Failure Mechanism of Lithiophilic Sites in Composite Lithium Metal Anode under Practical Conditions

A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving volume fluctuations. Herein, the evolution process of lithiophilic sites in a 3D host under practical conditions is disclosed in a typical s...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 2
Main Authors Zhan, Ying‐Xin, Shi, Peng, Ma, Xia‐Xia, Jin, Cheng‐Bin, Zhang, Qian‐Kui, Yang, Shi‐Jie, Li, Bo‐Quan, Zhang, Xue‐Qiang, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving volume fluctuations. Herein, the evolution process of lithiophilic sites in a 3D host under practical conditions is disclosed in a typical system with metal‐based lithiophilic sites. Lithiophilic sites decreasing nucleation overpotential, however this effect gradually disappears during cycles under practical conditions. The significantly increased cycling capacity under practical conditions results in a rapid accumulation of dead Li compared with mild conditions. The dead Li covers the lithiophilic sites and blocks the diffusion channels of Li ions to the lithiophilic sites, failing to decrease the nucleation overpotentials. Once the dead Li has been removed after long cycles, the lithiophilic sites can still work. This work discloses the failure mechanism of lithiophilic sites and provides a guideline for designing lithiophilic hosts under practical conditions. The failure mechanism of lithiophilic sites in a 3D host under practical conditions is investigated. The advantage of lithiophilic sites, ie. decreasing the nucleation overpotential, gradually disappears during cycling under practical conditions. The rapid accumulation of dead Li covers lithiophilic sites and blocks the diffusion channels of Li ions to lithiophilic sites, inducing the disappearance of decreased nucleation overpotentials.
AbstractList A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving volume fluctuations. Herein, the evolution process of lithiophilic sites in a 3D host under practical conditions is disclosed in a typical system with metal‐based lithiophilic sites. Lithiophilic sites decreasing nucleation overpotential, however this effect gradually disappears during cycles under practical conditions. The significantly increased cycling capacity under practical conditions results in a rapid accumulation of dead Li compared with mild conditions. The dead Li covers the lithiophilic sites and blocks the diffusion channels of Li ions to the lithiophilic sites, failing to decrease the nucleation overpotentials. Once the dead Li has been removed after long cycles, the lithiophilic sites can still work. This work discloses the failure mechanism of lithiophilic sites and provides a guideline for designing lithiophilic hosts under practical conditions. The failure mechanism of lithiophilic sites in a 3D host under practical conditions is investigated. The advantage of lithiophilic sites, ie. decreasing the nucleation overpotential, gradually disappears during cycling under practical conditions. The rapid accumulation of dead Li covers lithiophilic sites and blocks the diffusion channels of Li ions to lithiophilic sites, inducing the disappearance of decreased nucleation overpotentials.
A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving volume fluctuations. Herein, the evolution process of lithiophilic sites in a 3D host under practical conditions is disclosed in a typical system with metal‐based lithiophilic sites. Lithiophilic sites decreasing nucleation overpotential, however this effect gradually disappears during cycles under practical conditions. The significantly increased cycling capacity under practical conditions results in a rapid accumulation of dead Li compared with mild conditions. The dead Li covers the lithiophilic sites and blocks the diffusion channels of Li ions to the lithiophilic sites, failing to decrease the nucleation overpotentials. Once the dead Li has been removed after long cycles, the lithiophilic sites can still work. This work discloses the failure mechanism of lithiophilic sites and provides a guideline for designing lithiophilic hosts under practical conditions.
Author Shi, Peng
Huang, Jia‐Qi
Zhan, Ying‐Xin
Jin, Cheng‐Bin
Yang, Shi‐Jie
Li, Bo‐Quan
Ma, Xia‐Xia
Zhang, Qian‐Kui
Zhang, Xue‐Qiang
Author_xml – sequence: 1
  givenname: Ying‐Xin
  surname: Zhan
  fullname: Zhan, Ying‐Xin
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Peng
  surname: Shi
  fullname: Shi, Peng
  organization: Tsinghua University
– sequence: 3
  givenname: Xia‐Xia
  surname: Ma
  fullname: Ma, Xia‐Xia
  organization: Tsinghua University
– sequence: 4
  givenname: Cheng‐Bin
  surname: Jin
  fullname: Jin, Cheng‐Bin
  organization: Tsinghua University
– sequence: 5
  givenname: Qian‐Kui
  surname: Zhang
  fullname: Zhang, Qian‐Kui
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Shi‐Jie
  surname: Yang
  fullname: Yang, Shi‐Jie
  organization: Beijing Institute of Technology
– sequence: 7
  givenname: Bo‐Quan
  surname: Li
  fullname: Li, Bo‐Quan
  organization: Beijing Institute of Technology
– sequence: 8
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: Beijing Institute of Technology
– sequence: 9
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkN1LwzAUxYMoOOdefQ743Jmvdu3jKJsKmwrqc0jThGW0SU1aZP-9GZUJgpiX5J57fveScwXOrbMKgBuM5hghcieUbecEEYwoKfAZmOAMsyTLGTo_vSm5BLMQ9igeVkQnnQC5FqYZvIJbJXfCmtBCp-HG9Dvjup1pjISvplcBGgtL13YuxGrsD22EetHApXW1goOtlYcvXsjeyKiWztamN86Ga3ChRRPU7Puegvf16q18SDbP94_lcpNIihc40YqkOaMVqRdU52muEcorLTUVSEYtzTJaC12lRBU1wYplGmFW5yxDsVmlik7B7Ti38-5jUKHnezd4G1dykuECFYucsuiajy7pXQhead550wp_4BjxY5b8mCU_ZRkB9guQphfHn_U-hvc3VozYp2nU4Z8lfLl62v6wX-lJi14
CitedBy_id crossref_primary_10_1002_adma_202406034
crossref_primary_10_1007_s12274_023_5478_4
crossref_primary_10_1016_j_jcis_2023_08_058
crossref_primary_10_1038_s41586_024_08294_z
crossref_primary_10_1016_j_ensm_2022_07_019
crossref_primary_10_1002_adfm_202409812
crossref_primary_10_1016_S1872_5805_24_60878_4
crossref_primary_10_3390_batteries9080391
crossref_primary_10_1002_smll_202312129
crossref_primary_10_1016_j_jechem_2022_06_010
crossref_primary_10_1021_acsami_4c04060
crossref_primary_10_1002_aenm_202201493
crossref_primary_10_1016_j_ensm_2023_01_039
crossref_primary_10_1002_aenm_202204002
crossref_primary_10_1016_j_cej_2022_135827
crossref_primary_10_1021_acs_nanolett_2c05077
crossref_primary_10_1016_j_esci_2023_100189
crossref_primary_10_1039_D2CP04032H
crossref_primary_10_1016_j_heliyon_2024_e27181
crossref_primary_10_1007_s11708_023_0875_7
crossref_primary_10_1016_j_jcis_2022_07_054
crossref_primary_10_3390_batteries9030188
crossref_primary_10_1002_ange_202310132
crossref_primary_10_1021_acsami_3c03327
crossref_primary_10_1002_inc2_12006
crossref_primary_10_1039_D3TA02379F
crossref_primary_10_1002_marc_202200803
crossref_primary_10_34133_energymatadv_0010
crossref_primary_10_1016_j_cej_2024_153444
crossref_primary_10_1016_j_ensm_2023_01_045
crossref_primary_10_1007_s12274_023_6275_9
crossref_primary_10_1021_acs_nanolett_2c00338
crossref_primary_10_1007_s12598_023_02477_9
crossref_primary_10_1002_aenm_202302687
crossref_primary_10_1016_j_jallcom_2023_168703
crossref_primary_10_1002_anie_202310132
crossref_primary_10_1016_j_ensm_2024_103191
crossref_primary_10_1021_acsaem_4c00855
crossref_primary_10_1002_eom2_12416
crossref_primary_10_1002_smll_202408771
crossref_primary_10_1016_j_cej_2022_137421
crossref_primary_10_1016_j_jpowsour_2024_235494
crossref_primary_10_1021_acsaem_4c02955
crossref_primary_10_1002_aenm_202400108
crossref_primary_10_1002_adma_202205677
crossref_primary_10_1016_S1872_5805_23_60744_9
crossref_primary_10_1016_j_jcis_2023_12_131
crossref_primary_10_34133_2022_9846537
crossref_primary_10_1002_admi_202200750
crossref_primary_10_1016_j_cossms_2023_101079
crossref_primary_10_1002_adfm_202311301
crossref_primary_10_1016_j_carbon_2022_12_034
crossref_primary_10_3390_batteries9010030
crossref_primary_10_1002_aenm_202301322
crossref_primary_10_1016_j_ensm_2022_08_001
crossref_primary_10_1002_batt_202300389
crossref_primary_10_1016_j_jechem_2022_10_026
crossref_primary_10_1016_j_jechem_2022_10_023
crossref_primary_10_1002_adfm_202307281
crossref_primary_10_1002_smll_202312132
crossref_primary_10_1021_acsami_2c20708
crossref_primary_10_1021_acs_iecr_2c00897
crossref_primary_10_1002_batt_202400505
crossref_primary_10_1021_acsenergylett_3c00181
crossref_primary_10_1016_j_jechem_2022_03_039
crossref_primary_10_1002_batt_202200161
crossref_primary_10_20517_energymater_2023_83
crossref_primary_10_1039_D4EB00034J
crossref_primary_10_1002_aenm_202302261
crossref_primary_10_1002_cey2_423
crossref_primary_10_1016_j_carbon_2023_118174
crossref_primary_10_1002_adma_202404689
Cites_doi 10.1016/j.jechem.2020.09.030
10.1002/aenm.201700530
10.34133/2021/1205324
10.1021/acs.accounts.9b00437
10.1016/j.ensm.2020.01.025
10.7498/aps.69.20200906
10.1002/adma.201702714
10.1021/acs.chemrev.7b00115
10.1021/acsenergylett.9b01987
10.1002/aenm.201903645
10.1038/nenergy.2016.10
10.1039/C3EE40795K
10.1016/j.ensm.2019.04.003
10.1002/adfm.201909887
10.1002/aenm.202101654
10.1039/D1EE00551K
10.1021/acsami.9b15250
10.1039/C9TA00862D
10.1016/j.cclet.2017.11.047
10.1002/smll.202000699
10.1016/j.nanoen.2019.103989
10.1002/smsc.202100058
10.1002/ente.202000700
10.1016/j.matt.2021.09.019
10.1021/acsami.8b07362
10.1016/j.mattod.2020.06.011
10.1002/aenm.201703505
10.1002/adma.201807131
10.1021/acsami.8b01978
10.1007/s11426-019-9519-9
10.1039/D0EE03952G
10.1039/C9TA09502K
10.1002/anie.201911724
10.1016/j.gee.2019.10.003
10.1002/adfm.201808468
10.1039/C9CS00636B
10.1002/inf2.12000
10.1016/j.ensm.2019.12.023
10.1016/j.nanoen.2019.103854
10.1002/aenm.202002297
10.1016/j.joule.2018.03.008
10.1021/acs.nanolett.0c00352
10.1021/acsenergylett.0c01545
10.1039/C9CS00883G
10.1002/adma.202002193
10.1002/adfm.202009694
10.1016/j.jpowsour.2019.227214
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202103291
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202103291
AENM202103291
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21776019
– fundername: Beijing Natural Science Foundation
  funderid: JQ20004
– fundername: Scientific and Technological Key Project of Shanxi Province
  funderid: 20191102003
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3171-fe25843b2d73f858f008bfcf3a0c2d75663dafb52e9d21e46f014d8460d75b5e3
ISSN 1614-6832
IngestDate Fri Jul 25 12:16:02 EDT 2025
Tue Jul 01 01:43:42 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Jan 22 16:26:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3171-fe25843b2d73f858f008bfcf3a0c2d75663dafb52e9d21e46f014d8460d75b5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7394-9186
PQID 2619097834
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_2619097834
crossref_primary_10_1002_aenm_202103291
crossref_citationtrail_10_1002_aenm_202103291
wiley_primary_10_1002_aenm_202103291_AENM202103291
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2019 2020 2019; 63 27 65
2017 2018 2014 2020 2017; 117 2 7 49 28
2018; 8
2016; 1
2019 2020; 31 30
2019; 11
2020 2020 2019; 5 49 1
2020 2018 2019 2017 2021 2019; 32 10 23 7 9 29
2020 2017; 30 29
2020 2021; 26 42
2018 2019; 10 7
2019 2021 2020; 52 2021 5
2021 2019; 14 62
2021 2020 2021; 11 16 4
2021; 60
2020 2020 2020 2020 2021; 10 10 30 14
2020 2020 2021 2021 2021 2021; 59 69 31 58 60 1
2020 2019; 20 5
2019; 442
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_5_6
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_5_4
e_1_2_7_5_3
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
Zhan Y.‐X. (e_1_2_7_7_2) 2021; 42
e_1_2_7_11_1
Lu Y. (e_1_2_7_10_1) 2020; 30
e_1_2_7_2_5
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_5
e_1_2_7_8_3
Shi P. (e_1_2_7_18_2) 2020; 30
e_1_2_7_6_4
e_1_2_7_8_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
Li T. (e_1_2_7_5_5) 2021; 60
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_8_6
e_1_2_7_8_5
e_1_2_7_8_4
Jin C.‐B. (e_1_2_7_20_1) 2021; 60
References_xml – volume: 11 16 4
  start-page: 3741
  year: 2021 2020 2021
  publication-title: Adv. Energy Mater. Small Matter
– volume: 5 49 1
  start-page: 3140 5407 6
  year: 2020 2020 2019
  publication-title: ACS Energy Lett. Chem. Soc. Rev. InfoMat
– volume: 26 42
  start-page: 56 1569
  year: 2020 2021
  publication-title: Energy Storage Mater. Chem. J. Chin. Univ.
– volume: 442
  year: 2019
  publication-title: J. Power Sources
– volume: 31 30
  year: 2019 2020
  publication-title: Adv. Mater. Adv. Funct. Mater.
– volume: 20 5
  start-page: 2724 180
  year: 2020 2019
  publication-title: Nano Lett. ACS Energy Lett.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 63 27 65
  start-page: 124
  year: 2019 2020 2019
  publication-title: Nano Energy Energy Storage Mater. Nano Energy
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 32 10 23 7 9 29
  start-page: 547
  year: 2020 2018 2019 2017 2021 2019
  publication-title: Adv. Mater. ACS Appl. Mater. Interfaces Energy Storage Mater. Adv. Energy Mater. Energy Technol. Adv. Funct. Mater.
– volume: 117 2 7 49 28
  start-page: 833 513 2701 2169
  year: 2017 2018 2014 2020 2017
  publication-title: Chem. Rev. Joule Energy Environ. Sci. Chem. Soc. Rev. Chin. Chem. Lett.
– volume: 52 2021 5
  start-page: 3223 22
  year: 2019 2021 2020
  publication-title: Acc. Chem. Res. Energy Mater. Adv. Green Energy Environ.
– volume: 14 62
  start-page: 2577 1286
  year: 2021 2019
  publication-title: Energy Environ. Sci. Sci. China Chem.
– volume: 10 7
  start-page: 7752
  year: 2018 2019
  publication-title: ACS Appl. Mater. Interfaces J. Mater. Chem. A
– volume: 10 10 30 14
  start-page: 140 3621
  year: 2020 2020 2020 2020 2021
  publication-title: Adv. Energy Mater. Adv. Energy Mater. Mater. Today Adv. Funct. Mater. Energy Environ. Sci.
– volume: 59 69 31 58 60 1
  start-page: 3252 198
  year: 2020 2020 2021 2021 2021 2021
  publication-title: Angew. Chem., Int. Ed. Acta Phys. Sin. Adv. Funct. Mater. J. Energy Chem. Angew. Chem., Int. Ed. Small Sci.
– volume: 30 29
  year: 2020 2017
  publication-title: Adv. Funct. Mater. Adv. Mater.
– ident: e_1_2_7_5_4
  doi: 10.1016/j.jechem.2020.09.030
– ident: e_1_2_7_8_4
  doi: 10.1002/aenm.201700530
– volume: 42
  start-page: 1569
  year: 2021
  ident: e_1_2_7_7_2
  publication-title: Chem. J. Chin. Univ.
– ident: e_1_2_7_4_2
  doi: 10.34133/2021/1205324
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.accounts.9b00437
– ident: e_1_2_7_11_2
  doi: 10.1016/j.ensm.2020.01.025
– volume: 60
  start-page: 07732
  year: 2021
  ident: e_1_2_7_5_5
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_5_2
  doi: 10.7498/aps.69.20200906
– ident: e_1_2_7_10_2
  doi: 10.1002/adma.201702714
– ident: e_1_2_7_2_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_7_13_2
  doi: 10.1021/acsenergylett.9b01987
– ident: e_1_2_7_6_2
  doi: 10.1002/aenm.201903645
– volume: 30
  start-page: 2004189
  year: 2020
  ident: e_1_2_7_18_2
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_19_1
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_2_3
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_8_3
  doi: 10.1016/j.ensm.2019.04.003
– ident: e_1_2_7_6_4
  doi: 10.1002/adfm.201909887
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.202101654
– ident: e_1_2_7_9_1
  doi: 10.1039/D1EE00551K
– ident: e_1_2_7_14_1
  doi: 10.1021/acsami.9b15250
– volume: 60
  start-page: 10589
  year: 2021
  ident: e_1_2_7_20_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_7_17_2
  doi: 10.1039/C9TA00862D
– ident: e_1_2_7_2_5
  doi: 10.1016/j.cclet.2017.11.047
– ident: e_1_2_7_3_2
  doi: 10.1002/smll.202000699
– ident: e_1_2_7_11_3
  doi: 10.1016/j.nanoen.2019.103989
– ident: e_1_2_7_5_6
  doi: 10.1002/smsc.202100058
– ident: e_1_2_7_8_5
  doi: 10.1002/ente.202000700
– ident: e_1_2_7_3_3
  doi: 10.1016/j.matt.2021.09.019
– volume: 30
  start-page: 2009605
  year: 2020
  ident: e_1_2_7_10_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.8b07362
– ident: e_1_2_7_6_3
  doi: 10.1016/j.mattod.2020.06.011
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201703505
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201807131
– ident: e_1_2_7_8_2
  doi: 10.1021/acsami.8b01978
– ident: e_1_2_7_9_2
  doi: 10.1007/s11426-019-9519-9
– ident: e_1_2_7_6_5
  doi: 10.1039/D0EE03952G
– ident: e_1_2_7_16_1
  doi: 10.1039/C9TA09502K
– ident: e_1_2_7_5_1
  doi: 10.1002/anie.201911724
– ident: e_1_2_7_4_3
  doi: 10.1016/j.gee.2019.10.003
– ident: e_1_2_7_8_6
  doi: 10.1002/adfm.201808468
– ident: e_1_2_7_1_2
  doi: 10.1039/C9CS00636B
– ident: e_1_2_7_1_3
  doi: 10.1002/inf2.12000
– ident: e_1_2_7_7_1
  doi: 10.1016/j.ensm.2019.12.023
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nanoen.2019.103854
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.202002297
– ident: e_1_2_7_2_2
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_7_13_1
  doi: 10.1021/acs.nanolett.0c00352
– ident: e_1_2_7_1_1
  doi: 10.1021/acsenergylett.0c01545
– ident: e_1_2_7_2_4
  doi: 10.1039/C9CS00883G
– ident: e_1_2_7_8_1
  doi: 10.1002/adma.202002193
– ident: e_1_2_7_5_3
  doi: 10.1002/adfm.202009694
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jpowsour.2019.227214
SSID ssj0000491033
Score 2.6006348
Snippet A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
dead lithium
Diffusion barriers
failure mechanism
Failure mechanisms
lithiophilic sites
Lithium
lithium metal anodes
Nucleation
practical conditions
Title Failure Mechanism of Lithiophilic Sites in Composite Lithium Metal Anode under Practical Conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103291
https://www.proquest.com/docview/2619097834
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4EDYvwQHQP5gMShMrSOk6bHAq2mqSlIa6XcItuxtUiQTlt64c7_zbPjuC7aGHCJWsdxWr_Pznsv730PobdlOlHj6VQSxuKIMMEFEZpNCY-4iCZcc01NvnO2Ss427DyP817vZxC1tGvEe_nj1ryS_5EqtIFcTZbsP0jWDwoN8BnkC0eQMBz_SsYLXpmo8mGmTP6uKXdhPP5Vc1ltr4yjRA4vqsZGXNl1b-KzVHt-9x0uMnmQYP6XyhbDvXbcRdK6E8ybbO_K61hqu3gB1SYMgrLb_ku_dZjs6S56Ioe7Gne09-HY8sHDr8o9K6Epr3jQnQ-zfdjQpQqG-ghDnTuKcOehoPQ3D8X9-2Cw_4K2QJLUuTxV2NayOvlNmwbgpLc-C1puWa5qQzhADXFgWxfskHR79aVYbJbLYj3P1w_QEQVrg_bR0exztrzwzjowo-B6m6zR_cCOAHREPxze4lDB2Vstoe1jlZf1E_TYWR141kLoGPVU_RQ9CrgonyHpwIQ9mPBW4xBM2IIJVzX2YMIOTNiCCVswYQsm7MGE92B6jjaL-frTGXEVOIgEvXJMtKKgoEaClpNIp3GqQWMUWuqIjyS0gSkQlVyLmKppSceKJRos7hJU2hGcFLGKXqB-va3VS4RBfjwy1c9KKhlPUp5qnqi41GPYGxiTA0S6aSuko6c3VVK-FS2xNi3MNBd-mgfone9_1RKz3NnztJNC4RbvTWEcBzaFiQ0QtZK5Z5RiNl9l_tvJn8d8hR7uF8Ip6jfXO_UalNdGvHHQ-gXeMJhw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+Mechanism+of+Lithiophilic+Sites+in+Composite+Lithium+Metal+Anode+under+Practical+Conditions&rft.jtitle=Advanced+energy+materials&rft.au=Ying%E2%80%90Xin+Zhan&rft.au=Shi%2C+Peng&rft.au=Xia%E2%80%90Xia+Ma&rft.au=Cheng%E2%80%90Bin+Jin&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1002%2Faenm.202103291&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon