Crystalline‐State Solvent: Metal‐Organic Frameworks as a Platform for Intercepting Aggregation‐Caused Quenching
Comprehensive Summary The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes a...
Saved in:
Published in | Chinese journal of chemistry Vol. 40; no. 5; pp. 589 - 596 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.03.2022
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Comprehensive Summary
The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes and emissive behaviors in the cage structure of a MOF resulted in high fluorescent quantum yields of 44.8% for DAPI@NKU‐110 (DAPI = 4',6‐diamidino‐2‐phenylindole), 65.4% for TPPA@NKU‐110 (TPPA = tris(4‐(pyridin‐4‐ yl)phenyl)amine), 31.3% for R6G@NKU‐110 (R6G = Rhodamine 6G), and 58.3% for PY@NKU‐110 (PY = Pyronin Y), attributable to the confinement effect caused by the rigid cages of NKU‐110. More significantly, a positive correlation of the encapsulated quantity of OLMs with their concentration in the in‐situ solvothermal reaction was unveiled by spectral analysis and utilized to facilely fabricate a white‐light‐emitting crystal material TPPA+R6G@NKU‐110. This material features a large crystal size on the millimeter‐scale, broadband white emission, ideal CIE coordinates (0.33, 0.34), and a high quantum yield (49.1%) when excited at 365 nm. Moreover, such a strategy can be easily generalized to an abundance of other cage‐based MOFs and a plentiful volume of OLMs for the future development of colorful, high performance luminescent materials.
We report the encapsulation of various organic luminescent molecules (OLMs) in a cage‐based MOF which acts as a solid solvent for preventing aggregation‐caused quenching, thereby creating single‐crystalline materials with high fluorescence quantum yields and excellent luminescent properties due to the confinement effect derived from the internal cages. |
---|---|
AbstractList | Comprehensive Summary
The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes and emissive behaviors in the cage structure of a MOF resulted in high fluorescent quantum yields of 44.8% for DAPI@NKU‐110 (DAPI = 4',6‐diamidino‐2‐phenylindole), 65.4% for TPPA@NKU‐110 (TPPA = tris(4‐(pyridin‐4‐ yl)phenyl)amine), 31.3% for R6G@NKU‐110 (R6G = Rhodamine 6G), and 58.3% for PY@NKU‐110 (PY = Pyronin Y), attributable to the confinement effect caused by the rigid cages of NKU‐110. More significantly, a positive correlation of the encapsulated quantity of OLMs with their concentration in the in‐situ solvothermal reaction was unveiled by spectral analysis and utilized to facilely fabricate a white‐light‐emitting crystal material TPPA+R6G@NKU‐110. This material features a large crystal size on the millimeter‐scale, broadband white emission, ideal CIE coordinates (0.33, 0.34), and a high quantum yield (49.1%) when excited at 365 nm. Moreover, such a strategy can be easily generalized to an abundance of other cage‐based MOFs and a plentiful volume of OLMs for the future development of colorful, high performance luminescent materials.
We report the encapsulation of various organic luminescent molecules (OLMs) in a cage‐based MOF which acts as a solid solvent for preventing aggregation‐caused quenching, thereby creating single‐crystalline materials with high fluorescence quantum yields and excellent luminescent properties due to the confinement effect derived from the internal cages. The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes and emissive behaviors in the cage structure of a MOF resulted in high fluorescent quantum yields of 44.8% for DAPI@NKU‐110 (DAPI = 4',6‐diamidino‐2‐phenylindole), 65.4% for TPPA@NKU‐110 (TPPA = tris(4‐(pyridin‐4‐ yl)phenyl)amine), 31.3% for R6G@NKU‐110 (R6G = Rhodamine 6G), and 58.3% for PY@NKU‐110 (PY = Pyronin Y), attributable to the confinement effect caused by the rigid cages of NKU‐110. More significantly, a positive correlation of the encapsulated quantity of OLMs with their concentration in the in‐situ solvothermal reaction was unveiled by spectral analysis and utilized to facilely fabricate a white‐light‐emitting crystal material TPPA+R6G@NKU‐110. This material features a large crystal size on the millimeter‐scale, broadband white emission, ideal CIE coordinates (0.33, 0.34), and a high quantum yield (49.1%) when excited at 365 nm. Moreover, such a strategy can be easily generalized to an abundance of other cage‐based MOFs and a plentiful volume of OLMs for the future development of colorful, high performance luminescent materials. Comprehensive SummaryThe sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes and emissive behaviors in the cage structure of a MOF resulted in high fluorescent quantum yields of 44.8% for DAPI@NKU‐110 (DAPI = 4',6‐diamidino‐2‐phenylindole), 65.4% for TPPA@NKU‐110 (TPPA = tris(4‐(pyridin‐4‐ yl)phenyl)amine), 31.3% for R6G@NKU‐110 (R6G = Rhodamine 6G), and 58.3% for PY@NKU‐110 (PY = Pyronin Y), attributable to the confinement effect caused by the rigid cages of NKU‐110. More significantly, a positive correlation of the encapsulated quantity of OLMs with their concentration in the in‐situ solvothermal reaction was unveiled by spectral analysis and utilized to facilely fabricate a white‐light‐emitting crystal material TPPA+R6G@NKU‐110. This material features a large crystal size on the millimeter‐scale, broadband white emission, ideal CIE coordinates (0.33, 0.34), and a high quantum yield (49.1%) when excited at 365 nm. Moreover, such a strategy can be easily generalized to an abundance of other cage‐based MOFs and a plentiful volume of OLMs for the future development of colorful, high performance luminescent materials. |
Author | Zhang, Ying‐Hui Yao, Zhao‐Quan Feng, Rui Yin, Jia‐Cheng Li, Na Bu, Xian‐He Jia, Yan‐Yuan |
Author_xml | – sequence: 1 givenname: Yan‐Yuan surname: Jia fullname: Jia, Yan‐Yuan organization: Nankai University – sequence: 2 givenname: Jia‐Cheng surname: Yin fullname: Yin, Jia‐Cheng organization: Nankai University – sequence: 3 givenname: Na surname: Li fullname: Li, Na email: lina@nankai.edu.cn organization: Nankai University – sequence: 4 givenname: Ying‐Hui surname: Zhang fullname: Zhang, Ying‐Hui organization: Nankai University – sequence: 5 givenname: Rui surname: Feng fullname: Feng, Rui organization: Nankai University – sequence: 6 givenname: Zhao‐Quan surname: Yao fullname: Yao, Zhao‐Quan email: lina@nankai.edu.cn organization: Nankai University – sequence: 7 givenname: Xian‐He surname: Bu fullname: Bu, Xian‐He email: buxh@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkM9q3DAQxkVJoNlNrz0LcvZGGtmy3Vsw2fwhZRPSQm9Gqx073niljSRn2VseIc-YJ6nSLQ0UQmDQjDTfbwZ9I7JnrEFCvnI24YzBsV5aPQEG8ZJz-EQOuORpkjOZ7cWaMZ5Ilv76TEbeL6M-z0EekKFyWx9U33cGX56eb4MKSG9t_4gmfKPfMbbi88y1ynSaTp1a4ca6e09VDHrdq9BYt6LxoBcmoNO4Dp1p6UnbOmxV6KyJfKUGjwt6M6DRd7F9SPYb1Xv88jePyc_p6Y_qPLmanV1UJ1eJFjyHROgSGmhEsyiF5FjMMRe8YJBiVqRcAMqF1HNWAuS8KYpUZHLOGZYgBRa8WYgxOdrNXTv7MKAP9dIOzsSVNUgAyLLIRNVkp9LOeu-wqdeuWym3rTmrX62tX62t_1kbgfQ_QHfhz1-DU13_PlbusE3X4_aDJXV1Oave2N-wB5Oy |
CitedBy_id | crossref_primary_10_1002_cjoc_202300448 crossref_primary_10_1002_ejic_202300711 crossref_primary_10_1021_acs_langmuir_2c03299 crossref_primary_10_1002_cjoc_202200569 crossref_primary_10_1021_acs_inorgchem_3c02806 crossref_primary_10_1016_j_ccr_2022_214921 crossref_primary_10_1039_D3QI01569F crossref_primary_10_1039_D3SC06410G crossref_primary_10_1039_D4SC02550D crossref_primary_10_1021_acs_inorgchem_3c00905 |
Cites_doi | 10.1021/ar200028a 10.1021/acs.accounts.7b00387 10.1002/adma.201805871 10.1016/j.ccr.2019.213149 10.1021/acs.chemmater.6b05375 10.1039/b909057f 10.1002/agt2.35 10.1103/PhysRevLett.110.247401 10.1002/adma.201800702 10.1016/j.ccr.2017.09.017 10.1016/j.biotechadv.2018.01.014 10.1038/ncomms3719 10.1039/c3cc48381a 10.1039/C4CS90059F 10.1002/adma.201404700 10.1021/acsami.0c12867 10.1002/adom.201900077 10.1002/adma.202004747 10.1021/acsami.7b15764 10.1039/C8QI00747K 10.1002/cjoc.202100356 10.1021/acsami.8b04937 10.1021/ja109103t 10.1021/acsami.9b22130 10.1039/C9CC05533A 10.1002/anie.202006545 10.1002/adfm.200301005 10.1002/adma.201806445 10.1039/C0JM02350G 10.1002/cjoc.202000357 10.1002/adma.201700778 10.31635/ccschem.020.202000348 10.1002/adom.201901912 10.1021/acsami.7b11277 10.1021/jacs.8b09887 10.1038/ncomms3717 10.1002/adfm.201501756 10.1002/adom.201800968 10.1039/b903811f 10.1002/adma.201002636 10.1016/j.ccr.2019.213077 10.1021/acs.chemrev.5b00263 10.1002/anie.202006956 10.1002/anie.201905186 10.1039/C7TC01477E 10.1021/acs.chemmater.8b04126 10.1021/jacs.9b05191 10.1002/cjoc.202100263 10.1038/ncomms8575 10.1002/cjoc.202100314 10.1039/D0CS00484G 10.1002/lpor.202000474 10.1246/cl.190731 10.1016/j.ccr.2019.01.001 10.1021/acsami.9b19785 10.31635/ccschem.020.202000263 |
ContentType | Journal Article |
Copyright | 2021 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH |
Copyright_xml | – notice: 2021 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH – notice: 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cjoc.202100712 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1614-7065 |
EndPage | 596 |
ExternalDocumentID | 10_1002_cjoc_202100712 CJOC202100712 |
Genre | article |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 29B 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXDM AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCEZO CDRFL CHBEP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 FA0 G-S G.N GODZA H.T H.X HGLYW HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P4D Q.N Q11 QB0 QRW R.K RK2 RNS ROL RWI RX1 RYL SUPJJ W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT -SB -S~ .Y3 31~ 53G 5VR 5XA 5XC AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEYWJ AFUIB AGHNM AGQPQ AGYGG AZFZN BDRZF BZXJU CAJEB CITATION EJD FEDTE HF~ HVGLF LH4 PALCI Q-- RIWAO RJQFR SAMSI TGP U1G U5L AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c3172-3c92f2f3fd9361e8be7318024e584132e6d6cb092271f884356b10e9263e81fd3 |
IEDL.DBID | DR2 |
ISSN | 1001-604X |
IngestDate | Fri Jul 25 11:04:16 EDT 2025 Tue Jul 01 03:35:29 EDT 2025 Thu Apr 24 23:12:38 EDT 2025 Wed Jan 22 16:26:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3172-3c92f2f3fd9361e8be7318024e584132e6d6cb092271f884356b10e9263e81fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2622255435 |
PQPubID | 986331 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2622255435 crossref_primary_10_1002_cjoc_202100712 crossref_citationtrail_10_1002_cjoc_202100712 wiley_primary_10_1002_cjoc_202100712_CJOC202100712 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1 March 2022 2022-03-00 20220301 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 1 March 2022 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationYear | 2022 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2020 2021 2021 2021; 32 39 39 39 2015 2017; 115 29 2018; 5 2018 2020 2011; 373 32 44 2017 2019; 9 7 2019 2021; 31 3 2014 2009 2020; 43 38 49 2019 2018; 58 10 2020 2021; 12 39 2015 2014 2021; 6 50 3 2010 2021 2011; 39 15 23 2020 2019; 2001817 401 2019 2020 2020 2020; 384 32 59 59 2017 2011; 50 133 2018 2020; 36 406 2003 1928 2011 2021; 13 2018 21 2 2018 2020; 6 12 2013 2020; 4 12 2018; 30 2017; 29 2020 2019; 8 55 2017 2019 2018; 5 141 140 2018 2015 2015 2013; 10 25 27 4 2013 2020; 110 49 e_1_2_6_19_3 e_1_2_6_19_4 e_1_2_6_17_3 e_1_2_6_19_1 e_1_2_6_19_2 Ye H. (e_1_2_6_4_2) 1928; 2018 e_1_2_6_13_1 e_1_2_6_13_2 e_1_2_6_11_1 e_1_2_6_11_2 e_1_2_6_17_1 e_1_2_6_17_2 e_1_2_6_15_1 e_1_2_6_15_2 e_1_2_6_20_1 e_1_2_6_9_4 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_9_3 e_1_2_6_9_2 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_24_1 e_1_2_6_22_2 e_1_2_6_22_1 e_1_2_6_24_3 e_1_2_6_10_1 e_1_2_6_16_4 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_12_1 e_1_2_6_16_2 e_1_2_6_16_3 e_1_2_6_18_1 Tang Y. (e_1_2_6_3_1) 2020; 2001817 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_8_2 e_1_2_6_8_1 e_1_2_6_8_3 e_1_2_6_2_3 e_1_2_6_4_1 e_1_2_6_4_4 e_1_2_6_6_2 e_1_2_6_4_3 e_1_2_6_6_1 e_1_2_6_23_3 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_21_2 |
References_xml | – volume: 110 49 start-page: 6122 year: 2013 2020 end-page: 6140 article-title: Organic Luminescent Molecule with Energetically Equivalent Singlet and Triplet Excited States for Organic Light‐Emitting Diodes Access to the Triplet Excited States of Organic Chromophores publication-title: Phys. Rev. Lett. Chem. Soc. Rev. – volume: 9 7 start-page: 35253 1900077 year: 2017 2019 end-page: 35259 article-title: MOF‐Based Organic Microlasers. publication-title: ACS Appl. Mater. Interfaces Opt. Mater. – volume: 12 39 start-page: 5345 2889 year: 2020 2021 end-page: 5360 2897 publication-title: ACS Appl. Mater. Interfaces Chin. J. Chem. – volume: 373 32 44 start-page: 116 1805871 957 year: 2018 2020 2011 end-page: 147 968 publication-title: Coord. Chem. Rev. Adv. Mater. Acc. Chem. Res. – volume: 10 25 27 4 start-page: 18910 4796 1420 2719 year: 2018 2015 2015 2013 end-page: 18917 4802 1425 article-title: Dye Encapsulated Metal‐Organic Framework for Warm‐White LED with High Color‐Rendering Index Dual‐Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. Adv. Mater. Nat. Commun. – volume: 58 10 start-page: 9752 5618 year: 2019 2018 end-page: 9757 5625 publication-title: Angew. Chem. Int. Ed. ACS Appl. Mater. Interfaces – volume: 6 12 start-page: 1800968 51589 year: 2018 2020 end-page: 51597 article-title: Efficient Regulation of Energy Transfer in a Multicomponent Dye‐Loaded MOF for White‐Light Emission Tuning publication-title: Adv. Opt. Mater. ACS Appl. Mater. Interfaces – volume: 6 50 3 start-page: 7575 2834 1701 year: 2015 2014 2021 end-page: 2836 1709 article-title: Coexistence of Cages and One‐Dimensional Channels in a Porous MOF with High H and CH Uptakes Tuning the Structure of Fe‐Tetracarboxylate Frameworks Through Linker‐Symmetry Reduction publication-title: Nat. Commun. Chem. Commun. CCS Chem. – volume: 5 141 140 start-page: 7668 11298 15470 year: 2017 2019 2018 end-page: 7683 11303 15476 article-title: Manipulation of Exciton Distribution for High‐Performance Fluorescent/Phosphorescent Hybrid White Organic Light‐Emitting Diodes publication-title: J. Mater. Chem. C J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 29 start-page: 1700778 year: 2017 publication-title: Adv. Mater. – volume: 384 32 59 59 start-page: 90 2004747 19390 19434 year: 2019 2020 2020 2020 end-page: 106 19402 19449 article-title: Metal–Organic‐Framework‐Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting publication-title: Coord. Chem. Rev. Adv. Mater. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. – volume: 50 133 start-page: 2789 1220 year: 2017 2011 end-page: 2798 1223 article-title: Zinc‐Adeninate Metal−Organic Framework for Aqueous Encapsulation and Sensitization of Near‐Infrared and Visible Emitting Lanthanide Cations publication-title: Acc. Chem. Res. J. Am. Chem. Soc. – volume: 13 2018 21 2 start-page: 511 57 1423 year: 2003 1928 2011 2021 end-page: 516 article-title: Inorganic Luminescent Materials: 100 Years of Research and Application Molecular‐Barrier‐Enhanced Aromatic Fluorophores in Cocrystals with Unity Quantum Efficiency Preparation, Characterization, and Photoswitching/Light‐Emitting Behaviors of Coronene Nanowires Our Research Progress in Heteroaggregation and Homoaggregation of Organic ‐Conjugated Systems publication-title: Adv. Funct. Mater. Angew. Chem. Int. Ed. J. Mater. Chem. Aggregate – volume: 2001817 401 year: 2020 2019 publication-title: Adv. Opt. Mater. Coord. Chem. Rev. – volume: 5 start-page: 2868 year: 2018 end-page: 2874 publication-title: Inorg. Chem. Front. – volume: 31 3 start-page: 1289 1382 year: 2019 2021 end-page: 1295 1390 publication-title: Chem. Mater. CCS Chem. – volume: 43 38 49 start-page: 5415 1213 28 year: 2014 2009 2020 end-page: 5418 1214 53 article-title: Metal‐Organic Cages (MOCs): From Discrete to Cage‐Based Extended Architectures publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Lett. – volume: 115 29 start-page: 11718 1779 year: 2015 2017 end-page: 11940 1787 article-title: Aggregation‐Induced Emission: Together We Shine, United We Soar! Conquering Aggregation‐Induced Solid‐State Luminescence Quenching of Carbon Dots through a Carbon Dots‐Triggered Silica Gelation Process publication-title: Chem. Rev. Chem. Mater. – volume: 36 406 start-page: 467 year: 2018 2020 end-page: 481 article-title: Biomolecule‐Embedded Metal‐Organic Frameworks as an Innovative Sensing Platform publication-title: Biotechnol. Adv. Coord. Chem. Rev. – volume: 32 39 39 39 start-page: 1806445 2718 2789 440 year: 2020 2021 2021 2021 end-page: 2724 2794 462 publication-title: Adv. Mater. Chin. J. Chem. Chin. J. Chem. Chin. J. Chem. – volume: 30 start-page: 1800702 year: 2018 publication-title: Adv. Mater. – volume: 39 15 23 start-page: 2387 2000474 233 year: 2010 2021 2011 end-page: 2398 248 article-title: Management of Charges and Excitons for High‐Performance White Organic Light‐Emitting Eiodes The Strategies for High‐Performance Single‐Emissive‐Layer White Organic Light‐Emitting Diodes White Organic Light‐Emitting Diodes publication-title: Chem. Soc. Rev. Laser Photonics Rev. Adv. Mater. – volume: 4 12 start-page: 2717 12043 year: 2013 2020 end-page: 12053 publication-title: Nat. Commun. ACS Appl. Mater. Interfaces – volume: 8 55 start-page: 1901912 10669 year: 2020 2019 end-page: 10672 article-title: Dual‐Guest Functionalized Zeolitic Imidazolate Framework‐8 for 3D Printing White Light‐Emitting Composites publication-title: Adv. Opt. Mater. Chem. Commun. – ident: e_1_2_6_2_3 doi: 10.1021/ar200028a – ident: e_1_2_6_10_1 doi: 10.1021/acs.accounts.7b00387 – ident: e_1_2_6_2_2 doi: 10.1002/adma.201805871 – ident: e_1_2_6_15_2 doi: 10.1016/j.ccr.2019.213149 – ident: e_1_2_6_7_2 doi: 10.1021/acs.chemmater.6b05375 – ident: e_1_2_6_23_1 doi: 10.1039/b909057f – ident: e_1_2_6_4_4 doi: 10.1002/agt2.35 – ident: e_1_2_6_5_1 doi: 10.1103/PhysRevLett.110.247401 – ident: e_1_2_6_14_1 doi: 10.1002/adma.201800702 – ident: e_1_2_6_2_1 doi: 10.1016/j.ccr.2017.09.017 – ident: e_1_2_6_15_1 doi: 10.1016/j.biotechadv.2018.01.014 – ident: e_1_2_6_19_4 doi: 10.1038/ncomms3719 – ident: e_1_2_6_17_2 doi: 10.1039/c3cc48381a – ident: e_1_2_6_8_1 doi: 10.1039/C4CS90059F – ident: e_1_2_6_19_3 doi: 10.1002/adma.201404700 – ident: e_1_2_6_22_2 doi: 10.1021/acsami.0c12867 – ident: e_1_2_6_6_2 doi: 10.1002/adom.201900077 – ident: e_1_2_6_16_2 doi: 10.1002/adma.202004747 – ident: e_1_2_6_21_2 doi: 10.1021/acsami.7b15764 – ident: e_1_2_6_25_1 doi: 10.1039/C8QI00747K – ident: e_1_2_6_9_3 doi: 10.1002/cjoc.202100356 – ident: e_1_2_6_19_1 doi: 10.1021/acsami.8b04937 – ident: e_1_2_6_10_2 doi: 10.1021/ja109103t – ident: e_1_2_6_12_2 doi: 10.1021/acsami.9b22130 – ident: e_1_2_6_18_2 doi: 10.1039/C9CC05533A – ident: e_1_2_6_16_3 doi: 10.1002/anie.202006545 – ident: e_1_2_6_4_1 doi: 10.1002/adfm.200301005 – ident: e_1_2_6_9_1 doi: 10.1002/adma.201806445 – ident: e_1_2_6_4_3 doi: 10.1039/C0JM02350G – ident: e_1_2_6_9_4 doi: 10.1002/cjoc.202000357 – ident: e_1_2_6_20_1 doi: 10.1002/adma.201700778 – ident: e_1_2_6_17_3 doi: 10.31635/ccschem.020.202000348 – ident: e_1_2_6_18_1 doi: 10.1002/adom.201901912 – ident: e_1_2_6_6_1 doi: 10.1021/acsami.7b11277 – ident: e_1_2_6_24_3 doi: 10.1021/jacs.8b09887 – volume: 2018 start-page: 57 year: 1928 ident: e_1_2_6_4_2 article-title: Molecular‐Barrier‐Enhanced Aromatic Fluorophores in Cocrystals with Unity Quantum Efficiency publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_6_12_1 doi: 10.1038/ncomms3717 – ident: e_1_2_6_19_2 doi: 10.1002/adfm.201501756 – ident: e_1_2_6_22_1 doi: 10.1002/adom.201800968 – ident: e_1_2_6_8_2 doi: 10.1039/b903811f – ident: e_1_2_6_23_3 doi: 10.1002/adma.201002636 – ident: e_1_2_6_3_2 doi: 10.1016/j.ccr.2019.213077 – ident: e_1_2_6_7_1 doi: 10.1021/acs.chemrev.5b00263 – ident: e_1_2_6_16_4 doi: 10.1002/anie.202006956 – ident: e_1_2_6_21_1 doi: 10.1002/anie.201905186 – ident: e_1_2_6_24_1 doi: 10.1039/C7TC01477E – ident: e_1_2_6_11_1 doi: 10.1021/acs.chemmater.8b04126 – ident: e_1_2_6_24_2 doi: 10.1021/jacs.9b05191 – ident: e_1_2_6_9_2 doi: 10.1002/cjoc.202100263 – ident: e_1_2_6_17_1 doi: 10.1038/ncomms8575 – ident: e_1_2_6_13_2 doi: 10.1002/cjoc.202100314 – ident: e_1_2_6_5_2 doi: 10.1039/D0CS00484G – ident: e_1_2_6_23_2 doi: 10.1002/lpor.202000474 – ident: e_1_2_6_8_3 doi: 10.1246/cl.190731 – ident: e_1_2_6_16_1 doi: 10.1016/j.ccr.2019.01.001 – volume: 2001817 year: 2020 ident: e_1_2_6_3_1 publication-title: Adv. Opt. Mater. – ident: e_1_2_6_13_1 doi: 10.1021/acsami.9b19785 – ident: e_1_2_6_11_2 doi: 10.31635/ccschem.020.202000263 |
SSID | ssj0027726 |
Score | 2.315034 |
Snippet | Comprehensive Summary
The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has... The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to... Comprehensive SummaryThe sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 589 |
SubjectTerms | Agglomeration Broadband Cage compounds Cages Color tunability Encapsulation Fluorescence In‐situ encapsulation Metal-organic frameworks Quenching Rhodamine 6G Spectral analysis Spectral emittance Spectrum analysis |
Title | Crystalline‐State Solvent: Metal‐Organic Frameworks as a Platform for Intercepting Aggregation‐Caused Quenching |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.202100712 https://www.proquest.com/docview/2622255435 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB1EF7rxLVZrmYXgarSZpNOJuzZaiuBbobuQeaSgpZU-FrryE_xGv8R7J00fgggKIZBkJpnMI3PuzZlzCTlMKxK53ZKJ0BgWSKsYmM2WGalFOTBGaefKvrwSzcfgolVpzaziz_QhJg43HBnue40DPFGDk6loqH7qoQQhx9_8LswwErYQFd3xqcVVdfHWUGeIwaNbuWpjmZ_MZ5-flaZQcxawuhmnsUaSvKwZ0eT5eDRUx_rtm4zjf15mnayO4SitZf1ngyzY7iZZjvIocFtkFPVfAUCicrf9fP9w2JTe9zpIkzyllxYuwelsRaemjZzqNaAJbPSmkwwRFVPYUed8dCyabpvW2mDot123gPxRMhpYQ2-R1Y0usW3y2Dh_iJpsHKqBaQAgnPk65ClP_dSEvvCsVLbqo7ZcYAHggMFrhRFalUPOq14qJWA0obyyDbnwrfRS4--QxW6va3cJRUAUCo4y-GD8yUAKZYIULCfNPS19UyAsb6pYj3XMMZxGJ84UmHmMlRlPKrNAjibpXzIFjx9TFvOWj8cjeRBzgRZxBUpcINw14S93iaOL62hytPeXTPtkheMqC0d1K5LFYX9kDwD7DFWJLNXqZ_VGyfXzL7kL_wU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHMqFHVFWH5A4uTRO6jrcUERVCi1bkbhF9ZJKULWoywFOfALfyJcw4zQtRUJIIEWRktiJ4yV-M3l-Q8hhUpLI7ZZMhMawQFrFwGy2zEgtioExSjtXdr0hqvdB7aGUsQlxLUyqDzFxuOHIcN9rHODokD6eqobqxx5qEHL8z49xhhcwrLezqm751OYqu4hrqDTE4OEPmW5jkR_P5p-dl6Zg8ytkdXNOZZmorLQp1eSpMBqqgn79JuT4r9dZIUtjREpP0y60SuZsd43koiwQ3DoZRf0XwJAo3m0_3t4dPKV3vQ4yJU9o3cIlOJ0u6tS0krG9BrQFG73utIYIjCnsqPM_OiJNt01P22Drt13PgPxRazSwht4gsRu9YhvkvnLWjKpsHK2BacAgnPk65AlP_MSEvvCsVLbso7xcYAHjgM1rhRFaFUPOy14iJcA0obyiDbnwrfQS42-S-W6va7cIRUwUCo5K-GD_yUAKZYIEjCfNPS19kycsa6tYj6XMMaJGJ05FmHmMlRlPKjNPjibpn1MRjx9T7mZNH48H8yDmAo3iEpQ4T7hrw1_uEke1q2hytP2XTAckV23WL-PL88bFDlnkuOjCMd92yfywP7J7AIWGat919k-eJAG9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6ioL54F6dT8yD4FNemXZb6NqrD2-a8DPZW1iQd6NjEbQ_65E_wN_pLPCddtymIoFAKbZM2TU6a75ye8x1CDpKiRN9uyUSgNfOliRmozYZpqYTjax0ra8qu1sRZw79oFptTUfwpP8TY4IYzw36vcYI_6aQwIQ1VDz2kIOT4mx_TDM_5wpEo1ye3fKJylWzCNSQaYvDsZkbb6PDC1_pfl6UJ1pxGrHbJqSyTVtbY1NPk8Wg4iI_U6zcex_-8zQpZGuFRWk4FaJXMmO4aWQizNHDrZBg-vwCCROpu8_H2bsEpvet10E_ymFYNXILTaUinopXM16tPW7DReqc1QFhMYUet9dG60XTbtNwGTb9t5QLqh61h32h6g27daBPbII3K6X14xka5GpgCBMKZpwKe8MRLdOAJ18jYlDwkl_MNIBzQeI3QQsVOwHnJTaQEkCZi1zEBF56RbqK9TTLb7XXNFqGIiALBkQcftD_pSxFrPwHVSXFXSU_nCMuGKlIjInPMp9GJUgpmHmFnRuPOzJHDcfmnlMLjx5L5bOSj0VTuR1ygSlyEFucIt0P4y12i8OI6HB9t_6XSPpmvn1Siq_Pa5Q5Z5BhxYd3e8mR28Dw0u4CDBvGeFfVPsW4AdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline%E2%80%90State+Solvent%3A+Metal%E2%80%90Organic+Frameworks+as+a+Platform+for+Intercepting+Aggregation%E2%80%90Caused+Quenching&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Yan%E2%80%90Yuan+Jia&rft.au=Jia%E2%80%90Cheng+Yin&rft.au=Li%2C+Na&rft.au=Ying%E2%80%90Hui+Zhang&rft.date=2022-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=40&rft.issue=5&rft.spage=589&rft.epage=596&rft_id=info:doi/10.1002%2Fcjoc.202100712&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon |