significant promise for...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms artificial neuron
associative learning
Electrical stimuli
Gallium
Indium gallium zinc oxide
leaky integrate‐and‐fire
Memristors
Neural networks
Neuromorphic computing
Neuroplasticity
Optical properties
Optoelectronics
optosynapse
Photoelectricity
Spiking
spiking neural network
Transistors
Title Event‐Driven Neuroplasticity and Spiking Modulation in a Photoelectric Neuristor Configured by Threshold Switching Memristor and Optoelectronic Transistor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202412452
https://www.proquest.com/docview/3152860987
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEA7iSQ-7vhbHFzkInlo76Uw_jqIOIoyKD5hbk6TSu81qzzDTg-jJn-AP8Nf5S0ylH47CsrB7bDopupOqypdK5StCdoNMMGEk85jm4Imwa20OVNcDHyDzVQKBwnhH_zw8vRVng-5g5hZ_xQ_RBtzQMpy_RgOXanLwQRoqIcOb5BzLJ3fRCWPCFqKiq5Y_ikVRdawcMkzwYoOGtdHnB5-7f16VPqDmLGB1K07vO5HNt1aJJr_3p6Xa109faBz_52eWyLcajtLDSn-WyZwpVsjiDEnhKnk9wZTIt-eX4zF6RuroPEYWdGM-dvlIZQH0epRjyJ32h1CXA6N5QSW9_DUsh1WlnVy7no6VhOI9w_zndGyAqkd6Y_Vpgsdg9PohL11yJ-2b-7otyr8YNWKQyZe6Bda9XSO3vZObo1OvrungaYtU7L6XSQUxs7hTcs0Dbfc3BhlgYosrTQygwVcqFgqkiCItLZjNwkQnyvrzWAoQwQ8yXwwLs06oRTYisugPhNQi04GSkQl0hi6FZyJhHeI1c5rqmvAc627cpRVVM09x1NN21Dtkr20_qqg-_thyq1GRtDb5SRpYJBSHfhJHHcLdXP9FSnp43Ou3Txv_0mmTLHCsR-xCQltkvhxPzbYFSaXacYbwDqAtDXc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqOBQOpS2gLlDqQ6WeArHjzc8RFVZLS2hVFolbZHscGkGzqyUrBCcegQfo0_VJ6nF-gEoIiR6j2FZie8afx-PvI-RjkAsmjGQe0xw8EfatzYHqe-AD5L5KIFAY70gPw-Gx-HLSb7MJ8S5MzQ_RBdzQMpy_RgPHgPT2HWuohByvknPUT-5bLzyPst5uV_WjY5BiUVQfLIcMU7zYScvb6PPth_Ufrkt3YPM-ZHVrzmCJqPZr61STs61Zpbb09T9Ejv_1O6_JqwaR0p16Cr0hL0z5lize4ylcJr_3MCvyz83t7hSdI3WMHhOLuzElu7qisgR6NCkw6k7TMTSKYLQoqaTff46rcS22U2hX0xGTULxqWJzOpgaouqIjO6Uu8CSMHl0WlcvvpKn51ZTF9r9N2maQzJe6Nda9XSHHg73R56HXyDp42oIVu_VlUkHMLPSUXPNA2y2OQRKY2EJLEwNo8JWKhQIpokhLi2fzMNGJsi49lgJEsErmynFp3hFqwY2ILAAEIbXIdaBkZAKdo1fhuUhYj3jtoGa64TxH6Y3zrGZr5hn2etb1eo986spParaPR0tutHMka6z-IgssGIpDP4mjHuFusJ9oJdvZHaTd09pzKn0gL4ej9CA72D_8uk4WOMoTuwjRBpmrpjPz3mKmSm06q_gLZh8Rkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQkVB7KI9SsbC0PiD1lDZ2vHkcK3ZXbWFL1Ye0t8j2OCWCZqNtVqic-An8AH4dvwSP8-i2UoUExyi2ldgz48_jmW8IeRdkggkjmcc0B0-EA6tzoAYe-ACZrxIIFPo7JsfhwYU4mg6mS1n8NT9E53BDzXD2GhW8hGzvljRUQoaZ5BzLJw-sEX4sQj9GuR6edgRSLIrqe-WQYYQXm7a0jT7fu9v_7rZ0izWXEavbcsZPiWw_to40-bK7qNSu_n6Px_F__uYZWW_wKN2vBeg5eWSKF2RtiaVwg_waYUzk7x8_h3M0jdTxeZQWdWNAdnVDZQH0rMzR504nM2jqgdG8oJKefJ5Vs7rUTq5dT0dLQjHRML9czA1QdUPPrUBd4z0YPfuWVy66k07MVdMWx_9UtsMglS91O6x7-5JcjEfn7w-8pqiDpy1UsQdfJhXEzAJPyTUPtD3gGKSAiS2wNDGABl-pWCiQIoq0tGg2CxOdKGvQYylABJtkpZgV5hWhFtqIyMI_EFKLTAdKRibQGdoUnomE9YjXrmmqG8ZzLLzxNa25mnmKs552s94jO137sub6eLBlvxWRtNH56zSwUCgO_SSOeoS7tf7LKOn-cDzpnl7_S6dt8uRkOE4_Hh5_eENWOdYmdu6hPlmp5gvz1gKmSm05nfgDRLUQSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event%E2%80%90Driven+Neuroplasticity+and+Spiking+Modulation+in+a+Photoelectric+Neuristor+Configured+by+Threshold+Switching+Memristor+and+Optoelectronic+Transistor&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Kuan%E2%80%90Ting&rft.au=Lin%2C+Pei%E2%80%90Lin&rft.au=Huang%2C+Ya%E2%80%90Chi&rft.au=Chen%2C+Shuai%E2%80%90Ming&rft.date=2025-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=35&rft.issue=2&rft_id=info:doi/10.1002%2Fadfm.202412452&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202412452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon