Microdisplays: Mini‐LED, Micro‐OLED, and Micro‐LED
The field of next‐generation microdisplays is flourishing. Relevant display technologies, such as mini‐light emission diodes (mini‐LEDs), micro‐organic light emission diodes (micro‐OLEDs), and micro‐light emission diodes (micro‐LEDs) are thus in the urgent stage of development. From this perspective...
Saved in:
Published in | Advanced optical materials Vol. 12; no. 7 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2195-1071 2195-1071 |
DOI | 10.1002/adom.202300112 |
Cover
Loading…
Abstract | The field of next‐generation microdisplays is flourishing. Relevant display technologies, such as mini‐light emission diodes (mini‐LEDs), micro‐organic light emission diodes (micro‐OLEDs), and micro‐light emission diodes (micro‐LEDs) are thus in the urgent stage of development. From this perspective, comprehensive and systematical analyzes are conducted for the aforesaid microdisplay configurations. A holistic view of microdisplay technologies is developed with the corresponding performance metrics, providing a path for miscellaneous scenarios. Among these scenarios, the applications in augmented reality (AR), virtual reality (VR), wearable devices, and head‐up displays (HUD) are currently attracting considerable attention for deeper human‐digital interactions. However, there is a multiplicity of obstacles and challenges hindering such development. Nevertheless, recent advances in microdisplay technologies hold tremendous promise for the paradigms of these applications, taking a leap forward for next‐generation microdisplays. This review presents perspectives, relevant materials, and the technology landscape for such ongoing display technologies, offering guidance on the design of advanced microdisplays.
The demand for augmented reality (AR), virtual reality (VR), wearables, and head‐up display (HUD) technology has fueled the rapid growth of next‐generation microdisplays. Despite their promise, challenges remain. This review analyzes performance metrics across various scenarios and provides valuable materials and technology perspectives for ongoing display technology. Our guidance for advanced microdisplay design aims to overcome obstacles and improve the field. |
---|---|
AbstractList | The field of next‐generation microdisplays is flourishing. Relevant display technologies, such as mini‐light emission diodes (mini‐LEDs), micro‐organic light emission diodes (micro‐OLEDs), and micro‐light emission diodes (micro‐LEDs) are thus in the urgent stage of development. From this perspective, comprehensive and systematical analyzes are conducted for the aforesaid microdisplay configurations. A holistic view of microdisplay technologies is developed with the corresponding performance metrics, providing a path for miscellaneous scenarios. Among these scenarios, the applications in augmented reality (AR), virtual reality (VR), wearable devices, and head‐up displays (HUD) are currently attracting considerable attention for deeper human‐digital interactions. However, there is a multiplicity of obstacles and challenges hindering such development. Nevertheless, recent advances in microdisplay technologies hold tremendous promise for the paradigms of these applications, taking a leap forward for next‐generation microdisplays. This review presents perspectives, relevant materials, and the technology landscape for such ongoing display technologies, offering guidance on the design of advanced microdisplays. The field of next‐generation microdisplays is flourishing. Relevant display technologies, such as mini‐light emission diodes (mini‐LEDs), micro‐organic light emission diodes (micro‐OLEDs), and micro‐light emission diodes (micro‐LEDs) are thus in the urgent stage of development. From this perspective, comprehensive and systematical analyzes are conducted for the aforesaid microdisplay configurations. A holistic view of microdisplay technologies is developed with the corresponding performance metrics, providing a path for miscellaneous scenarios. Among these scenarios, the applications in augmented reality (AR), virtual reality (VR), wearable devices, and head‐up displays (HUD) are currently attracting considerable attention for deeper human‐digital interactions. However, there is a multiplicity of obstacles and challenges hindering such development. Nevertheless, recent advances in microdisplay technologies hold tremendous promise for the paradigms of these applications, taking a leap forward for next‐generation microdisplays. This review presents perspectives, relevant materials, and the technology landscape for such ongoing display technologies, offering guidance on the design of advanced microdisplays. The demand for augmented reality (AR), virtual reality (VR), wearables, and head‐up display (HUD) technology has fueled the rapid growth of next‐generation microdisplays. Despite their promise, challenges remain. This review analyzes performance metrics across various scenarios and provides valuable materials and technology perspectives for ongoing display technology. Our guidance for advanced microdisplay design aims to overcome obstacles and improve the field. |
Author | Ye, Zhi‐Ting He, Jr‐Hau Lee, Tzu‐Yi Chen, Shih‐Chen Tsai, Chun‐Wei Hsiao, Fu‐He Sheng, Yujia Liu, Zhaojun Kuo, Hao‐Chung Chen, Hung‐Lung Lin, Chun‐Liang Hong, Yu‐Heng Miao, Wen‐Chien Chung, Ren‐Jei Horng, Ray‐Hua |
Author_xml | – sequence: 1 givenname: Wen‐Chien surname: Miao fullname: Miao, Wen‐Chien organization: National Yang Ming Chiao Tung University – sequence: 2 givenname: Fu‐He surname: Hsiao fullname: Hsiao, Fu‐He organization: National Yang Ming Chiao Tung University – sequence: 3 givenname: Yujia orcidid: 0000-0001-7353-0027 surname: Sheng fullname: Sheng, Yujia organization: City University of Hong Kong – sequence: 4 givenname: Tzu‐Yi surname: Lee fullname: Lee, Tzu‐Yi organization: National Yang Ming Chiao Tung University – sequence: 5 givenname: Yu‐Heng surname: Hong fullname: Hong, Yu‐Heng organization: Hon Hai Research Institute – sequence: 6 givenname: Chun‐Wei surname: Tsai fullname: Tsai, Chun‐Wei organization: City University of Hong Kong – sequence: 7 givenname: Hung‐Lung surname: Chen fullname: Chen, Hung‐Lung organization: K‐Jet Laser Tek Inc. – sequence: 8 givenname: Zhaojun surname: Liu fullname: Liu, Zhaojun organization: Southern University of Science and Technology – sequence: 9 givenname: Chun‐Liang surname: Lin fullname: Lin, Chun‐Liang organization: National Yang Ming Chiao Tung University – sequence: 10 givenname: Ren‐Jei surname: Chung fullname: Chung, Ren‐Jei organization: National Taipei University of Technology (Taipei Tech) – sequence: 11 givenname: Zhi‐Ting surname: Ye fullname: Ye, Zhi‐Ting organization: National Chung Cheng University – sequence: 12 givenname: Ray‐Hua surname: Horng fullname: Horng, Ray‐Hua organization: National Yang‐Ming Chiao Tung University – sequence: 13 givenname: Shih‐Chen surname: Chen fullname: Chen, Shih‐Chen email: gary.sc.chen@foxconn.com organization: Hon Hai Research Institute – sequence: 14 givenname: Hao‐Chung surname: Kuo fullname: Kuo, Hao‐Chung email: hckuo@faculty.nctu.edu.tw organization: National Yang Ming Chiao Tung University – sequence: 15 givenname: Jr‐Hau orcidid: 0000-0003-1886-9241 surname: He fullname: He, Jr‐Hau email: jrhauhe@cityu.edu.hk organization: City University of Hong Kong |
BookMark | eNqFkMtKAzEUhoNUsNZuXRfcOmNuM0nclbZeYEo3ug6ZJAMp05maTJHufASf0ScxbaWKIK7O7f_OOfznoNe0jQXgEsEUQYhvlGlXKYaYQIgQPgF9jESWIMhQ70d-BoYhLGHUQEYEZX3A50771riwrtU23I7mrnEfb-_FbHo92o9isdhXqjHHTmxcgNNK1cEOv-IAPN_NniYPSbG4f5yMi0QTxHBCiSVacKNLqjgVOS4polxVIoe5znAcVtRwojOWZyVhhgjMsVVEq8pktIJkAK4Oe9e-fdnY0Mllu_FNPCmxyHLIcsZpVNGDKv4XgreV1K5TnWubzitXSwTlzia5s0kebYpY-gtbe7dSfvs3IA7Aq6vt9h-1HE8X82_2E7aGfA0 |
CitedBy_id | crossref_primary_10_3390_mi15060796 crossref_primary_10_1109_JSTQE_2024_3354387 crossref_primary_10_1364_OL_537525 crossref_primary_10_3390_cryst14060503 crossref_primary_10_1088_1361_6463_ada6c2 crossref_primary_10_1186_s11671_024_04033_5 crossref_primary_10_1002_smtd_202401719 crossref_primary_10_1364_OE_515800 crossref_primary_10_1016_j_displa_2024_102894 crossref_primary_10_1364_OE_552083 crossref_primary_10_1002_jsid_2038 crossref_primary_10_1021_acsphotonics_4c00027 crossref_primary_10_1039_D4SC06605G crossref_primary_10_1039_D4TC02682A crossref_primary_10_1109_LED_2024_3387471 crossref_primary_10_3390_mi15010066 crossref_primary_10_1016_j_dyepig_2025_112732 crossref_primary_10_1016_j_mssp_2024_109178 crossref_primary_10_1016_j_mtadv_2024_100496 crossref_primary_10_1021_acsaelm_4c01590 crossref_primary_10_11627_jksie_2024_47_4_087 crossref_primary_10_1021_acsami_4c13739 crossref_primary_10_1063_5_0195261 crossref_primary_10_1002_smll_202407019 crossref_primary_10_3390_ma17225643 crossref_primary_10_1038_s41467_024_53965_0 crossref_primary_10_1021_acsaelm_4c00746 crossref_primary_10_1002_adom_202402777 crossref_primary_10_1038_s41598_024_75172_z crossref_primary_10_1109_JPHOT_2024_3511344 crossref_primary_10_1002_adom_202402574 crossref_primary_10_1080_15980316_2024_2445032 crossref_primary_10_3390_photonics11050442 crossref_primary_10_3390_molecules29163849 crossref_primary_10_3390_en16135194 crossref_primary_10_1002_adfm_202313490 crossref_primary_10_1016_j_synthmet_2024_117801 crossref_primary_10_1109_TED_2024_3519493 crossref_primary_10_1016_j_optcom_2024_131138 crossref_primary_10_1002_jsid_2010 crossref_primary_10_1002_adom_202302950 crossref_primary_10_1364_OL_546228 crossref_primary_10_1109_TED_2024_3367313 crossref_primary_10_1039_D4NR03925D crossref_primary_10_1016_j_mejo_2025_106622 crossref_primary_10_1109_LED_2025_3529745 crossref_primary_10_1364_OE_506286 crossref_primary_10_3390_nano15030199 crossref_primary_10_1038_s41377_024_01465_7 crossref_primary_10_1016_j_nxnano_2025_100132 crossref_primary_10_1039_D3NR06169H crossref_primary_10_1002_adfm_202401789 crossref_primary_10_3390_nano15020141 crossref_primary_10_1016_j_mtadv_2024_100552 crossref_primary_10_1364_OL_543122 crossref_primary_10_1016_j_cej_2025_161868 crossref_primary_10_1109_TCSII_2024_3448489 crossref_primary_10_3390_nano13233020 crossref_primary_10_1016_j_jeurceramsoc_2024_116948 crossref_primary_10_1039_D3MA00897E crossref_primary_10_1186_s11671_023_03948_9 crossref_primary_10_1088_1361_6463_ad714b crossref_primary_10_1088_2053_1591_ad0bc9 crossref_primary_10_1002_jsid_2008 crossref_primary_10_1002_adom_202401106 crossref_primary_10_1080_15599612_2024_2449386 |
Cites_doi | 10.1038/s41598-018-30548-w 10.1149/2.0302001JSS 10.1039/D1NR05288H 10.1364/OE.26.016572 10.1002/sdtp.13388 10.1016/j.nanoen.2018.01.049 10.3724/SP.J.2096-5796.2018.0009 10.1364/OL.430021 10.1021/acsenergylett.1c02745 10.1364/OL.43.005651 10.3390/nano11123304 10.1364/OE.26.011194 10.7567/1347-4065/ab09db 10.3390/nano10071327 10.1063/5.0047854 10.1364/OE.26.004863 10.1016/j.isci.2020.101397 10.3390/nano10122430 10.1364/PRJ.462050 10.1002/sdtp.12352 10.3390/app10062112 10.1002/sdtp.11683 10.1038/s41565-021-00966-5 10.1021/acs.analchem.9b05206 10.1021/acsomega.0c05139 10.1002/jsid.1107 10.1088/0268-1242/26/3/034001 10.1002/adfm.201808803 10.3390/nano11061549 10.1364/OE.441389 10.1002/sdtp.11674 10.1364/OE.455726 10.1364/OE.23.032504 10.1186/s11671-021-03611-1 10.1088/1361-6463/abd9a3 10.1364/PRJ.7.000579 10.1364/OL.423311 10.1002/adma.202109765 10.1063/5.0061940 10.1002/jsid.970 10.1038/s41467-022-29538-4 10.1889/JSID20.3.133 10.1002/admt.202000251 10.1016/j.optlastec.2015.09.022 10.1186/s11671-021-03642-8 10.1109/TCSII.2018.2790412 10.1038/s41377-020-0341-9 10.1364/PRJ.462519 10.1186/s11671-021-03623-x 10.1109/LED.2021.3130750 10.1016/j.pquantelec.2019.100226 10.1002/jsid.1069 10.1002/jsid.782 10.3390/cryst12030313 10.1063/5.0011203 10.1002/jsid.1022 10.1002/adma.201000525 10.1021/nl503779e 10.1002/sdtp.12939 10.1109/JDT.2006.885158 10.3390/coatings11040415 10.29026/oes.2022.220021 10.1038/s41565-022-01102-7 10.1002/sdtp.13825 10.1143/JJAP.36.1068 10.1002/sdtp.11836 10.1002/jsid.968 10.1109/LED.2023.3237512 10.1002/j.2168-0159.2012.tb05791.x 10.1109/MNANO.2021.3066393 10.1016/j.compositesb.2021.109350 10.3390/nano9091314 10.1088/1361-6463/abcfe4 10.1021/acsnano.9b04879 10.1002/pi.1974 10.1364/OL.436317 10.1109/68.300169 10.1002/sdtp.12414 10.1109/2.738305 10.1038/s41467-019-10406-7 10.1364/AO.422257 10.29026/oea.2021.210022 10.1364/PRJ.7.000416 10.1364/OE.433786 10.1002/sdtp.14627 10.3390/nano11102696 10.1364/OE.457740 10.1038/s41377-022-00851-3 10.1364/OE.27.00A746 10.1016/j.neuron.2015.10.032 10.3390/nano13040661 10.1063/5.0123409 10.1039/C5NR04042F 10.1002/jsid.610 10.1109/TED.2022.3188738 10.1088/1361-6528/abcd60 10.1063/1.98799 10.1364/OL.422579 10.1002/sdtp.13826 10.1109/COMST.2019.2898946 10.1364/PRJ.445984 10.1080/15980316.2021.1902405 10.1002/adma.201401573 10.1021/acsami.0c00839 10.1109/TED.2019.2906321 10.1007/s12274-021-4019-2 10.1109/JEDS.2022.3157935 10.7567/1882-0786/ab3949 10.1002/sdtp.14568 10.1039/D2TC01832B 10.1364/PRJ.434270 10.1016/j.orgel.2021.106248 10.1038/s41377-021-00658-8 10.3390/nano12061032 10.1038/s41378-020-00198-y 10.1002/sdtp.11629 10.1021/acs.jpclett.1c00321 10.1038/s41598-022-05370-0 10.1186/s43074-020-00010-0 10.1002/jsid.760 10.1115/1.4050202 10.1002/jsid.884 10.1109/ACCESS.2020.3010026 10.1021/acsphotonics.2c00285 10.1186/s11671-019-2993-z 10.1002/jsid.435 10.1016/j.cell.2015.06.058 10.1002/adfm.201606005 10.1063/5.0070275 10.1016/j.orgel.2014.09.001 10.1002/sdtp.14695 10.1002/advs.202201844 10.1002/advs.201902230 10.1002/jsid.656 10.1364/OE.25.033643 10.1364/OE.21.00A475 10.1080/15980316.2020.1773551 10.1021/acsnano.0c05735 10.1364/OE.422639 10.3390/app8091557 10.1002/jsid.540 10.1002/jsid.993 10.1021/acs.jpclett.0c01451 10.1016/bs.semsem.2021.01.005 10.1002/pssa.201900380 10.3390/cryst10030203 10.1889/1.1827889 10.1038/s41377-020-0268-1 10.1889/1.3256910 10.1002/adma.201100806 10.1080/15980316.2019.1671240 10.1002/sdtp.13022 10.1109/LPT.2013.2285229 10.1038/s41467-020-14880-2 10.1088/1361-6463/ac7b51 10.1002/adfm.201200765 10.1002/jsid.784 10.1364/OE.26.021324 10.1038/lsa.2017.168 10.1002/admt.202101502 10.1038/s41586-022-05612-1 10.1002/admt.202101189 10.1364/OE.413133 10.1126/science.1232437 10.1889/1.2785568 10.1002/jsid.1058 10.1109/ACCESS.2021.3074653 10.1007/s12206-019-1024-4 10.1021/acsanm.0c01227 10.1039/D2NR01115H 10.1002/sdtp.14630 10.3390/app10207384 10.1109/JEDS.2020.2995710 10.3390/nano10040689 10.1364/AOP.468066 10.35848/1882-0786/abe603 10.1002/sdtp.12415 10.1364/OE.384127 10.3390/cryst10060494 10.1007/s10111-008-0117-0 10.1002/adfm.201202519 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.202300112 |
DatabaseName | CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adom_202300112 ADOM202300112 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: City University of Hong Kong funderid: 9380107; 7005943 – fundername: Ministry of Science and Technology funderid: MOST 111‐2124‐M‐A49 ‐004 ‐ |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 31~ AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION EJD GODZA 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-c3172-43e3c98dcb4a84962b4148af9606c52e3cf4d83c5765b37d39282ea3cafd54f03 |
ISSN | 2195-1071 |
IngestDate | Fri Jul 25 12:02:42 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 00:35:59 EDT 2025 Wed Jan 22 16:13:13 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3172-43e3c98dcb4a84962b4148af9606c52e3cf4d83c5765b37d39282ea3cafd54f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7353-0027 0000-0003-1886-9241 |
PQID | 2956076784 |
PQPubID | 2034581 |
PageCount | 30 |
ParticipantIDs | proquest_journals_2956076784 crossref_citationtrail_10_1002_adom_202300112 crossref_primary_10_1002_adom_202300112 wiley_primary_10_1002_adom_202300112_ADOM202300112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 12 2019; 10 2019; 13 2019; 12 2002; 10 2019; 14 2014; 26 2020; 15 2020; 12 2020; 11 2020; 10 2018; 43 2018; 49 2018; 46 2018; 7 2010; 22 2018; 8 2019; 20 2019; 21 2020; 92 2015; 88 2022; 34 2019; 27 2014; 15 2019; 29 2022; 30 2023; 614 2012; 22 2012; 20 2021; 46 2019; 7 2019; 9 2021; 43 1987; 51 2019; 6 2019; 33 2006; 55 2019; 1 2013; 340 2020; 32 2021; 52 2018; 26 1999 2021; 54 2023; 44 2022; 7 1997; 36 2022; 9 2022; 12 2020; 28 2022; 13 2022; 14 1999; 32 2022; 15 2020; 23 2022; 10 2019; 216 2022; 1 2022; 11 2020; 21 2021; 60 2012; 43 2022; 17 2016; 24 2004; 61 2009; 40 2013; 25 2019; 50 2021; 22 2017; 48 2013; 21 2019; 55 2013; 23 2021; 29 2019; 58 2022; 69 2016; 78 2007; 38 2020; 8 2020; 6 2022; 121 2020; 5 2020; 3 2020; 1 2019; 66 2020; 51 2019; 68 2021; 119 2020; 9 2021; 118 2011; 23 2011; 26 2021; 9 2015; 162 2015; 15 2021; 6 2023; 13 2021; 4 2012 2017; 25 2011 2017; 27 2021; 106 2021; 226 2017; 23 2008 2006; 2 2021; 96 2018; 65 2015; 7 2021; 14 2022; 144 2015; 23 2021; 16 2021; 15 2021; 10 2021; 12 2021; 11 2021 2020 2019 2018 2020; 117 2017 2016 2014 2022; 55 1994; 6 e_1_2_8_26_1 e_1_2_8_49_1 Liu Y.‐C. (e_1_2_8_2_1) 2004; 61 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_30_1 Li Y.‐Y. (e_1_2_8_132_1) 2022; 14 e_1_2_8_25_1 e_1_2_8_48_1 Wu Y.‐C. (e_1_2_8_11_1) 2021 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_171_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_156_1 Ghosh A. (e_1_2_8_68_1) 2016 e_1_2_8_14_1 Radauscher E. J. (e_1_2_8_115_1) 2017 e_1_2_8_37_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 Huang Y.‐M. (e_1_2_8_175_1) 2021 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 Hsu S.‐C. (e_1_2_8_174_1) 2017; 23 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 Chen C.‐J. (e_1_2_8_101_1) 2019; 55 e_1_2_8_27_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_16_1 Templier F. (e_1_2_8_100_1) 2018 e_1_2_8_92_1 e_1_2_8_161_1 Lin C.‐C. (e_1_2_8_187_1) 2021 e_1_2_8_31_1 e_1_2_8_77_1 Kamali S. M. (e_1_2_8_96_1) 2019 Hsu Y.‐C. (e_1_2_8_8_1) 2020 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_22_1 e_1_2_8_45_1 Pfeifer R. (e_1_2_8_66_1) 2011 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_200_1 Choi K.‐S. (e_1_2_8_62_1) 2020 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 Eisenberg E. (e_1_2_8_83_1) 2020 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_201_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_138_1 e_1_2_8_85_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 Iwasaki T. (e_1_2_8_34_1) 2014 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_165_1 e_1_2_8_142_1 e_1_2_8_127_1 Cho Y.‐Y. (e_1_2_8_172_1) 2019 e_1_2_8_12_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – year: 2011 – volume: 96 year: 2021 publication-title: Org. Electron. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 23 year: 2015 publication-title: Opt. Express – volume: 38 start-page: 1370 year: 2007 publication-title: SID Symp. Digest of Technical Papers – volume: 26 year: 2011 publication-title: Semicond. Sci. Technol. – volume: 27 start-page: 387 year: 2019 publication-title: J. Soc. Inf. Disp. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 26 year: 2018 publication-title: Opt. Express – volume: 8 year: 2020 publication-title: IEEE Access – volume: 1 year: 2022 publication-title: Opto‐Electron. Sci. – volume: 48 start-page: 403 year: 2017 publication-title: SID Symp. Digest of Technical Papers – volume: 15 start-page: 3137 year: 2014 publication-title: Org. Electron. – volume: 44 start-page: 460 year: 2023 publication-title: IEEE Electron Device Lett. – volume: 78 start-page: 33 year: 2016 publication-title: Opt. Laser Technol. – volume: 9 start-page: 83 year: 2020 publication-title: Light: Sci. Appl. – year: 2014 – volume: 24 start-page: 246 year: 2016 publication-title: J. Soc. Inf. Disp. – volume: 46 start-page: 1912 year: 2021 publication-title: Opt. Lett. – volume: 43 start-page: 5651 year: 2018 publication-title: Opt. Lett. – volume: 12 start-page: 313 year: 2022 publication-title: Crystals – volume: 6 start-page: 2836 year: 2021 publication-title: ACS Omega – volume: 9 start-page: 1314 year: 2019 publication-title: Nanomaterials – volume: 48 start-page: 1125 year: 2017 publication-title: SID Symp. Digest of Technical Papers – volume: 9 start-page: 2341 year: 2021 publication-title: Photonics Res. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 4863 year: 2018 publication-title: Opt. Express – volume: 50 start-page: 61 year: 2019 publication-title: SID Symp. Digest of Technical Papers – volume: 50 start-page: 725 year: 2019 publication-title: SID Symp. Digest of Technical Papers – volume: 7 year: 2018 publication-title: Light: Sci. Appl. – volume: 15 start-page: 5392 year: 2022 publication-title: Nano Res. – volume: 26 start-page: 178 year: 2018 publication-title: J. Soc. Inf. Disp. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 54 year: 2021 publication-title: J. Phys. D: Appl. Phys. – volume: 10 start-page: 7384 year: 2020 publication-title: Appl. Sci. – volume: 66 start-page: 2263 year: 2019 publication-title: IEEE Trans. Electron Devices – volume: 11 start-page: 161 year: 2022 publication-title: Light: Sci. Appl. – volume: 1 start-page: 10 year: 2020 publication-title: PhotoniX – volume: 51 start-page: 913 year: 1987 publication-title: Appl. Phys. Lett. – volume: 216 year: 2019 publication-title: Phys. Status Solidi A – volume: 10 start-page: 216 year: 2021 publication-title: Light: Sci. Appl. – year: 2019 – volume: 32 year: 2020 publication-title: Nanotechnology – volume: 17 start-page: 500 year: 2022 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 88 year: 2020 publication-title: Microsyst. Nanoeng. – volume: 9 year: 2021 publication-title: IEEE Access – volume: 15 start-page: 969 year: 2015 publication-title: Nano Lett. – volume: 2 start-page: 319 year: 2006 publication-title: J. Disp. Technol. – volume: 65 start-page: 724 year: 2018 publication-title: IEEE Trans. Circuits Syst., II – volume: 88 start-page: 1136 year: 2015 publication-title: Neuron – volume: 52 start-page: 379 year: 2021 publication-title: SID Symp. Digest of Technical Papers – volume: 10 start-page: 516 year: 2022 publication-title: Photonics Res. – volume: 119 year: 2021 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 10 year: 2019 publication-title: Virtual Reality Intell. Hardware – volume: 8 start-page: 554 year: 2020 publication-title: IEEE J. Electron Devices Soc. – volume: 30 year: 2022 publication-title: Opt. Express – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 7 start-page: 579 year: 2019 publication-title: Photonics Res. – year: 2016 – volume: 22 start-page: 163 year: 2021 publication-title: J. Inf. Disp. – volume: 46 start-page: 3476 year: 2021 publication-title: Opt. Lett. – volume: 49 start-page: 597 year: 2018 publication-title: SID Symp. Digest of Technical Papers – volume: 22 start-page: 5138 year: 2012 publication-title: Adv. Funct. Mater. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 51 start-page: 153 year: 2020 publication-title: Digest of Technical Papers‐SID Int. Symp. – volume: 55 year: 2019 publication-title: IEEE J. Quantum Electron. – volume: 9 start-page: 105 year: 2020 publication-title: Light: Sci. Appl. – volume: 6 start-page: 706 year: 1994 publication-title: IEEE Photonics Technol. Lett. – volume: 10 start-page: 203 year: 2020 publication-title: Crystals – volume: 10 start-page: 347 year: 2002 publication-title: J. Soc. Inf. Disp. – volume: 11 start-page: 3304 year: 2021 publication-title: Nanomaterials – volume: 48 start-page: 226 year: 2017 publication-title: SID Symp. Digest of Technical Papers – volume: 36 start-page: 1068 year: 1997 publication-title: Jpn. J. Appl. Phys. – volume: 10 start-page: 689 year: 2020 publication-title: Nanomaterials – volume: 50 start-page: 390 year: 2019 publication-title: SID Symposium Digest of Technical Papers – volume: 16 start-page: 164 year: 2021 publication-title: Nanoscale Res. Lett. – volume: 10 start-page: 1327 year: 2020 publication-title: Nanomaterials – volume: 14 year: 2021 publication-title: Appl. Phys. Express – volume: 29 year: 2021 publication-title: Opt. Express – volume: 12 start-page: 6946 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 13 start-page: 1862 year: 2022 publication-title: Nat. Commun. – volume: 27 start-page: 347 year: 2019 publication-title: J. Soc. Inf. Disp. – volume: 30 start-page: 556 year: 2022 publication-title: J. Soc. Inf. Disp. – volume: 28 start-page: 5787 year: 2020 publication-title: Opt. Express – volume: 15 start-page: 18 year: 2021 publication-title: IEEE Nanotechnol. Mag. – volume: 29 start-page: 57 year: 2021 publication-title: J. Soc. Inf. Disp. – volume: 29 start-page: 360 year: 2021 publication-title: J. Soc. Inf. Disp. – volume: 12 start-page: 1324 year: 2022 publication-title: Sci. Rep. – volume: 10 start-page: 494 year: 2020 publication-title: Crystals – volume: 43 start-page: 363 year: 2012 publication-title: SID Symposium Digest of Technical Papers – volume: 7 start-page: 416 year: 2019 publication-title: Photonics Res. – volume: 23 year: 2017 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 28 start-page: 926 year: 2020 publication-title: J. Soc. Inf. Disp. – volume: 33 start-page: 5321 year: 2019 publication-title: J. Mech. Sci. Technol. – volume: 16 start-page: 1231 year: 2021 publication-title: Nat. Nanotechnol. – volume: 55 year: 2022 publication-title: J. Phys. D: Appl. Phys. – volume: 27 start-page: 354 year: 2019 publication-title: J. Soc. Inf. Disp. – volume: 52 start-page: 127 year: 2021 publication-title: SID Symp. Digest of Technical Papers – volume: 69 start-page: 4936 year: 2022 publication-title: IEEE Trans. Electron Devices – volume: 11 start-page: 415 year: 2021 publication-title: Coatings – volume: 23 year: 2020 publication-title: Iscience – volume: 10 start-page: 2430 year: 2020 publication-title: Nanomaterials – year: 2021 – volume: 106 start-page: 173 year: 2021 publication-title: Semicond. Semimetals – volume: 46 start-page: 4358 year: 2021 publication-title: Opt. Lett. – volume: 43 start-page: 60 year: 2021 publication-title: IEEE Electron Device Lett. – volume: 10 start-page: 2409 year: 2019 publication-title: Nat. Commun. – volume: 55 start-page: 572 year: 2006 publication-title: Polym. Int. – volume: 14 start-page: 4042 year: 2021 publication-title: Nanoscale – volume: 12 start-page: 41 year: 2010 publication-title: Cognit. Technol. Work – volume: 60 start-page: 3006 year: 2021 publication-title: Appl. Opt. – volume: 10 start-page: 2112 year: 2020 publication-title: Appl. Sci. – volume: 40 start-page: 798 year: 2009 publication-title: SID Symp. Digest of Technical Papers – year: 2018 – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 3 start-page: 6855 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 21 start-page: A475 year: 2013 publication-title: Opt. Express – volume: 28 year: 2020 publication-title: Opt. Express – volume: 25 year: 2017 publication-title: Opt. Express – volume: 25 start-page: 167 year: 2017 publication-title: J. Soc. Inf. Disp. – volume: 14 start-page: 5994 year: 2022 publication-title: Nanoscale – volume: 21 start-page: 2111 year: 2019 publication-title: IEEE Commun. Surv. Tutor. – volume: 20 start-page: 249 year: 2019 publication-title: J. Inf. Disp. – volume: 46 start-page: 203 year: 2018 publication-title: Nano Energy – volume: 10 start-page: 1810 year: 2022 publication-title: Photonics Res. – volume: 16 start-page: 152 year: 2021 publication-title: Nanoscale Res. Lett. – volume: 13 start-page: 661 year: 2023 publication-title: Nanomaterials – volume: 8 year: 2018 publication-title: Sci. Rep. – volume: 11 start-page: 1171 year: 2020 publication-title: Nat. Commun. – volume: 22 start-page: 3076 year: 2010 publication-title: Adv. Mater. – volume: 14 start-page: 182 year: 2019 publication-title: Nanoscale Res. Lett. – volume: 14 year: 2022 publication-title: IEEE Photonics J. – volume: 23 start-page: 3284 year: 2011 publication-title: Adv. Mater. – volume: 29 start-page: 446 year: 2021 publication-title: J. Soc. Inf. Disp. – volume: 23 start-page: 2024 year: 2013 publication-title: Adv. Funct. Mater. – volume: 7 year: 2022 publication-title: Adv. Mater. Technol. – volume: 29 start-page: 3 year: 2021 publication-title: J. Soc. Inf. Disp. – volume: 9 year: 2019 publication-title: ECS J. Solid State Sci. Technol. – volume: 49 start-page: 692 year: 2018 publication-title: SID Symp. Digest of Technical Papers – volume: 92 start-page: 3795 year: 2020 publication-title: Anal. Chem. – volume: 4 year: 2021 publication-title: Opto‐Electron. Adv. – volume: 46 start-page: 2147 year: 2021 publication-title: Opt. Lett. – volume: 11 start-page: 2696 year: 2021 publication-title: Nanomaterials – volume: 10 year: 2022 publication-title: J. Mater. Chem. C – volume: 51 start-page: 149 year: 2020 publication-title: SID Symp. Digest of Technical Papers – volume: 25 start-page: 2267 year: 2013 publication-title: IEEE Photonics Technol. Lett. – volume: 48 start-page: 264 year: 2017 publication-title: SID Symp. Digest of Technical Papers – volume: 17 start-page: 1 year: 2022 publication-title: Nanoscale Res. Lett. – volume: 68 year: 2019 publication-title: Prog. Quantum Electron. – volume: 9 start-page: 2905 year: 2022 publication-title: ACS Photonics – volume: 13 year: 2019 publication-title: ACS Nano – volume: 10 start-page: 256 year: 2022 publication-title: IEEE J. Electron Devices Soc. – volume: 21 start-page: 131 year: 2020 publication-title: J. Inf. Disp. – volume: 52 start-page: 597 year: 2021 publication-title: SID Symp. Digest of Technical Papers – year: 2012 – volume: 49 start-page: 593 year: 2018 publication-title: SID Symp. Digest of Technical Papers – volume: 12 start-page: 1032 year: 2022 publication-title: Nanomaterials – volume: 10 start-page: 1978 year: 2022 publication-title: Photonics Res. – volume: 144 year: 2022 publication-title: J. Electron. Packag. – volume: 20 start-page: 133 year: 2012 publication-title: J. Soc. Inf. Disp. – volume: 12 year: 2019 publication-title: Appl. Phys. Express – volume: 14 start-page: 783 year: 2022 publication-title: Adv. Opt. Photonics – volume: 11 start-page: 1549 year: 2021 publication-title: Nanomaterials – volume: 52 start-page: 139 year: 2021 publication-title: SID Symp. Digest of Technical Papers – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – volume: 27 start-page: A746 year: 2019 publication-title: Opt. Express – volume: 58 year: 2019 publication-title: Jpn. J. Appl. Phys. – volume: 61 start-page: 679 year: 2004 publication-title: Int. J. Man‐Mach. Stud. – year: 2020 – volume: 162 start-page: 662 year: 2015 publication-title: Cell – volume: 340 start-page: 211 year: 2013 publication-title: Science – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 5942 year: 2014 publication-title: Adv. Mater. – volume: 226 year: 2021 publication-title: Composites, Part B – volume: 8 start-page: 1557 year: 2018 publication-title: Appl. Sci. – volume: 29 start-page: 435 year: 2021 publication-title: J. Soc. Inf. Disp. – volume: 614 start-page: 81 year: 2023 publication-title: Nature – volume: 121 year: 2022 publication-title: Appl. Phys. Lett. – volume: 15 start-page: 550 year: 2020 publication-title: ACS Nano – year: 2017 – volume: 7 year: 2015 publication-title: Nanoscale – volume: 25 start-page: 589 year: 2017 publication-title: J. Soc. Inf. Disp. – volume: 32 start-page: 57 year: 1999 publication-title: Computer – start-page: 1377 year: 2008 – volume: 30 start-page: 54 year: 2022 publication-title: J. Soc. Inf. Disp. – year: 1999 – volume: 7 start-page: 1001 year: 2022 publication-title: ACS Energy Lett. – volume: 11 start-page: 5184 year: 2020 publication-title: J. Phys. Chem. Lett. – ident: e_1_2_8_176_1 doi: 10.1038/s41598-018-30548-w – ident: e_1_2_8_27_1 doi: 10.1149/2.0302001JSS – ident: e_1_2_8_39_1 doi: 10.1039/D1NR05288H – ident: e_1_2_8_14_1 doi: 10.1364/OE.26.016572 – ident: e_1_2_8_42_1 doi: 10.1002/sdtp.13388 – ident: e_1_2_8_184_1 doi: 10.1016/j.nanoen.2018.01.049 – ident: e_1_2_8_190_1 doi: 10.3724/SP.J.2096-5796.2018.0009 – ident: e_1_2_8_97_1 doi: 10.1364/OL.430021 – ident: e_1_2_8_138_1 doi: 10.1021/acsenergylett.1c02745 – ident: e_1_2_8_192_1 doi: 10.1364/OL.43.005651 – ident: e_1_2_8_51_1 doi: 10.3390/nano11123304 – ident: e_1_2_8_129_1 doi: 10.1364/OE.26.011194 – ident: e_1_2_8_130_1 doi: 10.7567/1347-4065/ab09db – volume: 61 start-page: 679 year: 2004 ident: e_1_2_8_2_1 publication-title: Int. J. Man‐Mach. Stud. – ident: e_1_2_8_38_1 doi: 10.3390/nano10071327 – ident: e_1_2_8_162_1 doi: 10.1063/5.0047854 – ident: e_1_2_8_193_1 doi: 10.1364/OE.26.004863 – ident: e_1_2_8_4_1 doi: 10.1016/j.isci.2020.101397 – ident: e_1_2_8_161_1 doi: 10.3390/nano10122430 – ident: e_1_2_8_93_1 doi: 10.1364/PRJ.462050 – ident: e_1_2_8_120_1 doi: 10.1002/sdtp.12352 – ident: e_1_2_8_110_1 doi: 10.3390/app10062112 – ident: e_1_2_8_127_1 doi: 10.1002/sdtp.11683 – ident: e_1_2_8_134_1 doi: 10.1038/s41565-021-00966-5 – ident: e_1_2_8_145_1 doi: 10.1021/acs.analchem.9b05206 – ident: e_1_2_8_173_1 doi: 10.1021/acsomega.0c05139 – ident: e_1_2_8_149_1 doi: 10.1002/jsid.1107 – ident: e_1_2_8_33_1 doi: 10.1088/0268-1242/26/3/034001 – ident: e_1_2_8_123_1 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201808803 – ident: e_1_2_8_202_1 doi: 10.3390/nano11061549 – ident: e_1_2_8_88_1 doi: 10.1364/OE.441389 – volume-title: 2021 IEEE Photonics Conf. (IPC) year: 2021 ident: e_1_2_8_187_1 – ident: e_1_2_8_69_1 doi: 10.1002/sdtp.11674 – ident: e_1_2_8_90_1 doi: 10.1364/OE.455726 – ident: e_1_2_8_158_1 doi: 10.1364/OE.23.032504 – ident: e_1_2_8_94_1 doi: 10.1186/s11671-021-03611-1 – ident: e_1_2_8_35_1 doi: 10.1088/1361-6463/abd9a3 – ident: e_1_2_8_160_1 doi: 10.1364/PRJ.7.000579 – ident: e_1_2_8_142_1 doi: 10.1364/OL.423311 – ident: e_1_2_8_146_1 doi: 10.1002/adma.202109765 – ident: e_1_2_8_111_1 doi: 10.1063/5.0061940 – ident: e_1_2_8_63_1 doi: 10.1002/jsid.970 – ident: e_1_2_8_136_1 doi: 10.1038/s41467-022-29538-4 – ident: e_1_2_8_55_1 doi: 10.1889/JSID20.3.133 – ident: e_1_2_8_170_1 doi: 10.1002/admt.202000251 – ident: e_1_2_8_119_1 doi: 10.1016/j.optlastec.2015.09.022 – start-page: 1104002 volume-title: SPIE 11040, Optical Design Challenge 2019 year: 2019 ident: e_1_2_8_96_1 – ident: e_1_2_8_164_1 doi: 10.1186/s11671-021-03642-8 – ident: e_1_2_8_95_1 doi: 10.1109/TCSII.2018.2790412 – start-page: 1012418 volume-title: SPIE 10124, Light‐Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XXI year: 2017 ident: e_1_2_8_115_1 – ident: e_1_2_8_181_1 – ident: e_1_2_8_22_1 doi: 10.1038/s41377-020-0341-9 – ident: e_1_2_8_12_1 doi: 10.1364/PRJ.462519 – ident: e_1_2_8_154_1 doi: 10.1186/s11671-021-03623-x – volume-title: 2020 Conf. on Lasers and Electro‐Optics (CLEO) year: 2020 ident: e_1_2_8_8_1 – volume-title: 2019 IEEE Photonics Conf. (IPC) year: 2019 ident: e_1_2_8_172_1 – ident: e_1_2_8_148_1 doi: 10.1109/LED.2021.3130750 – ident: e_1_2_8_199_1 doi: 10.1016/j.pquantelec.2019.100226 – ident: e_1_2_8_59_1 doi: 10.1002/jsid.1069 – ident: e_1_2_8_182_1 doi: 10.1002/jsid.782 – ident: e_1_2_8_195_1 doi: 10.3390/cryst12030313 – ident: e_1_2_8_105_1 doi: 10.1063/5.0011203 – ident: e_1_2_8_98_1 doi: 10.1002/jsid.1022 – ident: e_1_2_8_61_1 doi: 10.1002/adma.201000525 – volume-title: 2020 IEEE 70th Electronic Components and Technology Conf. (ECTC) year: 2020 ident: e_1_2_8_62_1 – volume: 14 year: 2022 ident: e_1_2_8_132_1 publication-title: IEEE Photonics J. – ident: e_1_2_8_183_1 doi: 10.1021/nl503779e – ident: e_1_2_8_46_1 doi: 10.1002/sdtp.12939 – ident: e_1_2_8_60_1 doi: 10.1109/JDT.2006.885158 – ident: e_1_2_8_137_1 doi: 10.3390/coatings11040415 – ident: e_1_2_8_196_1 doi: 10.29026/oes.2022.220021 – ident: e_1_2_8_135_1 doi: 10.1038/s41565-022-01102-7 – ident: e_1_2_8_72_1 doi: 10.1002/sdtp.13825 – start-page: 105560I volume-title: Advances in Display Technologies VIII year: 2018 ident: e_1_2_8_100_1 – ident: e_1_2_8_53_1 doi: 10.1143/JJAP.36.1068 – ident: e_1_2_8_79_1 doi: 10.1002/sdtp.11836 – ident: e_1_2_8_56_1 – ident: e_1_2_8_169_1 doi: 10.1002/jsid.968 – ident: e_1_2_8_104_1 doi: 10.1109/LED.2023.3237512 – ident: e_1_2_8_84_1 doi: 10.1002/j.2168-0159.2012.tb05791.x – ident: e_1_2_8_89_1 doi: 10.1109/MNANO.2021.3066393 – ident: e_1_2_8_166_1 doi: 10.1016/j.compositesb.2021.109350 – ident: e_1_2_8_163_1 doi: 10.3390/nano9091314 – ident: e_1_2_8_20_1 doi: 10.1088/1361-6463/abcfe4 – ident: e_1_2_8_156_1 doi: 10.1021/acsnano.9b04879 – ident: e_1_2_8_16_1 doi: 10.1002/pi.1974 – ident: e_1_2_8_108_1 doi: 10.1364/OL.436317 – ident: e_1_2_8_121_1 doi: 10.1109/68.300169 – ident: e_1_2_8_126_1 doi: 10.1002/sdtp.12414 – ident: e_1_2_8_1_1 doi: 10.1109/2.738305 – ident: e_1_2_8_185_1 doi: 10.1038/s41467-019-10406-7 – ident: e_1_2_8_106_1 doi: 10.1364/AO.422257 – ident: e_1_2_8_30_1 doi: 10.29026/oea.2021.210022 – ident: e_1_2_8_153_1 doi: 10.1364/PRJ.7.000416 – ident: e_1_2_8_159_1 doi: 10.1364/OE.433786 – ident: e_1_2_8_80_1 doi: 10.1002/sdtp.14627 – ident: e_1_2_8_152_1 doi: 10.3390/nano11102696 – ident: e_1_2_8_155_1 doi: 10.1364/OE.457740 – ident: e_1_2_8_31_1 doi: 10.1038/s41377-022-00851-3 – ident: e_1_2_8_86_1 doi: 10.1364/OE.27.00A746 – ident: e_1_2_8_139_1 doi: 10.1016/j.neuron.2015.10.032 – ident: e_1_2_8_114_1 doi: 10.3390/nano13040661 – ident: e_1_2_8_150_1 doi: 10.1063/5.0123409 – ident: e_1_2_8_180_1 doi: 10.1039/C5NR04042F – ident: e_1_2_8_116_1 doi: 10.1002/jsid.610 – ident: e_1_2_8_45_1 doi: 10.1109/TED.2022.3188738 – ident: e_1_2_8_197_1 doi: 10.1088/1361-6528/abcd60 – ident: e_1_2_8_15_1 doi: 10.1063/1.98799 – volume: 55 year: 2019 ident: e_1_2_8_101_1 publication-title: IEEE J. Quantum Electron. – ident: e_1_2_8_112_1 doi: 10.1364/OL.422579 – ident: e_1_2_8_77_1 doi: 10.1002/sdtp.13826 – ident: e_1_2_8_143_1 doi: 10.1109/COMST.2019.2898946 – ident: e_1_2_8_147_1 doi: 10.1364/PRJ.445984 – ident: e_1_2_8_76_1 doi: 10.1080/15980316.2021.1902405 – ident: e_1_2_8_122_1 doi: 10.1002/adma.201401573 – ident: e_1_2_8_151_1 doi: 10.1021/acsami.0c00839 – ident: e_1_2_8_24_1 doi: 10.1109/TED.2019.2906321 – ident: e_1_2_8_43_1 doi: 10.1007/s12274-021-4019-2 – ident: e_1_2_8_57_1 doi: 10.1109/JEDS.2022.3157935 – ident: e_1_2_8_91_1 doi: 10.7567/1882-0786/ab3949 – volume-title: 2021 European Conf. on Optical Communication (ECOC) year: 2021 ident: e_1_2_8_11_1 – ident: e_1_2_8_188_1 doi: 10.1002/sdtp.14568 – ident: e_1_2_8_178_1 doi: 10.1039/D2TC01832B – ident: e_1_2_8_10_1 doi: 10.1364/PRJ.434270 – ident: e_1_2_8_75_1 doi: 10.1016/j.orgel.2021.106248 – ident: e_1_2_8_5_1 doi: 10.1038/s41377-021-00658-8 – ident: e_1_2_8_41_1 doi: 10.3390/nano12061032 – ident: e_1_2_8_198_1 doi: 10.1038/s41378-020-00198-y – ident: e_1_2_8_58_1 doi: 10.1002/sdtp.11629 – ident: e_1_2_8_177_1 doi: 10.1021/acs.jpclett.1c00321 – ident: e_1_2_8_109_1 doi: 10.1038/s41598-022-05370-0 – ident: e_1_2_8_194_1 doi: 10.1186/s43074-020-00010-0 – ident: e_1_2_8_26_1 doi: 10.1002/jsid.760 – ident: e_1_2_8_48_1 doi: 10.1115/1.4050202 – ident: e_1_2_8_85_1 doi: 10.1002/jsid.884 – ident: e_1_2_8_40_1 doi: 10.1109/ACCESS.2020.3010026 – volume-title: 2011 Semiconductor Conf. Dresden year: 2011 ident: e_1_2_8_66_1 – ident: e_1_2_8_21_1 doi: 10.1021/acsphotonics.2c00285 – ident: e_1_2_8_49_1 doi: 10.1186/s11671-019-2993-z – ident: e_1_2_8_191_1 doi: 10.1002/jsid.435 – ident: e_1_2_8_140_1 doi: 10.1016/j.cell.2015.06.058 – ident: e_1_2_8_125_1 doi: 10.1002/adfm.201606005 – ident: e_1_2_8_113_1 doi: 10.1063/5.0070275 – ident: e_1_2_8_67_1 doi: 10.1016/j.orgel.2014.09.001 – ident: e_1_2_8_78_1 doi: 10.1002/sdtp.14695 – ident: e_1_2_8_179_1 doi: 10.1002/advs.202201844 – ident: e_1_2_8_171_1 doi: 10.1002/advs.201902230 – ident: e_1_2_8_71_1 doi: 10.1002/jsid.656 – ident: e_1_2_8_17_1 doi: 10.1364/OE.25.033643 – ident: e_1_2_8_19_1 doi: 10.1364/OE.21.00A475 – ident: e_1_2_8_65_1 doi: 10.1080/15980316.2020.1773551 – ident: e_1_2_8_200_1 doi: 10.1021/acsnano.0c05735 – ident: e_1_2_8_54_1 doi: 10.1364/OE.422639 – ident: e_1_2_8_25_1 doi: 10.3390/app8091557 – ident: e_1_2_8_74_1 doi: 10.1002/jsid.540 – ident: e_1_2_8_28_1 doi: 10.1002/jsid.993 – ident: e_1_2_8_186_1 doi: 10.1021/acs.jpclett.0c01451 – ident: e_1_2_8_36_1 doi: 10.1016/bs.semsem.2021.01.005 – volume: 23 year: 2017 ident: e_1_2_8_174_1 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: e_1_2_8_92_1 doi: 10.1002/pssa.201900380 – ident: e_1_2_8_165_1 doi: 10.3390/cryst10030203 – ident: e_1_2_8_13_1 doi: 10.1889/1.1827889 – ident: e_1_2_8_37_1 doi: 10.1038/s41377-020-0268-1 – ident: e_1_2_8_64_1 doi: 10.1889/1.3256910 – ident: e_1_2_8_107_1 doi: 10.1002/adma.201100806 – ident: e_1_2_8_70_1 doi: 10.1080/15980316.2019.1671240 – ident: e_1_2_8_81_1 doi: 10.1002/sdtp.13022 – ident: e_1_2_8_99_1 doi: 10.1109/LPT.2013.2285229 – ident: e_1_2_8_6_1 doi: 10.1038/s41467-020-14880-2 – ident: e_1_2_8_44_1 doi: 10.1088/1361-6463/ac7b51 – ident: e_1_2_8_157_1 doi: 10.1002/adfm.201200765 – ident: e_1_2_8_73_1 doi: 10.1002/jsid.784 – ident: e_1_2_8_87_1 doi: 10.1364/OE.26.021324 – ident: e_1_2_8_18_1 doi: 10.1038/lsa.2017.168 – volume-title: Optical Instrumentation for Energy and Environmental Applications year: 2014 ident: e_1_2_8_34_1 – ident: e_1_2_8_144_1 doi: 10.1002/admt.202101502 – volume-title: CLEO: Science and Innovations year: 2021 ident: e_1_2_8_175_1 – ident: e_1_2_8_103_1 doi: 10.1038/s41586-022-05612-1 – ident: e_1_2_8_29_1 doi: 10.1002/admt.202101189 – ident: e_1_2_8_50_1 doi: 10.1364/OE.413133 – ident: e_1_2_8_141_1 doi: 10.1126/science.1232437 – ident: e_1_2_8_82_1 doi: 10.1889/1.2785568 – ident: e_1_2_8_23_1 doi: 10.1002/jsid.1058 – ident: e_1_2_8_47_1 doi: 10.1109/ACCESS.2021.3074653 – volume-title: SID Symp. Digest of Technical Papers year: 2016 ident: e_1_2_8_68_1 – ident: e_1_2_8_117_1 doi: 10.1007/s12206-019-1024-4 – ident: e_1_2_8_201_1 doi: 10.1021/acsanm.0c01227 – ident: e_1_2_8_168_1 doi: 10.1039/D2NR01115H – ident: e_1_2_8_9_1 doi: 10.1002/sdtp.14630 – ident: e_1_2_8_7_1 doi: 10.3390/app10207384 – ident: e_1_2_8_52_1 – ident: e_1_2_8_118_1 doi: 10.1109/JEDS.2020.2995710 – volume-title: Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) year: 2020 ident: e_1_2_8_83_1 – ident: e_1_2_8_128_1 doi: 10.3390/nano10040689 – ident: e_1_2_8_189_1 doi: 10.1364/AOP.468066 – ident: e_1_2_8_102_1 doi: 10.35848/1882-0786/abe603 – ident: e_1_2_8_133_1 doi: 10.1002/sdtp.12415 – ident: e_1_2_8_131_1 doi: 10.1364/OE.384127 – ident: e_1_2_8_167_1 doi: 10.3390/cryst10060494 – ident: e_1_2_8_3_1 doi: 10.1007/s10111-008-0117-0 – ident: e_1_2_8_124_1 doi: 10.1002/adfm.201202519 |
SSID | ssj0001073947 |
Score | 2.6110017 |
SecondaryResourceType | review_article |
Snippet | The field of next‐generation microdisplays is flourishing. Relevant display technologies, such as mini‐light emission diodes (mini‐LEDs), micro‐organic light... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Augmented reality Light emission microdisplays micro‐light emission diodes micro‐organic light emission diodes mini‐light emission diodes Organic light emitting diodes Performance measurement Virtual reality Wearable technology |
Title | Microdisplays: Mini‐LED, Micro‐OLED, and Micro‐LED |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.202300112 https://www.proquest.com/docview/2956076784 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswELVK2dwNr3sR5aUskNjcQLCdJmVXUVCFGrqgCFhFtuOIINRWtF3Aik_gG_kSxrHjtKiIxyaqx4-knsnMHGc8RmjPr4tQJOTITTGwgTbYEbxzkrueIAHzuErBpZYGoot6-4qe3_g3lcpkenfJmB-I57n7Sn7DVaABX9Uu2R9w1g4KBPgN_IUrcBiu3-JxpKLpkmw0fGBPeWhblPUzG77QOW2ZwPjHgSV2DTWPr5ip6RgVVqSkLYIDBkO93A2urf5PlkcZy9dZr0FzFYOc3GXl3rL2yLQ4m9gGbStIl3dS65nbyX1mjYMJDOo9l11us-mlCUzL2CytwbA6CBLwpSbJObRCBeMpUQvmanadKZYlA5U-AHAT6CVc2rDiu_0H02YDDnVyZhyr_rHtv4AWMaALXEWLzVbUuSwX59T3y_xwOvu4RcJPDx_OPsSsQ1OilGmskzsrvRW0ZFCG09Qis4oqsr-Glg3icIw-H_1F4YwEHTtKft5eXkEU_jt5FRS6eQnkxVKA8A9dnZ32TtquOUvDFeAhqo1xkohGmAhOWUgbdcwpAGGWKgArfAyVKU1CIgB--pwECbjNIZaMCJYmPk09so6q_UFfbiCHg9r2PRmoBASUCsLrBKwtIAEgMDABNeQWExILk2henXfyEM_nQg3t2_ZDnWLl05bbxfzG5jUcxVgh_AB8LlpDOJ_zL0aJm61uZEub3777FvpTCvk2qo4fJ3IHPNIx3zXy8w4Ainoa |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microdisplays%3A+Mini%E2%80%90LED%2C+Micro%E2%80%90OLED%2C+and+Micro%E2%80%90LED&rft.jtitle=Advanced+optical+materials&rft.au=Miao%2C+Wen%E2%80%90Chien&rft.au=Hsiao%2C+Fu%E2%80%90He&rft.au=Sheng%2C+Yujia&rft.au=Lee%2C+Tzu%E2%80%90Yi&rft.date=2024-03-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=12&rft.issue=7&rft_id=info:doi/10.1002%2Fadom.202300112&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adom_202300112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |