Engineering Nickel Dopants in Atomically Thin Molybdenum Disulfide for Highly Efficient Nitrate Reduction to Ammonia

The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regul...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 49
Main Authors Lv, Jiangnan, Sun, Xiaoting, Wang, Fang, Yang, Ruixia, Zhang, Taisong, Liang, Tingting, Rong, Wanting, Yang, Qianwen, Xue, Wuhong, Wang, Lanfang, Xu, Xiaohong, Liu, Yang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regulate electronic states and active sites through doping. However, the impact of doping effects in 2D materials on the mechanism of NO3−RR remains relatively unexplored. Here, Ni‐doped MoS2 (Ni‐MoS2) nanosheets are investigated as a model system, demonstrating enhanced NO3−RR performance compared to undoped counterparts. By controlling the doping concentration, the Ni‐MoS2 nanosheets achieve a remarkable faradic efficiency (FE) of 92.3% for NH3 at −0.3 VRHE with excellent stability. The mechanistic studies reveal that the elevation of the NO3−RR performances originates from the generation of more active hydrogen and the acceleration of the reaction from nitrite (NO2−) to NH3 facilitated by Ni doping. Combining the experimental observations and theoretical calculations it is revealed that the appropriate Ni doping level in MoS2 can enhance *NO3 adsorption strength, thereby facilitating subsequent electrocatalytic steps. Together with the demonstration of Zn−NO3− and Zn−NO2− battery devices, the work provides new insights into the design and regulation of the active sites in 2D material catalysts for efficient NO3−RR. Tailoring electrocatalytic activity in 2D materials through doping effect is fascinating. Herein, Ni‐doped MoS2 (Ni‐MoS2) nanosheets exhibit enhanced performance in NO3−RR, achieving a remarkable NH3 FE of 92.3% at −0.3 VRHE with excellent stability. The Ni dopants facilitate the adsorption of *NO3 and the stabilization of *N intermediates, offering new insights into the regulation of active sites in 2D materials.
AbstractList The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regulate electronic states and active sites through doping. However, the impact of doping effects in 2D materials on the mechanism of NO3−RR remains relatively unexplored. Here, Ni‐doped MoS2 (Ni‐MoS2) nanosheets are investigated as a model system, demonstrating enhanced NO3−RR performance compared to undoped counterparts. By controlling the doping concentration, the Ni‐MoS2 nanosheets achieve a remarkable faradic efficiency (FE) of 92.3% for NH3 at −0.3 VRHE with excellent stability. The mechanistic studies reveal that the elevation of the NO3−RR performances originates from the generation of more active hydrogen and the acceleration of the reaction from nitrite (NO2−) to NH3 facilitated by Ni doping. Combining the experimental observations and theoretical calculations it is revealed that the appropriate Ni doping level in MoS2 can enhance *NO3 adsorption strength, thereby facilitating subsequent electrocatalytic steps. Together with the demonstration of Zn−NO3− and Zn−NO2− battery devices, the work provides new insights into the design and regulation of the active sites in 2D material catalysts for efficient NO3−RR.
The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regulate electronic states and active sites through doping. However, the impact of doping effects in 2D materials on the mechanism of NO3−RR remains relatively unexplored. Here, Ni‐doped MoS2 (Ni‐MoS2) nanosheets are investigated as a model system, demonstrating enhanced NO3−RR performance compared to undoped counterparts. By controlling the doping concentration, the Ni‐MoS2 nanosheets achieve a remarkable faradic efficiency (FE) of 92.3% for NH3 at −0.3 VRHE with excellent stability. The mechanistic studies reveal that the elevation of the NO3−RR performances originates from the generation of more active hydrogen and the acceleration of the reaction from nitrite (NO2−) to NH3 facilitated by Ni doping. Combining the experimental observations and theoretical calculations it is revealed that the appropriate Ni doping level in MoS2 can enhance *NO3 adsorption strength, thereby facilitating subsequent electrocatalytic steps. Together with the demonstration of Zn−NO3− and Zn−NO2− battery devices, the work provides new insights into the design and regulation of the active sites in 2D material catalysts for efficient NO3−RR. Tailoring electrocatalytic activity in 2D materials through doping effect is fascinating. Herein, Ni‐doped MoS2 (Ni‐MoS2) nanosheets exhibit enhanced performance in NO3−RR, achieving a remarkable NH3 FE of 92.3% at −0.3 VRHE with excellent stability. The Ni dopants facilitate the adsorption of *NO3 and the stabilization of *N intermediates, offering new insights into the regulation of active sites in 2D materials.
The electrocatalytic nitrate reduction reaction (NO 3 − RR) presents a promising pathway for achieving both ammonia (NH 3 ) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regulate electronic states and active sites through doping. However, the impact of doping effects in 2D materials on the mechanism of NO 3 − RR remains relatively unexplored. Here, Ni‐doped MoS 2 (Ni‐MoS 2 ) nanosheets are investigated as a model system, demonstrating enhanced NO 3 − RR performance compared to undoped counterparts. By controlling the doping concentration, the Ni‐MoS 2 nanosheets achieve a remarkable faradic efficiency (FE) of 92.3% for NH 3 at −0.3 V RHE with excellent stability. The mechanistic studies reveal that the elevation of the NO 3 − RR performances originates from the generation of more active hydrogen and the acceleration of the reaction from nitrite (NO 2 − ) to NH 3 facilitated by Ni doping. Combining the experimental observations and theoretical calculations it is revealed that the appropriate Ni doping level in MoS 2 can enhance *NO 3 adsorption strength, thereby facilitating subsequent electrocatalytic steps. Together with the demonstration of Zn−NO 3 − and Zn−NO 2 − battery devices, the work provides new insights into the design and regulation of the active sites in 2D material catalysts for efficient NO 3 − RR.
Author Lv, Jiangnan
Sun, Xiaoting
Yang, Qianwen
Yang, Ruixia
Liang, Tingting
Wang, Lanfang
Rong, Wanting
Xue, Wuhong
Liu, Yang
Wang, Fang
Xu, Xiaohong
Zhang, Taisong
Author_xml – sequence: 1
  givenname: Jiangnan
  surname: Lv
  fullname: Lv, Jiangnan
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 2
  givenname: Xiaoting
  surname: Sun
  fullname: Sun, Xiaoting
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 3
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 4
  givenname: Ruixia
  surname: Yang
  fullname: Yang, Ruixia
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 5
  givenname: Taisong
  surname: Zhang
  fullname: Zhang, Taisong
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 6
  givenname: Tingting
  surname: Liang
  fullname: Liang, Tingting
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 7
  givenname: Wanting
  surname: Rong
  fullname: Rong, Wanting
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 8
  givenname: Qianwen
  surname: Yang
  fullname: Yang, Qianwen
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 9
  givenname: Wuhong
  surname: Xue
  fullname: Xue, Wuhong
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 10
  givenname: Lanfang
  surname: Wang
  fullname: Wang, Lanfang
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 11
  givenname: Xiaohong
  surname: Xu
  fullname: Xu, Xiaohong
  email: xuxh@sxnu.edu.cn
  organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education
– sequence: 12
  givenname: Yang
  orcidid: 0000-0001-5586-623X
  surname: Liu
  fullname: Liu, Yang
  email: liuyang_fd@fudan.edu.cn
  organization: Fudan University
BookMark eNqFkNtLwzAUxoMoOC-vPgd83sxJ0rV9HLs4wQuIgm8lTU9mZpvMNEX239sxURDEl3OB73c-zndCDp13SMgFsBEwxq9UZZoRZ1wCyBwOyADGMB4KxrPD7xlejslJ264ZgzQVckDi3K2sQwzWrei91W9Y05nfKBdbah2dRN9Yrep6S59e-_3O19uyQtc1dGbbrja2Qmp8oEu7eu1Fc2OstuhifysGFZE-YtXpaL2j0dNJ03hn1Rk5Mqpu8fyrn5LnxfxpuhzePlzfTCe3Qy0ghWGeCJ4kSTk2Y0yErjKJpagwlRlTosy4VAkHWeUZy01f0xwNyFSXCHkFkktxSi73dzfBv3fYxmLtu-B6y0KASFiSMw69arRX6eDbNqApNsE2KmwLYMUu2WKXbPGdbA_IX4C2Ue1-7F-29d9Yvsc-bI3bf0yKyWxx98N-AnadkGI
CitedBy_id crossref_primary_10_1021_acsami_4c16144
crossref_primary_10_1021_acscatal_4c06559
crossref_primary_10_1016_j_cej_2025_160574
crossref_primary_10_1021_acs_inorgchem_4c05229
Cites_doi 10.1002/adfm.201803291
10.1016/j.cej.2023.146137
10.1002/anie.202303327
10.1002/adma.202313548
10.1038/s41467-022-35533-6
10.1038/s41929-021-00584-3
10.1021/jacs.3c13517
10.1002/anie.202400428
10.1002/anie.202218717
10.1038/s44160-023-00258-x
10.1002/aenm.202400790
10.1021/jacs.9b13347
10.1038/nnano.2015.340
10.1016/j.jcis.2022.09.049
10.1021/acs.nanolett.3c01994
10.1002/anie.202307952
10.1002/adma.202304508
10.1021/ar500280m
10.1002/adfm.201702317
10.1039/D1CS00330E
10.1021/acsenergylett.9b01573
10.1038/s41565-023-01407-1
10.1038/s41557-018-0035-6
10.1002/adfm.202211537
10.1021/jacs.8b12133
10.1038/s41467-022-28728-4
10.1002/anie.202400206
10.1038/s41929-023-00951-2
10.1002/aenm.202303863
10.1038/ncomms3995
10.1002/anie.202308044
10.1002/anie.202303483
10.1021/am404843b
10.1002/adfm.202108316
10.1039/D2TA06346H
10.1002/adma.202303107
10.1002/adma.202202952
10.1002/adma.202404774
10.1021/acsenergylett.3c01139
10.1002/anie.202315238
10.1038/s41467-022-35664-w
10.1021/jacs.4c04023
10.1021/acscatal.3c04541
10.1002/anie.202406750
10.1002/anie.202401924
10.1039/D4EE02775B
10.1002/anie.202315109
10.1002/adfm.202313548
10.1021/jacs.3c06904
10.1002/aenm.202103872
10.1016/j.apcatb.2022.122193
10.1038/nmat4465
10.1002/adfm.202302651
10.1038/s41560-020-0654-1
10.1039/D2QI01798A
10.1021/acsnano.2c07911
10.1002/anie.202319029
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202411491
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202411491
ADFM202411491
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 12174237; 52301298
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 23ZR1405000; 22YF1401900
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3171-9532555b6f6e53cd84eb3de7480a3b824a5214d9809fd9879ef147cbe19d14243
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 23:45:40 EDT 2025
Tue Jul 01 04:15:41 EDT 2025
Thu Apr 24 22:54:56 EDT 2025
Wed Jan 22 17:14:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3171-9532555b6f6e53cd84eb3de7480a3b824a5214d9809fd9879ef147cbe19d14243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5586-623X
PQID 3135059021
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_3135059021
crossref_primary_10_1002_adfm_202411491
crossref_citationtrail_10_1002_adfm_202411491
wiley_primary_10_1002_adfm_202411491_ADFM202411491
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023 2023; 6 35
2023 2022; 35 13
2024 2024; 14 146
2023 2023 2023; 35 34 324
2023; 33
2023 2023; 62 13
2023; 18
2015 2014; 48 5
2023 2024 2024; 62 146 63
2021; 50
2024; 36
2013; 5
2016; 11
2023; 62
2024 2023 2024 2024; 146 62 63 36
2020 2023 2024; 142 8 63
2016 2018 2017 2021; 15 28 27 4
2024 2022; 63 12
2024 2022; 63 13
2023; 475
2022 2023 2024 2022 2023; 32 629 63 10 10
2022; 13
2024; 63
2023 2024; 62
2020 2024; 5 14
2018 2019; 10 141
2023 2023; 33 17
2023 2019 2023; 2 4 23
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_2
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_28_1
e_1_2_7_28_2
e_1_2_7_9_5
e_1_2_7_9_4
e_1_2_7_9_3
e_1_2_7_25_1
e_1_2_7_21_4
e_1_2_7_23_2
e_1_2_7_21_3
e_1_2_7_23_1
e_1_2_7_21_2
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_4
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_14_1
e_1_2_7_10_3
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_27_2
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_22_1
e_1_2_7_20_2
e_1_2_7_20_1
References_xml – volume: 2 4 23
  start-page: 624 2111 7120
  year: 2023 2019 2023
  publication-title: Nat. Synth. ACS Energy Lett. Nano Lett.
– volume: 35 13
  start-page: 7899
  year: 2023 2022
  publication-title: Adv. Mater. Nat. Commun.
– volume: 33 17
  start-page: 1081
  year: 2023 2023
  publication-title: Adv. Funct. Mater. ACS Nano
– volume: 35 34 324
  year: 2023 2023 2023
  publication-title: Adv. Mater. Adv. Funct. Mater. Appl. Catal. B: Environ.
– volume: 11
  start-page: 218
  year: 2016
  publication-title: Nat. Nanotech.
– volume: 475
  year: 2023
  publication-title: Chem. Eng. Sci.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 14 146
  year: 2024 2024
  publication-title: Adv. Energy Mater. J. Am. Chem. Soc
– volume: 48 5
  start-page: 41 2995
  year: 2015 2014
  publication-title: Acc. Chem. Res. Nat. Commun.
– volume: 62 13
  year: 2023 2023
  publication-title: Angew. Chem., Int. Ed. ACS Catal.
– volume: 10 141
  start-page: 638 790
  year: 2018 2019
  publication-title: Nat. Chem. J. Am. Chem. Soc
– volume: 13
  start-page: 1129
  year: 2022
  publication-title: Nat. Commun.
– volume: 5 14
  start-page: 605
  year: 2020 2024
  publication-title: Nat. Energy Adv. Energy Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 32 629 63 10 10
  start-page: 950 1543
  year: 2022 2023 2024 2022 2023
  publication-title: Adv. Funct. Mater. J. Colloid Interf. Sci. Angew. Chem., Int. Ed. J. Mater. Chem. A Inorg. Chem. Front.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 63 12
  year: 2024 2022
  publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater.
– volume: 6 35
  start-page: 402
  year: 2023 2023
  publication-title: Nat. Catal. Adv. Mater.
– volume: 62 146 63
  year: 2023 2024 2024
  publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc Angew. Chem., Int. Ed.
– volume: 15 28 27 4
  start-page: 48 242
  year: 2016 2018 2017 2021
  publication-title: Nat. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Nat. Catal.
– volume: 146 62 63 36
  start-page: 2967
  year: 2024 2023 2024 2024
  publication-title: J. Am. Chem. Soc Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater.
– volume: 63
  year: 2024
  publication-title: Angew. Chem., Int. Ed.
– volume: 142 8 63
  start-page: 5702 3843
  year: 2020 2023 2024
  publication-title: J. Am. Chem. Soc ACS Energy Lett. Angew. Chem., Int. Ed.
– volume: 5
  year: 2013
  publication-title: ACS Appl. Mater. & Interfaces
– volume: 62
  year: 2023 2024
  publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci.
– volume: 18
  start-page: 763
  year: 2023
  publication-title: Nat. Nanotech.
– volume: 50
  start-page: 9817
  year: 2021
  publication-title: Chem. Soc. Rev.
– volume: 63 13
  start-page: 7958
  year: 2024 2022
  publication-title: Angew. Chem., Int. Ed. Nat. Commun.
– ident: e_1_2_7_6_2
  doi: 10.1002/adfm.201803291
– ident: e_1_2_7_3_1
  doi: 10.1016/j.cej.2023.146137
– ident: e_1_2_7_21_2
  doi: 10.1002/anie.202303327
– ident: e_1_2_7_21_4
  doi: 10.1002/adma.202313548
– ident: e_1_2_7_23_2
  doi: 10.1038/s41467-022-35533-6
– ident: e_1_2_7_6_4
  doi: 10.1038/s41929-021-00584-3
– ident: e_1_2_7_24_2
  doi: 10.1021/jacs.3c13517
– ident: e_1_2_7_25_1
  doi: 10.1002/anie.202400428
– ident: e_1_2_7_27_1
  doi: 10.1002/anie.202218717
– ident: e_1_2_7_2_1
  doi: 10.1038/s44160-023-00258-x
– ident: e_1_2_7_1_2
  doi: 10.1002/aenm.202400790
– ident: e_1_2_7_10_1
  doi: 10.1021/jacs.9b13347
– ident: e_1_2_7_5_1
  doi: 10.1038/nnano.2015.340
– ident: e_1_2_7_9_2
  doi: 10.1016/j.jcis.2022.09.049
– ident: e_1_2_7_2_3
  doi: 10.1021/acs.nanolett.3c01994
– ident: e_1_2_7_11_1
  doi: 10.1002/anie.202307952
– ident: e_1_2_7_23_1
  doi: 10.1002/adma.202304508
– ident: e_1_2_7_14_1
  doi: 10.1021/ar500280m
– ident: e_1_2_7_6_3
  doi: 10.1002/adfm.201702317
– ident: e_1_2_7_8_1
  doi: 10.1039/D1CS00330E
– ident: e_1_2_7_2_2
  doi: 10.1021/acsenergylett.9b01573
– ident: e_1_2_7_12_1
  doi: 10.1038/s41565-023-01407-1
– ident: e_1_2_7_13_1
  doi: 10.1038/s41557-018-0035-6
– ident: e_1_2_7_19_1
  doi: 10.1002/adfm.202211537
– ident: e_1_2_7_13_2
  doi: 10.1021/jacs.8b12133
– ident: e_1_2_7_26_1
  doi: 10.1038/s41467-022-28728-4
– ident: e_1_2_7_22_1
  doi: 10.1002/anie.202400206
– ident: e_1_2_7_17_1
  doi: 10.1038/s41929-023-00951-2
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.202303863
– ident: e_1_2_7_14_2
  doi: 10.1038/ncomms3995
– ident: e_1_2_7_20_1
  doi: 10.1002/anie.202308044
– ident: e_1_2_7_7_1
  doi: 10.1002/anie.202303483
– ident: e_1_2_7_15_1
  doi: 10.1021/am404843b
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.202108316
– ident: e_1_2_7_9_4
  doi: 10.1039/D2TA06346H
– ident: e_1_2_7_17_2
  doi: 10.1002/adma.202303107
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.202202952
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.202404774
– ident: e_1_2_7_10_2
  doi: 10.1021/acsenergylett.3c01139
– ident: e_1_2_7_21_3
  doi: 10.1002/anie.202315238
– ident: e_1_2_7_22_2
  doi: 10.1038/s41467-022-35664-w
– ident: e_1_2_7_11_2
  doi: 10.1021/jacs.4c04023
– ident: e_1_2_7_20_2
  doi: 10.1021/acscatal.3c04541
– ident: e_1_2_7_10_3
  doi: 10.1002/anie.202406750
– ident: e_1_2_7_28_1
  doi: 10.1002/anie.202401924
– ident: e_1_2_7_27_2
  doi: 10.1039/D4EE02775B
– ident: e_1_2_7_9_3
  doi: 10.1002/anie.202315109
– ident: e_1_2_7_4_2
  doi: 10.1002/adfm.202313548
– ident: e_1_2_7_21_1
  doi: 10.1021/jacs.3c06904
– ident: e_1_2_7_28_2
  doi: 10.1002/aenm.202103872
– ident: e_1_2_7_4_3
  doi: 10.1016/j.apcatb.2022.122193
– ident: e_1_2_7_6_1
  doi: 10.1038/nmat4465
– ident: e_1_2_7_18_1
  doi: 10.1002/adfm.202302651
– ident: e_1_2_7_1_1
  doi: 10.1038/s41560-020-0654-1
– ident: e_1_2_7_9_5
  doi: 10.1039/D2QI01798A
– ident: e_1_2_7_18_2
  doi: 10.1021/acsnano.2c07911
– ident: e_1_2_7_11_3
  doi: 10.1002/anie.202319029
SSID ssj0017734
Score 2.5525687
Snippet The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant...
The electrocatalytic nitrate reduction reaction (NO 3 − RR) presents a promising pathway for achieving both ammonia (NH 3 ) electrosynthesis and water...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 2D materials
Acceleration
Ammonia
ammonia synthesis
Chemical reduction
Doping
doping effect
Electrocatalysts
Electron states
metal sulfide
Molybdenum disulfide
Nanosheets
Nickel
nitrate reduction
Nitrates
Nitrogen dioxide
Two dimensional materials
Title Engineering Nickel Dopants in Atomically Thin Molybdenum Disulfide for Highly Efficient Nitrate Reduction to Ammonia
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202411491
https://www.proquest.com/docview/3135059021
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4StvNY7M5FmspQj0UC72FfQVKQyomPdRf70zSpq0ggl5CQnY3ye7MzjfZmW8JedAq4pEUiQPOj3V8pbQjtKcd6bFEama7boQJzqNXPpz4L9NgupPFX_FD1D_cUDPK-RoVXKq8syUNlSbBTHKwQADy0f_BgC1EReOaP4qFYbWszBkGeLHphrWx63b2q-9bpS3U3AWspcUZnBC5edcq0GTeXhaqrT-_0Tj-52NOyfEajtJeJT9n5MBm5-Roh6TwghQ7VxQEZ25T2gdXOytyOstor1iUjAPpiuIeoHS0SFfKYIA97c_yZZrMjKWAjClGlECh55KzAkwdtFUy49IxsseifNBiQXuoFzN5SSaD57enobPeq8HRgEAYrgKDcxIonnAbeNoIH7x0Y0NfdKWnhOtLwAm-iUQ3SuAYRjZhfqiVZZHBZDvvijSyRWavCRWe5oFrZcAFzDAwP4jAcgC2Cp9hDG8SZzNWsV4TmeN-GmlcUTC7MfZmXPdmkzzW5d8rCo8fS7Y2Qx-vVTmPPeYFJckN3HbLMfyllbjXH4zqq5u_VLolh3hehc20SKP4WNo7AD-Fui8F_AuIkPsn
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5ROLQcSl8ICrQ-gHoKrPNwnAOHFWG1FJYDAmlvafyItCLaoG5W1fZf9a_0F3UmLxakqhISh14iJXGcxJ7xfLZnvgHY1yoSUSozByc_1vGV0o7UnnZSj2ep5rbnRhTgPLoUwxv_6zgYr8CvNham5ofoFtxIM6rxmhScFqSP7llDU5NRKDmaIET5vPGrPLeLHzhrmx2fxdjFB647OL0-GTpNYgFHo7nktGWJSDpQIhM28LSRPk4pjQ192Us9JV0_RaPmm0j2ogyPYWQz7odaWR4ZigzzsN4XsEZpxImuP77qGKt4GNYb2YKTSxkftzyRPffo4fc-tIP34HYZIlc2brABv9vWqV1bbg_npTrUPx8RR_5XzfcGXjeIm_VrFXkLK3b6DtaXeBjfQ7l0xlA3bm3O4uKOXITYZMr6ZVGRKuQLRmlO2ajIF8pQDAGLJ7N5nk2MZQj-GTnNYKHTipYDrTnWVZH_sisiyCUVYGXB-qT6k_QD3DzLb2_C6rSY2i1g0tMicG0aCImDKA6BMrACsbuidxgjtsFphSPRDVc7pQzJk5pl2k2o95Ku97bhS1f-rmYp-WvJ3VbWkma0miUe94KKxwdvu5XQ_KOWpB8PRt3Zx6c89BleDq9HF8nF2eX5Dryi67WX0C6slt_ndg-xXqk-VdrF4Ntzy-Mf7Q1XCA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1La9wwEB6SFEJ66CNpadK01aElJyeWH7J86GGpsyRNN5SQwN5c62FYYtZL10vY_qr-lf6jzviVTaEECjn0YpAty7Y0o_lkzXwD8F6rWMSZzB1c_FgnUEo7UvvayXyeZ5pb14spwHl0Lk6ugs_jcLwGP7tYmIYfov_hRppRz9ek4DOTH92ShmYmp0hytEAI8nnrVnlmlze4aJt_PE1whD943vD48tOJ0-YVcDRaS047lgikQyVyYUNfGxngitLYKJBu5ivpBRnatMDE0o1zPEaxzXkQaWV5bCgwzMd21-FRINyYkkUkFz1hFY-iZh9bcPIo4-OOJtL1ju6-710zeIttVxFybeKGT-FX1zmNZ8v14aJSh_rHH7yR_1PvPYMnLd5mg0ZBnsOanW7D4xUWxh2oVkoMNePaFiwpZ-QgxCZTNqjKmlKhWDJKcspGZbFUhiIIWDKZL4p8YixD6M_IZQYrHdekHGjLsa2a-pddED0uKQCrSjYgxZ9kL-DqQT77JWxMy6l9BUz6WoSezUIhcQrFCVCGViByV_QMY8QuOJ1spLplaqeEIUXacEx7KY1e2o_eLhz09WcNR8lfa-53opa2c9U89bkf1iw-eNmrZeaeVtJBMhz1pb1_uekdbH5NhumX0_Oz17BFpxsXoX3YqL4v7BsEepV6W-sWg28PLY6_AWWRVbc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Nickel+Dopants+in+Atomically+Thin+Molybdenum+Disulfide+for+Highly+Efficient+Nitrate+Reduction+to+Ammonia&rft.jtitle=Advanced+functional+materials&rft.au=Lv%2C+Jiangnan&rft.au=Sun%2C+Xiaoting&rft.au=Wang%2C+Fang&rft.au=Yang%2C+Ruixia&rft.date=2024-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202411491&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon