Mitigating the Large‐Volume Phase Transition of P2‐Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium‐Ion Batteries
Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected m...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 14 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2‐type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X‐ray diffraction, in operando X‐ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi‐metal ions converts the unfavorable and large‐volume P2 to O2 transition into a moderate “Z”‐intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2‐Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode delivers a reversible capacity of 134 mAh g−1, a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g−1 at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg−1. This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium‐ion batteries.
Herein, a co‐substitution strategy is proposed for P2‐Na2/3Ni1/3Mn2/3O2 to realize high‐energy sodium‐ion batteries. On account of the synergetic effects of Li+ (suppressing Na‐vacancy ordering), Ti4+ (increasing redox potential), and Mg2+ (stabilizing structure), the as‐obtained Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode demonstrates moderate phase transition behavior and superior electrochemical performance. |
---|---|
AbstractList | Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2‐type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X‐ray diffraction, in operando X‐ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi‐metal ions converts the unfavorable and large‐volume P2 to O2 transition into a moderate “Z”‐intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2‐Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode delivers a reversible capacity of 134 mAh g−1, a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g−1 at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg−1. This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium‐ion batteries. Layered transition metal oxide P2‐Na 2/3 Ni 1/3 Mn 2/3 O 2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2‐type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X‐ray diffraction, in operando X‐ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi‐metal ions converts the unfavorable and large‐volume P2 to O2 transition into a moderate “Z”‐intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2‐Na 0.7 Li 0.03 Mg 0.03 Ni 0.27 Mn 0.6 Ti 0.07 O 2 electrode delivers a reversible capacity of 134 mAh g −1 , a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g −1 at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg −1 . This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium‐ion batteries. Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2‐type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X‐ray diffraction, in operando X‐ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi‐metal ions converts the unfavorable and large‐volume P2 to O2 transition into a moderate “Z”‐intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2‐Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode delivers a reversible capacity of 134 mAh g−1, a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g−1 at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg−1. This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium‐ion batteries. Herein, a co‐substitution strategy is proposed for P2‐Na2/3Ni1/3Mn2/3O2 to realize high‐energy sodium‐ion batteries. On account of the synergetic effects of Li+ (suppressing Na‐vacancy ordering), Ti4+ (increasing redox potential), and Mg2+ (stabilizing structure), the as‐obtained Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode demonstrates moderate phase transition behavior and superior electrochemical performance. |
Author | Yin, Ya‐Xia Yu, Lianzheng Hua, Weibo Han, Xiaogang Xu, Sailong Yuan, Boheng Guo, Yu‐Guo Zhao, Bin Wang, Peng‐Fei Guo, Yu‐Jie Xiao, Bing Cheng, Zhiwei |
Author_xml | – sequence: 1 givenname: Zhiwei surname: Cheng fullname: Cheng, Zhiwei organization: Xi'an Jiaotong University – sequence: 2 givenname: Bin surname: Zhao fullname: Zhao, Bin organization: Xi'an Jiaotong University – sequence: 3 givenname: Yu‐Jie surname: Guo fullname: Guo, Yu‐Jie organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Lianzheng surname: Yu fullname: Yu, Lianzheng organization: Beijing University of Chemical Technology – sequence: 5 givenname: Boheng surname: Yuan fullname: Yuan, Boheng organization: Xi'an Jiaotong University – sequence: 6 givenname: Weibo surname: Hua fullname: Hua, Weibo organization: Xi'an Jiaotong University – sequence: 7 givenname: Ya‐Xia surname: Yin fullname: Yin, Ya‐Xia organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Sailong surname: Xu fullname: Xu, Sailong organization: Beijing University of Chemical Technology – sequence: 9 givenname: Bing surname: Xiao fullname: Xiao, Bing email: bingxiao84@xjtu.edu.cn organization: Xi'an Jiaotong University – sequence: 10 givenname: Xiaogang surname: Han fullname: Han, Xiaogang organization: Xi'an Jiaotong University – sequence: 11 givenname: Peng‐Fei surname: Wang fullname: Wang, Peng‐Fei email: pfwang@xjtu.edu.cn organization: Xi'an Jiaotong University – sequence: 12 givenname: Yu‐Guo orcidid: 0000-0003-0322-8476 surname: Guo fullname: Guo, Yu‐Guo email: ygguo@iccas.ac.cn organization: University of Chinese Academy of Sciences |
BookMark | eNqFkMtqGzEUhkVJoUmabdeCru3qNrdlYpzUYLeBONkOsnRkK8xIjqRJmF2foPQZ-ySVcUmhUKqNBOf7zjn6z9CJ8w4Q-kDJlBLCPklw_ZQRRgkXJX2DTmlJxaSsBTl5fXP2Dl3E-EjyEU0m-Sn6vrLJbmWybovTDvBShi38_PbjwXdDD_h2JyPgdZAuZs477A2-Zbm-HveAZzLtvIaINyO-Gx1kNVmF58aASgd0NXTJ7jvAC-8iNj7gRb8P_hk0vvPaDn3ulEv4SqYEwUJ8j94a2UW4-H2fo_vr-Xr2ebL8erOYXS4nitOKTrSWplE106YuN5xroTamqApR6Pz5wtDGMK2LDQdGqkoBMC0EZEJxWWtuGD9HH4998zZPA8TUPvohuDyyZaVo6qYqaZmp6ZFSwccYwLT7YHsZxpaS9hB7e4i9fY09C-IvQdkkD8GlIG33b605ai-2g_E_Q9rL-ZfVH_cXFoueXg |
CitedBy_id | crossref_primary_10_1016_j_cplett_2024_141836 crossref_primary_10_1002_adma_202408012 crossref_primary_10_1002_smll_202409041 crossref_primary_10_1002_anie_202411618 crossref_primary_10_1002_adma_202410857 crossref_primary_10_1016_j_jpowsour_2025_236718 crossref_primary_10_1021_acssuschemeng_4c01363 crossref_primary_10_1021_acsami_3c15667 crossref_primary_10_1002_anie_202304628 crossref_primary_10_1021_acsami_3c15947 crossref_primary_10_1016_j_nanoen_2024_109925 crossref_primary_10_1016_j_cej_2025_160147 crossref_primary_10_1021_acsaem_3c00135 crossref_primary_10_2139_ssrn_4133127 crossref_primary_10_1002_aenm_202300636 crossref_primary_10_1016_j_jallcom_2025_179425 crossref_primary_10_1021_acs_nanolett_2c04465 crossref_primary_10_1039_D2RA03601K crossref_primary_10_1016_j_gerr_2023_100033 crossref_primary_10_1016_j_cej_2024_149879 crossref_primary_10_1021_acsami_3c02514 crossref_primary_10_1016_j_ensm_2023_102775 crossref_primary_10_1016_j_jcis_2023_12_008 crossref_primary_10_1021_acsaem_4c01699 crossref_primary_10_1016_j_jallcom_2024_174007 crossref_primary_10_1021_acsmaterialslett_4c02642 crossref_primary_10_1002_ange_202403585 crossref_primary_10_1016_j_cej_2025_159207 crossref_primary_10_1002_adfm_202303812 crossref_primary_10_1039_D4CC06113F crossref_primary_10_1149_1945_7111_acc27a crossref_primary_10_1002_adfm_202205661 crossref_primary_10_1002_aenm_202302321 crossref_primary_10_1016_j_est_2023_109933 crossref_primary_10_1002_smtd_202301759 crossref_primary_10_1039_D2TA09277H crossref_primary_10_1021_acsaem_4c01982 crossref_primary_10_1002_adfm_202209026 crossref_primary_10_1002_adfm_202211821 crossref_primary_10_1039_D4TA03372H crossref_primary_10_1039_D4TA01913J crossref_primary_10_1002_cnl2_7 crossref_primary_10_1002_ange_202411618 crossref_primary_10_1002_adfm_202411082 crossref_primary_10_1002_advs_202304067 crossref_primary_10_1016_j_mattod_2023_06_013 crossref_primary_10_1039_D4TA02122C crossref_primary_10_1002_adma_202401048 crossref_primary_10_1039_D4TA03250K crossref_primary_10_1021_acsnano_4c09918 crossref_primary_10_1002_aenm_202300334 crossref_primary_10_1021_acsami_3c16333 crossref_primary_10_1002_cssc_202400768 crossref_primary_10_1016_j_matlet_2024_137002 crossref_primary_10_1063_5_0121824 crossref_primary_10_1039_D3TA04094A crossref_primary_10_1021_acsnano_4c17035 crossref_primary_10_1002_adma_202415610 crossref_primary_10_1007_s11581_023_05277_4 crossref_primary_10_1016_j_compositesb_2024_111664 crossref_primary_10_1016_j_nxener_2025_100241 crossref_primary_10_1002_adma_202200863 crossref_primary_10_1016_j_apsusc_2024_159395 crossref_primary_10_1039_D2TA06681E crossref_primary_10_1016_j_elecom_2025_107883 crossref_primary_10_1021_acs_nanolett_4c03358 crossref_primary_10_3390_molecules29245988 crossref_primary_10_20517_microstructures_2023_102 crossref_primary_10_1002_adma_202311432 crossref_primary_10_1016_j_susmat_2024_e01059 crossref_primary_10_1002_adfm_202418018 crossref_primary_10_1021_acsaem_2c03609 crossref_primary_10_1016_j_ensm_2023_03_016 crossref_primary_10_1021_acsami_2c12098 crossref_primary_10_1021_acsami_4c05027 crossref_primary_10_1002_adfm_202411347 crossref_primary_10_1002_anie_202410080 crossref_primary_10_1021_acsami_3c18341 crossref_primary_10_1021_acsami_4c04855 crossref_primary_10_1039_D4RA04790G crossref_primary_10_1021_jacs_4c04814 crossref_primary_10_1016_j_cej_2023_146950 crossref_primary_10_1002_smm2_1306 crossref_primary_10_1002_aenm_202404093 crossref_primary_10_1016_j_est_2023_110299 crossref_primary_10_1039_D3CS00929G crossref_primary_10_1007_s11426_022_1364_1 crossref_primary_10_1021_acs_energyfuels_4c05539 crossref_primary_10_15541_jim20240325 crossref_primary_10_1016_j_mtener_2024_101584 crossref_primary_10_1002_anie_202403585 crossref_primary_10_1016_j_jelechem_2023_117596 crossref_primary_10_1007_s12274_023_6249_y crossref_primary_10_1021_acsami_4c05876 crossref_primary_10_1002_adma_202405989 crossref_primary_10_1016_j_ensm_2022_06_012 crossref_primary_10_1016_j_mtener_2022_101106 crossref_primary_10_1002_ange_202410080 crossref_primary_10_1002_cnl2_48 crossref_primary_10_1016_j_jechem_2022_09_016 crossref_primary_10_1039_D2TA08315A crossref_primary_10_1002_smll_202310573 crossref_primary_10_1007_s12274_022_4708_5 crossref_primary_10_1002_smll_202400315 crossref_primary_10_1007_s12598_023_02422_w crossref_primary_10_1016_j_ensm_2024_103248 crossref_primary_10_1002_adma_202408984 crossref_primary_10_1007_s43979_024_00081_z crossref_primary_10_1002_adfm_202418322 crossref_primary_10_1002_smll_202310978 crossref_primary_10_1016_j_electacta_2022_141373 crossref_primary_10_1002_batt_202400207 crossref_primary_10_1016_j_cjsc_2023_100028 crossref_primary_10_1016_j_jpowsour_2023_232686 crossref_primary_10_1002_bte2_20230022 crossref_primary_10_1021_acsami_4c07264 crossref_primary_10_1016_j_optmat_2024_116458 crossref_primary_10_1039_D4SE01012D crossref_primary_10_1002_ange_202304628 crossref_primary_10_1002_adfm_202315437 crossref_primary_10_1002_advs_202303108 crossref_primary_10_1039_D3TA05790A crossref_primary_10_1021_acsnano_3c02290 crossref_primary_10_1016_j_ensm_2024_103518 crossref_primary_10_1002_adma_202402008 crossref_primary_10_1002_aenm_202300149 crossref_primary_10_1016_j_nanoen_2024_109676 crossref_primary_10_1021_acsami_2c05784 crossref_primary_10_1002_adma_202307938 crossref_primary_10_1016_j_ensm_2024_103633 crossref_primary_10_1002_batt_202300476 crossref_primary_10_1016_j_ensm_2023_01_052 crossref_primary_10_1016_j_jcis_2023_10_129 crossref_primary_10_1039_D4EE02359E crossref_primary_10_1002_cnl2_53 crossref_primary_10_1007_s11581_024_05813_w crossref_primary_10_1039_D4SC05206D crossref_primary_10_1021_acsami_3c15720 crossref_primary_10_1016_j_jcis_2024_06_197 crossref_primary_10_1002_smtd_202201555 crossref_primary_10_1002_adfm_202417258 crossref_primary_10_1007_s40843_023_2617_5 crossref_primary_10_1016_j_jallcom_2025_179926 crossref_primary_10_1039_D3NR02373G crossref_primary_10_1021_acsnano_3c02323 crossref_primary_10_1002_adfm_202406771 crossref_primary_10_1002_smm2_1211 crossref_primary_10_1002_batt_202200473 crossref_primary_10_1021_acsaem_2c01512 crossref_primary_10_1016_j_nanoen_2024_109389 crossref_primary_10_1002_aenm_202302017 crossref_primary_10_1002_smll_202306690 crossref_primary_10_1002_smll_202206248 crossref_primary_10_1021_acs_chemmater_3c01552 crossref_primary_10_1021_acs_iecr_2c01864 crossref_primary_10_1016_j_cej_2023_141515 crossref_primary_10_1088_2515_7655_acd41a crossref_primary_10_1002_aesr_202300166 crossref_primary_10_1002_cey2_464 crossref_primary_10_1016_j_jallcom_2024_175953 crossref_primary_10_1021_acs_chemmater_4c03201 crossref_primary_10_1039_D4TA02993C crossref_primary_10_1021_acsami_2c09295 crossref_primary_10_1002_smtd_202201201 crossref_primary_10_1039_D3SE01597A |
Cites_doi | 10.1039/D0TA04847J 10.1007/s11426-020-9845-5 10.1021/acscentsci.9b01166 10.1002/smll.201805427 10.1039/C8EE02991A 10.1039/C8TA04791J 10.1039/C3CC49856E 10.1021/acs.chemmater.6b04769 10.1002/adma.201700210 10.1021/acsami.9b13013 10.1149/2.0121414jes 10.1016/j.ensm.2020.11.037 10.1007/s11426-018-9422-y 10.1016/j.ensm.2020.04.012 10.1021/cr500192f 10.1002/aenm.201901785 10.1002/aenm.201000061 10.1021/acsami.9b01484 10.1039/C7EE02995K 10.1021/cm502481b 10.1021/jacs.8b08638 10.1002/smll.201805381 10.1021/cm403855t 10.1002/anie.201505215 10.1149/2.0311712jes 10.1039/C9TA02710F 10.1021/acs.chemmater.9b03765 10.1039/C7CP00284J 10.1002/batt.202000226 10.1038/nature05531 10.1126/sciadv.aar6018 10.1038/nchem.2923 10.1021/ic5017802 10.1021/acsenergylett.0c00597 10.1002/adma.201907936 10.1039/c2cp44467d 10.1002/adma.201502449 10.1021/jacs.9b13572 10.1021/jacs.7b05176 10.1002/adma.202001419 10.1016/j.nanoen.2020.104831 10.1039/C9TA01366K 10.1002/anie.201602202 10.1016/j.jpowsour.2014.12.083 10.1149/1.1407247 10.1038/ncomms7954 10.1002/adma.201904816 10.1002/aenm.202100901 10.1016/j.nanoen.2016.06.026 10.1002/aenm.201800212 10.1002/anie.202003972 10.1002/aenm.202001111 10.1021/ic300357d 10.1039/c3ee40847g 10.1002/aenm.202170034 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202103461 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202103461 AENM202103461 |
Genre | article |
GrantInformation_xml | – fundername: State Key Laboratory of Electrical Insulation and Power Equipment funderid: EIPE21304 – fundername: Xi'an Jiaotong University – fundername: Young Talent Support Plan and Siyuan Scholar of Xi'an Jiaotong University funderid: DQ6J011; DQ1J009 – fundername: National Science Foundation of China funderid: 52102302; 22108218; 51807146 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3171-ddaf9c82df86b33d4cbf57545d4615f19f2dd5b3e2077cee2d44ef57c3a8d3f23 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:03:23 EDT 2025 Tue Jul 01 01:43:43 EDT 2025 Thu Apr 24 22:54:02 EDT 2025 Wed Jan 22 16:26:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3171-ddaf9c82df86b33d4cbf57545d4615f19f2dd5b3e2077cee2d44ef57c3a8d3f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0322-8476 |
PQID | 2649897616 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2649897616 crossref_primary_10_1002_aenm_202103461 crossref_citationtrail_10_1002_aenm_202103461 wiley_primary_10_1002_aenm_202103461_AENM202103461 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 27 2020; 63 2019; 11 2019; 12 2019; 15 2014; 26 2020; 59 2020; 11 2020; 10 2013; 6 2001; 148 2012; 51 2020; 8 2021; 35 2018; 6 2018; 9 2020; 6 2020; 5 2013; 15 2020; 4 2019; 62 2018; 4 2014; 161 2017; 164 2014; 50 2014; 53 2019; 7 2007; 445 2015; 281 2019; 9 2015; 6 2011; 1 2019; 31 2020; 142 2015; 54 2017; 29 2020; 32 2019; 141 2014; 114 2017; 139 2016; 55 2015; 27 2021; 11 2020; 74 2017; 19 2018; 11 2016; 27 2018; 10 2020; 29 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 Zhang X. (e_1_2_7_12_1) 2021; 27 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 74 year: 2020 publication-title: Nano Energy – volume: 11 year: 2020 publication-title: Adv. Energy Mater. – volume: 55 start-page: 7445 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 333 year: 2011 publication-title: Adv. Energy Mater. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 11 start-page: 1470 year: 2018 publication-title: Energy Environ. Sci. – volume: 26 start-page: 1260 year: 2014 publication-title: Chem. Mater. – volume: 445 start-page: 631 year: 2007 publication-title: Nature – volume: 62 start-page: 616 year: 2019 publication-title: Sci. China Chem. – volume: 141 start-page: 840 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 161 year: 2014 publication-title: J. Electrochem. Soc. – volume: 15 start-page: 3304 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 35 start-page: 620 year: 2021 publication-title: Energy Storage Mater. – volume: 6 start-page: 2338 year: 2013 publication-title: Energy Environ. Sci. – volume: 9 year: 2018 publication-title: Adv. Energy Mater. – volume: 139 start-page: 8440 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2223 year: 2019 publication-title: Energy Environ. Sci. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 29 start-page: 182 year: 2020 publication-title: Energy Storage Mater. – volume: 27 start-page: 1 year: 2021 publication-title: J. Electrochem. – volume: 27 start-page: 6928 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 456 year: 2020 publication-title: Batteries Supercaps – volume: 148 year: 2001 publication-title: J. Electrochem. Soc. – volume: 53 year: 2014 publication-title: Inorg. Chem. – volume: 5 start-page: 1278 year: 2020 publication-title: ACS Energy Lett. – volume: 6 start-page: 6954 year: 2015 publication-title: Nat. Commun. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 50 start-page: 3677 year: 2014 publication-title: Chem. Commun. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 63 start-page: 1402 year: 2020 publication-title: Sci. China: Chem. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 164 year: 2017 publication-title: J. Electrochem. Soc. – volume: 10 start-page: 288 year: 2018 publication-title: Nat. Chem. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 6 start-page: 232 year: 2020 publication-title: ACS Cent. Sci. – volume: 51 start-page: 6211 year: 2012 publication-title: Inorg. Chem. – volume: 27 start-page: 27 year: 2016 publication-title: Nano Energy – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 32 start-page: 1054 year: 2020 publication-title: Chem. Mater. – volume: 15 year: 2019 publication-title: Small – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 26 start-page: 6165 year: 2014 publication-title: Chem. Mater. – volume: 19 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 29 start-page: 1623 year: 2017 publication-title: Chem. Mater. – volume: 281 start-page: 18 year: 2015 publication-title: J. Power Sources – volume: 142 start-page: 5742 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_7_14_1 doi: 10.1039/D0TA04847J – ident: e_1_2_7_4_1 doi: 10.1007/s11426-020-9845-5 – ident: e_1_2_7_46_1 doi: 10.1021/acscentsci.9b01166 – ident: e_1_2_7_11_1 doi: 10.1002/smll.201805427 – ident: e_1_2_7_54_1 doi: 10.1039/C8EE02991A – ident: e_1_2_7_30_1 doi: 10.1039/C8TA04791J – ident: e_1_2_7_34_1 doi: 10.1039/C3CC49856E – ident: e_1_2_7_29_1 doi: 10.1021/acs.chemmater.6b04769 – ident: e_1_2_7_50_1 doi: 10.1002/adma.201700210 – ident: e_1_2_7_45_1 doi: 10.1021/acsami.9b13013 – ident: e_1_2_7_53_1 doi: 10.1149/2.0121414jes – ident: e_1_2_7_17_1 doi: 10.1016/j.ensm.2020.11.037 – ident: e_1_2_7_9_1 doi: 10.1007/s11426-018-9422-y – ident: e_1_2_7_37_1 doi: 10.1016/j.ensm.2020.04.012 – ident: e_1_2_7_1_1 doi: 10.1021/cr500192f – ident: e_1_2_7_38_1 doi: 10.1002/aenm.201901785 – ident: e_1_2_7_35_1 doi: 10.1002/aenm.201000061 – ident: e_1_2_7_55_1 doi: 10.1021/acsami.9b01484 – ident: e_1_2_7_28_1 doi: 10.1039/C7EE02995K – ident: e_1_2_7_13_1 doi: 10.1021/cm502481b – ident: e_1_2_7_41_1 doi: 10.1021/jacs.8b08638 – ident: e_1_2_7_8_1 doi: 10.1002/smll.201805381 – ident: e_1_2_7_42_1 doi: 10.1021/cm403855t – ident: e_1_2_7_7_1 doi: 10.1002/anie.201505215 – ident: e_1_2_7_52_1 doi: 10.1149/2.0311712jes – ident: e_1_2_7_40_1 doi: 10.1039/C9TA02710F – ident: e_1_2_7_39_1 doi: 10.1021/acs.chemmater.9b03765 – ident: e_1_2_7_56_1 doi: 10.1039/C7CP00284J – ident: e_1_2_7_23_1 doi: 10.1002/batt.202000226 – ident: e_1_2_7_44_1 doi: 10.1038/nature05531 – ident: e_1_2_7_31_1 doi: 10.1126/sciadv.aar6018 – ident: e_1_2_7_48_1 doi: 10.1038/nchem.2923 – ident: e_1_2_7_51_1 doi: 10.1021/ic5017802 – ident: e_1_2_7_2_1 doi: 10.1021/acsenergylett.0c00597 – ident: e_1_2_7_18_1 doi: 10.1002/adma.201907936 – ident: e_1_2_7_21_1 doi: 10.1039/c2cp44467d – ident: e_1_2_7_16_1 doi: 10.1002/adma.201502449 – ident: e_1_2_7_26_1 doi: 10.1021/jacs.9b13572 – ident: e_1_2_7_15_1 doi: 10.1021/jacs.7b05176 – ident: e_1_2_7_36_1 doi: 10.1002/adma.202001419 – ident: e_1_2_7_47_1 doi: 10.1016/j.nanoen.2020.104831 – ident: e_1_2_7_19_1 doi: 10.1039/C9TA01366K – ident: e_1_2_7_27_1 doi: 10.1002/anie.201602202 – ident: e_1_2_7_32_1 doi: 10.1016/j.jpowsour.2014.12.083 – ident: e_1_2_7_20_1 doi: 10.1149/1.1407247 – ident: e_1_2_7_43_1 doi: 10.1038/ncomms7954 – ident: e_1_2_7_33_1 doi: 10.1002/adma.201904816 – ident: e_1_2_7_6_1 doi: 10.1002/aenm.202100901 – volume: 27 start-page: 1 year: 2021 ident: e_1_2_7_12_1 publication-title: J. Electrochem. – ident: e_1_2_7_22_1 doi: 10.1016/j.nanoen.2016.06.026 – ident: e_1_2_7_10_1 doi: 10.1002/aenm.201800212 – ident: e_1_2_7_25_1 doi: 10.1002/anie.202003972 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.202001111 – ident: e_1_2_7_49_1 doi: 10.1021/ic300357d – ident: e_1_2_7_5_1 doi: 10.1039/c3ee40847g – ident: e_1_2_7_24_1 doi: 10.1002/aenm.202170034 |
SSID | ssj0000491033 |
Score | 2.6778681 |
Snippet | Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium... Layered transition metal oxide P2‐Na 2/3 Ni 1/3 Mn 2/3 O 2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Batteries Cathodes Density functional theory electrochemistry Electrode materials Flux density Lithium Magnesium Metal ions P2–O2 Phase transitions Sodium Sodium-ion batteries Titanium Transition metal oxides |
Title | Mitigating the Large‐Volume Phase Transition of P2‐Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103461 https://www.proquest.com/docview/2649897616 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gIHxK9YKMgHJA6rwK7tpMmxQKFU3WqltqhwiZLYViOVXUQ3QuXEEyBejJfgSfhsx05W_PcSrexZR_F8Gc-MZr4Q8nCicWalHO83Z3Ek4opHaVGJKOHMAGqzUtok9Kf7yc6R2D2OjweDb72qpWZZPq4-_bKv5CJaxRj0arpk_0OzYVEM4Df0iys0jOs_6XhaO4aMtuNpz1R1h-qF19bujGYnOKcch3ntvcMZC1ImDrVtgAupzowvenBuugFNa-OoZTY2RTK-7PCVqawxlYkuGWG81YWsm3dhPQiMHGenr070FLe-2EC5bkN4ym6LugID5ezO25P6o6p7GW2bzX1aBxi_bOzImybcdbcO-MSoTTXA5zUL9rMaCIi7YhhniOE2REna5j5Vf8zROwXrzfooFb2DPBxzP50SjnW2UHNDRYCYlwtHCL9Kxx0k4z_LOvbg7f1pmL9E1hmiFpjd9a3n072DkPRDOAYJ2_Thn88TiY7Zk9WbrDpKXfTTj6GsE3R4jVxtoxe65aB4nQzU_Aa50uO0vEm-dKCkACW1oPz--auDI7VwpB0c6ULTGcO8ASL1QKTlOe2ASB0QjagHIjVApAAi9UCkDohYCVM0QPAWOXqxffhsJ2o_-hFVcGUnkZSFzqqUSZ0mJedSVKVGSCFiiT2J9STTTMq45Aq2BJZEMSmEgkTFi1RyzfhtsjZfzNUdQsdaxlylEjFBIbjMsoJlsuBMY6nNUoyHJPI7nFctI775MMtp7ri8WW40kgeNDMmjIP_eccH8VnLDKyxv7cVZjtAjS-H9T5IhYVaJf1klXwHV3Yv86R653L1dG2Rt-aFR9-FFL8sHLTZ_AFZ0wQU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+the+Large%E2%80%90Volume+Phase+Transition+of+P2%E2%80%90Type+Cathodes+by+Synergetic+Effect+of+Multiple+Ions+for+Improved+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Cheng%2C+Zhiwei&rft.au=Zhao%2C+Bin&rft.au=Guo%2C+Yu%E2%80%90Jie&rft.au=Yu%2C+Lianzheng&rft.date=2022-04-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202103461&rft.externalDBID=10.1002%252Faenm.202103461&rft.externalDocID=AENM202103461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |