Mitigating the Large‐Volume Phase Transition of P2‐Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium‐Ion Batteries

Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected m...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 14
Main Authors Cheng, Zhiwei, Zhao, Bin, Guo, Yu‐Jie, Yu, Lianzheng, Yuan, Boheng, Hua, Weibo, Yin, Ya‐Xia, Xu, Sailong, Xiao, Bing, Han, Xiaogang, Wang, Peng‐Fei, Guo, Yu‐Guo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2‐type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X‐ray diffraction, in operando X‐ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi‐metal ions converts the unfavorable and large‐volume P2 to O2 transition into a moderate “Z”‐intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2‐Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode delivers a reversible capacity of 134 mAh g−1, a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g−1 at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg−1. This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium‐ion batteries. Herein, a co‐substitution strategy is proposed for P2‐Na2/3Ni1/3Mn2/3O2 to realize high‐energy sodium‐ion batteries. On account of the synergetic effects of Li+ (suppressing Na‐vacancy ordering), Ti4+ (increasing redox potential), and Mg2+ (stabilizing structure), the as‐obtained Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode demonstrates moderate phase transition behavior and superior electrochemical performance.
AbstractList Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2‐type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X‐ray diffraction, in operando X‐ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi‐metal ions converts the unfavorable and large‐volume P2 to O2 transition into a moderate “Z”‐intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2‐Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode delivers a reversible capacity of 134 mAh g−1, a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g−1 at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg−1. This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium‐ion batteries.
Layered transition metal oxide P2‐Na 2/3 Ni 1/3 Mn 2/3 O 2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2‐type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X‐ray diffraction, in operando X‐ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi‐metal ions converts the unfavorable and large‐volume P2 to O2 transition into a moderate “Z”‐intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2‐Na 0.7 Li 0.03 Mg 0.03 Ni 0.27 Mn 0.6 Ti 0.07 O 2 electrode delivers a reversible capacity of 134 mAh g −1 , a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g −1 at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg −1 . This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium‐ion batteries.
Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium (de)intercalation, incurring rapid capacity decline and poor rate capability. Herein, an effective strategy based on synergetic effect of selected multiple metal ions is designed for P2‐type cathodes with improved performance. The role of tetravalent titanium provides high redox potential, inactive divalent magnesium stabilizes the structure, and the monovalent lithium smooths the electrochemical curves. The combined analysis of in operando X‐ray diffraction, in operando X‐ray absorption spectroscopy and density functional theory calculations demonstrates the contribution of multi‐metal ions converts the unfavorable and large‐volume P2 to O2 transition into a moderate “Z”‐intergrowth structure by increasing the energy barrier of transition metal slab gliding. As a consequence, the resultant P2‐Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode delivers a reversible capacity of 134 mAh g−1, a working voltage of 3.57 V, excellent cycling stability (82% of capacity retention after 200 cycles), and superior rate performance (110 mAh g−1 at 4 C). Full cells fabricated with a hard carbon anode achieve an energy density of 296 Wh kg−1. This study presents a route to rationally design cathode materials with this functionalization to improve the cell performance for sodium‐ion batteries. Herein, a co‐substitution strategy is proposed for P2‐Na2/3Ni1/3Mn2/3O2 to realize high‐energy sodium‐ion batteries. On account of the synergetic effects of Li+ (suppressing Na‐vacancy ordering), Ti4+ (increasing redox potential), and Mg2+ (stabilizing structure), the as‐obtained Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2 electrode demonstrates moderate phase transition behavior and superior electrochemical performance.
Author Yin, Ya‐Xia
Yu, Lianzheng
Hua, Weibo
Han, Xiaogang
Xu, Sailong
Yuan, Boheng
Guo, Yu‐Guo
Zhao, Bin
Wang, Peng‐Fei
Guo, Yu‐Jie
Xiao, Bing
Cheng, Zhiwei
Author_xml – sequence: 1
  givenname: Zhiwei
  surname: Cheng
  fullname: Cheng, Zhiwei
  organization: Xi'an Jiaotong University
– sequence: 2
  givenname: Bin
  surname: Zhao
  fullname: Zhao, Bin
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Yu‐Jie
  surname: Guo
  fullname: Guo, Yu‐Jie
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Lianzheng
  surname: Yu
  fullname: Yu, Lianzheng
  organization: Beijing University of Chemical Technology
– sequence: 5
  givenname: Boheng
  surname: Yuan
  fullname: Yuan, Boheng
  organization: Xi'an Jiaotong University
– sequence: 6
  givenname: Weibo
  surname: Hua
  fullname: Hua, Weibo
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Ya‐Xia
  surname: Yin
  fullname: Yin, Ya‐Xia
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Sailong
  surname: Xu
  fullname: Xu, Sailong
  organization: Beijing University of Chemical Technology
– sequence: 9
  givenname: Bing
  surname: Xiao
  fullname: Xiao, Bing
  email: bingxiao84@xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 10
  givenname: Xiaogang
  surname: Han
  fullname: Han, Xiaogang
  organization: Xi'an Jiaotong University
– sequence: 11
  givenname: Peng‐Fei
  surname: Wang
  fullname: Wang, Peng‐Fei
  email: pfwang@xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 12
  givenname: Yu‐Guo
  orcidid: 0000-0003-0322-8476
  surname: Guo
  fullname: Guo, Yu‐Guo
  email: ygguo@iccas.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNqFkMtqGzEUhkVJoUmabdeCru3qNrdlYpzUYLeBONkOsnRkK8xIjqRJmF2foPQZ-ySVcUmhUKqNBOf7zjn6z9CJ8w4Q-kDJlBLCPklw_ZQRRgkXJX2DTmlJxaSsBTl5fXP2Dl3E-EjyEU0m-Sn6vrLJbmWybovTDvBShi38_PbjwXdDD_h2JyPgdZAuZs477A2-Zbm-HveAZzLtvIaINyO-Gx1kNVmF58aASgd0NXTJ7jvAC-8iNj7gRb8P_hk0vvPaDn3ulEv4SqYEwUJ8j94a2UW4-H2fo_vr-Xr2ebL8erOYXS4nitOKTrSWplE106YuN5xroTamqApR6Pz5wtDGMK2LDQdGqkoBMC0EZEJxWWtuGD9HH4998zZPA8TUPvohuDyyZaVo6qYqaZmp6ZFSwccYwLT7YHsZxpaS9hB7e4i9fY09C-IvQdkkD8GlIG33b605ai-2g_E_Q9rL-ZfVH_cXFoueXg
CitedBy_id crossref_primary_10_1016_j_cplett_2024_141836
crossref_primary_10_1002_adma_202408012
crossref_primary_10_1002_smll_202409041
crossref_primary_10_1002_anie_202411618
crossref_primary_10_1002_adma_202410857
crossref_primary_10_1016_j_jpowsour_2025_236718
crossref_primary_10_1021_acssuschemeng_4c01363
crossref_primary_10_1021_acsami_3c15667
crossref_primary_10_1002_anie_202304628
crossref_primary_10_1021_acsami_3c15947
crossref_primary_10_1016_j_nanoen_2024_109925
crossref_primary_10_1016_j_cej_2025_160147
crossref_primary_10_1021_acsaem_3c00135
crossref_primary_10_2139_ssrn_4133127
crossref_primary_10_1002_aenm_202300636
crossref_primary_10_1016_j_jallcom_2025_179425
crossref_primary_10_1021_acs_nanolett_2c04465
crossref_primary_10_1039_D2RA03601K
crossref_primary_10_1016_j_gerr_2023_100033
crossref_primary_10_1016_j_cej_2024_149879
crossref_primary_10_1021_acsami_3c02514
crossref_primary_10_1016_j_ensm_2023_102775
crossref_primary_10_1016_j_jcis_2023_12_008
crossref_primary_10_1021_acsaem_4c01699
crossref_primary_10_1016_j_jallcom_2024_174007
crossref_primary_10_1021_acsmaterialslett_4c02642
crossref_primary_10_1002_ange_202403585
crossref_primary_10_1016_j_cej_2025_159207
crossref_primary_10_1002_adfm_202303812
crossref_primary_10_1039_D4CC06113F
crossref_primary_10_1149_1945_7111_acc27a
crossref_primary_10_1002_adfm_202205661
crossref_primary_10_1002_aenm_202302321
crossref_primary_10_1016_j_est_2023_109933
crossref_primary_10_1002_smtd_202301759
crossref_primary_10_1039_D2TA09277H
crossref_primary_10_1021_acsaem_4c01982
crossref_primary_10_1002_adfm_202209026
crossref_primary_10_1002_adfm_202211821
crossref_primary_10_1039_D4TA03372H
crossref_primary_10_1039_D4TA01913J
crossref_primary_10_1002_cnl2_7
crossref_primary_10_1002_ange_202411618
crossref_primary_10_1002_adfm_202411082
crossref_primary_10_1002_advs_202304067
crossref_primary_10_1016_j_mattod_2023_06_013
crossref_primary_10_1039_D4TA02122C
crossref_primary_10_1002_adma_202401048
crossref_primary_10_1039_D4TA03250K
crossref_primary_10_1021_acsnano_4c09918
crossref_primary_10_1002_aenm_202300334
crossref_primary_10_1021_acsami_3c16333
crossref_primary_10_1002_cssc_202400768
crossref_primary_10_1016_j_matlet_2024_137002
crossref_primary_10_1063_5_0121824
crossref_primary_10_1039_D3TA04094A
crossref_primary_10_1021_acsnano_4c17035
crossref_primary_10_1002_adma_202415610
crossref_primary_10_1007_s11581_023_05277_4
crossref_primary_10_1016_j_compositesb_2024_111664
crossref_primary_10_1016_j_nxener_2025_100241
crossref_primary_10_1002_adma_202200863
crossref_primary_10_1016_j_apsusc_2024_159395
crossref_primary_10_1039_D2TA06681E
crossref_primary_10_1016_j_elecom_2025_107883
crossref_primary_10_1021_acs_nanolett_4c03358
crossref_primary_10_3390_molecules29245988
crossref_primary_10_20517_microstructures_2023_102
crossref_primary_10_1002_adma_202311432
crossref_primary_10_1016_j_susmat_2024_e01059
crossref_primary_10_1002_adfm_202418018
crossref_primary_10_1021_acsaem_2c03609
crossref_primary_10_1016_j_ensm_2023_03_016
crossref_primary_10_1021_acsami_2c12098
crossref_primary_10_1021_acsami_4c05027
crossref_primary_10_1002_adfm_202411347
crossref_primary_10_1002_anie_202410080
crossref_primary_10_1021_acsami_3c18341
crossref_primary_10_1021_acsami_4c04855
crossref_primary_10_1039_D4RA04790G
crossref_primary_10_1021_jacs_4c04814
crossref_primary_10_1016_j_cej_2023_146950
crossref_primary_10_1002_smm2_1306
crossref_primary_10_1002_aenm_202404093
crossref_primary_10_1016_j_est_2023_110299
crossref_primary_10_1039_D3CS00929G
crossref_primary_10_1007_s11426_022_1364_1
crossref_primary_10_1021_acs_energyfuels_4c05539
crossref_primary_10_15541_jim20240325
crossref_primary_10_1016_j_mtener_2024_101584
crossref_primary_10_1002_anie_202403585
crossref_primary_10_1016_j_jelechem_2023_117596
crossref_primary_10_1007_s12274_023_6249_y
crossref_primary_10_1021_acsami_4c05876
crossref_primary_10_1002_adma_202405989
crossref_primary_10_1016_j_ensm_2022_06_012
crossref_primary_10_1016_j_mtener_2022_101106
crossref_primary_10_1002_ange_202410080
crossref_primary_10_1002_cnl2_48
crossref_primary_10_1016_j_jechem_2022_09_016
crossref_primary_10_1039_D2TA08315A
crossref_primary_10_1002_smll_202310573
crossref_primary_10_1007_s12274_022_4708_5
crossref_primary_10_1002_smll_202400315
crossref_primary_10_1007_s12598_023_02422_w
crossref_primary_10_1016_j_ensm_2024_103248
crossref_primary_10_1002_adma_202408984
crossref_primary_10_1007_s43979_024_00081_z
crossref_primary_10_1002_adfm_202418322
crossref_primary_10_1002_smll_202310978
crossref_primary_10_1016_j_electacta_2022_141373
crossref_primary_10_1002_batt_202400207
crossref_primary_10_1016_j_cjsc_2023_100028
crossref_primary_10_1016_j_jpowsour_2023_232686
crossref_primary_10_1002_bte2_20230022
crossref_primary_10_1021_acsami_4c07264
crossref_primary_10_1016_j_optmat_2024_116458
crossref_primary_10_1039_D4SE01012D
crossref_primary_10_1002_ange_202304628
crossref_primary_10_1002_adfm_202315437
crossref_primary_10_1002_advs_202303108
crossref_primary_10_1039_D3TA05790A
crossref_primary_10_1021_acsnano_3c02290
crossref_primary_10_1016_j_ensm_2024_103518
crossref_primary_10_1002_adma_202402008
crossref_primary_10_1002_aenm_202300149
crossref_primary_10_1016_j_nanoen_2024_109676
crossref_primary_10_1021_acsami_2c05784
crossref_primary_10_1002_adma_202307938
crossref_primary_10_1016_j_ensm_2024_103633
crossref_primary_10_1002_batt_202300476
crossref_primary_10_1016_j_ensm_2023_01_052
crossref_primary_10_1016_j_jcis_2023_10_129
crossref_primary_10_1039_D4EE02359E
crossref_primary_10_1002_cnl2_53
crossref_primary_10_1007_s11581_024_05813_w
crossref_primary_10_1039_D4SC05206D
crossref_primary_10_1021_acsami_3c15720
crossref_primary_10_1016_j_jcis_2024_06_197
crossref_primary_10_1002_smtd_202201555
crossref_primary_10_1002_adfm_202417258
crossref_primary_10_1007_s40843_023_2617_5
crossref_primary_10_1016_j_jallcom_2025_179926
crossref_primary_10_1039_D3NR02373G
crossref_primary_10_1021_acsnano_3c02323
crossref_primary_10_1002_adfm_202406771
crossref_primary_10_1002_smm2_1211
crossref_primary_10_1002_batt_202200473
crossref_primary_10_1021_acsaem_2c01512
crossref_primary_10_1016_j_nanoen_2024_109389
crossref_primary_10_1002_aenm_202302017
crossref_primary_10_1002_smll_202306690
crossref_primary_10_1002_smll_202206248
crossref_primary_10_1021_acs_chemmater_3c01552
crossref_primary_10_1021_acs_iecr_2c01864
crossref_primary_10_1016_j_cej_2023_141515
crossref_primary_10_1088_2515_7655_acd41a
crossref_primary_10_1002_aesr_202300166
crossref_primary_10_1002_cey2_464
crossref_primary_10_1016_j_jallcom_2024_175953
crossref_primary_10_1021_acs_chemmater_4c03201
crossref_primary_10_1039_D4TA02993C
crossref_primary_10_1021_acsami_2c09295
crossref_primary_10_1002_smtd_202201201
crossref_primary_10_1039_D3SE01597A
Cites_doi 10.1039/D0TA04847J
10.1007/s11426-020-9845-5
10.1021/acscentsci.9b01166
10.1002/smll.201805427
10.1039/C8EE02991A
10.1039/C8TA04791J
10.1039/C3CC49856E
10.1021/acs.chemmater.6b04769
10.1002/adma.201700210
10.1021/acsami.9b13013
10.1149/2.0121414jes
10.1016/j.ensm.2020.11.037
10.1007/s11426-018-9422-y
10.1016/j.ensm.2020.04.012
10.1021/cr500192f
10.1002/aenm.201901785
10.1002/aenm.201000061
10.1021/acsami.9b01484
10.1039/C7EE02995K
10.1021/cm502481b
10.1021/jacs.8b08638
10.1002/smll.201805381
10.1021/cm403855t
10.1002/anie.201505215
10.1149/2.0311712jes
10.1039/C9TA02710F
10.1021/acs.chemmater.9b03765
10.1039/C7CP00284J
10.1002/batt.202000226
10.1038/nature05531
10.1126/sciadv.aar6018
10.1038/nchem.2923
10.1021/ic5017802
10.1021/acsenergylett.0c00597
10.1002/adma.201907936
10.1039/c2cp44467d
10.1002/adma.201502449
10.1021/jacs.9b13572
10.1021/jacs.7b05176
10.1002/adma.202001419
10.1016/j.nanoen.2020.104831
10.1039/C9TA01366K
10.1002/anie.201602202
10.1016/j.jpowsour.2014.12.083
10.1149/1.1407247
10.1038/ncomms7954
10.1002/adma.201904816
10.1002/aenm.202100901
10.1016/j.nanoen.2016.06.026
10.1002/aenm.201800212
10.1002/anie.202003972
10.1002/aenm.202001111
10.1021/ic300357d
10.1039/c3ee40847g
10.1002/aenm.202170034
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202103461
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202103461
AENM202103461
Genre article
GrantInformation_xml – fundername: State Key Laboratory of Electrical Insulation and Power Equipment
  funderid: EIPE21304
– fundername: Xi'an Jiaotong University
– fundername: Young Talent Support Plan and Siyuan Scholar of Xi'an Jiaotong University
  funderid: DQ6J011; DQ1J009
– fundername: National Science Foundation of China
  funderid: 52102302; 22108218; 51807146
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3171-ddaf9c82df86b33d4cbf57545d4615f19f2dd5b3e2077cee2d44ef57c3a8d3f23
ISSN 1614-6832
IngestDate Fri Jul 25 12:03:23 EDT 2025
Tue Jul 01 01:43:43 EDT 2025
Thu Apr 24 22:54:02 EDT 2025
Wed Jan 22 16:26:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3171-ddaf9c82df86b33d4cbf57545d4615f19f2dd5b3e2077cee2d44ef57c3a8d3f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0322-8476
PQID 2649897616
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_2649897616
crossref_primary_10_1002_aenm_202103461
crossref_citationtrail_10_1002_aenm_202103461
wiley_primary_10_1002_aenm_202103461_AENM202103461
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 27
2020; 63
2019; 11
2019; 12
2019; 15
2014; 26
2020; 59
2020; 11
2020; 10
2013; 6
2001; 148
2012; 51
2020; 8
2021; 35
2018; 6
2018; 9
2020; 6
2020; 5
2013; 15
2020; 4
2019; 62
2018; 4
2014; 161
2017; 164
2014; 50
2014; 53
2019; 7
2007; 445
2015; 281
2019; 9
2015; 6
2011; 1
2019; 31
2020; 142
2015; 54
2017; 29
2020; 32
2019; 141
2014; 114
2017; 139
2016; 55
2015; 27
2021; 11
2020; 74
2017; 19
2018; 11
2016; 27
2018; 10
2020; 29
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
Zhang X. (e_1_2_7_12_1) 2021; 27
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 11
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 7445
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 1
  start-page: 333
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 11
  start-page: 1470
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 1260
  year: 2014
  publication-title: Chem. Mater.
– volume: 445
  start-page: 631
  year: 2007
  publication-title: Nature
– volume: 62
  start-page: 616
  year: 2019
  publication-title: Sci. China Chem.
– volume: 141
  start-page: 840
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 161
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 15
  start-page: 3304
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 35
  start-page: 620
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 6
  start-page: 2338
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 9
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 139
  start-page: 8440
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2223
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 182
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 27
  start-page: 1
  year: 2021
  publication-title: J. Electrochem.
– volume: 27
  start-page: 6928
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 456
  year: 2020
  publication-title: Batteries Supercaps
– volume: 148
  year: 2001
  publication-title: J. Electrochem. Soc.
– volume: 53
  year: 2014
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 1278
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 6954
  year: 2015
  publication-title: Nat. Commun.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 50
  start-page: 3677
  year: 2014
  publication-title: Chem. Commun.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 63
  start-page: 1402
  year: 2020
  publication-title: Sci. China: Chem.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 164
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 288
  year: 2018
  publication-title: Nat. Chem.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 6
  start-page: 232
  year: 2020
  publication-title: ACS Cent. Sci.
– volume: 51
  start-page: 6211
  year: 2012
  publication-title: Inorg. Chem.
– volume: 27
  start-page: 27
  year: 2016
  publication-title: Nano Energy
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 32
  start-page: 1054
  year: 2020
  publication-title: Chem. Mater.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 26
  start-page: 6165
  year: 2014
  publication-title: Chem. Mater.
– volume: 19
  year: 2017
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1623
  year: 2017
  publication-title: Chem. Mater.
– volume: 281
  start-page: 18
  year: 2015
  publication-title: J. Power Sources
– volume: 142
  start-page: 5742
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_14_1
  doi: 10.1039/D0TA04847J
– ident: e_1_2_7_4_1
  doi: 10.1007/s11426-020-9845-5
– ident: e_1_2_7_46_1
  doi: 10.1021/acscentsci.9b01166
– ident: e_1_2_7_11_1
  doi: 10.1002/smll.201805427
– ident: e_1_2_7_54_1
  doi: 10.1039/C8EE02991A
– ident: e_1_2_7_30_1
  doi: 10.1039/C8TA04791J
– ident: e_1_2_7_34_1
  doi: 10.1039/C3CC49856E
– ident: e_1_2_7_29_1
  doi: 10.1021/acs.chemmater.6b04769
– ident: e_1_2_7_50_1
  doi: 10.1002/adma.201700210
– ident: e_1_2_7_45_1
  doi: 10.1021/acsami.9b13013
– ident: e_1_2_7_53_1
  doi: 10.1149/2.0121414jes
– ident: e_1_2_7_17_1
  doi: 10.1016/j.ensm.2020.11.037
– ident: e_1_2_7_9_1
  doi: 10.1007/s11426-018-9422-y
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ensm.2020.04.012
– ident: e_1_2_7_1_1
  doi: 10.1021/cr500192f
– ident: e_1_2_7_38_1
  doi: 10.1002/aenm.201901785
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.201000061
– ident: e_1_2_7_55_1
  doi: 10.1021/acsami.9b01484
– ident: e_1_2_7_28_1
  doi: 10.1039/C7EE02995K
– ident: e_1_2_7_13_1
  doi: 10.1021/cm502481b
– ident: e_1_2_7_41_1
  doi: 10.1021/jacs.8b08638
– ident: e_1_2_7_8_1
  doi: 10.1002/smll.201805381
– ident: e_1_2_7_42_1
  doi: 10.1021/cm403855t
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.201505215
– ident: e_1_2_7_52_1
  doi: 10.1149/2.0311712jes
– ident: e_1_2_7_40_1
  doi: 10.1039/C9TA02710F
– ident: e_1_2_7_39_1
  doi: 10.1021/acs.chemmater.9b03765
– ident: e_1_2_7_56_1
  doi: 10.1039/C7CP00284J
– ident: e_1_2_7_23_1
  doi: 10.1002/batt.202000226
– ident: e_1_2_7_44_1
  doi: 10.1038/nature05531
– ident: e_1_2_7_31_1
  doi: 10.1126/sciadv.aar6018
– ident: e_1_2_7_48_1
  doi: 10.1038/nchem.2923
– ident: e_1_2_7_51_1
  doi: 10.1021/ic5017802
– ident: e_1_2_7_2_1
  doi: 10.1021/acsenergylett.0c00597
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201907936
– ident: e_1_2_7_21_1
  doi: 10.1039/c2cp44467d
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.201502449
– ident: e_1_2_7_26_1
  doi: 10.1021/jacs.9b13572
– ident: e_1_2_7_15_1
  doi: 10.1021/jacs.7b05176
– ident: e_1_2_7_36_1
  doi: 10.1002/adma.202001419
– ident: e_1_2_7_47_1
  doi: 10.1016/j.nanoen.2020.104831
– ident: e_1_2_7_19_1
  doi: 10.1039/C9TA01366K
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.201602202
– ident: e_1_2_7_32_1
  doi: 10.1016/j.jpowsour.2014.12.083
– ident: e_1_2_7_20_1
  doi: 10.1149/1.1407247
– ident: e_1_2_7_43_1
  doi: 10.1038/ncomms7954
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201904816
– ident: e_1_2_7_6_1
  doi: 10.1002/aenm.202100901
– volume: 27
  start-page: 1
  year: 2021
  ident: e_1_2_7_12_1
  publication-title: J. Electrochem.
– ident: e_1_2_7_22_1
  doi: 10.1016/j.nanoen.2016.06.026
– ident: e_1_2_7_10_1
  doi: 10.1002/aenm.201800212
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202003972
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.202001111
– ident: e_1_2_7_49_1
  doi: 10.1021/ic300357d
– ident: e_1_2_7_5_1
  doi: 10.1039/c3ee40847g
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.202170034
SSID ssj0000491033
Score 2.6778681
Snippet Layered transition metal oxide P2‐Na2/3Ni1/3Mn2/3O2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium...
Layered transition metal oxide P2‐Na 2/3 Ni 1/3 Mn 2/3 O 2 usually suffers from large‐volume phase transitions and different Na‐vacancy ordering during sodium...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Batteries
Cathodes
Density functional theory
electrochemistry
Electrode materials
Flux density
Lithium
Magnesium
Metal ions
P2–O2
Phase transitions
Sodium
Sodium-ion batteries
Titanium
Transition metal oxides
Title Mitigating the Large‐Volume Phase Transition of P2‐Type Cathodes by Synergetic Effect of Multiple Ions for Improved Sodium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202103461
https://www.proquest.com/docview/2649897616
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaW9gIHxK9YKMgHJA6rwK7tpMmxQKFU3WqltqhwiZLYViOVXUQ3QuXEEyBejJfgSfhsx05W_PcSrexZR_F8Gc-MZr4Q8nCicWalHO83Z3Ek4opHaVGJKOHMAGqzUtok9Kf7yc6R2D2OjweDb72qpWZZPq4-_bKv5CJaxRj0arpk_0OzYVEM4Df0iys0jOs_6XhaO4aMtuNpz1R1h-qF19bujGYnOKcch3ntvcMZC1ImDrVtgAupzowvenBuugFNa-OoZTY2RTK-7PCVqawxlYkuGWG81YWsm3dhPQiMHGenr070FLe-2EC5bkN4ym6LugID5ezO25P6o6p7GW2bzX1aBxi_bOzImybcdbcO-MSoTTXA5zUL9rMaCIi7YhhniOE2REna5j5Vf8zROwXrzfooFb2DPBxzP50SjnW2UHNDRYCYlwtHCL9Kxx0k4z_LOvbg7f1pmL9E1hmiFpjd9a3n072DkPRDOAYJ2_Thn88TiY7Zk9WbrDpKXfTTj6GsE3R4jVxtoxe65aB4nQzU_Aa50uO0vEm-dKCkACW1oPz--auDI7VwpB0c6ULTGcO8ASL1QKTlOe2ASB0QjagHIjVApAAi9UCkDohYCVM0QPAWOXqxffhsJ2o_-hFVcGUnkZSFzqqUSZ0mJedSVKVGSCFiiT2J9STTTMq45Aq2BJZEMSmEgkTFi1RyzfhtsjZfzNUdQsdaxlylEjFBIbjMsoJlsuBMY6nNUoyHJPI7nFctI775MMtp7ri8WW40kgeNDMmjIP_eccH8VnLDKyxv7cVZjtAjS-H9T5IhYVaJf1klXwHV3Yv86R653L1dG2Rt-aFR9-FFL8sHLTZ_AFZ0wQU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+the+Large%E2%80%90Volume+Phase+Transition+of+P2%E2%80%90Type+Cathodes+by+Synergetic+Effect+of+Multiple+Ions+for+Improved+Sodium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Cheng%2C+Zhiwei&rft.au=Zhao%2C+Bin&rft.au=Guo%2C+Yu%E2%80%90Jie&rft.au=Yu%2C+Lianzheng&rft.date=2022-04-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202103461&rft.externalDBID=10.1002%252Faenm.202103461&rft.externalDocID=AENM202103461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon