Enhanced Catalytic Performance of Fe‐containing HZSM‐5 for Ethane Non‐Oxidative Dehydrogenation via Hydrothermal Post‐Treatment
A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stabil...
Saved in:
Published in | ChemCatChem Vol. 13; no. 18; pp. 4019 - 4028 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
17.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1867-3880 1867-3899 |
DOI | 10.1002/cctc.202100752 |
Cover
Abstract | A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stability with 6000 minutes time‐on‐stream. An obvious volcanic curve is observed between the ethylene generation rate and Fe content, and 1.0Fe/HZ5‐HTS exhibits the highest ethylene generation rate with 0.166 mmol C2H4 s−1 gFe−1 over different Fe loading, which is twice as much as that of 1.0Fe/HZ5‐IWI. According to various characterizations, isolated Fe3+ species and carburized Fe species are active sites, and the better catalytic performance over 1.0Fe/HZ5‐HTS is ascribed to more disperse Fe species and exposing more Fe species in the surface. Besides, the lower ethylene desorption temperature and higher ethane desorption temperature over Fe/HZ5‐HTS could suppress the overreaction of the ethylene to generate coke and increase ethane residence reaction time, resulting in less coke deposition and facilitating the catalytic performance.
Hydrothermal post‐treatment: A high‐performance ethane non‐oxidative dehydrogenation is prepared via hydrothermal post‐treatment. Isolated Fe3+ species and carburized Fe species are active sites, and the excellent catalytic performance is ascribed to more disperse Fe species and exposing more Fe species in the surface. |
---|---|
AbstractList | A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stability with 6000 minutes time‐on‐stream. An obvious volcanic curve is observed between the ethylene generation rate and Fe content, and 1.0Fe/HZ5‐HTS exhibits the highest ethylene generation rate with 0.166 mmol C2H4 s−1 gFe−1 over different Fe loading, which is twice as much as that of 1.0Fe/HZ5‐IWI. According to various characterizations, isolated Fe3+ species and carburized Fe species are active sites, and the better catalytic performance over 1.0Fe/HZ5‐HTS is ascribed to more disperse Fe species and exposing more Fe species in the surface. Besides, the lower ethylene desorption temperature and higher ethane desorption temperature over Fe/HZ5‐HTS could suppress the overreaction of the ethylene to generate coke and increase ethane residence reaction time, resulting in less coke deposition and facilitating the catalytic performance. A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stability with 6000 minutes time‐on‐stream. An obvious volcanic curve is observed between the ethylene generation rate and Fe content, and 1.0Fe/HZ5‐HTS exhibits the highest ethylene generation rate with 0.166 mmol C 2 H 4 s −1 g Fe −1 over different Fe loading, which is twice as much as that of 1.0Fe/HZ5‐IWI. According to various characterizations, isolated Fe 3+ species and carburized Fe species are active sites, and the better catalytic performance over 1.0Fe/HZ5‐HTS is ascribed to more disperse Fe species and exposing more Fe species in the surface. Besides, the lower ethylene desorption temperature and higher ethane desorption temperature over Fe/HZ5‐HTS could suppress the overreaction of the ethylene to generate coke and increase ethane residence reaction time, resulting in less coke deposition and facilitating the catalytic performance. A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stability with 6000 minutes time‐on‐stream. An obvious volcanic curve is observed between the ethylene generation rate and Fe content, and 1.0Fe/HZ5‐HTS exhibits the highest ethylene generation rate with 0.166 mmol C2H4 s−1 gFe−1 over different Fe loading, which is twice as much as that of 1.0Fe/HZ5‐IWI. According to various characterizations, isolated Fe3+ species and carburized Fe species are active sites, and the better catalytic performance over 1.0Fe/HZ5‐HTS is ascribed to more disperse Fe species and exposing more Fe species in the surface. Besides, the lower ethylene desorption temperature and higher ethane desorption temperature over Fe/HZ5‐HTS could suppress the overreaction of the ethylene to generate coke and increase ethane residence reaction time, resulting in less coke deposition and facilitating the catalytic performance. Hydrothermal post‐treatment: A high‐performance ethane non‐oxidative dehydrogenation is prepared via hydrothermal post‐treatment. Isolated Fe3+ species and carburized Fe species are active sites, and the excellent catalytic performance is ascribed to more disperse Fe species and exposing more Fe species in the surface. |
Author | Tang, Yu Wu, Lizhi Tan, Li Fu, Zhiyuan Gao, Xinhua Ren, Zhuangzhuang Wei, Jinhe |
Author_xml | – sequence: 1 givenname: Lizhi orcidid: 0000-0002-7039-0118 surname: Wu fullname: Wu, Lizhi email: wulz@fzu.edu.cn organization: Fuzhou University – sequence: 2 givenname: Zhiyuan surname: Fu fullname: Fu, Zhiyuan organization: Fuzhou University – sequence: 3 givenname: Zhuangzhuang surname: Ren fullname: Ren, Zhuangzhuang organization: Fuzhou University – sequence: 4 givenname: Jinhe surname: Wei fullname: Wei, Jinhe organization: Fuzhou University – sequence: 5 givenname: Xinhua surname: Gao fullname: Gao, Xinhua organization: Ningxia University – sequence: 6 givenname: Li surname: Tan fullname: Tan, Li organization: Fuzhou University – sequence: 7 givenname: Yu surname: Tang fullname: Tang, Yu organization: Fuzhou University |
BookMark | eNqFkE9LAzEQxYNU0KpXzwHPrdlkd7M5ytpaQa1gvXhZYnZiI9ukZuOf3rx59TP6SUytVBDE08w83m-GeV3Usc4CQvsJ6SeE0EOlgupTQuPAM7qBtpMi5z1WCNFZ9wXZQt22vSckF4xn2-htYKfSKqhxKYNsFsEofAleOz9bythpPISP13flbJDGGnuHRzdX51HJcDThQYg44AtnozR-MbUM5gnwMUwXtXd3YOPsLH4yEo-WSphC3NzgS9eGSEw8yDADG3bRppZNC3vfdQddDweTctQ7G5-clkdnPcUSTnupyIucqkxDmqX8FgRltZBFoQqdAc-ZhloTohVIrqTWvCBCMClTkjCe54lkO-hgtXfu3cMjtKG6d4_expMVzThLKeOCRFd_5VLeta0HXc29mUm_qBJSLcOulmFX67AjkP4ClAlfrwcvTfM3JlbYs2lg8c-Rqiwn5Q_7CZRtnCI |
CitedBy_id | crossref_primary_10_1002_anie_202408391 crossref_primary_10_1007_s11090_023_10343_w crossref_primary_10_1002_aic_18373 crossref_primary_10_1002_ange_202408391 crossref_primary_10_1002_cphc_202400095 crossref_primary_10_1016_j_fuel_2023_129421 crossref_primary_10_1002_cctc_202201405 crossref_primary_10_1016_j_fuel_2023_129044 crossref_primary_10_1021_acs_iecr_1c04091 crossref_primary_10_1021_acsami_1c15892 crossref_primary_10_1021_acscatal_1c05907 crossref_primary_10_1002_aic_18747 crossref_primary_10_1039_D2CY00664B crossref_primary_10_1039_D4EY00031E crossref_primary_10_1016_j_ces_2023_118450 crossref_primary_10_1016_j_fuproc_2022_107294 crossref_primary_10_1021_acssuschemeng_3c01594 crossref_primary_10_1016_j_fuel_2022_126946 crossref_primary_10_1002_aic_18249 crossref_primary_10_1016_j_fuel_2024_134022 crossref_primary_10_1016_j_mcat_2022_112580 crossref_primary_10_1016_j_micromeso_2022_112159 crossref_primary_10_1021_acscatal_3c02029 |
Cites_doi | 10.1016/j.cej.2014.02.084 10.1021/jp061966l 10.1016/j.jcat.2012.12.010 10.1016/j.cattod.2007.05.009 10.1126/sciadv.aaz9339 10.1021/jacs.0c07792 10.1016/j.jcat.2016.01.027 10.1016/S0021-9517(03)00087-3 10.1021/ie302392h 10.1016/j.jcat.2003.11.017 10.1002/anie.201507119 10.1039/D0CY01022G 10.1016/S0926-860X(97)00315-3 10.1016/j.jcat.2008.01.017 10.1021/jacs.5b07073 10.1038/s41570-019-0128-9 10.1002/slct.201904842 10.1126/science.aaf7885 10.1038/s41467-020-16693-9 10.3390/catal10010097 10.1016/j.apcata.2003.12.020 10.1016/j.jcat.2010.06.016 10.1002/anie.201404460 10.1016/S0040-6031(02)00478-1 10.1002/anie.201600463 10.1107/S0108768187098173 10.1002/ange.201507119 10.1039/D0RA03365K 10.1021/jacs.9b09235 10.1021/jacs.8b05378 10.1021/ie4039532 10.1021/ja202316m 10.1021/jacs.9b13865 10.1038/s41467-018-06967-8 10.1016/0144-2449(84)90065-4 10.1016/j.jcat.2004.08.003 10.1016/S0926-860X(03)00128-5 10.1016/j.apcatb.2020.119329 10.1016/j.jcat.2007.04.006 10.1016/j.apcata.2006.03.028 10.1126/sciadv.abb7426 10.1016/j.jcat.2010.06.017 10.1002/ange.201404460 10.1002/ange.201600463 10.1007/s10973-007-8427-7 10.1016/S0926-860X(01)00816-X 10.1021/jacs.7b09365 10.1039/B305568J 10.1016/j.apcatb.2019.117816 10.1021/acscatal.6b03603 10.1021/jp800455x 10.1039/D0CS01260B 10.1126/science.1212906 10.1021/jacs.8b11443 10.1021/j100255a005 10.1016/S1872-2067(14)60268-0 10.1021/cr5002436 10.1039/C6CC03318K 10.1021/jacs.7b13599 10.1016/j.jcat.2021.02.028 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cctc.202100752 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1867-3899 |
EndPage | 4028 |
ExternalDocumentID | 10_1002_cctc_202100752 CCTC202100752 |
Genre | article |
GrantInformation_xml | – fundername: Fuzhou University Testing Fund of precious apparatus funderid: 2021T006 – fundername: Educational Committee of Fujian Province funderid: JAT200042 – fundername: Natural Science Foundation of Fujian Province funderid: 2020 J01443; 2020 J05121 – fundername: National Natural Science Foundation of China funderid: U19B2003; 21902027; 21902029 – fundername: Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering funderid: 2019-KF-23 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 5DZ 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI DCZOG DRFUL DRSTM DU5 EBS ESX G-S HGLYW HZ~ I-F LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ NNB O9- P2W P4E ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ XV2 ZZTAW AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3172-496862c5fe4547be923d9a88c8f5e763fedf00fcea7caff780993aa40137661a3 |
