Defect‐Passivating and Stable Benzothiophene‐Based Self‐Assembled Monolayer for High‐Performance Inverted Perovskite Solar Cells

Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and therm...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 12
Main Authors Liu, Ming, Li, Mingliang, Li, Yanxun, An, Yidan, Yao, Zefan, Fan, Baobing, Qi, Feng, Liu, Kaikai, Yip, Hin‐Lap, Lin, Francis R., Jen, Alex K.‐Y.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and thermo‐stability to ensure long‐term operation of the devices. In this study, a novel MeO‐BTBT‐based self‐assembled monolayer (SAM) is reported to serve as an efficient HSL in inverted PSCs. Compared to the well‐established carbazole‐containing SAM MeO‐2PACz, MeO‐BTBT has flat and more extended conjugation with large atomic radius of the sulfur atom. These induce stronger intermolecular interactions to enable more ordered and compact SAM to be formed on indium–tin oxide (ITO) substrates. Meanwhile, the sulfur atoms in MeO‐BTBT can coordinate with Pb2+ ions to passivate the defects at the buried interface of perovskite absorber. The derived perovskite films show both high photoluminescence (PL) quantum yield (13.2%) and a long lifetime (7.2 µs). The PSCs based on MeO‐BTBT show a PCE of 24.53% with an impressive fill factor of 85.3%. The PCEs of MeO‐BTBT‐based devices can maintain ≈95% of their initial values after being aged at 65 °C for more than 1000 h or continuous operation under 1‐sun illumination. A benzothiophene‐based SAM HSLMeO‐BTBT is developed. Compared to the carbazole‐based MeO‐2PACz SAM, MeO‐BTBT shows stronger intermolecular interactions, a passivation effect at the buried interface, and better photo‐stability, enabling a robust HSL and stable perovskite bottom interface morphology. The devices with the MeO‐BTBT HSL achieves a PCE of 24.53% with excellent long‐term device stability under illumination and thermal stress.
AbstractList Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and thermo‐stability to ensure long‐term operation of the devices. In this study, a novel MeO‐BTBT‐based self‐assembled monolayer (SAM) is reported to serve as an efficient HSL in inverted PSCs. Compared to the well‐established carbazole‐containing SAM MeO‐2PACz, MeO‐BTBT has flat and more extended conjugation with large atomic radius of the sulfur atom. These induce stronger intermolecular interactions to enable more ordered and compact SAM to be formed on indium–tin oxide (ITO) substrates. Meanwhile, the sulfur atoms in MeO‐BTBT can coordinate with Pb2+ ions to passivate the defects at the buried interface of perovskite absorber. The derived perovskite films show both high photoluminescence (PL) quantum yield (13.2%) and a long lifetime (7.2 µs). The PSCs based on MeO‐BTBT show a PCE of 24.53% with an impressive fill factor of 85.3%. The PCEs of MeO‐BTBT‐based devices can maintain ≈95% of their initial values after being aged at 65 °C for more than 1000 h or continuous operation under 1‐sun illumination.
Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and thermo‐stability to ensure long‐term operation of the devices. In this study, a novel MeO‐BTBT‐based self‐assembled monolayer (SAM) is reported to serve as an efficient HSL in inverted PSCs. Compared to the well‐established carbazole‐containing SAM MeO‐2PACz, MeO‐BTBT has flat and more extended conjugation with large atomic radius of the sulfur atom. These induce stronger intermolecular interactions to enable more ordered and compact SAM to be formed on indium–tin oxide (ITO) substrates. Meanwhile, the sulfur atoms in MeO‐BTBT can coordinate with Pb 2+ ions to passivate the defects at the buried interface of perovskite absorber. The derived perovskite films show both high photoluminescence (PL) quantum yield (13.2%) and a long lifetime (7.2 µs). The PSCs based on MeO‐BTBT show a PCE of 24.53% with an impressive fill factor of 85.3%. The PCEs of MeO‐BTBT‐based devices can maintain ≈95% of their initial values after being aged at 65 °C for more than 1000 h or continuous operation under 1‐sun illumination.
Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and thermo‐stability to ensure long‐term operation of the devices. In this study, a novel MeO‐BTBT‐based self‐assembled monolayer (SAM) is reported to serve as an efficient HSL in inverted PSCs. Compared to the well‐established carbazole‐containing SAM MeO‐2PACz, MeO‐BTBT has flat and more extended conjugation with large atomic radius of the sulfur atom. These induce stronger intermolecular interactions to enable more ordered and compact SAM to be formed on indium–tin oxide (ITO) substrates. Meanwhile, the sulfur atoms in MeO‐BTBT can coordinate with Pb2+ ions to passivate the defects at the buried interface of perovskite absorber. The derived perovskite films show both high photoluminescence (PL) quantum yield (13.2%) and a long lifetime (7.2 µs). The PSCs based on MeO‐BTBT show a PCE of 24.53% with an impressive fill factor of 85.3%. The PCEs of MeO‐BTBT‐based devices can maintain ≈95% of their initial values after being aged at 65 °C for more than 1000 h or continuous operation under 1‐sun illumination. A benzothiophene‐based SAM HSLMeO‐BTBT is developed. Compared to the carbazole‐based MeO‐2PACz SAM, MeO‐BTBT shows stronger intermolecular interactions, a passivation effect at the buried interface, and better photo‐stability, enabling a robust HSL and stable perovskite bottom interface morphology. The devices with the MeO‐BTBT HSL achieves a PCE of 24.53% with excellent long‐term device stability under illumination and thermal stress.
Author Liu, Ming
Li, Mingliang
Qi, Feng
Yao, Zefan
Fan, Baobing
An, Yidan
Liu, Kaikai
Li, Yanxun
Yip, Hin‐Lap
Lin, Francis R.
Jen, Alex K.‐Y.
Author_xml – sequence: 1
  givenname: Ming
  orcidid: 0009-0003-3858-0776
  surname: Liu
  fullname: Liu, Ming
  organization: City University of Hong Kong
– sequence: 2
  givenname: Mingliang
  surname: Li
  fullname: Li, Mingliang
  organization: City University of Hong Kong
– sequence: 3
  givenname: Yanxun
  surname: Li
  fullname: Li, Yanxun
  organization: City University of Hong Kong
– sequence: 4
  givenname: Yidan
  surname: An
  fullname: An, Yidan
  organization: City University of Hong Kong
– sequence: 5
  givenname: Zefan
  surname: Yao
  fullname: Yao, Zefan
  organization: Peking University
– sequence: 6
  givenname: Baobing
  surname: Fan
  fullname: Fan, Baobing
  organization: City University of Hong Kong
– sequence: 7
  givenname: Feng
  surname: Qi
  fullname: Qi, Feng
  organization: City University of Hong Kong
– sequence: 8
  givenname: Kaikai
  surname: Liu
  fullname: Liu, Kaikai
  organization: City University of Hong Kong
– sequence: 9
  givenname: Hin‐Lap
  surname: Yip
  fullname: Yip, Hin‐Lap
  organization: City University of Hong Kong
– sequence: 10
  givenname: Francis R.
  surname: Lin
  fullname: Lin, Francis R.
  organization: City University of Hong Kong
– sequence: 11
  givenname: Alex K.‐Y.
  orcidid: 0000-0002-9219-7749
  surname: Jen
  fullname: Jen, Alex K.‐Y.
  email: alexjen@cityu.edu.hk
  organization: City University of Hong Kong
BookMark eNqFkMtKAzEUhoMoeN26Drhuza0z02WtV_AG6nrITM7Y6DSpSVqpK5cufUafxFMqCoKYRZJz8n8n8G2SVecdELLLWZczJvY1uHFXMCGZzJVYIRs846qTFYqtft-lWCc7MT4wXKrPmZQb5O0QGqjTx-v7tY7RznSy7p5qZ-hN0lUL9ADci08j6ycjcIC5Ax0BX6FtsBjECGOMGXrhnW_1HAJtfKCn9n60mAkBq7F2NdAzN4OQMIlNP4uPNgG9QSTQIbRt3CZrjW4j7HydW-Tu-Oh2eNo5vzo5Gw7OO7XkuehI0-OVqE2WF1JXSgvew0YBuVH9TEpTcFCqMoVuVA49JmqBe9GTaKaAyhi5RfaWcyfBP00hpvLBT4PDL0vRz1FfxlSBKbVM1cHHGKApa5vQjXcpaNuWnJUL7eVCe_mtHbHuL2wS7FiH-d9Afwk82xbm_6TLwdHlxQ_7CR-LnQo
CitedBy_id crossref_primary_10_1002_advs_202404725
crossref_primary_10_1002_ange_202423827
crossref_primary_10_1002_smtd_202401852
crossref_primary_10_1039_D4EE02492C
crossref_primary_10_1002_ange_202419608
crossref_primary_10_3389_fchem_2024_1519166
crossref_primary_10_1021_acs_nanolett_4c05826
crossref_primary_10_1002_inf2_12559
crossref_primary_10_1016_j_cej_2024_158389
crossref_primary_10_1021_acsami_4c13977
crossref_primary_10_1002_aenm_202401414
crossref_primary_10_1021_acsenergylett_4c01433
crossref_primary_10_1016_j_cej_2024_155512
crossref_primary_10_1021_acsami_4c12103
crossref_primary_10_1063_5_0215268
crossref_primary_10_1002_adma_202407349
crossref_primary_10_1002_solr_202400901
crossref_primary_10_1039_D4EE05849F
crossref_primary_10_1039_D4EE03208J
crossref_primary_10_1002_adfm_202412946
crossref_primary_10_1002_ange_202416188
crossref_primary_10_1002_adma_202500708
crossref_primary_10_1002_anie_202423827
crossref_primary_10_1002_anie_202419608
crossref_primary_10_1039_D4EE02661F
crossref_primary_10_1002_adfm_202421576
crossref_primary_10_1039_D4TA01039F
crossref_primary_10_1039_D4QM00417E
crossref_primary_10_1016_j_cej_2024_158870
crossref_primary_10_1039_D4EE02917H
crossref_primary_10_1039_D4EE04515G
crossref_primary_10_1016_j_cej_2024_154011
crossref_primary_10_1039_D4TA01453G
crossref_primary_10_1021_acs_jpcc_4c03059
crossref_primary_10_1002_aenm_202400616
crossref_primary_10_1002_smll_202410369
crossref_primary_10_1002_smll_202411413
crossref_primary_10_1021_acsenergylett_4c03228
crossref_primary_10_1016_j_cej_2024_153404
crossref_primary_10_1002_smll_202500281
crossref_primary_10_1002_adfm_202408480
crossref_primary_10_1002_anie_202416188
crossref_primary_10_1038_s41467_024_55492_4
Cites_doi 10.1126/science.1243982
10.1021/acsnano.7b02394
10.1002/adma.201902762
10.1021/ja074841i
10.1038/s41578-022-00503-3
10.1039/D2TA01541B
10.1021/acs.chemmater.9b01614
10.1016/j.joule.2020.04.001
10.1021/acsenergylett.1c01898
10.1021/jacs.0c09845
10.1038/s41467-020-15077-3
10.1021/jacs.3c00805
10.1038/s41560-022-01096-5
10.1002/aelm.202300712
10.1002/adma.201102007
10.1038/s41560-023-01274-z
10.1126/science.abd4016
10.1016/j.joule.2023.02.014
10.1002/anie.202213560
10.1038/s41560-022-01045-2
10.1002/aenm.202103175
10.1021/acsmaterialslett.2c00799
10.1126/science.aba0893
10.1038/s41586-022-05268-x
10.1126/science.ade9463
10.1002/aenm.201801892
10.1002/adma.202203794
10.1021/accountsmr.1c00169
10.26599/NRE.2022.9120004
10.1039/C9EE02268F
10.1002/adma.202304415
10.1038/s41566-023-01180-6
10.1038/s41586-022-04455-0
10.1021/ar400282g
10.1038/s41586-023-05992-y
10.1002/adma.202212258
10.1002/ange.202107020
10.1002/anie.202203088
10.1038/s41586-023-06207-0
10.1016/j.joule.2021.07.016
10.1126/science.adg3755
10.1002/anie.202309831
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202303742
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202303742
AENM202303742
Genre article
GrantInformation_xml – fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2019B030302007
– fundername: Shenzhen Science and Technology Innovation Program
  funderid: SGDX20201103095412040
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3172-3d51b2cd6783ab4a21551b8e7d49633d81e44bd8af47e502c2e508530238ebdd3
ISSN 1614-6832
IngestDate Fri Jul 25 10:07:33 EDT 2025
Tue Jul 01 01:43:55 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Wed Jan 22 16:13:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3172-3d51b2cd6783ab4a21551b8e7d49633d81e44bd8af47e502c2e508530238ebdd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-3858-0776
0000-0002-9219-7749
PQID 2973036048
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_2973036048
crossref_citationtrail_10_1002_aenm_202303742
crossref_primary_10_1002_aenm_202303742
wiley_primary_10_1002_aenm_202303742_AENM202303742
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2023; 35
2021; 5
2023; 380
2007; 129
2023; 17
2019; 31
2020; 142
2023; 7
2023; 8
2023; 145
2019; 12
2013; 342
2014; 47
2023; 620
2020; 11
2020; 367
2022; 611
2023; 62
2018; 8
2020; 4
2014; 5
2022; 3
2023
2022; 4
2022; 61
2022; 7
2017; 11
2020; 370
2022; 34
2022; 12
2011; 23
2021; 133
2022; 1
2022; 10
2022; 604
2023; 618
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Yuan Y. (e_1_2_7_34_1) 2014; 5
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 8
  start-page: 714
  year: 2023
  publication-title: Nat. Energy
– volume: 47
  start-page: 1493
  year: 2014
  publication-title: Acc. Chem. Res.
– volume: 380
  start-page: 823
  year: 2023
  publication-title: Science
– volume: 7
  start-page: 708
  year: 2022
  publication-title: Nat. Energy
– volume: 31
  start-page: 5254
  year: 2019
  publication-title: Chem. Mater.
– volume: 620
  start-page: 545
  year: 2023
  publication-title: Nature
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 272
  year: 2022
  publication-title: Acc. Mater. Res.
– volume: 133
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 367
  start-page: 1352
  year: 2020
  publication-title: Science
– volume: 604
  start-page: 280
  year: 2022
  publication-title: Nature
– volume: 11
  start-page: 8747
  year: 2017
  publication-title: ACS Nano
– volume: 5
  start-page: 2915
  year: 2021
  publication-title: Joule
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 611
  start-page: 278
  year: 2022
  publication-title: Nature
– volume: 4
  start-page: 1976
  year: 2022
  publication-title: ACS Mater. Lett.
– volume: 370
  start-page: 1300
  year: 2020
  publication-title: Science
– volume: 6
  start-page: 4209
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 145
  start-page: 7528
  year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 4347
  year: 2011
  publication-title: Adv. Mater.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– year: 2023
  publication-title: Adv. Electron. Mater.
– volume: 380
  start-page: 404
  year: 2023
  publication-title: Science
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 17
  start-page: 478
  year: 2023
  publication-title: Nat. Photonics
– volume: 7
  start-page: 484
  year: 2023
  publication-title: Joule
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1248
  year: 2020
  publication-title: Joule
– volume: 5
  start-page: 3005
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 89
  year: 2023
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 1257
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 794
  year: 2022
  publication-title: Nat. Energy
– volume: 129
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 618
  start-page: 80
  year: 2023
  publication-title: Nature
– volume: 1
  year: 2022
  publication-title: Nano Res. Energy
– volume: 142
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 3356
  year: 2019
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1243982
– ident: e_1_2_7_40_1
  doi: 10.1021/acsnano.7b02394
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201902762
– ident: e_1_2_7_33_1
  doi: 10.1021/ja074841i
– ident: e_1_2_7_11_1
  doi: 10.1038/s41578-022-00503-3
– ident: e_1_2_7_36_1
  doi: 10.1039/D2TA01541B
– ident: e_1_2_7_38_1
  doi: 10.1021/acs.chemmater.9b01614
– ident: e_1_2_7_9_1
  doi: 10.1016/j.joule.2020.04.001
– ident: e_1_2_7_35_1
  doi: 10.1021/acsenergylett.1c01898
– ident: e_1_2_7_7_1
  doi: 10.1021/jacs.0c09845
– ident: e_1_2_7_2_1
  doi: 10.1038/s41467-020-15077-3
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.3c00805
– ident: e_1_2_7_8_1
  doi: 10.1038/s41560-022-01096-5
– ident: e_1_2_7_39_1
  doi: 10.1002/aelm.202300712
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.201102007
– ident: e_1_2_7_29_1
  doi: 10.1038/s41560-023-01274-z
– ident: e_1_2_7_14_1
  doi: 10.1126/science.abd4016
– ident: e_1_2_7_3_1
  doi: 10.1016/j.joule.2023.02.014
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202213560
– ident: e_1_2_7_19_1
  doi: 10.1038/s41560-022-01045-2
– ident: e_1_2_7_30_1
  doi: 10.1002/aenm.202103175
– ident: e_1_2_7_28_1
  doi: 10.1021/acsmaterialslett.2c00799
– ident: e_1_2_7_42_1
  doi: 10.1126/science.aba0893
– ident: e_1_2_7_18_1
  doi: 10.1038/s41586-022-05268-x
– ident: e_1_2_7_43_1
  doi: 10.1126/science.ade9463
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.201801892
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.202203794
– volume: 5
  start-page: 3005
  year: 2014
  ident: e_1_2_7_34_1
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_7_6_1
  doi: 10.1021/accountsmr.1c00169
– ident: e_1_2_7_20_1
  doi: 10.26599/NRE.2022.9120004
– ident: e_1_2_7_24_1
  doi: 10.1039/C9EE02268F
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202304415
– ident: e_1_2_7_4_1
  doi: 10.1038/s41566-023-01180-6
– ident: e_1_2_7_16_1
  doi: 10.1038/s41586-022-04455-0
– ident: e_1_2_7_32_1
  doi: 10.1021/ar400282g
– ident: e_1_2_7_5_1
  doi: 10.1038/s41586-023-05992-y
– ident: e_1_2_7_13_1
  doi: 10.1002/adma.202212258
– ident: e_1_2_7_12_1
  doi: 10.1002/ange.202107020
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202203088
– ident: e_1_2_7_25_1
  doi: 10.1038/s41586-023-06207-0
– ident: e_1_2_7_15_1
  doi: 10.1016/j.joule.2021.07.016
– ident: e_1_2_7_17_1
  doi: 10.1126/science.adg3755
– ident: e_1_2_7_31_1
  doi: 10.1002/anie.202309831
SSID ssj0000491033
Score 2.6317513
Snippet Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Absorbers
Atomic radius
Benzothiophene
Carbazoles
Conjugation
Defects
defects passivation
hole‐selective layer
Lead
Monolayers
perovskite solar cells
Perovskites
Photoluminescence
Photovoltaic cells
Self-assembly
self‐assembled monolayer
Solar cells
Substrates
Sulfur
Tin oxides
Title Defect‐Passivating and Stable Benzothiophene‐Based Self‐Assembled Monolayer for High‐Performance Inverted Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303742
https://www.proquest.com/docview/2973036048
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9AIHxK8IFLQHJA6VwV6vneXotqkqlAakJlJ6stbesRQpdVGTINQTR468CC_FkzD747WDChQuq3i0WUeezzPfbGZmCXlZYciAhh-CpAwh4MMiCqSo4qBC3_sWUoHmwSTITtLjGX83T-a93vdO1tJmXbwur66tK_kfraIM9aqrZP9Bs35RFOBn1C-OqGEcb6TjQ9DJGD5f4QMSYXNYmas7RCKp66L2ob5CfSx0B4Ea_Ox99F84B5aVF-l_gM_xK0q_6hjzIh03aYg6GaS9S6fUQHfpuNScFYUXn1Z6J3jvVAfLewewXK66zDdrkg3AVhsiU7aPyKcELTY2j9_5UiNqJHoz5hfxmaw_bzy0M2M9zxbKod1tZDDeZnLd0Fx2zDSSiiAVbmcUujLb_Mnbdt7FMLvWZ9getBJq3ZgAI7J4yFnrHZuMgMn7_Gg2HufT0Xx6i-wwjEpYn-xkhyfjU7-ph-FWFMamqKP5hU2j0JC92b7FNhFqo5tujGRIzvQeueuiE5pZqN0nPagfkDudnpUPyVcLuh9fvnXgRhFu1MKNbsMN5xmgUQ00vPAQox5iFOFENcT0mi24aAMu2oKLGnBRA65HZHY0mh4cB-44j6BEksqCWCVRwUqF9CiWBZdMs_VCwFBx9AKxEhFwXighKz6EJGQlw1GYU63QZCgVPyb9-qKGJ4SqilVCFFGVlJIDcJGWkskwEZACl0U8IEHzbPPS9brXR64sc9ulm-VaF7nXxYC88vM_2i4vv52526gqd5Zglevz35AJojMcEGbU95dV8mw0OfFXT_-85jNyu31ddkl_fbmB58iE18ULh7-fQIG2lg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect%E2%80%90Passivating+and+Stable+Benzothiophene%E2%80%90Based+Self%E2%80%90Assembled+Monolayer+for+High%E2%80%90Performance+Inverted+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+Ming&rft.au=Li%2C+Mingliang&rft.au=Li%2C+Yanxun&rft.au=An%2C+Yidan&rft.date=2024-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=12&rft_id=info:doi/10.1002%2Faenm.202303742&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon