An All‐Fabric Droplet‐Based Energy Harvester with Topology Optimization

The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic condit...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 9
Main Authors Liang, Fei, Chao, Xujiang, Yu, Shudong, Gu, Yuheng, Zhang, Xiaohui, Wei, Xin, Fan, Jintu, Tao, Xiao‐ming, Shou, Dahua
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic conditions. Switched on by an impinged droplet, the bridged closed‐loop electric circuit transfers the accumulated charges by converting the conventional interfacial effect into a bulk effect. Randomly falling droplets cannot always exactly impinge the electrode with the desired spreading contact to achieve a high peak voltage, and a large fraction of low‐voltage direct‐contact and sliding‐contact modes will lead to low output and instability. To address this critical challenge, a topology‐optimized droplet energy harvesting fabric (TO‐DEHF) for stable and efficient output from randomly falling droplets is reported. The optimized fabric electrodes in a hexagonal network feature a stable open‐circuit voltage under moving and rotating patterns, threefold over that with the strip electrodes. The peak power density of the TO‐DEHF (71.8 mW m–2) is 4.8‐fold versus the latter (14.8 mW m–2). Moreover, the all‐fabric TO‐DEHF has high flexibility and breathability, based on which a self‐powered wireless wearable prototype is successfully demonstrated for detection of crucial droplet properties, including temperature, pH, and salinity. A novel topology‐optimized droplet energy harvesting fabric is rationally developed for stable and efficient output from randomly falling droplets. This all‐fabric droplet‐based energy harvester has high flexibility, durability, and breathability, based on which a self‐powered wireless wearable device can detect and monitor the crucial droplet properties, including temperature, pH, and salinity.
AbstractList The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic conditions. Switched on by an impinged droplet, the bridged closed‐loop electric circuit transfers the accumulated charges by converting the conventional interfacial effect into a bulk effect. Randomly falling droplets cannot always exactly impinge the electrode with the desired spreading contact to achieve a high peak voltage, and a large fraction of low‐voltage direct‐contact and sliding‐contact modes will lead to low output and instability. To address this critical challenge, a topology‐optimized droplet energy harvesting fabric (TO‐DEHF) for stable and efficient output from randomly falling droplets is reported. The optimized fabric electrodes in a hexagonal network feature a stable open‐circuit voltage under moving and rotating patterns, threefold over that with the strip electrodes. The peak power density of the TO‐DEHF (71.8 mW m–2) is 4.8‐fold versus the latter (14.8 mW m–2). Moreover, the all‐fabric TO‐DEHF has high flexibility and breathability, based on which a self‐powered wireless wearable prototype is successfully demonstrated for detection of crucial droplet properties, including temperature, pH, and salinity.
The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic conditions. Switched on by an impinged droplet, the bridged closed‐loop electric circuit transfers the accumulated charges by converting the conventional interfacial effect into a bulk effect. Randomly falling droplets cannot always exactly impinge the electrode with the desired spreading contact to achieve a high peak voltage, and a large fraction of low‐voltage direct‐contact and sliding‐contact modes will lead to low output and instability. To address this critical challenge, a topology‐optimized droplet energy harvesting fabric (TO‐DEHF) for stable and efficient output from randomly falling droplets is reported. The optimized fabric electrodes in a hexagonal network feature a stable open‐circuit voltage under moving and rotating patterns, threefold over that with the strip electrodes. The peak power density of the TO‐DEHF (71.8 mW m –2 ) is 4.8‐fold versus the latter (14.8 mW m –2 ). Moreover, the all‐fabric TO‐DEHF has high flexibility and breathability, based on which a self‐powered wireless wearable prototype is successfully demonstrated for detection of crucial droplet properties, including temperature, pH, and salinity.
The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic conditions. Switched on by an impinged droplet, the bridged closed‐loop electric circuit transfers the accumulated charges by converting the conventional interfacial effect into a bulk effect. Randomly falling droplets cannot always exactly impinge the electrode with the desired spreading contact to achieve a high peak voltage, and a large fraction of low‐voltage direct‐contact and sliding‐contact modes will lead to low output and instability. To address this critical challenge, a topology‐optimized droplet energy harvesting fabric (TO‐DEHF) for stable and efficient output from randomly falling droplets is reported. The optimized fabric electrodes in a hexagonal network feature a stable open‐circuit voltage under moving and rotating patterns, threefold over that with the strip electrodes. The peak power density of the TO‐DEHF (71.8 mW m–2) is 4.8‐fold versus the latter (14.8 mW m–2). Moreover, the all‐fabric TO‐DEHF has high flexibility and breathability, based on which a self‐powered wireless wearable prototype is successfully demonstrated for detection of crucial droplet properties, including temperature, pH, and salinity. A novel topology‐optimized droplet energy harvesting fabric is rationally developed for stable and efficient output from randomly falling droplets. This all‐fabric droplet‐based energy harvester has high flexibility, durability, and breathability, based on which a self‐powered wireless wearable device can detect and monitor the crucial droplet properties, including temperature, pH, and salinity.
Author Shou, Dahua
Liang, Fei
Zhang, Xiaohui
Gu, Yuheng
Chao, Xujiang
Wei, Xin
Tao, Xiao‐ming
Yu, Shudong
Fan, Jintu
Author_xml – sequence: 1
  givenname: Fei
  surname: Liang
  fullname: Liang, Fei
  organization: The Hong Kong Polytechnic University
– sequence: 2
  givenname: Xujiang
  surname: Chao
  fullname: Chao, Xujiang
  organization: The Hong Kong Polytechnic University
– sequence: 3
  givenname: Shudong
  surname: Yu
  fullname: Yu, Shudong
  organization: National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology
– sequence: 4
  givenname: Yuheng
  surname: Gu
  fullname: Gu, Yuheng
  organization: The Hong Kong Polytechnic University
– sequence: 5
  givenname: Xiaohui
  surname: Zhang
  fullname: Zhang, Xiaohui
  organization: The Hong Kong Polytechnic University
– sequence: 6
  givenname: Xin
  surname: Wei
  fullname: Wei, Xin
  organization: The Hong Kong Polytechnic University
– sequence: 7
  givenname: Jintu
  surname: Fan
  fullname: Fan, Jintu
  organization: The Hong Kong Polytechnic University
– sequence: 8
  givenname: Xiao‐ming
  surname: Tao
  fullname: Tao, Xiao‐ming
  organization: The Hong Kong Polytechnic University
– sequence: 9
  givenname: Dahua
  orcidid: 0000-0003-3896-7885
  surname: Shou
  fullname: Shou, Dahua
  email: dahua.shou@polyu.edu.hk
  organization: The Hong Kong Polytechnic University
BookMark eNqFkM9OwkAQxjdGExG5em7iubj_uu0eK4IYUS543izLoEtKt26LBE8-gs_ok7iIwcTEOJeZTOY338x3gg5LVwJCZwR3Ccb0QkO57FJMCaZSkgPUIoLwWGQcH-5rRo9Rp64XOASXBDPWQrd5GeVF8fH2PtBTb0105V1VQBMal7qGWdQvwT9uoqH2L1A34KO1bZ6iiatc4UJ_XDV2aV91Y115io7muqih853b6GHQn_SG8Wh8fdPLR7FhJCWxSbBJeZrxRFKQIhQMGymFpiwlmRAARJsZwWJqAKaMgZkJDjgTcw7ESM3a6Hy3t_LueRWuUgu38mWQVFSwhCSpYDxMdXdTxru69jBXlbdL7TeKYLX1TG09U3vPAsB_AcY2X481Xtvib0zusLUtYPOPiMr793c_7CcmB4Qt
CitedBy_id crossref_primary_10_1002_sus2_264
crossref_primary_10_1088_2631_7990_ace66a
crossref_primary_10_1002_advs_202309050
crossref_primary_10_1016_j_matt_2025_102007
crossref_primary_10_3390_s22041668
crossref_primary_10_1002_smll_202402765
crossref_primary_10_1002_adma_202307918
crossref_primary_10_1016_j_xcrp_2022_101108
crossref_primary_10_1002_adfm_202306022
crossref_primary_10_1002_adma_202209713
crossref_primary_10_1002_adfm_202411350
crossref_primary_10_1002_admt_202201294
crossref_primary_10_1016_j_nanoen_2024_110407
crossref_primary_10_1063_5_0101092
crossref_primary_10_1002_adfm_202416749
crossref_primary_10_1016_j_nanoen_2022_108111
crossref_primary_10_1063_5_0148345
crossref_primary_10_1021_acs_nanolett_4c04283
crossref_primary_10_1002_aenm_202302858
crossref_primary_10_1142_S0218348X23500755
crossref_primary_10_1016_j_nanoen_2024_110283
crossref_primary_10_1109_OJNANO_2022_3218960
crossref_primary_10_1021_acsami_4c09044
crossref_primary_10_1016_j_mtcomm_2024_109818
crossref_primary_10_3390_nanoenergyadv3020006
crossref_primary_10_1002_adma_202210915
crossref_primary_10_1002_adfm_202302147
crossref_primary_10_1021_acsami_4c02671
crossref_primary_10_1038_s41467_024_50270_8
crossref_primary_10_1002_adma_202400505
Cites_doi 10.1002/aenm.202003616
10.1002/aenm.201701243
10.1016/j.nanoen.2020.105279
10.1016/j.mattod.2019.05.016
10.1002/advs.201801883
10.1021/acsnano.0c08332
10.1002/adfm.201904350
10.1126/science.abi5484
10.1038/s41586-020-1985-6
10.1016/j.nanoen.2020.104863
10.1038/s41467-020-19059-3
10.1021/acsami.1c03250
10.1126/sciadv.1501478
10.1016/j.joule.2021.03.013
10.1126/sciadv.abe2943
10.1038/s41928-021-00560-6
10.1038/s41378-021-00269-8
10.1002/pip.3229
10.1016/j.nanoen.2020.104526
10.1186/2046-7648-2-4
10.1002/adfm.201803117
10.1021/acsnano.1c04258
10.1002/advs.202100230
10.1126/sciadv.aay9842
10.1038/s41467-019-14278-9
10.1103/PhysRevLett.125.078301
10.1002/adma.201905696
10.1002/adfm.202002401
10.1002/advs.201802230
10.1002/adfm.202102963
10.1002/adma.202100782
10.1002/aenm.202000064
10.1038/s41467-020-16642-6
10.1039/C9EE03046H
10.1007/s00158-013-0978-6
10.1016/j.nanoen.2021.106494
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202102991
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202102991
AENM202102991
Genre article
GrantInformation_xml – fundername: The Hong Kong Polytechnic University
  funderid: CD49
– fundername: Research Grants Council of Hong Kong
  funderid: PolyU152009/17E; PolyU152052
– fundername: Research Grants Council, University Grants Committee
  funderid: PolyU152052/21E
– fundername: Research Institute for Intelligent Wearable Systems
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3171-c50c74784592e9678430c996a2371866ee1acd106bceeb33ecd64e086f4e1c9a3
ISSN 1614-6832
IngestDate Fri Jul 25 12:21:39 EDT 2025
Tue Jul 01 01:43:42 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jun 11 08:26:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3171-c50c74784592e9678430c996a2371866ee1acd106bceeb33ecd64e086f4e1c9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3896-7885
PQID 2635157634
PQPubID 886389
PageCount 10
ParticipantIDs proquest_journals_2635157634
crossref_primary_10_1002_aenm_202102991
crossref_citationtrail_10_1002_aenm_202102991
wiley_primary_10_1002_aenm_202102991_AENM202102991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 8
2021; 7
2017; 7
2018; 28
2021; 5
2013; 48
2021; 4
2019; 6
2013; 2
2019; 30
2020; 14
2020; 13
2020; 78
2020; 11
2020; 10
2020; 125
2020; 32
2021; 90
2021; 13
2020; 6
2021; 15
2021; 31
2016; 2
2021; 33
2021; 11
2020; 30
2020; 74
2020; 70
2020; 28
2020; 578
2019; 29
2021; 373
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 70
  year: 2020
  publication-title: Nano Energy
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 4
  start-page: 175
  year: 2021
  publication-title: Nat. Electron.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 11
  start-page: 399
  year: 2020
  publication-title: Nat. Commun.
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 4
  year: 2013
  publication-title: Extreme Physiol. Med.
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 30
  start-page: 34
  year: 2019
  publication-title: Mater. Today
– volume: 373
  start-page: 692
  year: 2021
  publication-title: Science
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1391
  year: 2021
  publication-title: Joule
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 578
  year: 2020
  publication-title: Prog. Photovolt.: Res. Appl.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 5381
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 685
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 11
  start-page: 2868
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  start-page: 49
  year: 2021
  publication-title: Microsyst. Nanoeng.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 578
  start-page: 392
  year: 2020
  publication-title: Nature
– volume: 48
  start-page: 1031
  year: 2013
  publication-title: Struct. Multidiscip. Optim.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– ident: e_1_2_8_23_1
  doi: 10.1002/aenm.202003616
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.201701243
– ident: e_1_2_8_17_1
  doi: 10.1016/j.nanoen.2020.105279
– ident: e_1_2_8_32_1
  doi: 10.1016/j.mattod.2019.05.016
– ident: e_1_2_8_10_1
  doi: 10.1002/advs.201801883
– ident: e_1_2_8_25_1
  doi: 10.1021/acsnano.0c08332
– ident: e_1_2_8_12_1
  doi: 10.1002/adfm.201904350
– ident: e_1_2_8_30_1
  doi: 10.1126/science.abi5484
– ident: e_1_2_8_27_1
  doi: 10.1038/s41586-020-1985-6
– ident: e_1_2_8_20_1
  doi: 10.1016/j.nanoen.2020.104863
– ident: e_1_2_8_9_1
  doi: 10.1038/s41467-020-19059-3
– ident: e_1_2_8_22_1
  doi: 10.1021/acsami.1c03250
– ident: e_1_2_8_2_1
  doi: 10.1126/sciadv.1501478
– ident: e_1_2_8_4_1
  doi: 10.1016/j.joule.2021.03.013
– ident: e_1_2_8_5_1
  doi: 10.1126/sciadv.abe2943
– ident: e_1_2_8_8_1
  doi: 10.1038/s41928-021-00560-6
– ident: e_1_2_8_34_1
  doi: 10.1038/s41378-021-00269-8
– ident: e_1_2_8_15_1
  doi: 10.1002/pip.3229
– ident: e_1_2_8_18_1
  doi: 10.1016/j.nanoen.2020.104526
– ident: e_1_2_8_36_1
  doi: 10.1186/2046-7648-2-4
– ident: e_1_2_8_24_1
  doi: 10.1002/adfm.201803117
– ident: e_1_2_8_35_1
  doi: 10.1021/acsnano.1c04258
– ident: e_1_2_8_6_1
  doi: 10.1002/advs.202100230
– ident: e_1_2_8_1_1
  doi: 10.1126/sciadv.aay9842
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-019-14278-9
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevLett.125.078301
– ident: e_1_2_8_31_1
  doi: 10.1002/adma.201905696
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.202002401
– ident: e_1_2_8_3_1
  doi: 10.1002/advs.201802230
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202102963
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202100782
– ident: e_1_2_8_26_1
  doi: 10.1002/aenm.202000064
– ident: e_1_2_8_7_1
  doi: 10.1038/s41467-020-16642-6
– ident: e_1_2_8_16_1
  doi: 10.1039/C9EE03046H
– ident: e_1_2_8_29_1
  doi: 10.1007/s00158-013-0978-6
– ident: e_1_2_8_21_1
  doi: 10.1016/j.nanoen.2021.106494
SSID ssj0000491033
Score 2.4931817
Snippet The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms all‐fabric energy harvesters
Circuits
Droplets
droplet‐based electricity generators
dynamic output stabilization
Electric contacts
Electric potential
Energy harvesting
Nanogenerators
Strip
Topology optimization
Transistors
triboelectric nanogenerators
Voltage
Title An All‐Fabric Droplet‐Based Energy Harvester with Topology Optimization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202102991
https://www.proquest.com/docview/2635157634
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFMUCtoDEofI4Mfajo-GJlSQpAccKZxWu-uJ2iq4qMQHOPET-I38EmYf3jhSgcLFSibO2t75djLfZHaGkOeZLAQupDAQeaQCJlZ1MBpJgcu9AJbnUoJp9zabZ8cL9m6ZLgeDVS9rqd3Il-rblftK_kerKEO96l2y_6BZPygK8DXqF4-oYTxeS8dlMyzXa5-vMBFS58UfXeqk8I0Xv8Yfqno4tpv8dC8gUxzBRmAr2yPh6_AETccntyez77CWXY4A2O-jg2ufzGfynLmI8wTOerkCJgK7bM_1p96ytCbWetrWF1vhWyP82J6Ck7kQBLJXn4N1TUPXM7DoDgTZyMU0oS-zZZu8VY576CuuNPa2eKyARlcU0NS1sI2_dqtqz0_4ZDGd8mq8rG6Q_RjpBNrD_fJoNv3go3HIk6IwMbsxuhvsKnyG8avdS-x6MFta0ic3xjup7pDbjlbQ0mLkLhlAc4_c6hWbvE_elw1FtPz8_sPihDqcoMAghFqEUI8QqhFCO4TQPkIekMVkXL05DlwrjUChgxgFKg2V7pTA0iKGAh0UloQKqa6Ik1yXPASIhKqjMJPoNMkkAVVnDJDurhhEqhDJQ7LXXDTwiNCcqTSNAZCpo--6YkggZJiC_j-bSWTzByTopocrV2detztZc1shO-Z6OrmfzgPywp__2VZY-e2Zh91sc7cKv3BdTClC0pzghWOjgb-MwsvxfObfPf7zmE_IzS3gD8ne5rKFp-iFbuQzB6FfnJmEug
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+All%E2%80%90Fabric+Droplet%E2%80%90Based+Energy+Harvester+with+Topology+Optimization&rft.jtitle=Advanced+energy+materials&rft.au=Liang%2C+Fei&rft.au=Chao%2C+Xujiang&rft.au=Yu%2C+Shudong&rft.au=Gu%2C+Yuheng&rft.date=2022-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=9&rft_id=info:doi/10.1002%2Faenm.202102991&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon