An All‐Fabric Droplet‐Based Energy Harvester with Topology Optimization
The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic condit...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic conditions. Switched on by an impinged droplet, the bridged closed‐loop electric circuit transfers the accumulated charges by converting the conventional interfacial effect into a bulk effect. Randomly falling droplets cannot always exactly impinge the electrode with the desired spreading contact to achieve a high peak voltage, and a large fraction of low‐voltage direct‐contact and sliding‐contact modes will lead to low output and instability. To address this critical challenge, a topology‐optimized droplet energy harvesting fabric (TO‐DEHF) for stable and efficient output from randomly falling droplets is reported. The optimized fabric electrodes in a hexagonal network feature a stable open‐circuit voltage under moving and rotating patterns, threefold over that with the strip electrodes. The peak power density of the TO‐DEHF (71.8 mW m–2) is 4.8‐fold versus the latter (14.8 mW m–2). Moreover, the all‐fabric TO‐DEHF has high flexibility and breathability, based on which a self‐powered wireless wearable prototype is successfully demonstrated for detection of crucial droplet properties, including temperature, pH, and salinity.
A novel topology‐optimized droplet energy harvesting fabric is rationally developed for stable and efficient output from randomly falling droplets. This all‐fabric droplet‐based energy harvester has high flexibility, durability, and breathability, based on which a self‐powered wireless wearable device can detect and monitor the crucial droplet properties, including temperature, pH, and salinity. |
---|---|
AbstractList | The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic conditions. Switched on by an impinged droplet, the bridged closed‐loop electric circuit transfers the accumulated charges by converting the conventional interfacial effect into a bulk effect. Randomly falling droplets cannot always exactly impinge the electrode with the desired spreading contact to achieve a high peak voltage, and a large fraction of low‐voltage direct‐contact and sliding‐contact modes will lead to low output and instability. To address this critical challenge, a topology‐optimized droplet energy harvesting fabric (TO‐DEHF) for stable and efficient output from randomly falling droplets is reported. The optimized fabric electrodes in a hexagonal network feature a stable open‐circuit voltage under moving and rotating patterns, threefold over that with the strip electrodes. The peak power density of the TO‐DEHF (71.8 mW m–2) is 4.8‐fold versus the latter (14.8 mW m–2). Moreover, the all‐fabric TO‐DEHF has high flexibility and breathability, based on which a self‐powered wireless wearable prototype is successfully demonstrated for detection of crucial droplet properties, including temperature, pH, and salinity. The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic conditions. Switched on by an impinged droplet, the bridged closed‐loop electric circuit transfers the accumulated charges by converting the conventional interfacial effect into a bulk effect. Randomly falling droplets cannot always exactly impinge the electrode with the desired spreading contact to achieve a high peak voltage, and a large fraction of low‐voltage direct‐contact and sliding‐contact modes will lead to low output and instability. To address this critical challenge, a topology‐optimized droplet energy harvesting fabric (TO‐DEHF) for stable and efficient output from randomly falling droplets is reported. The optimized fabric electrodes in a hexagonal network feature a stable open‐circuit voltage under moving and rotating patterns, threefold over that with the strip electrodes. The peak power density of the TO‐DEHF (71.8 mW m –2 ) is 4.8‐fold versus the latter (14.8 mW m –2 ). Moreover, the all‐fabric TO‐DEHF has high flexibility and breathability, based on which a self‐powered wireless wearable prototype is successfully demonstrated for detection of crucial droplet properties, including temperature, pH, and salinity. The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However, the previously reported strip top electrode is not ideal for optimum generation and stable transfer of charges under practical dynamic conditions. Switched on by an impinged droplet, the bridged closed‐loop electric circuit transfers the accumulated charges by converting the conventional interfacial effect into a bulk effect. Randomly falling droplets cannot always exactly impinge the electrode with the desired spreading contact to achieve a high peak voltage, and a large fraction of low‐voltage direct‐contact and sliding‐contact modes will lead to low output and instability. To address this critical challenge, a topology‐optimized droplet energy harvesting fabric (TO‐DEHF) for stable and efficient output from randomly falling droplets is reported. The optimized fabric electrodes in a hexagonal network feature a stable open‐circuit voltage under moving and rotating patterns, threefold over that with the strip electrodes. The peak power density of the TO‐DEHF (71.8 mW m–2) is 4.8‐fold versus the latter (14.8 mW m–2). Moreover, the all‐fabric TO‐DEHF has high flexibility and breathability, based on which a self‐powered wireless wearable prototype is successfully demonstrated for detection of crucial droplet properties, including temperature, pH, and salinity. A novel topology‐optimized droplet energy harvesting fabric is rationally developed for stable and efficient output from randomly falling droplets. This all‐fabric droplet‐based energy harvester has high flexibility, durability, and breathability, based on which a self‐powered wireless wearable device can detect and monitor the crucial droplet properties, including temperature, pH, and salinity. |
Author | Shou, Dahua Liang, Fei Zhang, Xiaohui Gu, Yuheng Chao, Xujiang Wei, Xin Tao, Xiao‐ming Yu, Shudong Fan, Jintu |
Author_xml | – sequence: 1 givenname: Fei surname: Liang fullname: Liang, Fei organization: The Hong Kong Polytechnic University – sequence: 2 givenname: Xujiang surname: Chao fullname: Chao, Xujiang organization: The Hong Kong Polytechnic University – sequence: 3 givenname: Shudong surname: Yu fullname: Yu, Shudong organization: National & Local Joint Engineering Research Center of Semiconductor Display and Optical Communication Devices, South China University of Technology – sequence: 4 givenname: Yuheng surname: Gu fullname: Gu, Yuheng organization: The Hong Kong Polytechnic University – sequence: 5 givenname: Xiaohui surname: Zhang fullname: Zhang, Xiaohui organization: The Hong Kong Polytechnic University – sequence: 6 givenname: Xin surname: Wei fullname: Wei, Xin organization: The Hong Kong Polytechnic University – sequence: 7 givenname: Jintu surname: Fan fullname: Fan, Jintu organization: The Hong Kong Polytechnic University – sequence: 8 givenname: Xiao‐ming surname: Tao fullname: Tao, Xiao‐ming organization: The Hong Kong Polytechnic University – sequence: 9 givenname: Dahua orcidid: 0000-0003-3896-7885 surname: Shou fullname: Shou, Dahua email: dahua.shou@polyu.edu.hk organization: The Hong Kong Polytechnic University |
BookMark | eNqFkM9OwkAQxjdGExG5em7iubj_uu0eK4IYUS543izLoEtKt26LBE8-gs_ok7iIwcTEOJeZTOY338x3gg5LVwJCZwR3Ccb0QkO57FJMCaZSkgPUIoLwWGQcH-5rRo9Rp64XOASXBDPWQrd5GeVF8fH2PtBTb0105V1VQBMal7qGWdQvwT9uoqH2L1A34KO1bZ6iiatc4UJ_XDV2aV91Y115io7muqih853b6GHQn_SG8Wh8fdPLR7FhJCWxSbBJeZrxRFKQIhQMGymFpiwlmRAARJsZwWJqAKaMgZkJDjgTcw7ESM3a6Hy3t_LueRWuUgu38mWQVFSwhCSpYDxMdXdTxru69jBXlbdL7TeKYLX1TG09U3vPAsB_AcY2X481Xtvib0zusLUtYPOPiMr793c_7CcmB4Qt |
CitedBy_id | crossref_primary_10_1002_sus2_264 crossref_primary_10_1088_2631_7990_ace66a crossref_primary_10_1002_advs_202309050 crossref_primary_10_1016_j_matt_2025_102007 crossref_primary_10_3390_s22041668 crossref_primary_10_1002_smll_202402765 crossref_primary_10_1002_adma_202307918 crossref_primary_10_1016_j_xcrp_2022_101108 crossref_primary_10_1002_adfm_202306022 crossref_primary_10_1002_adma_202209713 crossref_primary_10_1002_adfm_202411350 crossref_primary_10_1002_admt_202201294 crossref_primary_10_1016_j_nanoen_2024_110407 crossref_primary_10_1063_5_0101092 crossref_primary_10_1002_adfm_202416749 crossref_primary_10_1016_j_nanoen_2022_108111 crossref_primary_10_1063_5_0148345 crossref_primary_10_1021_acs_nanolett_4c04283 crossref_primary_10_1002_aenm_202302858 crossref_primary_10_1142_S0218348X23500755 crossref_primary_10_1016_j_nanoen_2024_110283 crossref_primary_10_1109_OJNANO_2022_3218960 crossref_primary_10_1021_acsami_4c09044 crossref_primary_10_1016_j_mtcomm_2024_109818 crossref_primary_10_3390_nanoenergyadv3020006 crossref_primary_10_1002_adma_202210915 crossref_primary_10_1002_adfm_202302147 crossref_primary_10_1021_acsami_4c02671 crossref_primary_10_1038_s41467_024_50270_8 crossref_primary_10_1002_adma_202400505 |
Cites_doi | 10.1002/aenm.202003616 10.1002/aenm.201701243 10.1016/j.nanoen.2020.105279 10.1016/j.mattod.2019.05.016 10.1002/advs.201801883 10.1021/acsnano.0c08332 10.1002/adfm.201904350 10.1126/science.abi5484 10.1038/s41586-020-1985-6 10.1016/j.nanoen.2020.104863 10.1038/s41467-020-19059-3 10.1021/acsami.1c03250 10.1126/sciadv.1501478 10.1016/j.joule.2021.03.013 10.1126/sciadv.abe2943 10.1038/s41928-021-00560-6 10.1038/s41378-021-00269-8 10.1002/pip.3229 10.1016/j.nanoen.2020.104526 10.1186/2046-7648-2-4 10.1002/adfm.201803117 10.1021/acsnano.1c04258 10.1002/advs.202100230 10.1126/sciadv.aay9842 10.1038/s41467-019-14278-9 10.1103/PhysRevLett.125.078301 10.1002/adma.201905696 10.1002/adfm.202002401 10.1002/advs.201802230 10.1002/adfm.202102963 10.1002/adma.202100782 10.1002/aenm.202000064 10.1038/s41467-020-16642-6 10.1039/C9EE03046H 10.1007/s00158-013-0978-6 10.1016/j.nanoen.2021.106494 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202102991 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202102991 AENM202102991 |
Genre | article |
GrantInformation_xml | – fundername: The Hong Kong Polytechnic University funderid: CD49 – fundername: Research Grants Council of Hong Kong funderid: PolyU152009/17E; PolyU152052 – fundername: Research Grants Council, University Grants Committee funderid: PolyU152052/21E – fundername: Research Institute for Intelligent Wearable Systems |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3171-c50c74784592e9678430c996a2371866ee1acd106bceeb33ecd64e086f4e1c9a3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:21:39 EDT 2025 Tue Jul 01 01:43:42 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jun 11 08:26:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3171-c50c74784592e9678430c996a2371866ee1acd106bceeb33ecd64e086f4e1c9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3896-7885 |
PQID | 2635157634 |
PQPubID | 886389 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2635157634 crossref_primary_10_1002_aenm_202102991 crossref_citationtrail_10_1002_aenm_202102991 wiley_primary_10_1002_aenm_202102991_AENM202102991 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 8 2021; 7 2017; 7 2018; 28 2021; 5 2013; 48 2021; 4 2019; 6 2013; 2 2019; 30 2020; 14 2020; 13 2020; 78 2020; 11 2020; 10 2020; 125 2020; 32 2021; 90 2021; 13 2020; 6 2021; 15 2021; 31 2016; 2 2021; 33 2021; 11 2020; 30 2020; 74 2020; 70 2020; 28 2020; 578 2019; 29 2021; 373 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 70 year: 2020 publication-title: Nano Energy – volume: 74 year: 2020 publication-title: Nano Energy – volume: 4 start-page: 175 year: 2021 publication-title: Nat. Electron. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 11 start-page: 399 year: 2020 publication-title: Nat. Commun. – volume: 15 year: 2021 publication-title: ACS Nano – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 2 start-page: 4 year: 2013 publication-title: Extreme Physiol. Med. – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 14 year: 2020 publication-title: ACS Nano – volume: 30 start-page: 34 year: 2019 publication-title: Mater. Today – volume: 373 start-page: 692 year: 2021 publication-title: Science – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 5 start-page: 1391 year: 2021 publication-title: Joule – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 578 year: 2020 publication-title: Prog. Photovolt.: Res. Appl. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 11 start-page: 5381 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 685 year: 2020 publication-title: Energy Environ. Sci. – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 11 start-page: 2868 year: 2020 publication-title: Nat. Commun. – volume: 7 start-page: 49 year: 2021 publication-title: Microsyst. Nanoeng. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 578 start-page: 392 year: 2020 publication-title: Nature – volume: 48 start-page: 1031 year: 2013 publication-title: Struct. Multidiscip. Optim. – volume: 8 year: 2021 publication-title: Adv. Sci. – ident: e_1_2_8_23_1 doi: 10.1002/aenm.202003616 – ident: e_1_2_8_11_1 doi: 10.1002/aenm.201701243 – ident: e_1_2_8_17_1 doi: 10.1016/j.nanoen.2020.105279 – ident: e_1_2_8_32_1 doi: 10.1016/j.mattod.2019.05.016 – ident: e_1_2_8_10_1 doi: 10.1002/advs.201801883 – ident: e_1_2_8_25_1 doi: 10.1021/acsnano.0c08332 – ident: e_1_2_8_12_1 doi: 10.1002/adfm.201904350 – ident: e_1_2_8_30_1 doi: 10.1126/science.abi5484 – ident: e_1_2_8_27_1 doi: 10.1038/s41586-020-1985-6 – ident: e_1_2_8_20_1 doi: 10.1016/j.nanoen.2020.104863 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-020-19059-3 – ident: e_1_2_8_22_1 doi: 10.1021/acsami.1c03250 – ident: e_1_2_8_2_1 doi: 10.1126/sciadv.1501478 – ident: e_1_2_8_4_1 doi: 10.1016/j.joule.2021.03.013 – ident: e_1_2_8_5_1 doi: 10.1126/sciadv.abe2943 – ident: e_1_2_8_8_1 doi: 10.1038/s41928-021-00560-6 – ident: e_1_2_8_34_1 doi: 10.1038/s41378-021-00269-8 – ident: e_1_2_8_15_1 doi: 10.1002/pip.3229 – ident: e_1_2_8_18_1 doi: 10.1016/j.nanoen.2020.104526 – ident: e_1_2_8_36_1 doi: 10.1186/2046-7648-2-4 – ident: e_1_2_8_24_1 doi: 10.1002/adfm.201803117 – ident: e_1_2_8_35_1 doi: 10.1021/acsnano.1c04258 – ident: e_1_2_8_6_1 doi: 10.1002/advs.202100230 – ident: e_1_2_8_1_1 doi: 10.1126/sciadv.aay9842 – ident: e_1_2_8_33_1 doi: 10.1038/s41467-019-14278-9 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevLett.125.078301 – ident: e_1_2_8_31_1 doi: 10.1002/adma.201905696 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.202002401 – ident: e_1_2_8_3_1 doi: 10.1002/advs.201802230 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202102963 – ident: e_1_2_8_19_1 doi: 10.1002/adma.202100782 – ident: e_1_2_8_26_1 doi: 10.1002/aenm.202000064 – ident: e_1_2_8_7_1 doi: 10.1038/s41467-020-16642-6 – ident: e_1_2_8_16_1 doi: 10.1039/C9EE03046H – ident: e_1_2_8_29_1 doi: 10.1007/s00158-013-0978-6 – ident: e_1_2_8_21_1 doi: 10.1016/j.nanoen.2021.106494 |
SSID | ssj0000491033 |
Score | 2.4931817 |
Snippet | The output power density of a triboelectric nanogenerator can be enhanced by several orders of magnitude by a field‐effect transistor like structure. However,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | all‐fabric energy harvesters Circuits Droplets droplet‐based electricity generators dynamic output stabilization Electric contacts Electric potential Energy harvesting Nanogenerators Strip Topology optimization Transistors triboelectric nanogenerators Voltage |
Title | An All‐Fabric Droplet‐Based Energy Harvester with Topology Optimization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202102991 https://www.proquest.com/docview/2635157634 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9gIHxFMUCtoDEofI4Mfajo-GJlSQpAccKZxWu-uJ2iq4qMQHOPET-I38EmYf3jhSgcLFSibO2t75djLfZHaGkOeZLAQupDAQeaQCJlZ1MBpJgcu9AJbnUoJp9zabZ8cL9m6ZLgeDVS9rqd3Il-rblftK_kerKEO96l2y_6BZPygK8DXqF4-oYTxeS8dlMyzXa5-vMBFS58UfXeqk8I0Xv8Yfqno4tpv8dC8gUxzBRmAr2yPh6_AETccntyez77CWXY4A2O-jg2ufzGfynLmI8wTOerkCJgK7bM_1p96ytCbWetrWF1vhWyP82J6Ck7kQBLJXn4N1TUPXM7DoDgTZyMU0oS-zZZu8VY576CuuNPa2eKyARlcU0NS1sI2_dqtqz0_4ZDGd8mq8rG6Q_RjpBNrD_fJoNv3go3HIk6IwMbsxuhvsKnyG8avdS-x6MFta0ic3xjup7pDbjlbQ0mLkLhlAc4_c6hWbvE_elw1FtPz8_sPihDqcoMAghFqEUI8QqhFCO4TQPkIekMVkXL05DlwrjUChgxgFKg2V7pTA0iKGAh0UloQKqa6Ik1yXPASIhKqjMJPoNMkkAVVnDJDurhhEqhDJQ7LXXDTwiNCcqTSNAZCpo--6YkggZJiC_j-bSWTzByTopocrV2detztZc1shO-Z6OrmfzgPywp__2VZY-e2Zh91sc7cKv3BdTClC0pzghWOjgb-MwsvxfObfPf7zmE_IzS3gD8ne5rKFp-iFbuQzB6FfnJmEug |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+All%E2%80%90Fabric+Droplet%E2%80%90Based+Energy+Harvester+with+Topology+Optimization&rft.jtitle=Advanced+energy+materials&rft.au=Liang%2C+Fei&rft.au=Chao%2C+Xujiang&rft.au=Yu%2C+Shudong&rft.au=Gu%2C+Yuheng&rft.date=2022-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=9&rft_id=info:doi/10.1002%2Faenm.202102991&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |