Enhanced Catalytic Performance of Fe‐containing HZSM‐5 for Ethane Non‐Oxidative Dehydrogenation via Hydrothermal Post‐Treatment

A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stabil...

Full description

Saved in:
Bibliographic Details
Published inChemCatChem Vol. 13; no. 18; pp. 4019 - 4028
Main Authors Wu, Lizhi, Fu, Zhiyuan, Ren, Zhuangzhuang, Wei, Jinhe, Gao, Xinhua, Tan, Li, Tang, Yu
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 17.09.2021
Subjects
Online AccessGet full text
ISSN1867-3880
1867-3899
DOI10.1002/cctc.202100752

Cover

Abstract A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stability with 6000 minutes time‐on‐stream. An obvious volcanic curve is observed between the ethylene generation rate and Fe content, and 1.0Fe/HZ5‐HTS exhibits the highest ethylene generation rate with 0.166 mmol C2H4 s−1 gFe−1 over different Fe loading, which is twice as much as that of 1.0Fe/HZ5‐IWI. According to various characterizations, isolated Fe3+ species and carburized Fe species are active sites, and the better catalytic performance over 1.0Fe/HZ5‐HTS is ascribed to more disperse Fe species and exposing more Fe species in the surface. Besides, the lower ethylene desorption temperature and higher ethane desorption temperature over Fe/HZ5‐HTS could suppress the overreaction of the ethylene to generate coke and increase ethane residence reaction time, resulting in less coke deposition and facilitating the catalytic performance. Hydrothermal post‐treatment: A high‐performance ethane non‐oxidative dehydrogenation is prepared via hydrothermal post‐treatment. Isolated Fe3+ species and carburized Fe species are active sites, and the excellent catalytic performance is ascribed to more disperse Fe species and exposing more Fe species in the surface.
AbstractList A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stability with 6000 minutes time‐on‐stream. An obvious volcanic curve is observed between the ethylene generation rate and Fe content, and 1.0Fe/HZ5‐HTS exhibits the highest ethylene generation rate with 0.166 mmol C2H4 s−1 gFe−1 over different Fe loading, which is twice as much as that of 1.0Fe/HZ5‐IWI. According to various characterizations, isolated Fe3+ species and carburized Fe species are active sites, and the better catalytic performance over 1.0Fe/HZ5‐HTS is ascribed to more disperse Fe species and exposing more Fe species in the surface. Besides, the lower ethylene desorption temperature and higher ethane desorption temperature over Fe/HZ5‐HTS could suppress the overreaction of the ethylene to generate coke and increase ethane residence reaction time, resulting in less coke deposition and facilitating the catalytic performance.
A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stability with 6000 minutes time‐on‐stream. An obvious volcanic curve is observed between the ethylene generation rate and Fe content, and 1.0Fe/HZ5‐HTS exhibits the highest ethylene generation rate with 0.166 mmol C 2 H 4  s −1  g Fe −1 over different Fe loading, which is twice as much as that of 1.0Fe/HZ5‐IWI. According to various characterizations, isolated Fe 3+ species and carburized Fe species are active sites, and the better catalytic performance over 1.0Fe/HZ5‐HTS is ascribed to more disperse Fe species and exposing more Fe species in the surface. Besides, the lower ethylene desorption temperature and higher ethane desorption temperature over Fe/HZ5‐HTS could suppress the overreaction of the ethylene to generate coke and increase ethane residence reaction time, resulting in less coke deposition and facilitating the catalytic performance.
A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation. Compared with Fe/HZ5‐IWI prepared by incipient wetness impregnation, Fe/HZ5‐HTS exhibits superior catalytic activity and long catalyst stability with 6000 minutes time‐on‐stream. An obvious volcanic curve is observed between the ethylene generation rate and Fe content, and 1.0Fe/HZ5‐HTS exhibits the highest ethylene generation rate with 0.166 mmol C2H4 s−1 gFe−1 over different Fe loading, which is twice as much as that of 1.0Fe/HZ5‐IWI. According to various characterizations, isolated Fe3+ species and carburized Fe species are active sites, and the better catalytic performance over 1.0Fe/HZ5‐HTS is ascribed to more disperse Fe species and exposing more Fe species in the surface. Besides, the lower ethylene desorption temperature and higher ethane desorption temperature over Fe/HZ5‐HTS could suppress the overreaction of the ethylene to generate coke and increase ethane residence reaction time, resulting in less coke deposition and facilitating the catalytic performance. Hydrothermal post‐treatment: A high‐performance ethane non‐oxidative dehydrogenation is prepared via hydrothermal post‐treatment. Isolated Fe3+ species and carburized Fe species are active sites, and the excellent catalytic performance is ascribed to more disperse Fe species and exposing more Fe species in the surface.
Author Tang, Yu
Wu, Lizhi
Tan, Li
Fu, Zhiyuan
Gao, Xinhua
Ren, Zhuangzhuang
Wei, Jinhe
Author_xml – sequence: 1
  givenname: Lizhi
  orcidid: 0000-0002-7039-0118
  surname: Wu
  fullname: Wu, Lizhi
  email: wulz@fzu.edu.cn
  organization: Fuzhou University
– sequence: 2
  givenname: Zhiyuan
  surname: Fu
  fullname: Fu, Zhiyuan
  organization: Fuzhou University
– sequence: 3
  givenname: Zhuangzhuang
  surname: Ren
  fullname: Ren, Zhuangzhuang
  organization: Fuzhou University
– sequence: 4
  givenname: Jinhe
  surname: Wei
  fullname: Wei, Jinhe
  organization: Fuzhou University
– sequence: 5
  givenname: Xinhua
  surname: Gao
  fullname: Gao, Xinhua
  organization: Ningxia University
– sequence: 6
  givenname: Li
  surname: Tan
  fullname: Tan, Li
  organization: Fuzhou University
– sequence: 7
  givenname: Yu
  surname: Tang
  fullname: Tang, Yu
  organization: Fuzhou University
BookMark eNqFkE9LAzEQxYNU0KpXzwHPrdlkd7M5ytpaQa1gvXhZYnZiI9ukZuOf3rx59TP6SUytVBDE08w83m-GeV3Usc4CQvsJ6SeE0EOlgupTQuPAM7qBtpMi5z1WCNFZ9wXZQt22vSckF4xn2-htYKfSKqhxKYNsFsEofAleOz9bythpPISP13flbJDGGnuHRzdX51HJcDThQYg44AtnozR-MbUM5gnwMUwXtXd3YOPsLH4yEo-WSphC3NzgS9eGSEw8yDADG3bRppZNC3vfdQddDweTctQ7G5-clkdnPcUSTnupyIucqkxDmqX8FgRltZBFoQqdAc-ZhloTohVIrqTWvCBCMClTkjCe54lkO-hgtXfu3cMjtKG6d4_expMVzThLKeOCRFd_5VLeta0HXc29mUm_qBJSLcOulmFX67AjkP4ClAlfrwcvTfM3JlbYs2lg8c-Rqiwn5Q_7CZRtnCI
CitedBy_id crossref_primary_10_1002_anie_202408391
crossref_primary_10_1007_s11090_023_10343_w
crossref_primary_10_1002_aic_18373
crossref_primary_10_1002_ange_202408391
crossref_primary_10_1002_cphc_202400095
crossref_primary_10_1016_j_fuel_2023_129421
crossref_primary_10_1002_cctc_202201405
crossref_primary_10_1016_j_fuel_2023_129044
crossref_primary_10_1021_acs_iecr_1c04091
crossref_primary_10_1021_acsami_1c15892
crossref_primary_10_1021_acscatal_1c05907
crossref_primary_10_1002_aic_18747
crossref_primary_10_1039_D2CY00664B
crossref_primary_10_1039_D4EY00031E
crossref_primary_10_1016_j_ces_2023_118450
crossref_primary_10_1016_j_fuproc_2022_107294
crossref_primary_10_1021_acssuschemeng_3c01594
crossref_primary_10_1016_j_fuel_2022_126946
crossref_primary_10_1002_aic_18249
crossref_primary_10_1016_j_fuel_2024_134022
crossref_primary_10_1016_j_mcat_2022_112580
crossref_primary_10_1016_j_micromeso_2022_112159
crossref_primary_10_1021_acscatal_3c02029
Cites_doi 10.1016/j.cej.2014.02.084
10.1021/jp061966l
10.1016/j.jcat.2012.12.010
10.1016/j.cattod.2007.05.009
10.1126/sciadv.aaz9339
10.1021/jacs.0c07792
10.1016/j.jcat.2016.01.027
10.1016/S0021-9517(03)00087-3
10.1021/ie302392h
10.1016/j.jcat.2003.11.017
10.1002/anie.201507119
10.1039/D0CY01022G
10.1016/S0926-860X(97)00315-3
10.1016/j.jcat.2008.01.017
10.1021/jacs.5b07073
10.1038/s41570-019-0128-9
10.1002/slct.201904842
10.1126/science.aaf7885
10.1038/s41467-020-16693-9
10.3390/catal10010097
10.1016/j.apcata.2003.12.020
10.1016/j.jcat.2010.06.016
10.1002/anie.201404460
10.1016/S0040-6031(02)00478-1
10.1002/anie.201600463
10.1107/S0108768187098173
10.1002/ange.201507119
10.1039/D0RA03365K
10.1021/jacs.9b09235
10.1021/jacs.8b05378
10.1021/ie4039532
10.1021/ja202316m
10.1021/jacs.9b13865
10.1038/s41467-018-06967-8
10.1016/0144-2449(84)90065-4
10.1016/j.jcat.2004.08.003
10.1016/S0926-860X(03)00128-5
10.1016/j.apcatb.2020.119329
10.1016/j.jcat.2007.04.006
10.1016/j.apcata.2006.03.028
10.1126/sciadv.abb7426
10.1016/j.jcat.2010.06.017
10.1002/ange.201404460
10.1002/ange.201600463
10.1007/s10973-007-8427-7
10.1016/S0926-860X(01)00816-X
10.1021/jacs.7b09365
10.1039/B305568J
10.1016/j.apcatb.2019.117816
10.1021/acscatal.6b03603
10.1021/jp800455x
10.1039/D0CS01260B
10.1126/science.1212906
10.1021/jacs.8b11443
10.1021/j100255a005
10.1016/S1872-2067(14)60268-0
10.1021/cr5002436
10.1039/C6CC03318K
10.1021/jacs.7b13599
10.1016/j.jcat.2021.02.028
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cctc.202100752
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1867-3899
EndPage 4028
ExternalDocumentID 10_1002_cctc_202100752
CCTC202100752
Genre article
GrantInformation_xml – fundername: Fuzhou University Testing Fund of precious apparatus
  funderid: 2021T006
– fundername: Educational Committee of Fujian Province
  funderid: JAT200042
– fundername: Natural Science Foundation of Fujian Province
  funderid: 2020 J01443; 2020 J05121
– fundername: National Natural Science Foundation of China
  funderid: U19B2003; 21902027; 21902029
– fundername: Foundation of State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering
  funderid: 2019-KF-23
GroupedDBID 05W
0R~
1OC
33P
4.4
5DZ
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
DCZOG
DRFUL
DRSTM
DU5
EBS
ESX
G-S
HGLYW
HZ~
I-F
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
NNB
O9-
P2W
P4E
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3172-496862c5fe4547be923d9a88c8f5e763fedf00fcea7caff780993aa40137661a3
ISSN 1867-3880
IngestDate Fri Jul 25 12:21:15 EDT 2025
Thu Apr 24 23:01:46 EDT 2025
Tue Jul 01 00:42:32 EDT 2025
Wed Jan 22 16:28:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3172-496862c5fe4547be923d9a88c8f5e763fedf00fcea7caff780993aa40137661a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7039-0118
PQID 2573423790
PQPubID 986343
PageCount 10
ParticipantIDs proquest_journals_2573423790
crossref_primary_10_1002_cctc_202100752
crossref_citationtrail_10_1002_cctc_202100752
wiley_primary_10_1002_cctc_202100752_CCTC202100752
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 17, 2021
PublicationDateYYYYMMDD 2021-09-17
PublicationDate_xml – month: 09
  year: 2021
  text: September 17, 2021
  day: 17
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemCatChem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2001; 221
2014 2014; 53 126
2017; 7
2021; 26
2015; 36
2020; 11
2020; 10
2020; 6
2018; 9
2020; 5
1987; 43
2003; 248
2015; 137
2013; 52
2016; 354
2015 2015; 54 127
2010; 274
2021; 396
2008; 112
2012; 335
2003; 400
1998; 167
2014; 247
2014; 53
2004; 222
2004; 264
2003; 218
2019; 3
2007; 127
2018; 140
2007; 249
2020; 142
2006; 110
2016; 52
2003
2021; 50
2019; 141
1985; 89
2004; 227
2014; 114
2011; 133
2008; 91
2017; 139
2016 2016; 55 128
2006; 306
1984; 4
2016; 338
2013; 299
2019; 256
2020; 278
2008; 254
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_1
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_62_1
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_3
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_43_3
e_1_2_7_68_1
e_1_2_7_45_2
e_1_2_7_66_2
Feng Z. (e_1_2_7_37_2) 2021; 26
e_1_2_7_47_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_28_3
e_1_2_7_71_2
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_58_1
e_1_2_7_39_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_3
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_1
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_1
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_72_1
e_1_2_7_70_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_24_1
e_1_2_7_55_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_59_1
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_38_1
References_xml – volume: 10
  start-page: 21427
  year: 2020
  end-page: 21453
  publication-title: RSC Adv.
– volume: 10
  year: 2020
  publication-title: Catalysts
– volume: 227
  start-page: 384
  year: 2004
  end-page: 397
  publication-title: J. Catal.
– volume: 218
  start-page: 234
  year: 2003
  end-page: 238
  publication-title: J. Catal.
– volume: 11
  start-page: 2838
  year: 2020
  publication-title: Nat. Commun.
– volume: 139
  start-page: 15251
  year: 2017
  end-page: 15258
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 21764
  year: 2006
  end-page: 21770
  publication-title: J. Phys. Chem. B
– volume: 53 126
  start-page: 9251 9405
  year: 2014 2014
  end-page: 9256 9410
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 247
  start-page: 183
  year: 2014
  end-page: 192
  publication-title: Chem. Eng. J.
– volume: 54 127
  start-page: 13994 14200
  year: 2015 2015
  end-page: 13998 14204
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 354
  start-page: 1570
  year: 2016
  publication-title: Science
– volume: 221
  start-page: 397
  year: 2001
  end-page: 419
  publication-title: Appl. Catal. A
– volume: 133
  start-page: 10700
  year: 2011
  end-page: 10703
  publication-title: J. Am. Chem. Soc.
– volume: 55 128
  start-page: 8873 9019
  year: 2016 2016
  end-page: 8877 9023
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 36
  start-page: 649
  year: 2015
  end-page: 656
  publication-title: Chin. J. Catal.
– volume: 249
  start-page: 195
  year: 2007
  end-page: 207
  publication-title: J. Catal.
– volume: 141
  start-page: 1614
  year: 2019
  end-page: 1627
  publication-title: J. Am. Chem. Soc.
– volume: 26
  year: 2021
  publication-title: Molecules
– volume: 43
  start-page: 127
  year: 1987
  end-page: 132
  publication-title: Acta Crystallogr. Sect. B
– volume: 53
  start-page: 15303
  year: 2014
  end-page: 15316
  publication-title: Ind. Eng. Chem. Res.
– volume: 5
  start-page: 2232
  year: 2020
  end-page: 2239
  publication-title: ChemistrySelect
– volume: 3
  start-page: 638
  year: 2019
  end-page: 649
  publication-title: Nat. Chem. Rev.
– volume: 140
  start-page: 2665
  year: 2018
  end-page: 2672
  publication-title: J. Am. Chem. Soc.
– volume: 91
  start-page: 93
  year: 2008
  end-page: 100
  publication-title: J. Therm. Anal. Calorim.
– volume: 299
  start-page: 188
  year: 2013
  end-page: 203
  publication-title: J. Catal.
– volume: 335
  start-page: 1205
  year: 2012
  publication-title: Science
– volume: 7
  start-page: 4173
  year: 2017
  end-page: 4181
  publication-title: ACS Catal.
– volume: 264
  start-page: 13
  year: 2004
  end-page: 22
  publication-title: Appl. Catal. A
– volume: 112
  start-page: 9001
  year: 2008
  end-page: 9005
  publication-title: J. Phys. Chem. C
– volume: 396
  start-page: 224
  year: 2021
  end-page: 241
  publication-title: J. Catal.
– volume: 4
  start-page: 9
  year: 1984
  end-page: 14
  publication-title: Zeolites
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 306
  start-page: 85
  year: 2006
  end-page: 97
  publication-title: Appl. Catal. A
– volume: 274
  start-page: 200
  year: 2010
  end-page: 206
  publication-title: J. Catal.
– volume: 10
  start-page: 5069
  year: 2020
  end-page: 5081
  publication-title: Catal. Sci. Technol.
– volume: 89
  start-page: 1569
  year: 1985
  end-page: 1571
  publication-title: J. Phys. Chem.
– volume: 338
  start-page: 21
  year: 2016
  end-page: 29
  publication-title: J. Catal.
– volume: 400
  start-page: 61
  year: 2003
  end-page: 67
  publication-title: Thermochim. Acta
– volume: 222
  start-page: 520
  year: 2004
  end-page: 531
  publication-title: J. Catal.
– volume: 278
  year: 2020
  publication-title: Appl. Catal. B: Envir.
– volume: 248
  start-page: 105
  year: 2003
  end-page: 116
  publication-title: Appl. Catal. A
– volume: 141
  start-page: 18653
  year: 2019
  end-page: 18657
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 113
  year: 2007
  end-page: 131
  publication-title: Catal. Today
– volume: 114
  start-page: 10613
  year: 2014
  end-page: 10653
  publication-title: Chem. Rev.
– volume: 274
  start-page: 192
  year: 2010
  end-page: 199
  publication-title: J. Catal.
– volume: 256
  year: 2019
  publication-title: Appl. Catal. B
– volume: 254
  start-page: 383
  year: 2008
  end-page: 396
  publication-title: J. Catal.
– volume: 140
  start-page: 11674
  year: 2018
  end-page: 11679
  publication-title: J. Am. Chem. Soc.
– volume: 167
  start-page: 257
  year: 1998
  end-page: 270
  publication-title: Appl. Catal. A
– volume: 142
  start-page: 4820
  year: 2020
  end-page: 4832
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 4017
  year: 2013
  end-page: 4026
  publication-title: Ind. Eng. Chem. Res.
– volume: 137
  start-page: 13224
  year: 2015
  end-page: 13227
  publication-title: J. Am. Chem. Soc.
– volume: 142
  start-page: 16429
  year: 2020
  end-page: 16436
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 5590
  year: 2021
  end-page: 5630
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 8679
  year: 2016
  end-page: 8682
  publication-title: Chem. Commun.
– volume: 9
  start-page: 4454
  year: 2018
  publication-title: Nat. Commun.
– start-page: 2152
  year: 2003
  end-page: 2153
  publication-title: Chem. Commun.
– ident: e_1_2_7_42_2
  doi: 10.1016/j.cej.2014.02.084
– ident: e_1_2_7_27_2
  doi: 10.1021/jp061966l
– ident: e_1_2_7_54_2
  doi: 10.1016/j.jcat.2012.12.010
– ident: e_1_2_7_6_2
  doi: 10.1016/j.cattod.2007.05.009
– ident: e_1_2_7_13_2
  doi: 10.1126/sciadv.aaz9339
– ident: e_1_2_7_57_2
  doi: 10.1021/jacs.0c07792
– ident: e_1_2_7_72_1
  doi: 10.1016/j.jcat.2016.01.027
– ident: e_1_2_7_4_1
– ident: e_1_2_7_51_2
  doi: 10.1016/S0021-9517(03)00087-3
– ident: e_1_2_7_16_2
  doi: 10.1021/ie302392h
– ident: e_1_2_7_58_1
  doi: 10.1016/j.jcat.2003.11.017
– ident: e_1_2_7_28_2
  doi: 10.1002/anie.201507119
– ident: e_1_2_7_21_1
– ident: e_1_2_7_33_2
  doi: 10.1039/D0CY01022G
– ident: e_1_2_7_38_1
– ident: e_1_2_7_24_1
– ident: e_1_2_7_25_2
  doi: 10.1016/S0926-860X(97)00315-3
– ident: e_1_2_7_71_2
  doi: 10.1016/j.jcat.2008.01.017
– ident: e_1_2_7_23_2
  doi: 10.1021/jacs.5b07073
– ident: e_1_2_7_3_2
  doi: 10.1038/s41570-019-0128-9
– ident: e_1_2_7_34_2
  doi: 10.1002/slct.201904842
– ident: e_1_2_7_17_2
  doi: 10.1126/science.aaf7885
– ident: e_1_2_7_46_1
– ident: e_1_2_7_36_2
  doi: 10.1038/s41467-020-16693-9
– ident: e_1_2_7_31_2
  doi: 10.3390/catal10010097
– ident: e_1_2_7_53_2
  doi: 10.1016/j.apcata.2003.12.020
– ident: e_1_2_7_40_2
  doi: 10.1016/j.jcat.2010.06.016
– ident: e_1_2_7_43_2
  doi: 10.1002/anie.201404460
– ident: e_1_2_7_63_2
  doi: 10.1016/S0040-6031(02)00478-1
– ident: e_1_2_7_65_1
– ident: e_1_2_7_68_1
– ident: e_1_2_7_11_2
  doi: 10.1002/anie.201600463
– ident: e_1_2_7_48_2
  doi: 10.1107/S0108768187098173
– ident: e_1_2_7_28_3
  doi: 10.1002/ange.201507119
– volume: 26
  year: 2021
  ident: e_1_2_7_37_2
  publication-title: Molecules
– ident: e_1_2_7_9_2
  doi: 10.1039/D0RA03365K
– ident: e_1_2_7_20_2
  doi: 10.1021/jacs.9b09235
– ident: e_1_2_7_29_2
  doi: 10.1021/jacs.8b05378
– ident: e_1_2_7_61_2
  doi: 10.1021/ie4039532
– ident: e_1_2_7_2_2
  doi: 10.1021/ja202316m
– ident: e_1_2_7_35_2
  doi: 10.1021/jacs.9b13865
– ident: e_1_2_7_45_2
  doi: 10.1038/s41467-018-06967-8
– ident: e_1_2_7_60_2
  doi: 10.1016/0144-2449(84)90065-4
– ident: e_1_2_7_62_1
– ident: e_1_2_7_66_2
  doi: 10.1016/j.jcat.2004.08.003
– ident: e_1_2_7_26_2
  doi: 10.1016/S0926-860X(03)00128-5
– ident: e_1_2_7_32_2
  doi: 10.1016/j.apcatb.2020.119329
– ident: e_1_2_7_14_1
– ident: e_1_2_7_59_1
– ident: e_1_2_7_49_2
  doi: 10.1016/j.jcat.2007.04.006
– ident: e_1_2_7_39_2
  doi: 10.1016/j.apcata.2006.03.028
– ident: e_1_2_7_1_1
– ident: e_1_2_7_10_2
  doi: 10.1126/sciadv.abb7426
– ident: e_1_2_7_12_2
  doi: 10.1002/anie.201600463
– ident: e_1_2_7_41_2
  doi: 10.1016/j.jcat.2010.06.017
– ident: e_1_2_7_7_1
– ident: e_1_2_7_43_3
  doi: 10.1002/ange.201404460
– ident: e_1_2_7_11_3
  doi: 10.1002/ange.201600463
– ident: e_1_2_7_64_2
  doi: 10.1007/s10973-007-8427-7
– ident: e_1_2_7_55_1
– ident: e_1_2_7_5_2
  doi: 10.1016/S0926-860X(01)00816-X
– ident: e_1_2_7_18_2
  doi: 10.1021/jacs.7b09365
– ident: e_1_2_7_52_2
  doi: 10.1039/B305568J
– ident: e_1_2_7_56_2
  doi: 10.1016/j.apcatb.2019.117816
– ident: e_1_2_7_44_2
  doi: 10.1021/acscatal.6b03603
– ident: e_1_2_7_70_2
  doi: 10.1021/jp800455x
– ident: e_1_2_7_8_2
  doi: 10.1039/D0CS01260B
– ident: e_1_2_7_15_2
  doi: 10.1126/science.1212906
– ident: e_1_2_7_30_2
  doi: 10.1021/jacs.8b11443
– ident: e_1_2_7_47_2
  doi: 10.1021/j100255a005
– ident: e_1_2_7_67_2
  doi: 10.1016/S1872-2067(14)60268-0
– ident: e_1_2_7_22_2
  doi: 10.1021/cr5002436
– ident: e_1_2_7_73_1
  doi: 10.1039/C6CC03318K
– ident: e_1_2_7_19_2
  doi: 10.1021/jacs.7b13599
– ident: e_1_2_7_50_1
– ident: e_1_2_7_69_2
  doi: 10.1016/j.jcat.2021.02.028
– ident: e_1_2_7_12_3
  doi: 10.1002/ange.201600463
SSID ssj0069375
Score 2.4179978
Snippet A facile strategy is applied to construct Fe supported ZSM‐5 (Fe/HZ5‐HTS) via hydrothermal post‐treatment and applied to ethane non‐oxidative dehydrogenation....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4019
SubjectTerms Carburizing
Catalytic activity
Coke
Dehydrogenation
Desorption
Ethane
Ethane dehydrogenation
Ethylene
Fe/ZSM-5
highly dispersed Fe
hydrothermal post-treatment
Iron
Reaction time
Title Enhanced Catalytic Performance of Fe‐containing HZSM‐5 for Ethane Non‐Oxidative Dehydrogenation via Hydrothermal Post‐Treatment
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcctc.202100752
https://www.proquest.com/docview/2573423790
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gEuK56isCAfkDhUgTSpG-e4G1pVK-2CoCuteokc195EghTttoj2xI0rf4o_wi9hJk4cFy2vvaTVxHm082X8jTP-TMgzgSLjg1h4gjHpDWKpPB7qyFN9BY8l8O_Yx8nJxyfDyeng6IyddTrfnaql1TJ7ITdXziu5jlfBBn7FWbL_4Vl7UjDAd_AvbMHDsP0nH4_K3LzAT3AQZo3aq2-ciQDAA8fKVjNgUbpZDqI3mb07tnZWVRqOcAhd9U6ACTY7Xn8u5qKuLMrX84sF3IeBy6dC9CZoQfb4AZyMS_7a46ZN7bpLfFGYAO4SP2w_sDKDApu8sCiqTLO8WK9a1L41kXGWg-18U23b90lVMcJRUebKHb8I-lhsYaZr1iGXQ6hGSRrTI7k2s3SSjdOhi0fuRF3IEWOnB4eUmF_ZOxi1WSkr7coA60OMeu62DLdtyf7ctiIBSTJN7P4bZDeIIqwW2D04fHU4bijBEDgg1tLan9qoh_rBy-0rbLOjNuVxE6eK-Uxvk706ZaEHBn93SEeVd8nNpFkp8B752uCQWhxSB4d0oelY_fjyrUUgRQSChVFoRA32KGAPTBZ19BfUUUAddVFHEXVwhMXbfXI6Hk2TiVcv8OFJoK0BhAacn4T1jigrlylINuax4FxyzRR0fFrNte9rqUQkhdYRh3QmFAKHBCLglSJ8QHbKRakeEiozwQSQsf4wiwesn3Em4ArxMBI67OuQd4nX_LGprNXvcRGW96nR7Q5SdERqHdElz237j0b35bct9xs_pXVsuEyhI0RpzSj2uySofPeXs6RbQHp0nYMek1vt87VPdpYXK_UEGPMye1rj8ScBdrqT
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Catalytic+Performance+of+Fe%E2%80%90containing+HZSM%E2%80%905+for+Ethane+Non%E2%80%90Oxidative+Dehydrogenation+via+Hydrothermal+Post%E2%80%90Treatment&rft.jtitle=ChemCatChem&rft.au=Wu%2C+Lizhi&rft.au=Fu%2C+Zhiyuan&rft.au=Ren%2C+Zhuangzhuang&rft.au=Wei%2C+Jinhe&rft.date=2021-09-17&rft.issn=1867-3880&rft.eissn=1867-3899&rft.volume=13&rft.issue=18&rft.spage=4019&rft.epage=4028&rft_id=info:doi/10.1002%2Fcctc.202100752&rft.externalDBID=10.1002%252Fcctc.202100752&rft.externalDocID=CCTC202100752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-3880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-3880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-3880&client=summon