ISSN | 1867-3880 |
IngestDate | Fri Jul 25 12:21:15 EDT 2025 Thu Apr 24 23:01:46 EDT 2025 Tue Jul 01 00:42:32 EDT 2025 Wed Jan 22 16:28:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3172-496862c5fe4547be923d9a88c8f5e763fedf00fcea7caff780993aa40137661a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7039-0118 |
PQID | 2573423790 |
PQPubID | 986343 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2573423790 crossref_primary_10_1002_cctc_202100752 crossref_citationtrail_10_1002_cctc_202100752 wiley_primary_10_1002_cctc_202100752_CCTC202100752 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 17, 2021 |
PublicationDateYYYYMMDD | 2021-09-17 |
PublicationDate_xml | – month: 09 year: 2021 text: September 17, 2021 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemCatChem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2001; 221 2014 2014; 53 126 2017; 7 2021; 26 2015; 36 2020; 11 2020; 10 2020; 6 2018; 9 2020; 5 1987; 43 2003; 248 2015; 137 2013; 52 2016; 354 2015 2015; 54 127 2010; 274 2021; 396 2008; 112 2012; 335 2003; 400 1998; 167 2014; 247 2014; 53 2004; 222 2004; 264 2003; 218 2019; 3 2007; 127 2018; 140 2007; 249 2020; 142 2006; 110 2016; 52 2003 2021; 50 2019; 141 1985; 89 2004; 227 2014; 114 2011; 133 2008; 91 2017; 139 2016 2016; 55 128 2006; 306 1984; 4 2016; 338 2013; 299 2019; 256 2020; 278 2008; 254 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_1 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_62_1 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_11_3 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_43_3 e_1_2_7_68_1 e_1_2_7_45_2 e_1_2_7_66_2 Feng Z. (e_1_2_7_37_2) 2021; 26 e_1_2_7_47_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_28_3 e_1_2_7_71_2 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_21_1 e_1_2_7_35_2 e_1_2_7_58_1 e_1_2_7_39_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_3 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_1 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_46_1 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_72_1 e_1_2_7_70_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_24_1 e_1_2_7_55_1 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_59_1 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_38_1 |
References_xml | – volume: 10 start-page: 21427 year: 2020 end-page: 21453 publication-title: RSC Adv. – volume: 10 year: 2020 publication-title: Catalysts – volume: 227 start-page: 384 year: 2004 end-page: 397 publication-title: J. Catal. – volume: 218 start-page: 234 year: 2003 end-page: 238 publication-title: J. Catal. – volume: 11 start-page: 2838 year: 2020 publication-title: Nat. Commun. – volume: 139 start-page: 15251 year: 2017 end-page: 15258 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 21764 year: 2006 end-page: 21770 publication-title: J. Phys. Chem. B – volume: 53 126 start-page: 9251 9405 year: 2014 2014 end-page: 9256 9410 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 247 start-page: 183 year: 2014 end-page: 192 publication-title: Chem. Eng. J. – volume: 54 127 start-page: 13994 14200 year: 2015 2015 end-page: 13998 14204 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 354 start-page: 1570 year: 2016 publication-title: Science – volume: 221 start-page: 397 year: 2001 end-page: 419 publication-title: Appl. Catal. A – volume: 133 start-page: 10700 year: 2011 end-page: 10703 publication-title: J. Am. Chem. Soc. – volume: 55 128 start-page: 8873 9019 year: 2016 2016 end-page: 8877 9023 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 36 start-page: 649 year: 2015 end-page: 656 publication-title: Chin. J. Catal. – volume: 249 start-page: 195 year: 2007 end-page: 207 publication-title: J. Catal. – volume: 141 start-page: 1614 year: 2019 end-page: 1627 publication-title: J. Am. Chem. Soc. – volume: 26 year: 2021 publication-title: Molecules – volume: 43 start-page: 127 year: 1987 end-page: 132 publication-title: Acta Crystallogr. Sect. B – volume: 53 start-page: 15303 year: 2014 end-page: 15316 publication-title: Ind. Eng. Chem. Res. – volume: 5 start-page: 2232 year: 2020 end-page: 2239 publication-title: ChemistrySelect – volume: 3 start-page: 638 year: 2019 end-page: 649 publication-title: Nat. Chem. Rev. – volume: 140 start-page: 2665 year: 2018 end-page: 2672 publication-title: J. Am. Chem. Soc. – volume: 91 start-page: 93 year: 2008 end-page: 100 publication-title: J. Therm. Anal. Calorim. – volume: 299 start-page: 188 year: 2013 end-page: 203 publication-title: J. Catal. – volume: 335 start-page: 1205 year: 2012 publication-title: Science – volume: 7 start-page: 4173 year: 2017 end-page: 4181 publication-title: ACS Catal. – volume: 264 start-page: 13 year: 2004 end-page: 22 publication-title: Appl. Catal. A – volume: 112 start-page: 9001 year: 2008 end-page: 9005 publication-title: J. Phys. Chem. C – volume: 396 start-page: 224 year: 2021 end-page: 241 publication-title: J. Catal. – volume: 4 start-page: 9 year: 1984 end-page: 14 publication-title: Zeolites – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 306 start-page: 85 year: 2006 end-page: 97 publication-title: Appl. Catal. A – volume: 274 start-page: 200 year: 2010 end-page: 206 publication-title: J. Catal. – volume: 10 start-page: 5069 year: 2020 end-page: 5081 publication-title: Catal. Sci. Technol. – volume: 89 start-page: 1569 year: 1985 end-page: 1571 publication-title: J. Phys. Chem. – volume: 338 start-page: 21 year: 2016 end-page: 29 publication-title: J. Catal. – volume: 400 start-page: 61 year: 2003 end-page: 67 publication-title: Thermochim. Acta – volume: 222 start-page: 520 year: 2004 end-page: 531 publication-title: J. Catal. – volume: 278 year: 2020 publication-title: Appl. Catal. B: Envir. – volume: 248 start-page: 105 year: 2003 end-page: 116 publication-title: Appl. Catal. A – volume: 141 start-page: 18653 year: 2019 end-page: 18657 publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 113 year: 2007 end-page: 131 publication-title: Catal. Today – volume: 114 start-page: 10613 year: 2014 end-page: 10653 publication-title: Chem. Rev. – volume: 274 start-page: 192 year: 2010 end-page: 199 publication-title: J. Catal. – volume: 256 year: 2019 publication-title: Appl. Catal. B – volume: 254 start-page: 383 year: 2008 end-page: 396 publication-title: J. Catal. – volume: 140 start-page: 11674 year: 2018 end-page: 11679 publication-title: J. Am. Chem. Soc. – volume: 167 start-page: 257 year: 1998 end-page: 270 publication-title: Appl. Catal. A – volume: 142 start-page: 4820 year: 2020 end-page: 4832 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 4017 year: 2013 end-page: 4026 publication-title: Ind. Eng. Chem. Res. – volume: 137 start-page: 13224 year: 2015 end-page: 13227 publication-title: J. Am. Chem. Soc. – volume: 142 start-page: 16429 year: 2020 end-page: 16436 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 5590 year: 2021 end-page: 5630 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 8679 year: 2016 end-page: 8682 publication-title: Chem. Commun. – volume: 9 start-page: 4454 year: 2018 publication-title: Nat. Commun. – start-page: 2152 year: 2003 end-page: 2153 publication-title: Chem. Commun. – ident: e_1_2_7_42_2 doi: 10.1016/j.cej.2014.02.084 – ident: e_1_2_7_27_2 doi: 10.1021/jp061966l – ident: e_1_2_7_54_2 doi: 10.1016/j.jcat.2012.12.010 – ident: e_1_2_7_6_2 doi: 10.1016/j.cattod.2007.05.009 – ident: e_1_2_7_13_2 doi: 10.1126/sciadv.aaz9339 – ident: e_1_2_7_57_2 doi: 10.1021/jacs.0c07792 – ident: e_1_2_7_72_1 doi: 10.1016/j.jcat.2016.01.027 – ident: e_1_2_7_4_1 – ident: e_1_2_7_51_2 doi: 10.1016/S0021-9517(03)00087-3 – ident: e_1_2_7_16_2 doi: 10.1021/ie302392h – ident: e_1_2_7_58_1 doi: 10.1016/j.jcat.2003.11.017 – ident: e_1_2_7_28_2 doi: 10.1002/anie.201507119 – ident: e_1_2_7_21_1 – ident: e_1_2_7_33_2 doi: 10.1039/D0CY01022G – ident: e_1_2_7_38_1 – ident: e_1_2_7_24_1 – ident: e_1_2_7_25_2 doi: 10.1016/S0926-860X(97)00315-3 – ident: e_1_2_7_71_2 doi: 10.1016/j.jcat.2008.01.017 – ident: e_1_2_7_23_2 doi: 10.1021/jacs.5b07073 – ident: e_1_2_7_3_2 doi: 10.1038/s41570-019-0128-9 – ident: e_1_2_7_34_2 doi: 10.1002/slct.201904842 – ident: e_1_2_7_17_2 doi: 10.1126/science.aaf7885 – ident: e_1_2_7_46_1 – ident: e_1_2_7_36_2 doi: 10.1038/s41467-020-16693-9 – ident: e_1_2_7_31_2 doi: 10.3390/catal10010097 – ident: e_1_2_7_53_2 doi: 10.1016/j.apcata.2003.12.020 – ident: e_1_2_7_40_2 doi: 10.1016/j.jcat.2010.06.016 – ident: e_1_2_7_43_2 doi: 10.1002/anie.201404460 – ident: e_1_2_7_63_2 doi: 10.1016/S0040-6031(02)00478-1 – ident: e_1_2_7_65_1 – ident: e_1_2_7_68_1 – ident: e_1_2_7_11_2 doi: 10.1002/anie.201600463 – ident: e_1_2_7_48_2 doi: 10.1107/S0108768187098173 – ident: e_1_2_7_28_3 doi: 10.1002/ange.201507119 – volume: 26 year: 2021 ident: e_1_2_7_37_2 publication-title: Molecules – ident: e_1_2_7_9_2 doi: 10.1039/D0RA03365K – ident: e_1_2_7_20_2 doi: 10.1021/jacs.9b09235 – ident: e_1_2_7_29_2 doi: 10.1021/jacs.8b05378 – ident: e_1_2_7_61_2 doi: 10.1021/ie4039532 – ident: e_1_2_7_2_2 doi: 10.1021/ja202316m – ident: e_1_2_7_35_2 doi: 10.1021/jacs.9b13865 – ident: e_1_2_7_45_2 doi: 10.1038/s41467-018-06967-8 – ident: e_1_2_7_60_2 doi: 10.1016/0144-2449(84)90065-4 – ident: e_1_2_7_62_1 – ident: e_1_2_7_66_2 doi: 10.1016/j.jcat.2004.08.003 – ident: e_1_2_7_26_2 doi: 10.1016/S0926-860X(03)00128-5 – ident: e_1_2_7_32_2 doi: 10.1016/j.apcatb.2020.119329 – ident: e_1_2_7_14_1 – ident: e_1_2_7_59_1 – ident: e_1_2_7_49_2 doi: 10.1016/j.jcat.2007.04.006 – ident: e_1_2_7_39_2 doi: 10.1016/j.apcata.2006.03.028 – ident: e_1_2_7_1_1 – ident: e_1_2_7_10_2 doi: 10.1126/sciadv.abb7426 – ident: e_1_2_7_12_2 doi: 10.1002/anie.201600463 – ident: e_1_2_7_41_2 doi: 10.1016/j.jcat.2010.06.017 – ident: e_1_2_7_7_1 – ident: e_1_2_7_43_3 doi: 10.1002/ange.201404460 – ident: e_1_2_7_11_3 doi: 10.1002/ange.201600463 – ident: e_1_2_7_64_2 doi: 10.1007/s10973-007-8427-7 – ident: e_1_2_7_55_1 – ident: e_1_2_7_5_2 doi: 10.1016/S0926-860X(01)00816-X – ident: e_1_2_7_18_2 doi: 10.1021/jacs.7b09365 – ident: e_1_2_7_52_2 doi: 10.1039/B305568J – ident: e_1_2_7_56_2 doi: 10.1016/j.apcatb.2019.117816 – ident: e_1_2_7_44_2 doi: 10.1021/acscatal.6b03603 – ident: e_1_2_7_70_2 doi: 10.1021/jp800455x – ident: e_1_2_7_8_2 doi: 10.1039/D0CS01260B – ident: e_1_2_7_15_2 doi: 10.1126/science.1212906 – ident: e_1_2_7_30_2 doi: 10.1021/jacs.8b11443 – ident: e_1_2_7_47_2 doi: 10.1021/j100255a005 – ident: e_1_2_7_67_2 doi: 10.1016/S1872-2067(14)60268-0 – ident: e_1_2_7_22_2 doi: 10.1021/cr5002436 – ident: e_1_2_7_73_1 doi: 10.1039/C6CC03318K – ident: e_1_2_7_19_2 doi: 10.1021/jacs.7b13599 – ident: e_1_2_7_50_1 – ident: e_1_2_7_69_2 doi: 10.1016/j.jcat.2021.02.028 – ident: e_1_2_7_12_3 doi: 10.1002/ange.201600463 |
SSID | ssj0069375 |
Score | 2.4179978 |
Snippet | A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4019 |
SubjectTerms | Carburizing Catalytic activity Coke Dehydrogenation Desorption Ethane Ethane dehydrogenation Ethylene Fe/ZSM-5 highly dispersed Fe hydrothermal post-treatment Iron Reaction time |
Title | Enhanced Catalytic Performance of Fe‐containing HZSM‐5 for Ethane Non‐Oxidative Dehydrogenation via Hydrothermal Post‐Treatment |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202100752 https://www.proquest.com/docview/2573423790 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuK56isCAfkDhUgTSpG-e4G1pVK-2CoCuteokc195EghTttoj2xI0rf4o_wi9hJk4cFy2vvaTVxHm082X8jTP-TMgzgSLjg1h4gjHpDWKpPB7qyFN9BY8l8O_Yx8nJxyfDyeng6IyddTrfnaql1TJ7ITdXziu5jlfBBn7FWbL_4Vl7UjDAd_AvbMHDsP0nH4_K3LzAT3AQZo3aq2-ciQDAA8fKVjNgUbpZDqI3mb07tnZWVRqOcAhd9U6ACTY7Xn8u5qKuLMrX84sF3IeBy6dC9CZoQfb4AZyMS_7a46ZN7bpLfFGYAO4SP2w_sDKDApu8sCiqTLO8WK9a1L41kXGWg-18U23b90lVMcJRUebKHb8I-lhsYaZr1iGXQ6hGSRrTI7k2s3SSjdOhi0fuRF3IEWOnB4eUmF_ZOxi1WSkr7coA60OMeu62DLdtyf7ctiIBSTJN7P4bZDeIIqwW2D04fHU4bijBEDgg1tLan9qoh_rBy-0rbLOjNuVxE6eK-Uxvk706ZaEHBn93SEeVd8nNpFkp8B752uCQWhxSB4d0oelY_fjyrUUgRQSChVFoRA32KGAPTBZ19BfUUUAddVFHEXVwhMXbfXI6Hk2TiVcv8OFJoK0BhAacn4T1jigrlylINuax4FxyzRR0fFrNte9rqUQkhdYRh3QmFAKHBCLglSJ8QHbKRakeEiozwQSQsf4wiwesn3Em4ArxMBI67OuQd4nX_LGprNXvcRGW96nR7Q5SdERqHdElz237j0b35bct9xs_pXVsuEyhI0RpzSj2uySofPeXs6RbQHp0nYMek1vt87VPdpYXK_UEGPMye1rj8ScBdrqT |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Catalytic+Performance+of+Fe%E2%80%90containing+HZSM%E2%80%905+for+Ethane+Non%E2%80%90Oxidative+Dehydrogenation+via+Hydrothermal+Post%E2%80%90Treatment&rft.jtitle=ChemCatChem&rft.au=Wu%2C+Lizhi&rft.au=Fu%2C+Zhiyuan&rft.au=Ren%2C+Zhuangzhuang&rft.au=Wei%2C+Jinhe&rft.date=2021-09-17&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=13&rft.issue=18&rft.spage=4019&rft.epage=4028&rft_id=info:doi/10.1002%2Fcctc.202100752&rft.externalDBID=10.1002%252Fcctc.202100752&rft.externalDocID=CCTC202100752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon |