Defect‐Passivating and Stable Benzothiophene‐Based Self‐Assembled Monolayer for High‐Performance Inverted Perovskite Solar Cells
Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and therm...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and thermo‐stability to ensure long‐term operation of the devices. In this study, a novel MeO‐BTBT‐based self‐assembled monolayer (SAM) is reported to serve as an efficient HSL in inverted PSCs. Compared to the well‐established carbazole‐containing SAM MeO‐2PACz, MeO‐BTBT has flat and more extended conjugation with large atomic radius of the sulfur atom. These induce stronger intermolecular interactions to enable more ordered and compact SAM to be formed on indium–tin oxide (ITO) substrates. Meanwhile, the sulfur atoms in MeO‐BTBT can coordinate with Pb2+ ions to passivate the defects at the buried interface of perovskite absorber. The derived perovskite films show both high photoluminescence (PL) quantum yield (13.2%) and a long lifetime (7.2 µs). The PSCs based on MeO‐BTBT show a PCE of 24.53% with an impressive fill factor of 85.3%. The PCEs of MeO‐BTBT‐based devices can maintain ≈95% of their initial values after being aged at 65 °C for more than 1000 h or continuous operation under 1‐sun illumination.
A benzothiophene‐based SAM HSLMeO‐BTBT is developed. Compared to the carbazole‐based MeO‐2PACz SAM, MeO‐BTBT shows stronger intermolecular interactions, a passivation effect at the buried interface, and better photo‐stability, enabling a robust HSL and stable perovskite bottom interface morphology. The devices with the MeO‐BTBT HSL achieves a PCE of 24.53% with excellent long‐term device stability under illumination and thermal stress. |
---|---|
AbstractList | Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and thermo‐stability to ensure long‐term operation of the devices. In this study, a novel MeO‐BTBT‐based self‐assembled monolayer (SAM) is reported to serve as an efficient HSL in inverted PSCs. Compared to the well‐established carbazole‐containing SAM MeO‐2PACz, MeO‐BTBT has flat and more extended conjugation with large atomic radius of the sulfur atom. These induce stronger intermolecular interactions to enable more ordered and compact SAM to be formed on indium–tin oxide (ITO) substrates. Meanwhile, the sulfur atoms in MeO‐BTBT can coordinate with Pb2+ ions to passivate the defects at the buried interface of perovskite absorber. The derived perovskite films show both high photoluminescence (PL) quantum yield (13.2%) and a long lifetime (7.2 µs). The PSCs based on MeO‐BTBT show a PCE of 24.53% with an impressive fill factor of 85.3%. The PCEs of MeO‐BTBT‐based devices can maintain ≈95% of their initial values after being aged at 65 °C for more than 1000 h or continuous operation under 1‐sun illumination. Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and thermo‐stability to ensure long‐term operation of the devices. In this study, a novel MeO‐BTBT‐based self‐assembled monolayer (SAM) is reported to serve as an efficient HSL in inverted PSCs. Compared to the well‐established carbazole‐containing SAM MeO‐2PACz, MeO‐BTBT has flat and more extended conjugation with large atomic radius of the sulfur atom. These induce stronger intermolecular interactions to enable more ordered and compact SAM to be formed on indium–tin oxide (ITO) substrates. Meanwhile, the sulfur atoms in MeO‐BTBT can coordinate with Pb 2+ ions to passivate the defects at the buried interface of perovskite absorber. The derived perovskite films show both high photoluminescence (PL) quantum yield (13.2%) and a long lifetime (7.2 µs). The PSCs based on MeO‐BTBT show a PCE of 24.53% with an impressive fill factor of 85.3%. The PCEs of MeO‐BTBT‐based devices can maintain ≈95% of their initial values after being aged at 65 °C for more than 1000 h or continuous operation under 1‐sun illumination. Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high performance in inverted perovskite solar cells (PSCs). Additionally, the HSL needs to possess compact molecular packing and intrinsic photo‐ and thermo‐stability to ensure long‐term operation of the devices. In this study, a novel MeO‐BTBT‐based self‐assembled monolayer (SAM) is reported to serve as an efficient HSL in inverted PSCs. Compared to the well‐established carbazole‐containing SAM MeO‐2PACz, MeO‐BTBT has flat and more extended conjugation with large atomic radius of the sulfur atom. These induce stronger intermolecular interactions to enable more ordered and compact SAM to be formed on indium–tin oxide (ITO) substrates. Meanwhile, the sulfur atoms in MeO‐BTBT can coordinate with Pb2+ ions to passivate the defects at the buried interface of perovskite absorber. The derived perovskite films show both high photoluminescence (PL) quantum yield (13.2%) and a long lifetime (7.2 µs). The PSCs based on MeO‐BTBT show a PCE of 24.53% with an impressive fill factor of 85.3%. The PCEs of MeO‐BTBT‐based devices can maintain ≈95% of their initial values after being aged at 65 °C for more than 1000 h or continuous operation under 1‐sun illumination. A benzothiophene‐based SAM HSLMeO‐BTBT is developed. Compared to the carbazole‐based MeO‐2PACz SAM, MeO‐BTBT shows stronger intermolecular interactions, a passivation effect at the buried interface, and better photo‐stability, enabling a robust HSL and stable perovskite bottom interface morphology. The devices with the MeO‐BTBT HSL achieves a PCE of 24.53% with excellent long‐term device stability under illumination and thermal stress. |
Author | Liu, Ming Li, Mingliang Qi, Feng Yao, Zefan Fan, Baobing An, Yidan Liu, Kaikai Li, Yanxun Yip, Hin‐Lap Lin, Francis R. Jen, Alex K.‐Y. |
Author_xml | – sequence: 1 givenname: Ming orcidid: 0009-0003-3858-0776 surname: Liu fullname: Liu, Ming organization: City University of Hong Kong – sequence: 2 givenname: Mingliang surname: Li fullname: Li, Mingliang organization: City University of Hong Kong – sequence: 3 givenname: Yanxun surname: Li fullname: Li, Yanxun organization: City University of Hong Kong – sequence: 4 givenname: Yidan surname: An fullname: An, Yidan organization: City University of Hong Kong – sequence: 5 givenname: Zefan surname: Yao fullname: Yao, Zefan organization: Peking University – sequence: 6 givenname: Baobing surname: Fan fullname: Fan, Baobing organization: City University of Hong Kong – sequence: 7 givenname: Feng surname: Qi fullname: Qi, Feng organization: City University of Hong Kong – sequence: 8 givenname: Kaikai surname: Liu fullname: Liu, Kaikai organization: City University of Hong Kong – sequence: 9 givenname: Hin‐Lap surname: Yip fullname: Yip, Hin‐Lap organization: City University of Hong Kong – sequence: 10 givenname: Francis R. surname: Lin fullname: Lin, Francis R. organization: City University of Hong Kong – sequence: 11 givenname: Alex K.‐Y. orcidid: 0000-0002-9219-7749 surname: Jen fullname: Jen, Alex K.‐Y. email: alexjen@cityu.edu.hk organization: City University of Hong Kong |
BookMark | eNqFkMtKAzEUhoMoeN26Drhuza0z02WtV_AG6nrITM7Y6DSpSVqpK5cufUafxFMqCoKYRZJz8n8n8G2SVecdELLLWZczJvY1uHFXMCGZzJVYIRs846qTFYqtft-lWCc7MT4wXKrPmZQb5O0QGqjTx-v7tY7RznSy7p5qZ-hN0lUL9ADci08j6ycjcIC5Ax0BX6FtsBjECGOMGXrhnW_1HAJtfKCn9n60mAkBq7F2NdAzN4OQMIlNP4uPNgG9QSTQIbRt3CZrjW4j7HydW-Tu-Oh2eNo5vzo5Gw7OO7XkuehI0-OVqE2WF1JXSgvew0YBuVH9TEpTcFCqMoVuVA49JmqBe9GTaKaAyhi5RfaWcyfBP00hpvLBT4PDL0vRz1FfxlSBKbVM1cHHGKApa5vQjXcpaNuWnJUL7eVCe_mtHbHuL2wS7FiH-d9Afwk82xbm_6TLwdHlxQ_7CR-LnQo |
CitedBy_id | crossref_primary_10_1002_advs_202404725 crossref_primary_10_1002_ange_202423827 crossref_primary_10_1002_smtd_202401852 crossref_primary_10_1039_D4EE02492C crossref_primary_10_1002_ange_202419608 crossref_primary_10_3389_fchem_2024_1519166 crossref_primary_10_1021_acs_nanolett_4c05826 crossref_primary_10_1002_inf2_12559 crossref_primary_10_1016_j_cej_2024_158389 crossref_primary_10_1021_acsami_4c13977 crossref_primary_10_1002_aenm_202401414 crossref_primary_10_1021_acsenergylett_4c01433 crossref_primary_10_1016_j_cej_2024_155512 crossref_primary_10_1021_acsami_4c12103 crossref_primary_10_1063_5_0215268 crossref_primary_10_1002_adma_202407349 crossref_primary_10_1002_solr_202400901 crossref_primary_10_1039_D4EE05849F crossref_primary_10_1039_D4EE03208J crossref_primary_10_1002_adfm_202412946 crossref_primary_10_1002_ange_202416188 crossref_primary_10_1002_adma_202500708 crossref_primary_10_1002_anie_202423827 crossref_primary_10_1002_anie_202419608 crossref_primary_10_1039_D4EE02661F crossref_primary_10_1002_adfm_202421576 crossref_primary_10_1039_D4TA01039F crossref_primary_10_1039_D4QM00417E crossref_primary_10_1016_j_cej_2024_158870 crossref_primary_10_1039_D4EE02917H crossref_primary_10_1039_D4EE04515G crossref_primary_10_1016_j_cej_2024_154011 crossref_primary_10_1039_D4TA01453G crossref_primary_10_1021_acs_jpcc_4c03059 crossref_primary_10_1002_aenm_202400616 crossref_primary_10_1002_smll_202410369 crossref_primary_10_1002_smll_202411413 crossref_primary_10_1021_acsenergylett_4c03228 crossref_primary_10_1016_j_cej_2024_153404 crossref_primary_10_1002_smll_202500281 crossref_primary_10_1002_adfm_202408480 crossref_primary_10_1002_anie_202416188 crossref_primary_10_1038_s41467_024_55492_4 |
Cites_doi | 10.1126/science.1243982 10.1021/acsnano.7b02394 10.1002/adma.201902762 10.1021/ja074841i 10.1038/s41578-022-00503-3 10.1039/D2TA01541B 10.1021/acs.chemmater.9b01614 10.1016/j.joule.2020.04.001 10.1021/acsenergylett.1c01898 10.1021/jacs.0c09845 10.1038/s41467-020-15077-3 10.1021/jacs.3c00805 10.1038/s41560-022-01096-5 10.1002/aelm.202300712 10.1002/adma.201102007 10.1038/s41560-023-01274-z 10.1126/science.abd4016 10.1016/j.joule.2023.02.014 10.1002/anie.202213560 10.1038/s41560-022-01045-2 10.1002/aenm.202103175 10.1021/acsmaterialslett.2c00799 10.1126/science.aba0893 10.1038/s41586-022-05268-x 10.1126/science.ade9463 10.1002/aenm.201801892 10.1002/adma.202203794 10.1021/accountsmr.1c00169 10.26599/NRE.2022.9120004 10.1039/C9EE02268F 10.1002/adma.202304415 10.1038/s41566-023-01180-6 10.1038/s41586-022-04455-0 10.1021/ar400282g 10.1038/s41586-023-05992-y 10.1002/adma.202212258 10.1002/ange.202107020 10.1002/anie.202203088 10.1038/s41586-023-06207-0 10.1016/j.joule.2021.07.016 10.1126/science.adg3755 10.1002/anie.202309831 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202303742 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202303742 AENM202303742 |
Genre | article |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2019B030302007 – fundername: Shenzhen Science and Technology Innovation Program funderid: SGDX20201103095412040 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3172-3d51b2cd6783ab4a21551b8e7d49633d81e44bd8af47e502c2e508530238ebdd3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 10:07:33 EDT 2025 Tue Jul 01 01:43:55 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Wed Jan 22 16:13:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3172-3d51b2cd6783ab4a21551b8e7d49633d81e44bd8af47e502c2e508530238ebdd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-3858-0776 0000-0002-9219-7749 |
PQID | 2973036048 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2973036048 crossref_citationtrail_10_1002_aenm_202303742 crossref_primary_10_1002_aenm_202303742 wiley_primary_10_1002_aenm_202303742_AENM202303742 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 6 2023; 35 2021; 5 2023; 380 2007; 129 2023; 17 2019; 31 2020; 142 2023; 7 2023; 8 2023; 145 2019; 12 2013; 342 2014; 47 2023; 620 2020; 11 2020; 367 2022; 611 2023; 62 2018; 8 2020; 4 2014; 5 2022; 3 2023 2022; 4 2022; 61 2022; 7 2017; 11 2020; 370 2022; 34 2022; 12 2011; 23 2021; 133 2022; 1 2022; 10 2022; 604 2023; 618 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Yuan Y. (e_1_2_7_34_1) 2014; 5 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 8 start-page: 714 year: 2023 publication-title: Nat. Energy – volume: 47 start-page: 1493 year: 2014 publication-title: Acc. Chem. Res. – volume: 380 start-page: 823 year: 2023 publication-title: Science – volume: 7 start-page: 708 year: 2022 publication-title: Nat. Energy – volume: 31 start-page: 5254 year: 2019 publication-title: Chem. Mater. – volume: 620 start-page: 545 year: 2023 publication-title: Nature – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 3 start-page: 272 year: 2022 publication-title: Acc. Mater. Res. – volume: 133 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 367 start-page: 1352 year: 2020 publication-title: Science – volume: 604 start-page: 280 year: 2022 publication-title: Nature – volume: 11 start-page: 8747 year: 2017 publication-title: ACS Nano – volume: 5 start-page: 2915 year: 2021 publication-title: Joule – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 611 start-page: 278 year: 2022 publication-title: Nature – volume: 4 start-page: 1976 year: 2022 publication-title: ACS Mater. Lett. – volume: 370 start-page: 1300 year: 2020 publication-title: Science – volume: 6 start-page: 4209 year: 2021 publication-title: ACS Energy Lett. – volume: 145 start-page: 7528 year: 2023 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 4347 year: 2011 publication-title: Adv. Mater. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – year: 2023 publication-title: Adv. Electron. Mater. – volume: 380 start-page: 404 year: 2023 publication-title: Science – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 17 start-page: 478 year: 2023 publication-title: Nat. Photonics – volume: 7 start-page: 484 year: 2023 publication-title: Joule – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1248 year: 2020 publication-title: Joule – volume: 5 start-page: 3005 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 89 year: 2023 publication-title: Nat. Rev. Mater. – volume: 11 start-page: 1257 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 794 year: 2022 publication-title: Nat. Energy – volume: 129 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 618 start-page: 80 year: 2023 publication-title: Nature – volume: 1 year: 2022 publication-title: Nano Res. Energy – volume: 142 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 3356 year: 2019 publication-title: Energy Environ. Sci. – ident: e_1_2_7_1_1 doi: 10.1126/science.1243982 – ident: e_1_2_7_40_1 doi: 10.1021/acsnano.7b02394 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201902762 – ident: e_1_2_7_33_1 doi: 10.1021/ja074841i – ident: e_1_2_7_11_1 doi: 10.1038/s41578-022-00503-3 – ident: e_1_2_7_36_1 doi: 10.1039/D2TA01541B – ident: e_1_2_7_38_1 doi: 10.1021/acs.chemmater.9b01614 – ident: e_1_2_7_9_1 doi: 10.1016/j.joule.2020.04.001 – ident: e_1_2_7_35_1 doi: 10.1021/acsenergylett.1c01898 – ident: e_1_2_7_7_1 doi: 10.1021/jacs.0c09845 – ident: e_1_2_7_2_1 doi: 10.1038/s41467-020-15077-3 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.3c00805 – ident: e_1_2_7_8_1 doi: 10.1038/s41560-022-01096-5 – ident: e_1_2_7_39_1 doi: 10.1002/aelm.202300712 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201102007 – ident: e_1_2_7_29_1 doi: 10.1038/s41560-023-01274-z – ident: e_1_2_7_14_1 doi: 10.1126/science.abd4016 – ident: e_1_2_7_3_1 doi: 10.1016/j.joule.2023.02.014 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202213560 – ident: e_1_2_7_19_1 doi: 10.1038/s41560-022-01045-2 – ident: e_1_2_7_30_1 doi: 10.1002/aenm.202103175 – ident: e_1_2_7_28_1 doi: 10.1021/acsmaterialslett.2c00799 – ident: e_1_2_7_42_1 doi: 10.1126/science.aba0893 – ident: e_1_2_7_18_1 doi: 10.1038/s41586-022-05268-x – ident: e_1_2_7_43_1 doi: 10.1126/science.ade9463 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.201801892 – ident: e_1_2_7_10_1 doi: 10.1002/adma.202203794 – volume: 5 start-page: 3005 year: 2014 ident: e_1_2_7_34_1 publication-title: J. Am. Chem. Soc. – ident: e_1_2_7_6_1 doi: 10.1021/accountsmr.1c00169 – ident: e_1_2_7_20_1 doi: 10.26599/NRE.2022.9120004 – ident: e_1_2_7_24_1 doi: 10.1039/C9EE02268F – ident: e_1_2_7_23_1 doi: 10.1002/adma.202304415 – ident: e_1_2_7_4_1 doi: 10.1038/s41566-023-01180-6 – ident: e_1_2_7_16_1 doi: 10.1038/s41586-022-04455-0 – ident: e_1_2_7_32_1 doi: 10.1021/ar400282g – ident: e_1_2_7_5_1 doi: 10.1038/s41586-023-05992-y – ident: e_1_2_7_13_1 doi: 10.1002/adma.202212258 – ident: e_1_2_7_12_1 doi: 10.1002/ange.202107020 – ident: e_1_2_7_26_1 doi: 10.1002/anie.202203088 – ident: e_1_2_7_25_1 doi: 10.1038/s41586-023-06207-0 – ident: e_1_2_7_15_1 doi: 10.1016/j.joule.2021.07.016 – ident: e_1_2_7_17_1 doi: 10.1126/science.adg3755 – ident: e_1_2_7_31_1 doi: 10.1002/anie.202309831 |
SSID | ssj0000491033 |
Score | 2.6317513 |
Snippet | Effective passivation of defects at the buried interface between the perovskite absorber and hole‐selective layer (HSL) is crucial for achieving high... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Absorbers Atomic radius Benzothiophene Carbazoles Conjugation Defects defects passivation hole‐selective layer Lead Monolayers perovskite solar cells Perovskites Photoluminescence Photovoltaic cells Self-assembly self‐assembled monolayer Solar cells Substrates Sulfur Tin oxides |
Title | Defect‐Passivating and Stable Benzothiophene‐Based Self‐Assembled Monolayer for High‐Performance Inverted Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303742 https://www.proquest.com/docview/2973036048 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6F9AIHxK8IFLQHJA6VwV6vneXotqkqlAakJlJ6stbesRQpdVGTINQTR468CC_FkzD747WDChQuq3i0WUeezzPfbGZmCXlZYciAhh-CpAwh4MMiCqSo4qBC3_sWUoHmwSTITtLjGX83T-a93vdO1tJmXbwur66tK_kfraIM9aqrZP9Bs35RFOBn1C-OqGEcb6TjQ9DJGD5f4QMSYXNYmas7RCKp66L2ob5CfSx0B4Ea_Ox99F84B5aVF-l_gM_xK0q_6hjzIh03aYg6GaS9S6fUQHfpuNScFYUXn1Z6J3jvVAfLewewXK66zDdrkg3AVhsiU7aPyKcELTY2j9_5UiNqJHoz5hfxmaw_bzy0M2M9zxbKod1tZDDeZnLd0Fx2zDSSiiAVbmcUujLb_Mnbdt7FMLvWZ9getBJq3ZgAI7J4yFnrHZuMgMn7_Gg2HufT0Xx6i-wwjEpYn-xkhyfjU7-ph-FWFMamqKP5hU2j0JC92b7FNhFqo5tujGRIzvQeueuiE5pZqN0nPagfkDudnpUPyVcLuh9fvnXgRhFu1MKNbsMN5xmgUQ00vPAQox5iFOFENcT0mi24aAMu2oKLGnBRA65HZHY0mh4cB-44j6BEksqCWCVRwUqF9CiWBZdMs_VCwFBx9AKxEhFwXighKz6EJGQlw1GYU63QZCgVPyb9-qKGJ4SqilVCFFGVlJIDcJGWkskwEZACl0U8IEHzbPPS9brXR64sc9ulm-VaF7nXxYC88vM_2i4vv52526gqd5Zglevz35AJojMcEGbU95dV8mw0OfFXT_-85jNyu31ddkl_fbmB58iE18ULh7-fQIG2lg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect%E2%80%90Passivating+and+Stable+Benzothiophene%E2%80%90Based+Self%E2%80%90Assembled+Monolayer+for+High%E2%80%90Performance+Inverted+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Liu%2C+Ming&rft.au=Li%2C+Mingliang&rft.au=Li%2C+Yanxun&rft.au=An%2C+Yidan&rft.date=2024-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=12&rft_id=info:doi/10.1002%2Faenm.202303742&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |