Staggered Stacking Covalent Organic Frameworks for Boosting Cancer Immunotherapy

The synergistic efficacy of phototherapy and cancer immunotherapy is severely restricted by both the inherent photobleaching and aggregation‐caused quench (ACQ) defects of photosensitizers and the intrinsic antioxidant tumor microenvironment (TME), such as hypoxia and overexpressed glutathione (GSH)...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 29
Main Authors Zhang, Liang, Xiao, Yao, Yang, Qi‐Chao, Yang, Lei‐Lei, Wan, Shu‐Cheng, Wang, Shuo, Zhang, Lu, Deng, Hexiang, Sun, Zhi‐Jun
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The synergistic efficacy of phototherapy and cancer immunotherapy is severely restricted by both the inherent photobleaching and aggregation‐caused quench (ACQ) defects of photosensitizers and the intrinsic antioxidant tumor microenvironment (TME), such as hypoxia and overexpressed glutathione (GSH). To address these issues, a novel porphyrin‐based staggered stacking covalent organic framework (COF), COF‐618‐Cu, is rationally designed as a reactive oxygen species (ROS) amplifier, owing to its excellent catalase‐like activity, COF‐618‐Cu is capable of consuming endogenous hydrogen peroxide to produce sufficient oxygen to alleviate the tumor hypoxia phenomena. Moreover the overexpressed intracellular GSH is also depleted to decrease the scavenging of ROS, due to the glutathione peroxidase mimic activity of COF‐618‐Cu. Mechanistic studies reveal that the unique staggered stacking mode between COF‐618‐Cu interlayers can effectively relieve both the photobleaching and ACQ effects that are inaccessible to commonly eclipsed COFs. These, combined with their excellent photothermal therapy performance, make COF‐618‐Cu favorable for inducing robust immunogenic cell death and remodeling TME to boost antitumor immunity. A novel staggered stacking covalent organic framework (COF)‐based photosensitizer, COF‐618‐Cu, is reported, which can simultaneously alleviate photobleaching and aggregation‐induced quench effects to achieve desirable phototherapy performance and further elicit robust immunogenic cell death to trigger a durable antitumor immune response for boosting cancer immunotherapy.
AbstractList The synergistic efficacy of phototherapy and cancer immunotherapy is severely restricted by both the inherent photobleaching and aggregation‐caused quench (ACQ) defects of photosensitizers and the intrinsic antioxidant tumor microenvironment (TME), such as hypoxia and overexpressed glutathione (GSH). To address these issues, a novel porphyrin‐based staggered stacking covalent organic framework (COF), COF‐618‐Cu, is rationally designed as a reactive oxygen species (ROS) amplifier, owing to its excellent catalase‐like activity, COF‐618‐Cu is capable of consuming endogenous hydrogen peroxide to produce sufficient oxygen to alleviate the tumor hypoxia phenomena. Moreover the overexpressed intracellular GSH is also depleted to decrease the scavenging of ROS, due to the glutathione peroxidase mimic activity of COF‐618‐Cu. Mechanistic studies reveal that the unique staggered stacking mode between COF‐618‐Cu interlayers can effectively relieve both the photobleaching and ACQ effects that are inaccessible to commonly eclipsed COFs. These, combined with their excellent photothermal therapy performance, make COF‐618‐Cu favorable for inducing robust immunogenic cell death and remodeling TME to boost antitumor immunity.
The synergistic efficacy of phototherapy and cancer immunotherapy is severely restricted by both the inherent photobleaching and aggregation‐caused quench (ACQ) defects of photosensitizers and the intrinsic antioxidant tumor microenvironment (TME), such as hypoxia and overexpressed glutathione (GSH). To address these issues, a novel porphyrin‐based staggered stacking covalent organic framework (COF), COF‐618‐Cu, is rationally designed as a reactive oxygen species (ROS) amplifier, owing to its excellent catalase‐like activity, COF‐618‐Cu is capable of consuming endogenous hydrogen peroxide to produce sufficient oxygen to alleviate the tumor hypoxia phenomena. Moreover the overexpressed intracellular GSH is also depleted to decrease the scavenging of ROS, due to the glutathione peroxidase mimic activity of COF‐618‐Cu. Mechanistic studies reveal that the unique staggered stacking mode between COF‐618‐Cu interlayers can effectively relieve both the photobleaching and ACQ effects that are inaccessible to commonly eclipsed COFs. These, combined with their excellent photothermal therapy performance, make COF‐618‐Cu favorable for inducing robust immunogenic cell death and remodeling TME to boost antitumor immunity. A novel staggered stacking covalent organic framework (COF)‐based photosensitizer, COF‐618‐Cu, is reported, which can simultaneously alleviate photobleaching and aggregation‐induced quench effects to achieve desirable phototherapy performance and further elicit robust immunogenic cell death to trigger a durable antitumor immune response for boosting cancer immunotherapy.
Author Wang, Shuo
Zhang, Liang
Zhang, Lu
Sun, Zhi‐Jun
Xiao, Yao
Yang, Qi‐Chao
Deng, Hexiang
Wan, Shu‐Cheng
Yang, Lei‐Lei
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0002-5960-8913
  surname: Zhang
  fullname: Zhang, Liang
  organization: Wuhan University
– sequence: 2
  givenname: Yao
  surname: Xiao
  fullname: Xiao, Yao
  organization: Wuhan University
– sequence: 3
  givenname: Qi‐Chao
  surname: Yang
  fullname: Yang, Qi‐Chao
  organization: Wuhan University
– sequence: 4
  givenname: Lei‐Lei
  surname: Yang
  fullname: Yang, Lei‐Lei
  organization: Wuhan University
– sequence: 5
  givenname: Shu‐Cheng
  surname: Wan
  fullname: Wan, Shu‐Cheng
  organization: Wuhan University
– sequence: 6
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
  organization: Wuhan University
– sequence: 7
  givenname: Lu
  surname: Zhang
  fullname: Zhang, Lu
  email: luzhang2012@whu.edu.cn
  organization: Wuhan University
– sequence: 8
  givenname: Hexiang
  orcidid: 0000-0002-9398-7996
  surname: Deng
  fullname: Deng, Hexiang
  organization: Wuhan University
– sequence: 9
  givenname: Zhi‐Jun
  orcidid: 0000-0003-0932-8013
  surname: Sun
  fullname: Sun, Zhi‐Jun
  email: sunzj@whu.edu.cn
  organization: Wuhan University
BookMark eNqFkM9LwzAYhoMouE2vngueN_OjbZbjnE4HkwkqeAtf06R2a5OZdI7993ZOJgji6XsPz_O98HbRsXVWI3RB8IBgTK8gN_WAYkoxSWJ6hDokJWmfYTo8PmTyeoq6ISwwJpyzuIMenxooCu11HrVJLUtbRGP3AZW2TTT3BdhSRRMPtd44vwyRcT66di40XyBYpX00reu1dc2b9rDanqETA1XQ59-3h14mt8_j-_5sfjcdj2Z9xQinfWYSHFNFMmCMQI4J5iJLKTMAnBqgPOaZUgKwjhNDOY91Koa8NVKtMkFz1kOX-78r797XOjRy4dbetpWSpgKLJEm5aKnBnlLeheC1kStf1uC3kmC5W03uVpOH1Voh_iWosoGmdLbxUFZ_a2KvbcpKb_8pkaObycOP-wlgqYPu
CitedBy_id crossref_primary_10_1039_D2TB02319A
crossref_primary_10_1021_acsanm_4c06257
crossref_primary_10_1002_adma_202303158
crossref_primary_10_1039_D3BM01247F
crossref_primary_10_1021_acs_chemmater_3c02095
crossref_primary_10_1002_advs_202207507
crossref_primary_10_1002_adma_202304848
crossref_primary_10_1002_adhm_202300089
crossref_primary_10_1021_jacs_3c11092
crossref_primary_10_34133_research_0478
crossref_primary_10_1016_j_cej_2024_149742
crossref_primary_10_1039_D4SC01780C
crossref_primary_10_1039_D2TB01815B
crossref_primary_10_1016_j_mtbio_2024_100981
crossref_primary_10_1039_D3SC00251A
crossref_primary_10_1007_s12272_025_01536_2
crossref_primary_10_1039_D2SC05732H
crossref_primary_10_1002_anie_202314763
crossref_primary_10_1002_adhm_202303842
crossref_primary_10_1016_j_drudis_2023_103602
crossref_primary_10_1002_adma_202210952
crossref_primary_10_1016_j_jcis_2025_01_111
crossref_primary_10_1002_adma_202413210
crossref_primary_10_1021_acsnano_4c14555
crossref_primary_10_1021_jacs_3c04027
crossref_primary_10_1007_s11426_023_1674_7
crossref_primary_10_1016_j_ccr_2024_215720
crossref_primary_10_1021_acsnano_4c15289
crossref_primary_10_1021_jacs_3c08622
crossref_primary_10_1002_slct_202301145
crossref_primary_10_1039_D2CC03498K
crossref_primary_10_1002_ange_202314763
crossref_primary_10_1007_s00604_024_06827_x
crossref_primary_10_1039_D4BM00214H
crossref_primary_10_1007_s12598_024_02797_4
crossref_primary_10_1021_acs_analchem_4c01376
crossref_primary_10_1039_D2CC04026C
crossref_primary_10_1021_jacs_3c14833
crossref_primary_10_1007_s11426_023_1857_2
crossref_primary_10_1002_smll_202304720
crossref_primary_10_1002_cjoc_202200664
crossref_primary_10_1016_j_jddst_2023_104881
crossref_primary_10_1039_D2BM01915A
crossref_primary_10_1088_1361_6528_ad572a
crossref_primary_10_1002_nano_202300114
crossref_primary_10_3390_pharmaceutics16121625
crossref_primary_10_1002_smll_202411336
crossref_primary_10_1002_adhm_202301645
crossref_primary_10_1016_j_cej_2022_139534
crossref_primary_10_1039_D3RA02620E
crossref_primary_10_1021_acsami_4c05668
crossref_primary_10_1039_D3MH01492D
crossref_primary_10_1002_adfm_202415629
crossref_primary_10_1038_s41467_023_41121_z
Cites_doi 10.1038/nrc3380
10.1021/jacs.7b10642
10.1016/j.cell.2011.02.013
10.1039/C4CS00152D
10.1038/s41467-018-03473-9
10.1002/adma.201802479
10.1021/ja0680257
10.1016/j.chempr.2020.06.029
10.1002/adma.202003458
10.1039/C6CS00271D
10.1002/anie.202114957
10.1038/s41467-019-09760-3
10.1002/anie.201909020
10.1002/adma.202101410
10.1021/acsnano.7b07746
10.1038/nmat4476
10.1126/science.aal1585
10.1021/jacs.0c09482
10.1002/adfm.201801389
10.1016/j.chempr.2018.05.003
10.1002/adfm.202103056
10.1021/jacs.8b08452
10.1002/adma.201900927
10.1002/adfm.201902757
10.1039/C2CS35072F
10.1038/s41578-019-0108-1
10.1002/adma.202103978
10.1146/annurev.immunol.20.100201.131730
10.1002/anie.201805246
10.1038/s41467-021-23194-w
10.1002/anie.202015116
10.1016/j.isci.2019.03.028
10.1002/adma.202106390
10.1002/anie.202008055
10.1016/j.matt.2019.03.007
10.1039/D0CS00178C
10.1002/anie.201908377
10.1002/anie.201605509
10.1002/anie.202106346
10.1002/anie.201703657
10.1002/adma.201904914
10.1002/agt2.24
10.1016/j.matt.2020.01.019
10.1038/nri3175
10.1002/anie.202003895
10.1002/adma.202002439
10.1038/natrevmats.2016.75
10.1002/adma.202102322
10.1038/s41467-019-11269-8
10.1038/nri.2016.107
10.1002/anie.201903981
10.1146/annurev-immunol-020711-074950
10.1126/science.aat7679
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202201542
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202201542
ADFM202201542
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 2042021kf0216
– fundername: National Natural Science Foundation of China
  funderid: 82002879
– fundername: National Natural Science Foundation of China
  funderid: 22025106; 91545205; 91622103,; 21971199
– fundername: Innovation Team of Wuhan University
  funderid: 2042017kf0232
– fundername: National Natural Science Foundation of China
  funderid: 81874131
– fundername: National Key Basic Research Program of China
  funderid: 2014CB239203
– fundername: National Key Research and Development Program of China
  funderid: 2018YFA0704000
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M692475; 2021T140524; XJ2021037
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3172-3f5042c1ba331ad01079b623faa72fa2747bcc9a0e45f2774e698742c6ecb92d3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 07:40:58 EDT 2025
Tue Jul 01 00:30:28 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Wed Jan 22 16:25:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-3f5042c1ba331ad01079b623faa72fa2747bcc9a0e45f2774e698742c6ecb92d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9398-7996
0000-0002-5960-8913
0000-0003-0932-8013
PQID 2690955679
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2690955679
crossref_primary_10_1002_adfm_202201542
crossref_citationtrail_10_1002_adfm_202201542
wiley_primary_10_1002_adfm_202201542_ADFM202201542
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2018; 32 12
2018; 9
2016 2021; 55 33
2018; 28
2007 2016 2021; 129 15 33
2012 2017; 12 17
2011 2016; 144 2
2019 2020 2019 2021; 14 59 58 2
2018; 4
2017 2018 2013 2018 2018; 355 28 42 140 361
2002; 20
2021 2015; 31 44
2019; 1
2019; 10
2019 2020; 58 59
2013; 31
2019 2019 2016 2021 2017 2019; 31 10 45 60 56 58
2019 2020; 58 6
2020 2018 2021; 2 140 60
2019; 29
2022; 43
2021 2021 2021 2019 2019 2021 2020 2018 2021; 33 61 33 4 31 12 142 30 50
2012; 12
Lohse S. M. (e_1_2_8_12_2) 2018; 28
e_1_2_8_1_3
e_1_2_8_3_1
e_1_2_8_1_5
e_1_2_8_3_3
e_1_2_8_5_1
e_1_2_8_1_4
e_1_2_8_3_2
e_1_2_8_1_7
e_1_2_8_7_1
e_1_2_8_1_6
e_1_2_8_5_2
e_1_2_8_1_9
e_1_2_8_9_1
e_1_2_8_1_8
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_15_2
e_1_2_8_11_1
e_1_2_8_2_2
Zhang C. (e_1_2_8_1_2) 2021; 61
e_1_2_8_2_1
e_1_2_8_2_4
e_1_2_8_4_2
e_1_2_8_2_3
e_1_2_8_4_1
e_1_2_8_2_6
e_1_2_8_2_5
e_1_2_8_6_1
e_1_2_8_8_2
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_14_4
e_1_2_8_16_2
e_1_2_8_18_1
e_1_2_8_12_3
e_1_2_8_14_1
e_1_2_8_12_4
e_1_2_8_14_2
e_1_2_8_12_5
e_1_2_8_14_3
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_10_2
e_1_2_8_12_1
References_xml – volume: 55 33
  year: 2016 2021
  publication-title: Angew. Chem., Int. Ed. Adv. Mater.
– volume: 12
  start-page: 253
  year: 2012
  publication-title: Nat. Rev. Immunol.
– volume: 31 10 45 60 56 58
  start-page: 3349 6597 5921
  year: 2019 2019 2016 2021 2017 2019
  publication-title: Adv. Mater. Nat. Commun. Chem. Soc. Rev. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 144 2
  start-page: 646
  year: 2011 2016
  publication-title: Cell Nat. Rev. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 33 61 33 4 31 12 142 30 50
  start-page: 398 2934 1188
  year: 2021 2021 2021 2019 2019 2021 2020 2018 2021
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Mater. Nat. Rev. Mater. Adv. Mater. Nat. Commun. J. Am. Chem. Soc. Adv. Mater. Chem. Soc. Rev.
– volume: 12 17
  start-page: 860 97
  year: 2012 2017
  publication-title: Nat. Rev. Cancer Nat. Rev. Immunol.
– volume: 20
  start-page: 323
  year: 2002
  publication-title: Annu. Rev. Immunol.
– volume: 14 59 58 2
  start-page: 180
  year: 2019 2020 2019 2021
  publication-title: iScience Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Aggregate
– volume: 43
  year: 2022
  publication-title: Adv. Mater.
– volume: 58 59
  start-page: 9846
  year: 2019 2020
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 2 140 60
  start-page: 1049
  year: 2020 2018 2021
  publication-title: Matter J. Am. Chem. Soc. Angew. Chem., Int. Ed.
– volume: 129 15 33
  start-page: 2669 235
  year: 2007 2016 2021
  publication-title: J. Am. Chem. Soc. Nat. Mater. Adv. Mater.
– volume: 58 6
  start-page: 2558 1978
  year: 2019 2020
  publication-title: Angew. Chem., Int. Ed. Chem
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 2025
  year: 2019
  publication-title: Nat. Commun.
– volume: 355 28 42 140 361
  start-page: 548 548 984 48
  year: 2017 2018 2013 2018 2018
  publication-title: Science Adv. Funct. Mater. Chem. Soc. Rev. J. Am. Chem. Soc. Science
– volume: 4
  start-page: 1696
  year: 2018
  publication-title: Chem
– volume: 9
  start-page: 1074
  year: 2018
  publication-title: Nat. Commun.
– volume: 1
  start-page: 496
  year: 2019
  publication-title: Matter
– volume: 31 44
  start-page: 4179
  year: 2021 2015
  publication-title: Adv. Funct. Mater. Chem. Soc. Rev.
– volume: 31
  start-page: 563
  year: 2013
  publication-title: Annu. Rev. Immunol.
– volume: 32 12
  start-page: 651
  year: 2020 2018
  publication-title: Adv. Mater. ACS Nano
– ident: e_1_2_8_10_1
  doi: 10.1038/nrc3380
– ident: e_1_2_8_12_4
  doi: 10.1021/jacs.7b10642
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_2_8_4_2
  doi: 10.1039/C4CS00152D
– ident: e_1_2_8_21_1
  doi: 10.1038/s41467-018-03473-9
– ident: e_1_2_8_1_8
  doi: 10.1002/adma.201802479
– ident: e_1_2_8_3_1
  doi: 10.1021/ja0680257
– ident: e_1_2_8_5_2
  doi: 10.1016/j.chempr.2020.06.029
– ident: e_1_2_8_3_3
  doi: 10.1002/adma.202003458
– ident: e_1_2_8_2_3
  doi: 10.1039/C6CS00271D
– volume: 61
  start-page: e202114957
  year: 2021
  ident: e_1_2_8_1_2
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202114957
– ident: e_1_2_8_22_1
  doi: 10.1038/s41467-019-09760-3
– ident: e_1_2_8_14_3
  doi: 10.1002/anie.201909020
– ident: e_1_2_8_1_3
  doi: 10.1002/adma.202101410
– ident: e_1_2_8_16_2
  doi: 10.1021/acsnano.7b07746
– volume: 28
  start-page: 548
  year: 2018
  ident: e_1_2_8_12_2
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_3_2
  doi: 10.1038/nmat4476
– ident: e_1_2_8_12_1
  doi: 10.1126/science.aal1585
– ident: e_1_2_8_1_7
  doi: 10.1021/jacs.0c09482
– ident: e_1_2_8_11_1
  doi: 10.1002/adfm.201801389
– ident: e_1_2_8_9_1
  doi: 10.1016/j.chempr.2018.05.003
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.202103056
– ident: e_1_2_8_13_2
  doi: 10.1021/jacs.8b08452
– ident: e_1_2_8_1_5
  doi: 10.1002/adma.201900927
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201902757
– ident: e_1_2_8_12_3
  doi: 10.1039/C2CS35072F
– ident: e_1_2_8_1_4
  doi: 10.1038/s41578-019-0108-1
– ident: e_1_2_8_7_2
  doi: 10.1002/adma.202103978
– ident: e_1_2_8_20_1
  doi: 10.1146/annurev.immunol.20.100201.131730
– ident: e_1_2_8_5_1
  doi: 10.1002/anie.201805246
– ident: e_1_2_8_1_6
  doi: 10.1038/s41467-021-23194-w
– ident: e_1_2_8_2_4
  doi: 10.1002/anie.202015116
– ident: e_1_2_8_14_1
  doi: 10.1016/j.isci.2019.03.028
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.202106390
– ident: e_1_2_8_14_2
  doi: 10.1002/anie.202008055
– ident: e_1_2_8_17_1
  doi: 10.1016/j.matt.2019.03.007
– ident: e_1_2_8_1_9
  doi: 10.1039/D0CS00178C
– ident: e_1_2_8_2_6
  doi: 10.1002/anie.201908377
– ident: e_1_2_8_7_1
  doi: 10.1002/anie.201605509
– ident: e_1_2_8_13_3
  doi: 10.1002/anie.202106346
– ident: e_1_2_8_2_5
  doi: 10.1002/anie.201703657
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201904914
– ident: e_1_2_8_14_4
  doi: 10.1002/agt2.24
– ident: e_1_2_8_13_1
  doi: 10.1016/j.matt.2020.01.019
– ident: e_1_2_8_23_1
  doi: 10.1038/nri3175
– ident: e_1_2_8_15_2
  doi: 10.1002/anie.202003895
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.202002439
– ident: e_1_2_8_8_2
  doi: 10.1038/natrevmats.2016.75
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.202102322
– ident: e_1_2_8_2_2
  doi: 10.1038/s41467-019-11269-8
– ident: e_1_2_8_10_2
  doi: 10.1038/nri.2016.107
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.201903981
– ident: e_1_2_8_19_1
  doi: 10.1146/annurev-immunol-020711-074950
– ident: e_1_2_8_12_5
  doi: 10.1126/science.aat7679
SSID ssj0017734
Score 2.6039557
Snippet The synergistic efficacy of phototherapy and cancer immunotherapy is severely restricted by both the inherent photobleaching and aggregation‐caused quench...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Antioxidants
Cancer
Catalase
Cell death
covalent organic frameworks
Glutathione
Hydrogen peroxide
Hypoxia
immunogenic cell deaths
Immunotherapy
Interlayers
Materials science
Oxygen
Peroxidase
Photochemical reactions
phototherapy
Porphyrins
ROS amplifiers
Scavenging
Stacking
staggered stacking modes
Title Staggered Stacking Covalent Organic Frameworks for Boosting Cancer Immunotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202201542
https://www.proquest.com/docview/2690955679
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6iFz34W5zOkYPgqduStml7nJtlihNRB7uVJG12UFZZu4P-9eY1bbcJIugthZfSJu_lfUne-x5Cl1TqVVEF3PJdGlsOd31LkIRYKvYFFdrls6Jaw-iBDcfO3cSdrGTxG36I-sANLKNYr8HAucg6S9JQHivIJKcUUAAswhCwBajoqeaPIp5nrpUZgQAvMqlYG7u0s9593SstoeYqYC08TriHePWtJtDktb3IRVt-fqNx_M_P7KPdEo7intGfA7SRzA7RzgpJ4RF61Hh0OoWSnli3JByt436qFVS7K2xSOSUOqxivDGsUjK_TNMsLQVCqOb6FLJQy1-vjGI3Dm5f-0CrrMFhSowtq2crVpi2J4LZNeKx3cF4gNGxSnHtUcdjXCikD3k0cV1GNJxMW-HrLLVkiRUBj-wRtztJZcoowdYG_XlKfK9uRWkwwSbjyFSfKFUI2kFXNQyRLknKolfEWGXplGsFIRfVINdBVLf9u6Dl-lGxW0xqVZppFlAVAwce8oIFoMT-_vCXqDcJR_XT2l07naBvaJuS3iTbz-SK50MAmFy201RuM7p9bhRJ_AfbE8JI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1Eo4AGJyW3tNK-xFKIW2gqhVupm2U7cAdSgNh3g1-PLqy0SQoItiS5RYt_5vnPuvkPohimzKmpfEM9mIWkK2yOSRpTo0JNMGpfvpN0a-gOnM2o-ju0imxBqYTJ-iHLDDSwjXa_BwGFDur5kDRWhhlJyxgAGmFV4C9p6p1HVS8kgRV03-7HsUEjxouOCt7HB6uv3r_ulJdhchaypzwn2kSzeNks1ea0tEllTn9-IHP_1OQdoL0ekuJWp0CHaiKZHaHeFp_AYPRtIOplAV09sjhTsruN2bHTUeCycVXMqHBRpXnNsgDC-i-N5kgqCXs1wFwpR8nKvjxM0Ch6G7Q7JWzEQZQAGI5a2jXUrKoVlURGaIM71pUFOWgiXaQGhrVTKF42oaWtmIGXk-J6JupUTKemz0DpFm9N4Gp0hzGygsFfME9pqKiMmHUWF9rSg2pZSVRApJoKrnKcc2mW88YxhmXEYKV6OVAXdlvLvGUPHj5LVYl55bqlzzhwfWPgc168glk7QL0_hrfugX56d_-Wma7TdGfZ7vNcdPF2gHbieZQBX0WYyW0SXBuck8irV5C9zr_MZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4MJkYP_jaiqD2YeCrQbuu2I4ILqBBiJOG2tN3KQcMIjIP-9bbrNsDEmOhtW16XtX2v72v33vcAuCVCrYrSZ8hzSIRs5niI4xgjGXmccOXyaVatoT-g3ZH9OHbGa1n8hh-iPHDTlpGt19rAZ5FsrEhDWSR1JjkhGgWoRXjbpk1P63XnpSSQwq5r_itTrCO88LigbWySxmb7Tbe0wprriDVzOcEBYMXHmkiTt_oy5XXx-Y3H8T-9OQT7OR6FLaNAR2Arnh6DvTWWwhMwVIB0MtE1PaG6EvpsHbYTpaHKX0GTyylgUAR5LaCCwfA-SRZpJqi1ag57Og0lT_b6OAWj4OG13UV5IQYkFLwgyJKOsm2BObMszCK1hXN9rnCTZMwlkumNLRfCZ83YdiRRgDKmvqf23ILGgvskss5AZZpM43MAiaMJ7AXxmLRsocQ4FZhJTzIsHc5FFaBiHkKRs5TrYhnvoeFXJqEeqbAcqSq4K-Vnhp_jR8laMa1hbqeLkFBfc_BR168Cks3PL28JW52gX95d_KXRDdgZdoLwuTd4ugS7-rEJ_62BSjpfxlcK5KT8OtPjL7fE8dE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staggered+Stacking+Covalent+Organic+Frameworks+for+Boosting+Cancer+Immunotherapy&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Liang&rft.au=Xiao%2C+Yao&rft.au=Yang%2C+Qi%E2%80%90Chao&rft.au=Yang%2C+Lei%E2%80%90Lei&rft.date=2022-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202201542&rft.externalDBID=10.1002%252Fadfm.202201542&rft.externalDocID=ADFM202201542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon