Crystalline‐State Solvent: Metal‐Organic Frameworks as a Platform for Intercepting Aggregation‐Caused Quenching

Comprehensive Summary The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes a...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 40; no. 5; pp. 589 - 596
Main Authors Jia, Yan‐Yuan, Yin, Jia‐Cheng, Li, Na, Zhang, Ying‐Hui, Feng, Rui, Yao, Zhao‐Quan, Bu, Xian‐He
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.03.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Comprehensive Summary The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes and emissive behaviors in the cage structure of a MOF resulted in high fluorescent quantum yields of 44.8% for DAPI@NKU‐110 (DAPI = 4',6‐diamidino‐2‐phenylindole), 65.4% for TPPA@NKU‐110 (TPPA = tris(4‐(pyridin‐4‐ yl)phenyl)amine), 31.3% for R6G@NKU‐110 (R6G = Rhodamine 6G), and 58.3% for PY@NKU‐110 (PY = Pyronin Y), attributable to the confinement effect caused by the rigid cages of NKU‐110. More significantly, a positive correlation of the encapsulated quantity of OLMs with their concentration in the in‐situ solvothermal reaction was unveiled by spectral analysis and utilized to facilely fabricate a white‐light‐emitting crystal material TPPA+R6G@NKU‐110. This material features a large crystal size on the millimeter‐scale, broadband white emission, ideal CIE coordinates (0.33, 0.34), and a high quantum yield (49.1%) when excited at 365 nm. Moreover, such a strategy can be easily generalized to an abundance of other cage‐based MOFs and a plentiful volume of OLMs for the future development of colorful, high performance luminescent materials. We report the encapsulation of various organic luminescent molecules (OLMs) in a cage‐based MOF which acts as a solid solvent for preventing aggregation‐caused quenching, thereby creating single‐crystalline materials with high fluorescence quantum yields and excellent luminescent properties due to the confinement effect derived from the internal cages.
AbstractList Comprehensive Summary The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes and emissive behaviors in the cage structure of a MOF resulted in high fluorescent quantum yields of 44.8% for DAPI@NKU‐110 (DAPI = 4',6‐diamidino‐2‐phenylindole), 65.4% for TPPA@NKU‐110 (TPPA = tris(4‐(pyridin‐4‐ yl)phenyl)amine), 31.3% for R6G@NKU‐110 (R6G = Rhodamine 6G), and 58.3% for PY@NKU‐110 (PY = Pyronin Y), attributable to the confinement effect caused by the rigid cages of NKU‐110. More significantly, a positive correlation of the encapsulated quantity of OLMs with their concentration in the in‐situ solvothermal reaction was unveiled by spectral analysis and utilized to facilely fabricate a white‐light‐emitting crystal material TPPA+R6G@NKU‐110. This material features a large crystal size on the millimeter‐scale, broadband white emission, ideal CIE coordinates (0.33, 0.34), and a high quantum yield (49.1%) when excited at 365 nm. Moreover, such a strategy can be easily generalized to an abundance of other cage‐based MOFs and a plentiful volume of OLMs for the future development of colorful, high performance luminescent materials. We report the encapsulation of various organic luminescent molecules (OLMs) in a cage‐based MOF which acts as a solid solvent for preventing aggregation‐caused quenching, thereby creating single‐crystalline materials with high fluorescence quantum yields and excellent luminescent properties due to the confinement effect derived from the internal cages.
The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes and emissive behaviors in the cage structure of a MOF resulted in high fluorescent quantum yields of 44.8% for DAPI@NKU‐110 (DAPI = 4',6‐diamidino‐2‐phenylindole), 65.4% for TPPA@NKU‐110 (TPPA = tris(4‐(pyridin‐4‐ yl)phenyl)amine), 31.3% for R6G@NKU‐110 (R6G = Rhodamine 6G), and 58.3% for PY@NKU‐110 (PY = Pyronin Y), attributable to the confinement effect caused by the rigid cages of NKU‐110. More significantly, a positive correlation of the encapsulated quantity of OLMs with their concentration in the in‐situ solvothermal reaction was unveiled by spectral analysis and utilized to facilely fabricate a white‐light‐emitting crystal material TPPA+R6G@NKU‐110. This material features a large crystal size on the millimeter‐scale, broadband white emission, ideal CIE coordinates (0.33, 0.34), and a high quantum yield (49.1%) when excited at 365 nm. Moreover, such a strategy can be easily generalized to an abundance of other cage‐based MOFs and a plentiful volume of OLMs for the future development of colorful, high performance luminescent materials.
Comprehensive SummaryThe sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to impede aggregation‐caused quenching (ACQ). The homogenous encapsulation of distinct luminescent guests of different sizes and emissive behaviors in the cage structure of a MOF resulted in high fluorescent quantum yields of 44.8% for DAPI@NKU‐110 (DAPI = 4',6‐diamidino‐2‐phenylindole), 65.4% for TPPA@NKU‐110 (TPPA = tris(4‐(pyridin‐4‐ yl)phenyl)amine), 31.3% for R6G@NKU‐110 (R6G = Rhodamine 6G), and 58.3% for PY@NKU‐110 (PY = Pyronin Y), attributable to the confinement effect caused by the rigid cages of NKU‐110. More significantly, a positive correlation of the encapsulated quantity of OLMs with their concentration in the in‐situ solvothermal reaction was unveiled by spectral analysis and utilized to facilely fabricate a white‐light‐emitting crystal material TPPA+R6G@NKU‐110. This material features a large crystal size on the millimeter‐scale, broadband white emission, ideal CIE coordinates (0.33, 0.34), and a high quantum yield (49.1%) when excited at 365 nm. Moreover, such a strategy can be easily generalized to an abundance of other cage‐based MOFs and a plentiful volume of OLMs for the future development of colorful, high performance luminescent materials.
Author Zhang, Ying‐Hui
Yao, Zhao‐Quan
Feng, Rui
Yin, Jia‐Cheng
Li, Na
Bu, Xian‐He
Jia, Yan‐Yuan
Author_xml – sequence: 1
  givenname: Yan‐Yuan
  surname: Jia
  fullname: Jia, Yan‐Yuan
  organization: Nankai University
– sequence: 2
  givenname: Jia‐Cheng
  surname: Yin
  fullname: Yin, Jia‐Cheng
  organization: Nankai University
– sequence: 3
  givenname: Na
  surname: Li
  fullname: Li, Na
  email: lina@nankai.edu.cn
  organization: Nankai University
– sequence: 4
  givenname: Ying‐Hui
  surname: Zhang
  fullname: Zhang, Ying‐Hui
  organization: Nankai University
– sequence: 5
  givenname: Rui
  surname: Feng
  fullname: Feng, Rui
  organization: Nankai University
– sequence: 6
  givenname: Zhao‐Quan
  surname: Yao
  fullname: Yao, Zhao‐Quan
  email: lina@nankai.edu.cn
  organization: Nankai University
– sequence: 7
  givenname: Xian‐He
  surname: Bu
  fullname: Bu, Xian‐He
  email: buxh@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkM9q3DAQxkVJoNlNrz0LcvZGGtmy3Vsw2fwhZRPSQm9Gqx073niljSRn2VseIc-YJ6nSLQ0UQmDQjDTfbwZ9I7JnrEFCvnI24YzBsV5aPQEG8ZJz-EQOuORpkjOZ7cWaMZ5Ilv76TEbeL6M-z0EekKFyWx9U33cGX56eb4MKSG9t_4gmfKPfMbbi88y1ynSaTp1a4ca6e09VDHrdq9BYt6LxoBcmoNO4Dp1p6UnbOmxV6KyJfKUGjwt6M6DRd7F9SPYb1Xv88jePyc_p6Y_qPLmanV1UJ1eJFjyHROgSGmhEsyiF5FjMMRe8YJBiVqRcAMqF1HNWAuS8KYpUZHLOGZYgBRa8WYgxOdrNXTv7MKAP9dIOzsSVNUgAyLLIRNVkp9LOeu-wqdeuWym3rTmrX62tX62t_1kbgfQ_QHfhz1-DU13_PlbusE3X4_aDJXV1Oave2N-wB5Oy
CitedBy_id crossref_primary_10_1002_cjoc_202300448
crossref_primary_10_1002_ejic_202300711
crossref_primary_10_1021_acs_langmuir_2c03299
crossref_primary_10_1002_cjoc_202200569
crossref_primary_10_1021_acs_inorgchem_3c02806
crossref_primary_10_1016_j_ccr_2022_214921
crossref_primary_10_1039_D3QI01569F
crossref_primary_10_1039_D3SC06410G
crossref_primary_10_1039_D4SC02550D
crossref_primary_10_1021_acs_inorgchem_3c00905
Cites_doi 10.1021/ar200028a
10.1021/acs.accounts.7b00387
10.1002/adma.201805871
10.1016/j.ccr.2019.213149
10.1021/acs.chemmater.6b05375
10.1039/b909057f
10.1002/agt2.35
10.1103/PhysRevLett.110.247401
10.1002/adma.201800702
10.1016/j.ccr.2017.09.017
10.1016/j.biotechadv.2018.01.014
10.1038/ncomms3719
10.1039/c3cc48381a
10.1039/C4CS90059F
10.1002/adma.201404700
10.1021/acsami.0c12867
10.1002/adom.201900077
10.1002/adma.202004747
10.1021/acsami.7b15764
10.1039/C8QI00747K
10.1002/cjoc.202100356
10.1021/acsami.8b04937
10.1021/ja109103t
10.1021/acsami.9b22130
10.1039/C9CC05533A
10.1002/anie.202006545
10.1002/adfm.200301005
10.1002/adma.201806445
10.1039/C0JM02350G
10.1002/cjoc.202000357
10.1002/adma.201700778
10.31635/ccschem.020.202000348
10.1002/adom.201901912
10.1021/acsami.7b11277
10.1021/jacs.8b09887
10.1038/ncomms3717
10.1002/adfm.201501756
10.1002/adom.201800968
10.1039/b903811f
10.1002/adma.201002636
10.1016/j.ccr.2019.213077
10.1021/acs.chemrev.5b00263
10.1002/anie.202006956
10.1002/anie.201905186
10.1039/C7TC01477E
10.1021/acs.chemmater.8b04126
10.1021/jacs.9b05191
10.1002/cjoc.202100263
10.1038/ncomms8575
10.1002/cjoc.202100314
10.1039/D0CS00484G
10.1002/lpor.202000474
10.1246/cl.190731
10.1016/j.ccr.2019.01.001
10.1021/acsami.9b19785
10.31635/ccschem.020.202000263
ContentType Journal Article
Copyright 2021 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
Copyright_xml – notice: 2021 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
– notice: 2022 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cjoc.202100712
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1614-7065
EndPage 596
ExternalDocumentID 10_1002_cjoc_202100712
CJOC202100712
Genre article
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
29B
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXDM
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCEZO
CDRFL
CHBEP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FA0
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P4D
Q.N
Q11
QB0
QRW
R.K
RK2
RNS
ROL
RWI
RX1
RYL
SUPJJ
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
-SB
-S~
.Y3
31~
53G
5VR
5XA
5XC
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEYWJ
AFUIB
AGHNM
AGQPQ
AGYGG
AZFZN
BDRZF
BZXJU
CAJEB
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
PALCI
Q--
RIWAO
RJQFR
SAMSI
TGP
U1G
U5L
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c3172-3c92f2f3fd9361e8be7318024e584132e6d6cb092271f884356b10e9263e81fd3
IEDL.DBID DR2
ISSN 1001-604X
IngestDate Fri Jul 25 11:04:16 EDT 2025
Tue Jul 01 03:35:29 EDT 2025
Thu Apr 24 23:12:38 EDT 2025
Wed Jan 22 16:26:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3172-3c92f2f3fd9361e8be7318024e584132e6d6cb092271f884356b10e9263e81fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2622255435
PQPubID 986331
PageCount 8
ParticipantIDs proquest_journals_2622255435
crossref_primary_10_1002_cjoc_202100712
crossref_citationtrail_10_1002_cjoc_202100712
wiley_primary_10_1002_cjoc_202100712_CJOC202100712
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 1 March 2022
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 1 March 2022
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationYear 2022
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2020 2021 2021 2021; 32 39 39 39
2015 2017; 115 29
2018; 5
2018 2020 2011; 373 32 44
2017 2019; 9 7
2019 2021; 31 3
2014 2009 2020; 43 38 49
2019 2018; 58 10
2020 2021; 12 39
2015 2014 2021; 6 50 3
2010 2021 2011; 39 15 23
2020 2019; 2001817 401
2019 2020 2020 2020; 384 32 59 59
2017 2011; 50 133
2018 2020; 36 406
2003 1928 2011 2021; 13 2018 21 2
2018 2020; 6 12
2013 2020; 4 12
2018; 30
2017; 29
2020 2019; 8 55
2017 2019 2018; 5 141 140
2018 2015 2015 2013; 10 25 27 4
2013 2020; 110 49
e_1_2_6_19_3
e_1_2_6_19_4
e_1_2_6_17_3
e_1_2_6_19_1
e_1_2_6_19_2
Ye H. (e_1_2_6_4_2) 1928; 2018
e_1_2_6_13_1
e_1_2_6_13_2
e_1_2_6_11_1
e_1_2_6_11_2
e_1_2_6_17_1
e_1_2_6_17_2
e_1_2_6_15_1
e_1_2_6_15_2
e_1_2_6_20_1
e_1_2_6_9_4
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_9_3
e_1_2_6_9_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_24_1
e_1_2_6_22_2
e_1_2_6_22_1
e_1_2_6_24_3
e_1_2_6_10_1
e_1_2_6_16_4
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_12_1
e_1_2_6_16_2
e_1_2_6_16_3
e_1_2_6_18_1
Tang Y. (e_1_2_6_3_1) 2020; 2001817
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_8_2
e_1_2_6_8_1
e_1_2_6_8_3
e_1_2_6_2_3
e_1_2_6_4_1
e_1_2_6_4_4
e_1_2_6_6_2
e_1_2_6_4_3
e_1_2_6_6_1
e_1_2_6_23_3
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_21_2
References_xml – volume: 110 49
  start-page: 6122
  year: 2013 2020
  end-page: 6140
  article-title: Organic Luminescent Molecule with Energetically Equivalent Singlet and Triplet Excited States for Organic Light‐Emitting Diodes Access to the Triplet Excited States of Organic Chromophores
  publication-title: Phys. Rev. Lett. Chem. Soc. Rev.
– volume: 9 7
  start-page: 35253 1900077
  year: 2017 2019
  end-page: 35259
  article-title: MOF‐Based Organic Microlasers.
  publication-title: ACS Appl. Mater. Interfaces Opt. Mater.
– volume: 12 39
  start-page: 5345 2889
  year: 2020 2021
  end-page: 5360 2897
  publication-title: ACS Appl. Mater. Interfaces Chin. J. Chem.
– volume: 373 32 44
  start-page: 116 1805871 957
  year: 2018 2020 2011
  end-page: 147 968
  publication-title: Coord. Chem. Rev. Adv. Mater. Acc. Chem. Res.
– volume: 10 25 27 4
  start-page: 18910 4796 1420 2719
  year: 2018 2015 2015 2013
  end-page: 18917 4802 1425
  article-title: Dye Encapsulated Metal‐Organic Framework for Warm‐White LED with High Color‐Rendering Index Dual‐Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing
  publication-title: ACS Appl. Mater. Interfaces Adv. Funct. Mater. Adv. Mater. Nat. Commun.
– volume: 58 10
  start-page: 9752 5618
  year: 2019 2018
  end-page: 9757 5625
  publication-title: Angew. Chem. Int. Ed. ACS Appl. Mater. Interfaces
– volume: 6 12
  start-page: 1800968 51589
  year: 2018 2020
  end-page: 51597
  article-title: Efficient Regulation of Energy Transfer in a Multicomponent Dye‐Loaded MOF for White‐Light Emission Tuning
  publication-title: Adv. Opt. Mater. ACS Appl. Mater. Interfaces
– volume: 6 50 3
  start-page: 7575 2834 1701
  year: 2015 2014 2021
  end-page: 2836 1709
  article-title: Coexistence of Cages and One‐Dimensional Channels in a Porous MOF with High H and CH Uptakes Tuning the Structure of Fe‐Tetracarboxylate Frameworks Through Linker‐Symmetry Reduction
  publication-title: Nat. Commun. Chem. Commun. CCS Chem.
– volume: 5 141 140
  start-page: 7668 11298 15470
  year: 2017 2019 2018
  end-page: 7683 11303 15476
  article-title: Manipulation of Exciton Distribution for High‐Performance Fluorescent/Phosphorescent Hybrid White Organic Light‐Emitting Diodes
  publication-title: J. Mater. Chem. C J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 29
  start-page: 1700778
  year: 2017
  publication-title: Adv. Mater.
– volume: 384 32 59 59
  start-page: 90 2004747 19390 19434
  year: 2019 2020 2020 2020
  end-page: 106 19402 19449
  article-title: Metal–Organic‐Framework‐Based Photocatalysts Optimized by Spatially Separated Cocatalysts for Overall Water Splitting
  publication-title: Coord. Chem. Rev. Adv. Mater. Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 50 133
  start-page: 2789 1220
  year: 2017 2011
  end-page: 2798 1223
  article-title: Zinc‐Adeninate Metal−Organic Framework for Aqueous Encapsulation and Sensitization of Near‐Infrared and Visible Emitting Lanthanide Cations
  publication-title: Acc. Chem. Res. J. Am. Chem. Soc.
– volume: 13 2018 21 2
  start-page: 511 57 1423
  year: 2003 1928 2011 2021
  end-page: 516
  article-title: Inorganic Luminescent Materials: 100 Years of Research and Application Molecular‐Barrier‐Enhanced Aromatic Fluorophores in Cocrystals with Unity Quantum Efficiency Preparation, Characterization, and Photoswitching/Light‐Emitting Behaviors of Coronene Nanowires Our Research Progress in Heteroaggregation and Homoaggregation of Organic ‐Conjugated Systems
  publication-title: Adv. Funct. Mater. Angew. Chem. Int. Ed. J. Mater. Chem. Aggregate
– volume: 2001817 401
  year: 2020 2019
  publication-title: Adv. Opt. Mater. Coord. Chem. Rev.
– volume: 5
  start-page: 2868
  year: 2018
  end-page: 2874
  publication-title: Inorg. Chem. Front.
– volume: 31 3
  start-page: 1289 1382
  year: 2019 2021
  end-page: 1295 1390
  publication-title: Chem. Mater. CCS Chem.
– volume: 43 38 49
  start-page: 5415 1213 28
  year: 2014 2009 2020
  end-page: 5418 1214 53
  article-title: Metal‐Organic Cages (MOCs): From Discrete to Cage‐Based Extended Architectures
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Lett.
– volume: 115 29
  start-page: 11718 1779
  year: 2015 2017
  end-page: 11940 1787
  article-title: Aggregation‐Induced Emission: Together We Shine, United We Soar! Conquering Aggregation‐Induced Solid‐State Luminescence Quenching of Carbon Dots through a Carbon Dots‐Triggered Silica Gelation Process
  publication-title: Chem. Rev. Chem. Mater.
– volume: 36 406
  start-page: 467
  year: 2018 2020
  end-page: 481
  article-title: Biomolecule‐Embedded Metal‐Organic Frameworks as an Innovative Sensing Platform
  publication-title: Biotechnol. Adv. Coord. Chem. Rev.
– volume: 32 39 39 39
  start-page: 1806445 2718 2789 440
  year: 2020 2021 2021 2021
  end-page: 2724 2794 462
  publication-title: Adv. Mater. Chin. J. Chem. Chin. J. Chem. Chin. J. Chem.
– volume: 30
  start-page: 1800702
  year: 2018
  publication-title: Adv. Mater.
– volume: 39 15 23
  start-page: 2387 2000474 233
  year: 2010 2021 2011
  end-page: 2398 248
  article-title: Management of Charges and Excitons for High‐Performance White Organic Light‐Emitting Eiodes The Strategies for High‐Performance Single‐Emissive‐Layer White Organic Light‐Emitting Diodes White Organic Light‐Emitting Diodes
  publication-title: Chem. Soc. Rev. Laser Photonics Rev. Adv. Mater.
– volume: 4 12
  start-page: 2717 12043
  year: 2013 2020
  end-page: 12053
  publication-title: Nat. Commun. ACS Appl. Mater. Interfaces
– volume: 8 55
  start-page: 1901912 10669
  year: 2020 2019
  end-page: 10672
  article-title: Dual‐Guest Functionalized Zeolitic Imidazolate Framework‐8 for 3D Printing White Light‐Emitting Composites
  publication-title: Adv. Opt. Mater. Chem. Commun.
– ident: e_1_2_6_2_3
  doi: 10.1021/ar200028a
– ident: e_1_2_6_10_1
  doi: 10.1021/acs.accounts.7b00387
– ident: e_1_2_6_2_2
  doi: 10.1002/adma.201805871
– ident: e_1_2_6_15_2
  doi: 10.1016/j.ccr.2019.213149
– ident: e_1_2_6_7_2
  doi: 10.1021/acs.chemmater.6b05375
– ident: e_1_2_6_23_1
  doi: 10.1039/b909057f
– ident: e_1_2_6_4_4
  doi: 10.1002/agt2.35
– ident: e_1_2_6_5_1
  doi: 10.1103/PhysRevLett.110.247401
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201800702
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ccr.2017.09.017
– ident: e_1_2_6_15_1
  doi: 10.1016/j.biotechadv.2018.01.014
– ident: e_1_2_6_19_4
  doi: 10.1038/ncomms3719
– ident: e_1_2_6_17_2
  doi: 10.1039/c3cc48381a
– ident: e_1_2_6_8_1
  doi: 10.1039/C4CS90059F
– ident: e_1_2_6_19_3
  doi: 10.1002/adma.201404700
– ident: e_1_2_6_22_2
  doi: 10.1021/acsami.0c12867
– ident: e_1_2_6_6_2
  doi: 10.1002/adom.201900077
– ident: e_1_2_6_16_2
  doi: 10.1002/adma.202004747
– ident: e_1_2_6_21_2
  doi: 10.1021/acsami.7b15764
– ident: e_1_2_6_25_1
  doi: 10.1039/C8QI00747K
– ident: e_1_2_6_9_3
  doi: 10.1002/cjoc.202100356
– ident: e_1_2_6_19_1
  doi: 10.1021/acsami.8b04937
– ident: e_1_2_6_10_2
  doi: 10.1021/ja109103t
– ident: e_1_2_6_12_2
  doi: 10.1021/acsami.9b22130
– ident: e_1_2_6_18_2
  doi: 10.1039/C9CC05533A
– ident: e_1_2_6_16_3
  doi: 10.1002/anie.202006545
– ident: e_1_2_6_4_1
  doi: 10.1002/adfm.200301005
– ident: e_1_2_6_9_1
  doi: 10.1002/adma.201806445
– ident: e_1_2_6_4_3
  doi: 10.1039/C0JM02350G
– ident: e_1_2_6_9_4
  doi: 10.1002/cjoc.202000357
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.201700778
– ident: e_1_2_6_17_3
  doi: 10.31635/ccschem.020.202000348
– ident: e_1_2_6_18_1
  doi: 10.1002/adom.201901912
– ident: e_1_2_6_6_1
  doi: 10.1021/acsami.7b11277
– ident: e_1_2_6_24_3
  doi: 10.1021/jacs.8b09887
– volume: 2018
  start-page: 57
  year: 1928
  ident: e_1_2_6_4_2
  article-title: Molecular‐Barrier‐Enhanced Aromatic Fluorophores in Cocrystals with Unity Quantum Efficiency
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_6_12_1
  doi: 10.1038/ncomms3717
– ident: e_1_2_6_19_2
  doi: 10.1002/adfm.201501756
– ident: e_1_2_6_22_1
  doi: 10.1002/adom.201800968
– ident: e_1_2_6_8_2
  doi: 10.1039/b903811f
– ident: e_1_2_6_23_3
  doi: 10.1002/adma.201002636
– ident: e_1_2_6_3_2
  doi: 10.1016/j.ccr.2019.213077
– ident: e_1_2_6_7_1
  doi: 10.1021/acs.chemrev.5b00263
– ident: e_1_2_6_16_4
  doi: 10.1002/anie.202006956
– ident: e_1_2_6_21_1
  doi: 10.1002/anie.201905186
– ident: e_1_2_6_24_1
  doi: 10.1039/C7TC01477E
– ident: e_1_2_6_11_1
  doi: 10.1021/acs.chemmater.8b04126
– ident: e_1_2_6_24_2
  doi: 10.1021/jacs.9b05191
– ident: e_1_2_6_9_2
  doi: 10.1002/cjoc.202100263
– ident: e_1_2_6_17_1
  doi: 10.1038/ncomms8575
– ident: e_1_2_6_13_2
  doi: 10.1002/cjoc.202100314
– ident: e_1_2_6_5_2
  doi: 10.1039/D0CS00484G
– ident: e_1_2_6_23_2
  doi: 10.1002/lpor.202000474
– ident: e_1_2_6_8_3
  doi: 10.1246/cl.190731
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ccr.2019.01.001
– volume: 2001817
  year: 2020
  ident: e_1_2_6_3_1
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_6_13_1
  doi: 10.1021/acsami.9b19785
– ident: e_1_2_6_11_2
  doi: 10.31635/ccschem.020.202000263
SSID ssj0027726
Score 2.315034
Snippet Comprehensive Summary The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has...
The sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has been developed to...
Comprehensive SummaryThe sequestration of organic luminescent molecules (OLMs) within cage‐based metal‐organic frameworks (MOFs) as a dispersion platform has...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 589
SubjectTerms Agglomeration
Broadband
Cage compounds
Cages
Color tunability
Encapsulation
Fluorescence
In‐situ encapsulation
Metal-organic frameworks
Quenching
Rhodamine 6G
Spectral analysis
Spectral emittance
Spectrum analysis
Title Crystalline‐State Solvent: Metal‐Organic Frameworks as a Platform for Intercepting Aggregation‐Caused Quenching
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.202100712
https://www.proquest.com/docview/2622255435
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB1EF7rxLVZrmYXgarSZpNOJuzZaiuBbobuQeaSgpZU-FrryE_xGv8R7J00fgggKIZBkJpnMI3PuzZlzCTlMKxK53ZKJ0BgWSKsYmM2WGalFOTBGaefKvrwSzcfgolVpzaziz_QhJg43HBnue40DPFGDk6loqH7qoQQhx9_8LswwErYQFd3xqcVVdfHWUGeIwaNbuWpjmZ_MZ5-flaZQcxawuhmnsUaSvKwZ0eT5eDRUx_rtm4zjf15mnayO4SitZf1ngyzY7iZZjvIocFtkFPVfAUCicrf9fP9w2JTe9zpIkzyllxYuwelsRaemjZzqNaAJbPSmkwwRFVPYUed8dCyabpvW2mDot123gPxRMhpYQ2-R1Y0usW3y2Dh_iJpsHKqBaQAgnPk65ClP_dSEvvCsVLbqo7ZcYAHggMFrhRFalUPOq14qJWA0obyyDbnwrfRS4--QxW6va3cJRUAUCo4y-GD8yUAKZYIULCfNPS19UyAsb6pYj3XMMZxGJ84UmHmMlRlPKrNAjibpXzIFjx9TFvOWj8cjeRBzgRZxBUpcINw14S93iaOL62hytPeXTPtkheMqC0d1K5LFYX9kDwD7DFWJLNXqZ_VGyfXzL7kL_wU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHMqFHVFWH5A4uTRO6jrcUERVCi1bkbhF9ZJKULWoywFOfALfyJcw4zQtRUJIIEWRktiJ4yV-M3l-Q8hhUpLI7ZZMhMawQFrFwGy2zEgtioExSjtXdr0hqvdB7aGUsQlxLUyqDzFxuOHIcN9rHODokD6eqobqxx5qEHL8z49xhhcwrLezqm751OYqu4hrqDTE4OEPmW5jkR_P5p-dl6Zg8ytkdXNOZZmorLQp1eSpMBqqgn79JuT4r9dZIUtjREpP0y60SuZsd43koiwQ3DoZRf0XwJAo3m0_3t4dPKV3vQ4yJU9o3cIlOJ0u6tS0krG9BrQFG73utIYIjCnsqPM_OiJNt01P22Drt13PgPxRazSwht4gsRu9YhvkvnLWjKpsHK2BacAgnPk65AlP_MSEvvCsVLbso7xcYAHjgM1rhRFaFUPOy14iJcA0obyiDbnwrfQS42-S-W6va7cIRUwUCo5K-GD_yUAKZYIEjCfNPS19kycsa6tYj6XMMaJGJ05FmHmMlRlPKjNPjibpn1MRjx9T7mZNH48H8yDmAo3iEpQ4T7hrw1_uEke1q2hytP2XTAckV23WL-PL88bFDlnkuOjCMd92yfywP7J7AIWGat919k-eJAG9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6ioL54F6dT8yD4FNemXZb6NqrD2-a8DPZW1iQd6NjEbQ_65E_wN_pLPCddtymIoFAKbZM2TU6a75ye8x1CDpKiRN9uyUSgNfOliRmozYZpqYTjax0ra8qu1sRZw79oFptTUfwpP8TY4IYzw36vcYI_6aQwIQ1VDz2kIOT4mx_TDM_5wpEo1ye3fKJylWzCNSQaYvDsZkbb6PDC1_pfl6UJ1pxGrHbJqSyTVtbY1NPk8Wg4iI_U6zcex_-8zQpZGuFRWk4FaJXMmO4aWQizNHDrZBg-vwCCROpu8_H2bsEpvet10E_ymFYNXILTaUinopXM16tPW7DReqc1QFhMYUet9dG60XTbtNwGTb9t5QLqh61h32h6g27daBPbII3K6X14xka5GpgCBMKZpwKe8MRLdOAJ18jYlDwkl_MNIBzQeI3QQsVOwHnJTaQEkCZi1zEBF56RbqK9TTLb7XXNFqGIiALBkQcftD_pSxFrPwHVSXFXSU_nCMuGKlIjInPMp9GJUgpmHmFnRuPOzJHDcfmnlMLjx5L5bOSj0VTuR1ygSlyEFucIt0P4y12i8OI6HB9t_6XSPpmvn1Siq_Pa5Q5Z5BhxYd3e8mR28Dw0u4CDBvGeFfVPsW4AdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystalline%E2%80%90State+Solvent%3A+Metal%E2%80%90Organic+Frameworks+as+a+Platform+for+Intercepting+Aggregation%E2%80%90Caused+Quenching&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Yan%E2%80%90Yuan+Jia&rft.au=Jia%E2%80%90Cheng+Yin&rft.au=Li%2C+Na&rft.au=Ying%E2%80%90Hui+Zhang&rft.date=2022-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=40&rft.issue=5&rft.spage=589&rft.epage=596&rft_id=info:doi/10.1002%2Fcjoc.202100712&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon