Construction of Organic‐Rich Solid Electrolyte Interphase for Long‐Cycling Lithium–Sulfur Batteries

Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SE...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 5
Main Authors Li, Zheng, Li, Yuan, Bi, Chen‐Xi, Zhang, Qian‐Kui, Hou, Li‐Peng, Li, Xi‐Yao, Ma, Jin, Zhang, Xue‐Qiang, Li, Bo‐Quan, Wen, Rui, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm−2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg−1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries. A robust organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the lithium polysulfide parasitic reactions and achieve long‐cycling lithium–sulfur batteries. The organic‐rich SEI constructed by the decomposition of 1,3,5‐trioxane effectively protects lithium metal anodes during cycling while the routine SEI induces inhomogeneous lithium deposition and rapid lithium anode failure.
AbstractList Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm−2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg−1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries. A robust organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the lithium polysulfide parasitic reactions and achieve long‐cycling lithium–sulfur batteries. The organic‐rich SEI constructed by the decomposition of 1,3,5‐trioxane effectively protects lithium metal anodes during cycling while the routine SEI induces inhomogeneous lithium deposition and rapid lithium anode failure.
Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm−2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg−1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries.
Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium polysulfides (LiPSs) and Li metal anodes render limited cycling lifespan of Li–S batteries. Herein, an organic‐rich solid electrolyte interphase (SEI) is constructed to inhibit the LiPS parasitic reactions and achieve long‐cycling Li–S batteries. Concretely, 1,3,5‐trioxane is introduced as a reactive co‐solvent that decomposes on Li anode surfaces and contributes organic components to the SEI. The as‐constructed organic‐rich SEI effectively inhibits the LiPS parasitic reactions and protects working Li metal anodes. Consequently, the cycling lifespan of Li–S coin cells with 50 µm Li anodes and 4.0 mg cm −2 sulfur cathodes is prolonged from 130 to 300 cycles by the organic‐rich SEI. Furthermore, the organic‐rich SEI enables a 3.0 Ah‐level Li–S pouch cell to achieve a high energy density of 400 Wh kg −1 and stable 26 cycles. This study affords an effective organic‐rich SEI to inhibit the LiPS parasitic reactions and inspires rational SEI design to achieve long‐cycling Li–S batteries.
Author Li, Yuan
Li, Zheng
Ma, Jin
Zhang, Qiang
Hou, Li‐Peng
Bi, Chen‐Xi
Li, Xi‐Yao
Li, Bo‐Quan
Zhang, Qian‐Kui
Zhang, Xue‐Qiang
Wen, Rui
Author_xml – sequence: 1
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Tsinghua University
– sequence: 2
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
  organization: Institute of Chemistry, Chinese Academy of Sciences
– sequence: 3
  givenname: Chen‐Xi
  surname: Bi
  fullname: Bi, Chen‐Xi
  organization: University of Chinese Academy of Sciences
– sequence: 4
  givenname: Qian‐Kui
  surname: Zhang
  fullname: Zhang, Qian‐Kui
  organization: University of Chinese Academy of Sciences
– sequence: 5
  givenname: Li‐Peng
  surname: Hou
  fullname: Hou, Li‐Peng
  organization: Tsinghua University
– sequence: 6
  givenname: Xi‐Yao
  surname: Li
  fullname: Li, Xi‐Yao
  organization: Tsinghua University
– sequence: 7
  givenname: Jin
  surname: Ma
  fullname: Ma, Jin
  organization: Tsinghua University
– sequence: 8
  givenname: Xue‐Qiang
  surname: Zhang
  fullname: Zhang, Xue‐Qiang
  organization: University of Chinese Academy of Sciences
– sequence: 9
  givenname: Bo‐Quan
  surname: Li
  fullname: Li, Bo‐Quan
  email: libq@bit.edu.cn
  organization: Beijing Institute of Technology
– sequence: 10
  givenname: Rui
  surname: Wen
  fullname: Wen, Rui
  email: ruiwen@iccas.ac.cn
  organization: Institute of Chemistry, Chinese Academy of Sciences
– sequence: 11
  givenname: Qiang
  orcidid: 0000-0002-3929-1541
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNqFkMtKAzEUQINUsK1uXQdctyaTeWVZx1YLlYIPcDdkMkmbMk1qkkFm108Q_MN-iVMqFQRxde_inHvh9EBHGy0AuMRoiBEKrlkp18MABQSFUYhPQBfHOB4QFKSd445fz0DPuRVCOElI2AUqM9p5W3OvjIZGwrldMK34bvvxqPgSPplKlXBcCe6tqRov4FR7YTdL5gSUxsKZ0YsWzhpeKb2AM-WXql7vtp9PdSVrC2-Yb3kl3Dk4laxy4uJ79sHLZPyc3Q9m87tpNpoNOMEJHlBGUUGKMk7CUhSMBnEh00TSkgRFQSUqWVJKmUpJRYrjVPIUo5DGkYxLQqNAkD64OtzdWPNWC-fzlamtbl_mAcU0IimK4pYaHihujXNWyHxj1ZrZJsco3-fM9znzY85WCH8JXHm2r-YtU9XfGj1o76oSzT9P8tHt5OHH_QJa1JEy
CitedBy_id crossref_primary_10_1002_anie_202500425
crossref_primary_10_1039_D4TA08542F
crossref_primary_10_1021_acsenergylett_4c02703
crossref_primary_10_1360_SSC_2023_0248
crossref_primary_10_1021_acsami_4c10855
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1002_bte2_20240051
crossref_primary_10_1002_aenm_202402506
crossref_primary_10_1002_ceat_202300320
crossref_primary_10_1002_aenm_202400926
crossref_primary_10_1039_D4EE04478A
crossref_primary_10_1002_ange_202500425
crossref_primary_10_1021_acsami_4c21261
crossref_primary_10_1002_smtd_202401701
crossref_primary_10_1002_anie_202412859
crossref_primary_10_1002_aenm_202406069
crossref_primary_10_1002_adfm_202414159
crossref_primary_10_1002_cssc_202301777
crossref_primary_10_1016_j_ces_2024_121107
crossref_primary_10_1002_ange_202412859
crossref_primary_10_1002_smll_202405141
crossref_primary_10_1002_aenm_202403845
crossref_primary_10_1002_adfm_202500077
crossref_primary_10_1007_s12598_024_02931_2
crossref_primary_10_20517_energymater_2024_291
crossref_primary_10_3390_nano15010035
Cites_doi 10.1093/nsr/nwad118
10.1021/jp408037e
10.1039/C5EE02837J
10.1002/sus2.4
10.1021/acs.jpcc.1c04559
10.1002/aenm.202000082
10.1002/adfm.201801323
10.1002/aenm.202003092
10.1002/aenm.202103972
10.1016/j.ensm.2022.07.035
10.1149/2.111308jes
10.1002/adfm.202105253
10.1021/acsaem.1c00321
10.1016/j.chempr.2021.02.025
10.1002/batt.202000016
10.1002/admi.201701097
10.1016/0013-4686(90)87055-7
10.1021/acsnano.7b00596
10.1002/anie.202103470
10.1002/bte2.20220006
10.1002/anie.202207907
10.1002/adma.202205284
10.1021/acsenergylett.0c02527
10.1016/j.ensm.2021.01.008
10.1038/nmat3191
10.1016/j.joule.2020.02.006
10.1149/1945-7111/ab7a81
10.1002/sus2.37
10.1016/j.mattod.2020.10.021
10.1021/acsenergylett.6b00194
10.1016/0013-4686(90)87056-8
10.1021/jacs.1c04222
10.1016/j.jpowsour.2022.232144
10.1038/s41560-019-0351-0
10.1002/aenm.202101004
10.1038/s41467-022-32139-w
10.1002/adma.201700598
10.1021/acsaem.0c01114
10.1002/adma.202201555
10.1016/j.chempr.2021.12.023
10.1149/1.3148721
10.1016/j.apsusc.2020.147983
10.1039/D0EE01074J
10.1016/j.jechem.2021.12.024
10.1016/j.ensm.2020.06.043
10.1039/C4EE00372A
10.1002/anie.202103303
10.1038/s41560-018-0214-0
10.1002/anie.202204776
10.1002/adfm.202213362
10.1016/j.joule.2018.03.008
10.1002/adma.201700542
10.1038/s41557-018-0166-9
10.1002/adfm.202205471
10.1038/35104644
10.1002/aenm.201700260
10.1021/jacs.2c04176
10.1038/s41929-020-0498-x
10.1039/D1EE00531F
10.1021/acsenergylett.0c01545
10.1016/j.matt.2019.05.016
10.1016/j.chempr.2020.06.032
10.1002/adma.202108252
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202304541
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202304541
ADFM202304541
Genre article
GrantInformation_xml – fundername: CAS Project for Young Scientists in Basic Research
  funderid: YSBR‐058
– fundername: Key Research and Development Program of Yunnan Province
  funderid: 202103AA080019
– fundername: Seed Fund of Shanxi Research Institute for Clean Energy
  funderid: SXKYJF015
– fundername: Beijing Institute of Technology Research Fund Program for Young Scholars
– fundername: National Natural Science Foundation of China
  funderid: 22109007; 22109011; 22209010
– fundername: Ordos‐Tsinghua Innovative & Collaborative Research Program in Carbon Neutrality
– fundername: National Key Research and Development Program
  funderid: 2021YFB2400300; 2021YFB2500300
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3171-9a90b3bd674deba926bf87f9d32bb9f0da7dff8ff9e8168fc8104965f6d3952e3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 08:16:14 EDT 2025
Tue Jul 01 00:30:46 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Wed Jan 22 16:15:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3171-9a90b3bd674deba926bf87f9d32bb9f0da7dff8ff9e8168fc8104965f6d3952e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3929-1541
PQID 2919538056
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2919538056
crossref_primary_10_1002_adfm_202304541
crossref_citationtrail_10_1002_adfm_202304541
wiley_primary_10_1002_adfm_202304541_ADFM202304541
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2020 2020 2022 2019; 6 3 13 1
2017; 7
2013 2020; 160 167
2021; 6
2018 2018; 28 5
2012 2018; 11 2
2021; 45
1990; 35
2022 2022; 550 68
2022 2022; 8 34
2017; 29
2021; 143
2001 2021 2021 2021 2021 2021 2023 2023; 414 1 1 31 7 14 33 10
1990 2019; 35 11
2022; 144
2022 2022; 34 12
2016; 1
2020; 3
2013 2016; 117 9
2020 2020; 11 10
2017 2021 2022 2019 2017; 29 60 32 4 11
2020 2020; 5 3
2014 2018; 7 3
2022; 61
2021; 537
2022 2020; 34 4
2021 2020; 4 32
2022; 53
2021; 60
2007 2009; 156
2022 2020; 1 13
2021 2021 2021; 36 125 11
e_1_2_7_1_6
e_1_2_7_1_5
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_1_8
e_1_2_7_7_2
e_1_2_7_1_7
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_2
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_33_3
e_1_2_7_33_4
e_1_2_7_33_5
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_2
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_8_4
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 34 4
  start-page: 539
  year: 2022 2020
  publication-title: Adv. Mater. Joule
– volume: 45
  start-page: 62
  year: 2021
  publication-title: Mater. Today
– volume: 117 9
  start-page: 224
  year: 2013 2016
  publication-title: J. Phys. Chem. C Energy Environ. Sci.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 1 13
  start-page: 2501
  year: 2022 2020
  publication-title: Battery Energy Energy Environ. Sci.
– volume: 550 68
  start-page: 300
  year: 2022 2022
  publication-title: J. Power Sources J. Energy Chem.
– volume: 6 3 13 1
  start-page: 2533 762 4811 317
  year: 2020 2020 2022 2019
  publication-title: Chem Nat. Catal. Nat. Commun. Matter
– volume: 7 3
  start-page: 2697 783
  year: 2014 2018
  publication-title: Energy Environ. Sci. Nat. Energy
– volume: 53
  start-page: 315
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 5 3
  start-page: 3140 8457
  year: 2020 2020
  publication-title: ACS Energy Lett. ACS Appl. Energy Mater.
– volume: 537
  year: 2021
  publication-title: Appl. Surf. Sci.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 34 12
  year: 2022 2022
  publication-title: Adv. Mater. Adv. Energy Mater.
– volume: 144
  year: 2022
  publication-title: J. Am. Chem. Soc.
– volume: 8 34
  start-page: 1083
  year: 2022 2022
  publication-title: Chem Adv. Mater.
– volume: 3
  start-page: 828
  year: 2020
  publication-title: Batteries Supercaps
– volume: 1
  start-page: 503
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 35 11
  start-page: 625 64
  year: 1990 2019
  publication-title: Electrochim. Acta Nat. Chem.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 156
  start-page: A694
  year: 2007 2009
  publication-title: J. Electrochem. Soc.
– volume: 29 60 32 4 11
  start-page: 374 4694
  year: 2017 2021 2022 2019 2017
  publication-title: Adv. Mater. Angew. Chem., Int. Ed. Adv. Funct. Mater. Nat. Energy ACS Nano
– volume: 160 167
  year: 2013 2020
  publication-title: J. Electrochem. Soc. J. Electrochem. Soc.
– volume: 36 125 11
  start-page: 333
  year: 2021 2021 2021
  publication-title: Energy Storage Mater. J. Phys. Chem. C Adv. Energy Mater.
– volume: 35
  start-page: 639
  year: 1990
  publication-title: Electrochim. Acta
– volume: 414 1 1 31 7 14 33 10
  start-page: 359 38 506 2312 4177
  year: 2001 2021 2021 2021 2021 2021 2023 2023
  publication-title: Nature SusMat SusMat Adv. Funct. Mater. Chem Energy Environ. Sci. Adv. Funct. Mater. Natl. Sci. Rev.
– volume: 6
  start-page: 537
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 4 32
  start-page: 4711 320
  year: 2021 2020
  publication-title: ACS Appl. Energy Mater. Energy Storage Mater.
– volume: 11 10
  year: 2020 2020
  publication-title: Adv. Energy Mater. Adv. Energy Mater.
– volume: 11 2
  start-page: 19 833
  year: 2012 2018
  publication-title: Nat. Mater. Joule
– volume: 28 5
  year: 2018 2018
  publication-title: Adv. Funct. Mater. Adv. Mater. Interfaces
– ident: e_1_2_7_1_8
  doi: 10.1093/nsr/nwad118
– ident: e_1_2_7_15_1
  doi: 10.1021/jp408037e
– ident: e_1_2_7_15_2
  doi: 10.1039/C5EE02837J
– ident: e_1_2_7_1_2
  doi: 10.1002/sus2.4
– ident: e_1_2_7_18_2
  doi: 10.1021/acs.jpcc.1c04559
– ident: e_1_2_7_22_2
  doi: 10.1002/aenm.202000082
– ident: e_1_2_7_13_1
  doi: 10.1002/adfm.201801323
– ident: e_1_2_7_22_1
  doi: 10.1002/aenm.202003092
– ident: e_1_2_7_28_2
  doi: 10.1002/aenm.202103972
– ident: e_1_2_7_32_1
  doi: 10.1016/j.ensm.2022.07.035
– ident: e_1_2_7_16_1
  doi: 10.1149/2.111308jes
– ident: e_1_2_7_1_4
  doi: 10.1002/adfm.202105253
– ident: e_1_2_7_7_1
  doi: 10.1021/acsaem.1c00321
– ident: e_1_2_7_1_5
  doi: 10.1016/j.chempr.2021.02.025
– ident: e_1_2_7_21_1
  doi: 10.1002/batt.202000016
– ident: e_1_2_7_13_2
  doi: 10.1002/admi.201701097
– ident: e_1_2_7_29_1
  doi: 10.1016/0013-4686(90)87055-7
– ident: e_1_2_7_33_5
  doi: 10.1021/acsnano.7b00596
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.202103470
– ident: e_1_2_7_10_1
  doi: 10.1002/bte2.20220006
– ident: e_1_2_7_26_1
  doi: 10.1002/anie.202207907
– ident: e_1_2_7_20_2
  doi: 10.1002/adma.202205284
– ident: e_1_2_7_4_1
  doi: 10.1021/acsenergylett.0c02527
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ensm.2021.01.008
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat3191
– ident: e_1_2_7_12_2
  doi: 10.1016/j.joule.2020.02.006
– ident: e_1_2_7_16_2
  doi: 10.1149/1945-7111/ab7a81
– ident: e_1_2_7_1_3
  doi: 10.1002/sus2.37
– ident: e_1_2_7_9_1
  doi: 10.1016/j.mattod.2020.10.021
– ident: e_1_2_7_14_1
  doi: 10.1021/acsenergylett.6b00194
– ident: e_1_2_7_30_1
  doi: 10.1016/0013-4686(90)87056-8
– ident: e_1_2_7_27_1
  doi: 10.1021/jacs.1c04222
– ident: e_1_2_7_24_1
  doi: 10.1016/j.jpowsour.2022.232144
– ident: e_1_2_7_33_4
  doi: 10.1038/s41560-019-0351-0
– ident: e_1_2_7_18_3
  doi: 10.1002/aenm.202101004
– ident: e_1_2_7_8_3
  doi: 10.1038/s41467-022-32139-w
– ident: e_1_2_7_33_1
  doi: 10.1002/adma.201700598
– ident: e_1_2_7_11_2
  doi: 10.1021/acsaem.0c01114
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.202201555
– ident: e_1_2_7_20_1
  doi: 10.1016/j.chempr.2021.12.023
– ident: e_1_2_7_23_2
  doi: 10.1149/1.3148721
– ident: e_1_2_7_31_1
  doi: 10.1016/j.apsusc.2020.147983
– ident: e_1_2_7_10_2
  doi: 10.1039/D0EE01074J
– ident: e_1_2_7_24_2
  doi: 10.1016/j.jechem.2021.12.024
– ident: e_1_2_7_7_2
  doi: 10.1016/j.ensm.2020.06.043
– ident: e_1_2_7_17_1
  doi: 10.1039/C4EE00372A
– ident: e_1_2_7_33_2
  doi: 10.1002/anie.202103303
– ident: e_1_2_7_17_2
  doi: 10.1038/s41560-018-0214-0
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202204776
– ident: e_1_2_7_1_7
  doi: 10.1002/adfm.202213362
– ident: e_1_2_7_2_2
  doi: 10.1016/j.joule.2018.03.008
– ident: e_1_2_7_6_1
  doi: 10.1002/adma.201700542
– ident: e_1_2_7_29_2
  doi: 10.1038/s41557-018-0166-9
– ident: e_1_2_7_33_3
  doi: 10.1002/adfm.202205471
– ident: e_1_2_7_1_1
  doi: 10.1038/35104644
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_7_5_1
  doi: 10.1021/jacs.2c04176
– ident: e_1_2_7_8_2
  doi: 10.1038/s41929-020-0498-x
– ident: e_1_2_7_1_6
  doi: 10.1039/D1EE00531F
– ident: e_1_2_7_11_1
  doi: 10.1021/acsenergylett.0c01545
– ident: e_1_2_7_8_4
  doi: 10.1016/j.matt.2019.05.016
– ident: e_1_2_7_23_1
– ident: e_1_2_7_8_1
  doi: 10.1016/j.chempr.2020.06.032
– ident: e_1_2_7_28_1
  doi: 10.1002/adma.202108252
SSID ssj0017734
Score 2.601285
Snippet Lithium–sulfur (Li–S) batteries promise great potential as high‐energy‐density energy storage devices. However, the parasitic reactions between lithium...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Cycles
Decomposition reactions
Electrolytes
Electrolytic cells
Energy storage
Life span
Lithium
lithium metal anodes
lithium polysulfides
Lithium sulfur batteries
pouch cells
solid electrolyte interphases
Solid electrolytes
Sulfur
Title Construction of Organic‐Rich Solid Electrolyte Interphase for Long‐Cycling Lithium–Sulfur Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202304541
https://www.proquest.com/docview/2919538056
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA2iG134FqtVshBcTZ1mHpksSx8UaV1YC90NySRXi7UV2y505ScI_mG_xGQyM1ZBBN1NIBlmcvM4ubnnXITOqMcAQqmcKBLc8QMKTuR5vkOThEh9gAAaGL5z9yps9_3LQTBYYvFbfYjC4WZmRrpemwnOxfTiUzSUSzBMcuPUDFLmugnYMqjoutCPqlJqr5XDqgnwqg5y1UaXXHxt_nVX-oSay4A13XFaW4jn32oDTe4r85moJC_fZBz_8zPbaDODo7hmx88OWlHjXbSxJFK4h4Ymp2euMosngC19M1m8vhlWPu5NRkOJmzadzuh5prANZLzT-yPWkBh3JuNbXbn-bFiYt7gznN0N5w-L1_fefATzJ2wlPvWJfR_1W82betvJEjQ4iYYdVYdx5gpPyJD6UgnOSCggosCkR4Rg4EpOJUAEwJRJ7wFJpA9_LAz04PBYQJR3gFbHk7E6RNiXYRIBJcrn3OhXCr2QUOFLIV3QBa-EnNxAcZKpl5skGqPY6i6T2HRhXHRhCZ0X9R-tbsePNcu5veNs_k5jwsz1YqTRYQmR1HC_vCWuNVrdonT0l0bHaF0_-9a_U0ar2rLqRCOemThFa7VGt9M7TUf3B-hU_e4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6JQwAckToHWWRwfUaEq0PZAQeIWxbEHIkqLID3AiU9A4g_5Ejx1EhYJIcHRkR0lHi_P43lvCNnhrgAIlHbCUMaO53NwQtf1HJ4kTJkDBHAf-c6dbtC68E4u_SKaELkwVh-idLjhzBiv1zjB0SG9_6EaGitAKjl6NX2krk9hWm-Uzz88KxWk6pzbi-WgjiFe9ctCt7HG9r-2_7ovfYDNz5B1vOc054ksvtaGmtzsjTK5lzx9E3L81-8skLkckdIDO4QWyYQeLJHZTzqFyyTFtJ6F0CwdArUMzuTt-QWJ-bQ37KeKHtmMOv3HTFMby3httkhqUDFtDwdXpnLjEYmYV7SdZtfp6Pbt-bU36sPonlqVT3NoXyEXzaPzRsvJczQ4iUEedUfEoiZdqQLuKS1jwQIJIQehXCalgJqKuQIIAYTGDB-QhOb8JwLfjA9X-Ey7q2RyMBzoNUI9FSQhcKa9OEYJS2nWEi49JVUNTMGtEKewUJTkAuaYR6MfWellFmEXRmUXVshuWf_OSnf8WLNaGDzKp_BDxATeMIYGIFYIG1vul7dEB4fNTlla_0ujbTLdOu-0o_Zx93SDzJjnnnX3VMmksbLeNAAok1vjIf4OvG0AhQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA6iIPrgXZzXPAg-dXZp2jSPslm8TBHnYG-laXJ0OLeh24M--RME_6G_xGRpuymIoI8pSWlzzkm-XL7vILTPPA4QSOWEoUgc6jNwQs-jDktTIvUCAphv-M4Xl8FJk561_NYEi9_qQxQbbiYyRuO1CfC-hMOxaGgiwTDJzaamb5jrMzRwuUneULsuBKQqjNlz5aBibnhVWrlso0sOv7b_Oi2NseYkYh1NOdEiSvKPtTdN7svDgSinL990HP_zN0toIcOj-Mg60DKaUt0VND-hUriK2iapZy4zi3uALX8z_Xh9M7R83Oh12hIf23w6neeBwvYm452eILHGxLje697qytVnQ8O8xfX24K49fPh4fW8MOzB8xFbjUy_Z11AzOr6pnjhZhgYn1bij4vCEu8ITMmBUKpFwEggIGXDpESE4uDJhEiAE4Mrk94A01Ks_HvjaOzzuE-Wto-lur6s2EKYySENgRNEkMQKWQo8kTFAppAu64JWQkxsoTjP5cpNFoxNb4WUSmy6Miy4soYOift8Kd_xYczu3d5wF8FNMuDlfDDU8LCEyMtwvb4mPatFFUdr8S6M9NHtVi-L66eX5FprTj6nd69lG09rIakejn4HYHTn4J8Fb_yU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+Organic%E2%80%90Rich+Solid+Electrolyte+Interphase+for+Long%E2%80%90Cycling+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Zheng&rft.au=Li%2C+Yuan&rft.au=Bi%2C+Chen%E2%80%90Xi&rft.au=Zhang%2C+Qian%E2%80%90Kui&rft.date=2024-01-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=5&rft_id=info:doi/10.1002%2Fadfm.202304541&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202304541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon