Construction of Organic‐Rich Solid Electrolyte Interphase for Long‐Cycling Lithium–Sulfur Batteries
Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SE...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 5 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm−2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg−1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries.
A robust organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the lithium polysulfide parasitic reactions and achieve long‐cycling lithium–sulfur batteries. The organic‐rich SEI constructed by the decomposition of 1,3,5‐trioxane effectively protects lithium metal anodes during cycling while the routine SEI induces inhomogeneous lithium deposition and rapid lithium anode failure. |
---|---|
AbstractList | Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm−2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg−1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries.
A robust organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the lithium polysulfide parasitic reactions and achieve long‐cycling lithium–sulfur batteries. The organic‐rich SEI constructed by the decomposition of 1,3,5‐trioxane effectively protects lithium metal anodes during cycling while the routine SEI induces inhomogeneous lithium deposition and rapid lithium anode failure. Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm−2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg−1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries. Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm −2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg −1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries. |
Author | Li, Yuan Li, Zheng Ma, Jin Zhang, Qiang Hou, Li‐Peng Bi, Chen‐Xi Li, Xi‐Yao Li, Bo‐Quan Zhang, Qian‐Kui Zhang, Xue‐Qiang Wen, Rui |
Author_xml | – sequence: 1 givenname: Zheng surname: Li fullname: Li, Zheng organization: Tsinghua University – sequence: 2 givenname: Yuan surname: Li fullname: Li, Yuan organization: Institute of Chemistry, Chinese Academy of Sciences – sequence: 3 givenname: Chen‐Xi surname: Bi fullname: Bi, Chen‐Xi organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Qian‐Kui surname: Zhang fullname: Zhang, Qian‐Kui organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Li‐Peng surname: Hou fullname: Hou, Li‐Peng organization: Tsinghua University – sequence: 6 givenname: Xi‐Yao surname: Li fullname: Li, Xi‐Yao organization: Tsinghua University – sequence: 7 givenname: Jin surname: Ma fullname: Ma, Jin organization: Tsinghua University – sequence: 8 givenname: Xue‐Qiang surname: Zhang fullname: Zhang, Xue‐Qiang organization: University of Chinese Academy of Sciences – sequence: 9 givenname: Bo‐Quan surname: Li fullname: Li, Bo‐Quan email: libq@bit.edu.cn organization: Beijing Institute of Technology – sequence: 10 givenname: Rui surname: Wen fullname: Wen, Rui email: ruiwen@iccas.ac.cn organization: Institute of Chemistry, Chinese Academy of Sciences – sequence: 11 givenname: Qiang orcidid: 0000-0002-3929-1541 surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNqFkMtKAzEUQINUsK1uXQdctyaTeWVZx1YLlYIPcDdkMkmbMk1qkkFm108Q_MN-iVMqFQRxde_inHvh9EBHGy0AuMRoiBEKrlkp18MABQSFUYhPQBfHOB4QFKSd445fz0DPuRVCOElI2AUqM9p5W3OvjIZGwrldMK34bvvxqPgSPplKlXBcCe6tqRov4FR7YTdL5gSUxsKZ0YsWzhpeKb2AM-WXql7vtp9PdSVrC2-Yb3kl3Dk4laxy4uJ79sHLZPyc3Q9m87tpNpoNOMEJHlBGUUGKMk7CUhSMBnEh00TSkgRFQSUqWVJKmUpJRYrjVPIUo5DGkYxLQqNAkD64OtzdWPNWC-fzlamtbl_mAcU0IimK4pYaHihujXNWyHxj1ZrZJsco3-fM9znzY85WCH8JXHm2r-YtU9XfGj1o76oSzT9P8tHt5OHH_QJa1JEy |
CitedBy_id | crossref_primary_10_1002_anie_202500425 crossref_primary_10_1039_D4TA08542F crossref_primary_10_1021_acsenergylett_4c02703 crossref_primary_10_1360_SSC_2023_0248 crossref_primary_10_1021_acsami_4c10855 crossref_primary_10_1002_batt_202400544 crossref_primary_10_1002_bte2_20240051 crossref_primary_10_1002_aenm_202402506 crossref_primary_10_1002_ceat_202300320 crossref_primary_10_1002_aenm_202400926 crossref_primary_10_1039_D4EE04478A crossref_primary_10_1002_ange_202500425 crossref_primary_10_1021_acsami_4c21261 crossref_primary_10_1002_smtd_202401701 crossref_primary_10_1002_anie_202412859 crossref_primary_10_1002_aenm_202406069 crossref_primary_10_1002_adfm_202414159 crossref_primary_10_1002_cssc_202301777 crossref_primary_10_1016_j_ces_2024_121107 crossref_primary_10_1002_ange_202412859 crossref_primary_10_1002_smll_202405141 crossref_primary_10_1002_aenm_202403845 crossref_primary_10_1002_adfm_202500077 crossref_primary_10_1007_s12598_024_02931_2 crossref_primary_10_20517_energymater_2024_291 crossref_primary_10_3390_nano15010035 |
Cites_doi | 10.1093/nsr/nwad118 10.1021/jp408037e 10.1039/C5EE02837J 10.1002/sus2.4 10.1021/acs.jpcc.1c04559 10.1002/aenm.202000082 10.1002/adfm.201801323 10.1002/aenm.202003092 10.1002/aenm.202103972 10.1016/j.ensm.2022.07.035 10.1149/2.111308jes 10.1002/adfm.202105253 10.1021/acsaem.1c00321 10.1016/j.chempr.2021.02.025 10.1002/batt.202000016 10.1002/admi.201701097 10.1016/0013-4686(90)87055-7 10.1021/acsnano.7b00596 10.1002/anie.202103470 10.1002/bte2.20220006 10.1002/anie.202207907 10.1002/adma.202205284 10.1021/acsenergylett.0c02527 10.1016/j.ensm.2021.01.008 10.1038/nmat3191 10.1016/j.joule.2020.02.006 10.1149/1945-7111/ab7a81 10.1002/sus2.37 10.1016/j.mattod.2020.10.021 10.1021/acsenergylett.6b00194 10.1016/0013-4686(90)87056-8 10.1021/jacs.1c04222 10.1016/j.jpowsour.2022.232144 10.1038/s41560-019-0351-0 10.1002/aenm.202101004 10.1038/s41467-022-32139-w 10.1002/adma.201700598 10.1021/acsaem.0c01114 10.1002/adma.202201555 10.1016/j.chempr.2021.12.023 10.1149/1.3148721 10.1016/j.apsusc.2020.147983 10.1039/D0EE01074J 10.1016/j.jechem.2021.12.024 10.1016/j.ensm.2020.06.043 10.1039/C4EE00372A 10.1002/anie.202103303 10.1038/s41560-018-0214-0 10.1002/anie.202204776 10.1002/adfm.202213362 10.1016/j.joule.2018.03.008 10.1002/adma.201700542 10.1038/s41557-018-0166-9 10.1002/adfm.202205471 10.1038/35104644 10.1002/aenm.201700260 10.1021/jacs.2c04176 10.1038/s41929-020-0498-x 10.1039/D1EE00531F 10.1021/acsenergylett.0c01545 10.1016/j.matt.2019.05.016 10.1016/j.chempr.2020.06.032 10.1002/adma.202108252 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202304541 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202304541 ADFM202304541 |
Genre | article |
GrantInformation_xml | – fundername: CAS Project for Young Scientists in Basic Research funderid: YSBR‐058 – fundername: Key Research and Development Program of Yunnan Province funderid: 202103AA080019 – fundername: Seed Fund of Shanxi Research Institute for Clean Energy funderid: SXKYJF015 – fundername: Beijing Institute of Technology Research Fund Program for Young Scholars – fundername: National Natural Science Foundation of China funderid: 22109007; 22109011; 22209010 – fundername: Ordos‐Tsinghua Innovative & Collaborative Research Program in Carbon Neutrality – fundername: National Key Research and Development Program funderid: 2021YFB2400300; 2021YFB2500300 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3171-9a90b3bd674deba926bf87f9d32bb9f0da7dff8ff9e8168fc8104965f6d3952e3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 08:16:14 EDT 2025 Tue Jul 01 00:30:46 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Wed Jan 22 16:15:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3171-9a90b3bd674deba926bf87f9d32bb9f0da7dff8ff9e8168fc8104965f6d3952e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3929-1541 |
PQID | 2919538056 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2919538056 crossref_primary_10_1002_adfm_202304541 crossref_citationtrail_10_1002_adfm_202304541 wiley_primary_10_1002_adfm_202304541_ADFM202304541 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2020 2020 2022 2019; 6 3 13 1 2017; 7 2013 2020; 160 167 2021; 6 2018 2018; 28 5 2012 2018; 11 2 2021; 45 1990; 35 2022 2022; 550 68 2022 2022; 8 34 2017; 29 2021; 143 2001 2021 2021 2021 2021 2021 2023 2023; 414 1 1 31 7 14 33 10 1990 2019; 35 11 2022; 144 2022 2022; 34 12 2016; 1 2020; 3 2013 2016; 117 9 2020 2020; 11 10 2017 2021 2022 2019 2017; 29 60 32 4 11 2020 2020; 5 3 2014 2018; 7 3 2022; 61 2021; 537 2022 2020; 34 4 2021 2020; 4 32 2022; 53 2021; 60 2007 2009; 156 2022 2020; 1 13 2021 2021 2021; 36 125 11 e_1_2_7_1_6 e_1_2_7_1_5 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_1_8 e_1_2_7_7_2 e_1_2_7_1_7 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_2 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_33_3 e_1_2_7_33_4 e_1_2_7_33_5 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_2 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_8_4 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 34 4 start-page: 539 year: 2022 2020 publication-title: Adv. Mater. Joule – volume: 45 start-page: 62 year: 2021 publication-title: Mater. Today – volume: 117 9 start-page: 224 year: 2013 2016 publication-title: J. Phys. Chem. C Energy Environ. Sci. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 1 13 start-page: 2501 year: 2022 2020 publication-title: Battery Energy Energy Environ. Sci. – volume: 550 68 start-page: 300 year: 2022 2022 publication-title: J. Power Sources J. Energy Chem. – volume: 6 3 13 1 start-page: 2533 762 4811 317 year: 2020 2020 2022 2019 publication-title: Chem Nat. Catal. Nat. Commun. Matter – volume: 7 3 start-page: 2697 783 year: 2014 2018 publication-title: Energy Environ. Sci. Nat. Energy – volume: 53 start-page: 315 year: 2022 publication-title: Energy Storage Mater. – volume: 5 3 start-page: 3140 8457 year: 2020 2020 publication-title: ACS Energy Lett. ACS Appl. Energy Mater. – volume: 537 year: 2021 publication-title: Appl. Surf. Sci. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 34 12 year: 2022 2022 publication-title: Adv. Mater. Adv. Energy Mater. – volume: 144 year: 2022 publication-title: J. Am. Chem. Soc. – volume: 8 34 start-page: 1083 year: 2022 2022 publication-title: Chem Adv. Mater. – volume: 3 start-page: 828 year: 2020 publication-title: Batteries Supercaps – volume: 1 start-page: 503 year: 2016 publication-title: ACS Energy Lett. – volume: 35 11 start-page: 625 64 year: 1990 2019 publication-title: Electrochim. Acta Nat. Chem. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 156 start-page: A694 year: 2007 2009 publication-title: J. Electrochem. Soc. – volume: 29 60 32 4 11 start-page: 374 4694 year: 2017 2021 2022 2019 2017 publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. Nat. Energy ACS Nano – volume: 160 167 year: 2013 2020 publication-title: J. Electrochem. Soc. J. Electrochem. Soc. – volume: 36 125 11 start-page: 333 year: 2021 2021 2021 publication-title: Energy Storage Mater. J. Phys. Chem. C Adv. Energy Mater. – volume: 35 start-page: 639 year: 1990 publication-title: Electrochim. Acta – volume: 414 1 1 31 7 14 33 10 start-page: 359 38 506 2312 4177 year: 2001 2021 2021 2021 2021 2021 2023 2023 publication-title: Nature SusMat SusMat Adv. Funct. Mater. Chem Energy Environ. Sci. Adv. Funct. Mater. Natl. Sci. Rev. – volume: 6 start-page: 537 year: 2021 publication-title: ACS Energy Lett. – volume: 4 32 start-page: 4711 320 year: 2021 2020 publication-title: ACS Appl. Energy Mater. Energy Storage Mater. – volume: 11 10 year: 2020 2020 publication-title: Adv. Energy Mater. Adv. Energy Mater. – volume: 11 2 start-page: 19 833 year: 2012 2018 publication-title: Nat. Mater. Joule – volume: 28 5 year: 2018 2018 publication-title: Adv. Funct. Mater. Adv. Mater. Interfaces – ident: e_1_2_7_1_8 doi: 10.1093/nsr/nwad118 – ident: e_1_2_7_15_1 doi: 10.1021/jp408037e – ident: e_1_2_7_15_2 doi: 10.1039/C5EE02837J – ident: e_1_2_7_1_2 doi: 10.1002/sus2.4 – ident: e_1_2_7_18_2 doi: 10.1021/acs.jpcc.1c04559 – ident: e_1_2_7_22_2 doi: 10.1002/aenm.202000082 – ident: e_1_2_7_13_1 doi: 10.1002/adfm.201801323 – ident: e_1_2_7_22_1 doi: 10.1002/aenm.202003092 – ident: e_1_2_7_28_2 doi: 10.1002/aenm.202103972 – ident: e_1_2_7_32_1 doi: 10.1016/j.ensm.2022.07.035 – ident: e_1_2_7_16_1 doi: 10.1149/2.111308jes – ident: e_1_2_7_1_4 doi: 10.1002/adfm.202105253 – ident: e_1_2_7_7_1 doi: 10.1021/acsaem.1c00321 – ident: e_1_2_7_1_5 doi: 10.1016/j.chempr.2021.02.025 – ident: e_1_2_7_21_1 doi: 10.1002/batt.202000016 – ident: e_1_2_7_13_2 doi: 10.1002/admi.201701097 – ident: e_1_2_7_29_1 doi: 10.1016/0013-4686(90)87055-7 – ident: e_1_2_7_33_5 doi: 10.1021/acsnano.7b00596 – ident: e_1_2_7_19_1 doi: 10.1002/anie.202103470 – ident: e_1_2_7_10_1 doi: 10.1002/bte2.20220006 – ident: e_1_2_7_26_1 doi: 10.1002/anie.202207907 – ident: e_1_2_7_20_2 doi: 10.1002/adma.202205284 – ident: e_1_2_7_4_1 doi: 10.1021/acsenergylett.0c02527 – ident: e_1_2_7_18_1 doi: 10.1016/j.ensm.2021.01.008 – ident: e_1_2_7_2_1 doi: 10.1038/nmat3191 – ident: e_1_2_7_12_2 doi: 10.1016/j.joule.2020.02.006 – ident: e_1_2_7_16_2 doi: 10.1149/1945-7111/ab7a81 – ident: e_1_2_7_1_3 doi: 10.1002/sus2.37 – ident: e_1_2_7_9_1 doi: 10.1016/j.mattod.2020.10.021 – ident: e_1_2_7_14_1 doi: 10.1021/acsenergylett.6b00194 – ident: e_1_2_7_30_1 doi: 10.1016/0013-4686(90)87056-8 – ident: e_1_2_7_27_1 doi: 10.1021/jacs.1c04222 – ident: e_1_2_7_24_1 doi: 10.1016/j.jpowsour.2022.232144 – ident: e_1_2_7_33_4 doi: 10.1038/s41560-019-0351-0 – ident: e_1_2_7_18_3 doi: 10.1002/aenm.202101004 – ident: e_1_2_7_8_3 doi: 10.1038/s41467-022-32139-w – ident: e_1_2_7_33_1 doi: 10.1002/adma.201700598 – ident: e_1_2_7_11_2 doi: 10.1021/acsaem.0c01114 – ident: e_1_2_7_12_1 doi: 10.1002/adma.202201555 – ident: e_1_2_7_20_1 doi: 10.1016/j.chempr.2021.12.023 – ident: e_1_2_7_23_2 doi: 10.1149/1.3148721 – ident: e_1_2_7_31_1 doi: 10.1016/j.apsusc.2020.147983 – ident: e_1_2_7_10_2 doi: 10.1039/D0EE01074J – ident: e_1_2_7_24_2 doi: 10.1016/j.jechem.2021.12.024 – ident: e_1_2_7_7_2 doi: 10.1016/j.ensm.2020.06.043 – ident: e_1_2_7_17_1 doi: 10.1039/C4EE00372A – ident: e_1_2_7_33_2 doi: 10.1002/anie.202103303 – ident: e_1_2_7_17_2 doi: 10.1038/s41560-018-0214-0 – ident: e_1_2_7_25_1 doi: 10.1002/anie.202204776 – ident: e_1_2_7_1_7 doi: 10.1002/adfm.202213362 – ident: e_1_2_7_2_2 doi: 10.1016/j.joule.2018.03.008 – ident: e_1_2_7_6_1 doi: 10.1002/adma.201700542 – ident: e_1_2_7_29_2 doi: 10.1038/s41557-018-0166-9 – ident: e_1_2_7_33_3 doi: 10.1002/adfm.202205471 – ident: e_1_2_7_1_1 doi: 10.1038/35104644 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_7_5_1 doi: 10.1021/jacs.2c04176 – ident: e_1_2_7_8_2 doi: 10.1038/s41929-020-0498-x – ident: e_1_2_7_1_6 doi: 10.1039/D1EE00531F – ident: e_1_2_7_11_1 doi: 10.1021/acsenergylett.0c01545 – ident: e_1_2_7_8_4 doi: 10.1016/j.matt.2019.05.016 – ident: e_1_2_7_23_1 – ident: e_1_2_7_8_1 doi: 10.1016/j.chempr.2020.06.032 – ident: e_1_2_7_28_1 doi: 10.1002/adma.202108252 |
SSID | ssj0017734 |
Score | 2.601285 |
Snippet | Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Cycles Decomposition reactions Electrolytes Electrolytic cells Energy storage Life span Lithium lithium metal anodes lithium polysulfides Lithium sulfur batteries pouch cells solid electrolyte interphases Solid electrolytes Sulfur |
Title | Construction of Organic‐Rich Solid Electrolyte Interphase for Long‐Cycling Lithium–Sulfur Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202304541 https://www.proquest.com/docview/2919538056 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA2iG134FqtVshBcTZ1mHpksSx8UaV1YC90NySRXi7UV2y505ScI_mG_xGQyM1ZBBN1NIBlmcvM4ubnnXITOqMcAQqmcKBLc8QMKTuR5vkOThEh9gAAaGL5z9yps9_3LQTBYYvFbfYjC4WZmRrpemwnOxfTiUzSUSzBMcuPUDFLmugnYMqjoutCPqlJqr5XDqgnwqg5y1UaXXHxt_nVX-oSay4A13XFaW4jn32oDTe4r85moJC_fZBz_8zPbaDODo7hmx88OWlHjXbSxJFK4h4Ymp2euMosngC19M1m8vhlWPu5NRkOJmzadzuh5prANZLzT-yPWkBh3JuNbXbn-bFiYt7gznN0N5w-L1_fefATzJ2wlPvWJfR_1W82betvJEjQ4iYYdVYdx5gpPyJD6UgnOSCggosCkR4Rg4EpOJUAEwJRJ7wFJpA9_LAz04PBYQJR3gFbHk7E6RNiXYRIBJcrn3OhXCr2QUOFLIV3QBa-EnNxAcZKpl5skGqPY6i6T2HRhXHRhCZ0X9R-tbsePNcu5veNs_k5jwsz1YqTRYQmR1HC_vCWuNVrdonT0l0bHaF0_-9a_U0ar2rLqRCOemThFa7VGt9M7TUf3B-hU_e4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQwAckToHWWRwfUaEq0PZAQeIWxbEHIkqLID3AiU9A4g_5Ejx1EhYJIcHRkR0lHi_P43lvCNnhrgAIlHbCUMaO53NwQtf1HJ4kTJkDBHAf-c6dbtC68E4u_SKaELkwVh-idLjhzBiv1zjB0SG9_6EaGitAKjl6NX2krk9hWm-Uzz88KxWk6pzbi-WgjiFe9ctCt7HG9r-2_7ovfYDNz5B1vOc054ksvtaGmtzsjTK5lzx9E3L81-8skLkckdIDO4QWyYQeLJHZTzqFyyTFtJ6F0CwdArUMzuTt-QWJ-bQ37KeKHtmMOv3HTFMby3httkhqUDFtDwdXpnLjEYmYV7SdZtfp6Pbt-bU36sPonlqVT3NoXyEXzaPzRsvJczQ4iUEedUfEoiZdqQLuKS1jwQIJIQehXCalgJqKuQIIAYTGDB-QhOb8JwLfjA9X-Ey7q2RyMBzoNUI9FSQhcKa9OEYJS2nWEi49JVUNTMGtEKewUJTkAuaYR6MfWellFmEXRmUXVshuWf_OSnf8WLNaGDzKp_BDxATeMIYGIFYIG1vul7dEB4fNTlla_0ujbTLdOu-0o_Zx93SDzJjnnnX3VMmksbLeNAAok1vjIf4OvG0AhQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIPrgXZzXPAg-dXZp2jSPslm8TBHnYG-laXJ0OLeh24M--RME_6G_xGRpuymIoI8pSWlzzkm-XL7vILTPPA4QSOWEoUgc6jNwQs-jDktTIvUCAphv-M4Xl8FJk561_NYEi9_qQxQbbiYyRuO1CfC-hMOxaGgiwTDJzaamb5jrMzRwuUneULsuBKQqjNlz5aBibnhVWrlso0sOv7b_Oi2NseYkYh1NOdEiSvKPtTdN7svDgSinL990HP_zN0toIcOj-Mg60DKaUt0VND-hUriK2iapZy4zi3uALX8z_Xh9M7R83Oh12hIf23w6neeBwvYm452eILHGxLje697qytVnQ8O8xfX24K49fPh4fW8MOzB8xFbjUy_Z11AzOr6pnjhZhgYn1bij4vCEu8ITMmBUKpFwEggIGXDpESE4uDJhEiAE4Mrk94A01Ks_HvjaOzzuE-Wto-lur6s2EKYySENgRNEkMQKWQo8kTFAppAu64JWQkxsoTjP5cpNFoxNb4WUSmy6Miy4soYOift8Kd_xYczu3d5wF8FNMuDlfDDU8LCEyMtwvb4mPatFFUdr8S6M9NHtVi-L66eX5FprTj6nd69lG09rIakejn4HYHTn4J8Fb_yU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Organic%E2%80%90Rich+Solid+Electrolyte+Interphase+for+Long%E2%80%90Cycling+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Zheng&rft.au=Li%2C+Yuan&rft.au=Bi%2C+Chen%E2%80%90Xi&rft.au=Zhang%2C+Qian%E2%80%90Kui&rft.date=2024-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.202304541&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202304541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |