Failure Mechanism of Lithiophilic Sites in Composite Lithium Metal Anode under Practical Conditions
A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving volume fluctuations. Herein, the evolution process of lithiophilic sites in a 3D host under practical conditions is disclosed in a typical s...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 2 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving volume fluctuations. Herein, the evolution process of lithiophilic sites in a 3D host under practical conditions is disclosed in a typical system with metal‐based lithiophilic sites. Lithiophilic sites decreasing nucleation overpotential, however this effect gradually disappears during cycles under practical conditions. The significantly increased cycling capacity under practical conditions results in a rapid accumulation of dead Li compared with mild conditions. The dead Li covers the lithiophilic sites and blocks the diffusion channels of Li ions to the lithiophilic sites, failing to decrease the nucleation overpotentials. Once the dead Li has been removed after long cycles, the lithiophilic sites can still work. This work discloses the failure mechanism of lithiophilic sites and provides a guideline for designing lithiophilic hosts under practical conditions.
The failure mechanism of lithiophilic sites in a 3D host under practical conditions is investigated. The advantage of lithiophilic sites, ie. decreasing the nucleation overpotential, gradually disappears during cycling under practical conditions. The rapid accumulation of dead Li covers lithiophilic sites and blocks the diffusion channels of Li ions to lithiophilic sites, inducing the disappearance of decreased nucleation overpotentials. |
---|---|
AbstractList | A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving volume fluctuations. Herein, the evolution process of lithiophilic sites in a 3D host under practical conditions is disclosed in a typical system with metal‐based lithiophilic sites. Lithiophilic sites decreasing nucleation overpotential, however this effect gradually disappears during cycles under practical conditions. The significantly increased cycling capacity under practical conditions results in a rapid accumulation of dead Li compared with mild conditions. The dead Li covers the lithiophilic sites and blocks the diffusion channels of Li ions to the lithiophilic sites, failing to decrease the nucleation overpotentials. Once the dead Li has been removed after long cycles, the lithiophilic sites can still work. This work discloses the failure mechanism of lithiophilic sites and provides a guideline for designing lithiophilic hosts under practical conditions.
The failure mechanism of lithiophilic sites in a 3D host under practical conditions is investigated. The advantage of lithiophilic sites, ie. decreasing the nucleation overpotential, gradually disappears during cycling under practical conditions. The rapid accumulation of dead Li covers lithiophilic sites and blocks the diffusion channels of Li ions to lithiophilic sites, inducing the disappearance of decreased nucleation overpotentials. A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving volume fluctuations. Herein, the evolution process of lithiophilic sites in a 3D host under practical conditions is disclosed in a typical system with metal‐based lithiophilic sites. Lithiophilic sites decreasing nucleation overpotential, however this effect gradually disappears during cycles under practical conditions. The significantly increased cycling capacity under practical conditions results in a rapid accumulation of dead Li compared with mild conditions. The dead Li covers the lithiophilic sites and blocks the diffusion channels of Li ions to the lithiophilic sites, failing to decrease the nucleation overpotentials. Once the dead Li has been removed after long cycles, the lithiophilic sites can still work. This work discloses the failure mechanism of lithiophilic sites and provides a guideline for designing lithiophilic hosts under practical conditions. |
Author | Shi, Peng Huang, Jia‐Qi Zhan, Ying‐Xin Jin, Cheng‐Bin Yang, Shi‐Jie Li, Bo‐Quan Ma, Xia‐Xia Zhang, Qian‐Kui Zhang, Xue‐Qiang |
Author_xml | – sequence: 1 givenname: Ying‐Xin surname: Zhan fullname: Zhan, Ying‐Xin organization: Beijing Institute of Technology – sequence: 2 givenname: Peng surname: Shi fullname: Shi, Peng organization: Tsinghua University – sequence: 3 givenname: Xia‐Xia surname: Ma fullname: Ma, Xia‐Xia organization: Tsinghua University – sequence: 4 givenname: Cheng‐Bin surname: Jin fullname: Jin, Cheng‐Bin organization: Tsinghua University – sequence: 5 givenname: Qian‐Kui surname: Zhang fullname: Zhang, Qian‐Kui organization: Beijing Institute of Technology – sequence: 6 givenname: Shi‐Jie surname: Yang fullname: Yang, Shi‐Jie organization: Beijing Institute of Technology – sequence: 7 givenname: Bo‐Quan surname: Li fullname: Li, Bo‐Quan organization: Beijing Institute of Technology – sequence: 8 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: Beijing Institute of Technology – sequence: 9 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNqFkN1LwzAUxYMoOOdefQ743Jmvdu3jKJsKmwrqc0jThGW0SU1aZP-9GZUJgpiX5J57fveScwXOrbMKgBuM5hghcieUbecEEYwoKfAZmOAMsyTLGTo_vSm5BLMQ9igeVkQnnQC5FqYZvIJbJXfCmtBCp-HG9Dvjup1pjISvplcBGgtL13YuxGrsD22EetHApXW1goOtlYcvXsjeyKiWztamN86Ga3ChRRPU7Puegvf16q18SDbP94_lcpNIihc40YqkOaMVqRdU52muEcorLTUVSEYtzTJaC12lRBU1wYplGmFW5yxDsVmlik7B7Ti38-5jUKHnezd4G1dykuECFYucsuiajy7pXQhead550wp_4BjxY5b8mCU_ZRkB9guQphfHn_U-hvc3VozYp2nU4Z8lfLl62v6wX-lJi14 |
CitedBy_id | crossref_primary_10_1002_adma_202406034 crossref_primary_10_1007_s12274_023_5478_4 crossref_primary_10_1016_j_jcis_2023_08_058 crossref_primary_10_1038_s41586_024_08294_z crossref_primary_10_1016_j_ensm_2022_07_019 crossref_primary_10_1002_adfm_202409812 crossref_primary_10_1016_S1872_5805_24_60878_4 crossref_primary_10_3390_batteries9080391 crossref_primary_10_1002_smll_202312129 crossref_primary_10_1016_j_jechem_2022_06_010 crossref_primary_10_1021_acsami_4c04060 crossref_primary_10_1002_aenm_202201493 crossref_primary_10_1016_j_ensm_2023_01_039 crossref_primary_10_1002_aenm_202204002 crossref_primary_10_1016_j_cej_2022_135827 crossref_primary_10_1021_acs_nanolett_2c05077 crossref_primary_10_1016_j_esci_2023_100189 crossref_primary_10_1039_D2CP04032H crossref_primary_10_1016_j_heliyon_2024_e27181 crossref_primary_10_1007_s11708_023_0875_7 crossref_primary_10_1016_j_jcis_2022_07_054 crossref_primary_10_3390_batteries9030188 crossref_primary_10_1002_ange_202310132 crossref_primary_10_1021_acsami_3c03327 crossref_primary_10_1002_inc2_12006 crossref_primary_10_1039_D3TA02379F crossref_primary_10_1002_marc_202200803 crossref_primary_10_34133_energymatadv_0010 crossref_primary_10_1016_j_cej_2024_153444 crossref_primary_10_1016_j_ensm_2023_01_045 crossref_primary_10_1007_s12274_023_6275_9 crossref_primary_10_1021_acs_nanolett_2c00338 crossref_primary_10_1007_s12598_023_02477_9 crossref_primary_10_1002_aenm_202302687 crossref_primary_10_1016_j_jallcom_2023_168703 crossref_primary_10_1002_anie_202310132 crossref_primary_10_1016_j_ensm_2024_103191 crossref_primary_10_1021_acsaem_4c00855 crossref_primary_10_1002_eom2_12416 crossref_primary_10_1002_smll_202408771 crossref_primary_10_1016_j_cej_2022_137421 crossref_primary_10_1016_j_jpowsour_2024_235494 crossref_primary_10_1021_acsaem_4c02955 crossref_primary_10_1002_aenm_202400108 crossref_primary_10_1002_adma_202205677 crossref_primary_10_1016_S1872_5805_23_60744_9 crossref_primary_10_1016_j_jcis_2023_12_131 crossref_primary_10_34133_2022_9846537 crossref_primary_10_1002_admi_202200750 crossref_primary_10_1016_j_cossms_2023_101079 crossref_primary_10_1002_adfm_202311301 crossref_primary_10_1016_j_carbon_2022_12_034 crossref_primary_10_3390_batteries9010030 crossref_primary_10_1002_aenm_202301322 crossref_primary_10_1016_j_ensm_2022_08_001 crossref_primary_10_1002_batt_202300389 crossref_primary_10_1016_j_jechem_2022_10_026 crossref_primary_10_1016_j_jechem_2022_10_023 crossref_primary_10_1002_adfm_202307281 crossref_primary_10_1002_smll_202312132 crossref_primary_10_1021_acsami_2c20708 crossref_primary_10_1021_acs_iecr_2c00897 crossref_primary_10_1002_batt_202400505 crossref_primary_10_1021_acsenergylett_3c00181 crossref_primary_10_1016_j_jechem_2022_03_039 crossref_primary_10_1002_batt_202200161 crossref_primary_10_20517_energymater_2023_83 crossref_primary_10_1039_D4EB00034J crossref_primary_10_1002_aenm_202302261 crossref_primary_10_1002_cey2_423 crossref_primary_10_1016_j_carbon_2023_118174 crossref_primary_10_1002_adma_202404689 |
Cites_doi | 10.1016/j.jechem.2020.09.030 10.1002/aenm.201700530 10.34133/2021/1205324 10.1021/acs.accounts.9b00437 10.1016/j.ensm.2020.01.025 10.7498/aps.69.20200906 10.1002/adma.201702714 10.1021/acs.chemrev.7b00115 10.1021/acsenergylett.9b01987 10.1002/aenm.201903645 10.1038/nenergy.2016.10 10.1039/C3EE40795K 10.1016/j.ensm.2019.04.003 10.1002/adfm.201909887 10.1002/aenm.202101654 10.1039/D1EE00551K 10.1021/acsami.9b15250 10.1039/C9TA00862D 10.1016/j.cclet.2017.11.047 10.1002/smll.202000699 10.1016/j.nanoen.2019.103989 10.1002/smsc.202100058 10.1002/ente.202000700 10.1016/j.matt.2021.09.019 10.1021/acsami.8b07362 10.1016/j.mattod.2020.06.011 10.1002/aenm.201703505 10.1002/adma.201807131 10.1021/acsami.8b01978 10.1007/s11426-019-9519-9 10.1039/D0EE03952G 10.1039/C9TA09502K 10.1002/anie.201911724 10.1016/j.gee.2019.10.003 10.1002/adfm.201808468 10.1039/C9CS00636B 10.1002/inf2.12000 10.1016/j.ensm.2019.12.023 10.1016/j.nanoen.2019.103854 10.1002/aenm.202002297 10.1016/j.joule.2018.03.008 10.1021/acs.nanolett.0c00352 10.1021/acsenergylett.0c01545 10.1039/C9CS00883G 10.1002/adma.202002193 10.1002/adfm.202009694 10.1016/j.jpowsour.2019.227214 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202103291 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202103291 AENM202103291 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21776019 – fundername: Beijing Natural Science Foundation funderid: JQ20004 – fundername: Scientific and Technological Key Project of Shanxi Province funderid: 20191102003 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3171-fe25843b2d73f858f008bfcf3a0c2d75663dafb52e9d21e46f014d8460d75b5e3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:16:02 EDT 2025 Tue Jul 01 01:43:42 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 16:26:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3171-fe25843b2d73f858f008bfcf3a0c2d75663dafb52e9d21e46f014d8460d75b5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7394-9186 |
PQID | 2619097834 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2619097834 crossref_primary_10_1002_aenm_202103291 crossref_citationtrail_10_1002_aenm_202103291 wiley_primary_10_1002_aenm_202103291_AENM202103291 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2019 2020 2019; 63 27 65 2017 2018 2014 2020 2017; 117 2 7 49 28 2018; 8 2016; 1 2019 2020; 31 30 2019; 11 2020 2020 2019; 5 49 1 2020 2018 2019 2017 2021 2019; 32 10 23 7 9 29 2020 2017; 30 29 2020 2021; 26 42 2018 2019; 10 7 2019 2021 2020; 52 2021 5 2021 2019; 14 62 2021 2020 2021; 11 16 4 2021; 60 2020 2020 2020 2020 2021; 10 10 30 14 2020 2020 2021 2021 2021 2021; 59 69 31 58 60 1 2020 2019; 20 5 2019; 442 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_5_6 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_5_4 e_1_2_7_5_3 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 Zhan Y.‐X. (e_1_2_7_7_2) 2021; 42 e_1_2_7_11_1 Lu Y. (e_1_2_7_10_1) 2020; 30 e_1_2_7_2_5 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_5 e_1_2_7_8_3 Shi P. (e_1_2_7_18_2) 2020; 30 e_1_2_7_6_4 e_1_2_7_8_2 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 Li T. (e_1_2_7_5_5) 2021; 60 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_8_6 e_1_2_7_8_5 e_1_2_7_8_4 Jin C.‐B. (e_1_2_7_20_1) 2021; 60 |
References_xml | – volume: 11 16 4 start-page: 3741 year: 2021 2020 2021 publication-title: Adv. Energy Mater. Small Matter – volume: 5 49 1 start-page: 3140 5407 6 year: 2020 2020 2019 publication-title: ACS Energy Lett. Chem. Soc. Rev. InfoMat – volume: 26 42 start-page: 56 1569 year: 2020 2021 publication-title: Energy Storage Mater. Chem. J. Chin. Univ. – volume: 442 year: 2019 publication-title: J. Power Sources – volume: 31 30 year: 2019 2020 publication-title: Adv. Mater. Adv. Funct. Mater. – volume: 20 5 start-page: 2724 180 year: 2020 2019 publication-title: Nano Lett. ACS Energy Lett. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 63 27 65 start-page: 124 year: 2019 2020 2019 publication-title: Nano Energy Energy Storage Mater. Nano Energy – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 32 10 23 7 9 29 start-page: 547 year: 2020 2018 2019 2017 2021 2019 publication-title: Adv. Mater. ACS Appl. Mater. Interfaces Energy Storage Mater. Adv. Energy Mater. Energy Technol. Adv. Funct. Mater. – volume: 117 2 7 49 28 start-page: 833 513 2701 2169 year: 2017 2018 2014 2020 2017 publication-title: Chem. Rev. Joule Energy Environ. Sci. Chem. Soc. Rev. Chin. Chem. Lett. – volume: 52 2021 5 start-page: 3223 22 year: 2019 2021 2020 publication-title: Acc. Chem. Res. Energy Mater. Adv. Green Energy Environ. – volume: 14 62 start-page: 2577 1286 year: 2021 2019 publication-title: Energy Environ. Sci. Sci. China Chem. – volume: 10 7 start-page: 7752 year: 2018 2019 publication-title: ACS Appl. Mater. Interfaces J. Mater. Chem. A – volume: 10 10 30 14 start-page: 140 3621 year: 2020 2020 2020 2020 2021 publication-title: Adv. Energy Mater. Adv. Energy Mater. Mater. Today Adv. Funct. Mater. Energy Environ. Sci. – volume: 59 69 31 58 60 1 start-page: 3252 198 year: 2020 2020 2021 2021 2021 2021 publication-title: Angew. Chem., Int. Ed. Acta Phys. Sin. Adv. Funct. Mater. J. Energy Chem. Angew. Chem., Int. Ed. Small Sci. – volume: 30 29 year: 2020 2017 publication-title: Adv. Funct. Mater. Adv. Mater. – ident: e_1_2_7_5_4 doi: 10.1016/j.jechem.2020.09.030 – ident: e_1_2_7_8_4 doi: 10.1002/aenm.201700530 – volume: 42 start-page: 1569 year: 2021 ident: e_1_2_7_7_2 publication-title: Chem. J. Chin. Univ. – ident: e_1_2_7_4_2 doi: 10.34133/2021/1205324 – ident: e_1_2_7_4_1 doi: 10.1021/acs.accounts.9b00437 – ident: e_1_2_7_11_2 doi: 10.1016/j.ensm.2020.01.025 – volume: 60 start-page: 07732 year: 2021 ident: e_1_2_7_5_5 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_5_2 doi: 10.7498/aps.69.20200906 – ident: e_1_2_7_10_2 doi: 10.1002/adma.201702714 – ident: e_1_2_7_2_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_7_13_2 doi: 10.1021/acsenergylett.9b01987 – ident: e_1_2_7_6_2 doi: 10.1002/aenm.201903645 – volume: 30 start-page: 2004189 year: 2020 ident: e_1_2_7_18_2 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_19_1 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_2_3 doi: 10.1039/C3EE40795K – ident: e_1_2_7_8_3 doi: 10.1016/j.ensm.2019.04.003 – ident: e_1_2_7_6_4 doi: 10.1002/adfm.201909887 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.202101654 – ident: e_1_2_7_9_1 doi: 10.1039/D1EE00551K – ident: e_1_2_7_14_1 doi: 10.1021/acsami.9b15250 – volume: 60 start-page: 10589 year: 2021 ident: e_1_2_7_20_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_7_17_2 doi: 10.1039/C9TA00862D – ident: e_1_2_7_2_5 doi: 10.1016/j.cclet.2017.11.047 – ident: e_1_2_7_3_2 doi: 10.1002/smll.202000699 – ident: e_1_2_7_11_3 doi: 10.1016/j.nanoen.2019.103989 – ident: e_1_2_7_5_6 doi: 10.1002/smsc.202100058 – ident: e_1_2_7_8_5 doi: 10.1002/ente.202000700 – ident: e_1_2_7_3_3 doi: 10.1016/j.matt.2021.09.019 – volume: 30 start-page: 2009605 year: 2020 ident: e_1_2_7_10_1 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_17_1 doi: 10.1021/acsami.8b07362 – ident: e_1_2_7_6_3 doi: 10.1016/j.mattod.2020.06.011 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201703505 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201807131 – ident: e_1_2_7_8_2 doi: 10.1021/acsami.8b01978 – ident: e_1_2_7_9_2 doi: 10.1007/s11426-019-9519-9 – ident: e_1_2_7_6_5 doi: 10.1039/D0EE03952G – ident: e_1_2_7_16_1 doi: 10.1039/C9TA09502K – ident: e_1_2_7_5_1 doi: 10.1002/anie.201911724 – ident: e_1_2_7_4_3 doi: 10.1016/j.gee.2019.10.003 – ident: e_1_2_7_8_6 doi: 10.1002/adfm.201808468 – ident: e_1_2_7_1_2 doi: 10.1039/C9CS00636B – ident: e_1_2_7_1_3 doi: 10.1002/inf2.12000 – ident: e_1_2_7_7_1 doi: 10.1016/j.ensm.2019.12.023 – ident: e_1_2_7_11_1 doi: 10.1016/j.nanoen.2019.103854 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.202002297 – ident: e_1_2_7_2_2 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_7_13_1 doi: 10.1021/acs.nanolett.0c00352 – ident: e_1_2_7_1_1 doi: 10.1021/acsenergylett.0c01545 – ident: e_1_2_7_2_4 doi: 10.1039/C9CS00883G – ident: e_1_2_7_8_1 doi: 10.1002/adma.202002193 – ident: e_1_2_7_5_3 doi: 10.1002/adfm.202009694 – ident: e_1_2_7_15_1 doi: 10.1016/j.jpowsour.2019.227214 |
SSID | ssj0000491033 |
Score | 2.6006348 |
Snippet | A 3D host decorated with lithiophilic sites has emerged as a promising strategy to stabilize lithium metal anode by guiding uniform Li deposition and relieving... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes dead lithium Diffusion barriers failure mechanism Failure mechanisms lithiophilic sites Lithium lithium metal anodes Nucleation practical conditions |
Title | Failure Mechanism of Lithiophilic Sites in Composite Lithium Metal Anode under Practical Conditions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103291 https://www.proquest.com/docview/2619097834 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4EDYvwQHQP5gMShMrSOk6bHAq2mqSlIa6XcItuxtUiQTlt64c7_zbPjuC7aGHCJWsdxWr_Pznsv730PobdlOlHj6VQSxuKIMMEFEZpNCY-4iCZcc01NvnO2Ss427DyP817vZxC1tGvEe_nj1ryS_5EqtIFcTZbsP0jWDwoN8BnkC0eQMBz_SsYLXpmo8mGmTP6uKXdhPP5Vc1ltr4yjRA4vqsZGXNl1b-KzVHt-9x0uMnmQYP6XyhbDvXbcRdK6E8ybbO_K61hqu3gB1SYMgrLb_ku_dZjs6S56Ioe7Gne09-HY8sHDr8o9K6Epr3jQnQ-zfdjQpQqG-ghDnTuKcOehoPQ3D8X9-2Cw_4K2QJLUuTxV2NayOvlNmwbgpLc-C1puWa5qQzhADXFgWxfskHR79aVYbJbLYj3P1w_QEQVrg_bR0exztrzwzjowo-B6m6zR_cCOAHREPxze4lDB2Vstoe1jlZf1E_TYWR141kLoGPVU_RQ9CrgonyHpwIQ9mPBW4xBM2IIJVzX2YMIOTNiCCVswYQsm7MGE92B6jjaL-frTGXEVOIgEvXJMtKKgoEaClpNIp3GqQWMUWuqIjyS0gSkQlVyLmKppSceKJRos7hJU2hGcFLGKXqB-va3VS4RBfjwy1c9KKhlPUp5qnqi41GPYGxiTA0S6aSuko6c3VVK-FS2xNi3MNBd-mgfone9_1RKz3NnztJNC4RbvTWEcBzaFiQ0QtZK5Z5RiNl9l_tvJn8d8hR7uF8Ip6jfXO_UalNdGvHHQ-gXeMJhw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+Mechanism+of+Lithiophilic+Sites+in+Composite+Lithium+Metal+Anode+under+Practical+Conditions&rft.jtitle=Advanced+energy+materials&rft.au=Ying%E2%80%90Xin+Zhan&rft.au=Shi%2C+Peng&rft.au=Xia%E2%80%90Xia+Ma&rft.au=Cheng%E2%80%90Bin+Jin&rft.date=2022-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1002%2Faenm.202103291&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |