Engineering Nickel Dopants in Atomically Thin Molybdenum Disulfide for Highly Efficient Nitrate Reduction to Ammonia
The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regul...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 49 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regulate electronic states and active sites through doping. However, the impact of doping effects in 2D materials on the mechanism of NO3−RR remains relatively unexplored. Here, Ni‐doped MoS2 (Ni‐MoS2) nanosheets are investigated as a model system, demonstrating enhanced NO3−RR performance compared to undoped counterparts. By controlling the doping concentration, the Ni‐MoS2 nanosheets achieve a remarkable faradic efficiency (FE) of 92.3% for NH3 at −0.3 VRHE with excellent stability. The mechanistic studies reveal that the elevation of the NO3−RR performances originates from the generation of more active hydrogen and the acceleration of the reaction from nitrite (NO2−) to NH3 facilitated by Ni doping. Combining the experimental observations and theoretical calculations it is revealed that the appropriate Ni doping level in MoS2 can enhance *NO3 adsorption strength, thereby facilitating subsequent electrocatalytic steps. Together with the demonstration of Zn−NO3− and Zn−NO2− battery devices, the work provides new insights into the design and regulation of the active sites in 2D material catalysts for efficient NO3−RR.
Tailoring electrocatalytic activity in 2D materials through doping effect is fascinating. Herein, Ni‐doped MoS2 (Ni‐MoS2) nanosheets exhibit enhanced performance in NO3−RR, achieving a remarkable NH3 FE of 92.3% at −0.3 VRHE with excellent stability. The Ni dopants facilitate the adsorption of *NO3 and the stabilization of *N intermediates, offering new insights into the regulation of active sites in 2D materials. |
---|---|
AbstractList | The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regulate electronic states and active sites through doping. However, the impact of doping effects in 2D materials on the mechanism of NO3−RR remains relatively unexplored. Here, Ni‐doped MoS2 (Ni‐MoS2) nanosheets are investigated as a model system, demonstrating enhanced NO3−RR performance compared to undoped counterparts. By controlling the doping concentration, the Ni‐MoS2 nanosheets achieve a remarkable faradic efficiency (FE) of 92.3% for NH3 at −0.3 VRHE with excellent stability. The mechanistic studies reveal that the elevation of the NO3−RR performances originates from the generation of more active hydrogen and the acceleration of the reaction from nitrite (NO2−) to NH3 facilitated by Ni doping. Combining the experimental observations and theoretical calculations it is revealed that the appropriate Ni doping level in MoS2 can enhance *NO3 adsorption strength, thereby facilitating subsequent electrocatalytic steps. Together with the demonstration of Zn−NO3− and Zn−NO2− battery devices, the work provides new insights into the design and regulation of the active sites in 2D material catalysts for efficient NO3−RR. The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regulate electronic states and active sites through doping. However, the impact of doping effects in 2D materials on the mechanism of NO3−RR remains relatively unexplored. Here, Ni‐doped MoS2 (Ni‐MoS2) nanosheets are investigated as a model system, demonstrating enhanced NO3−RR performance compared to undoped counterparts. By controlling the doping concentration, the Ni‐MoS2 nanosheets achieve a remarkable faradic efficiency (FE) of 92.3% for NH3 at −0.3 VRHE with excellent stability. The mechanistic studies reveal that the elevation of the NO3−RR performances originates from the generation of more active hydrogen and the acceleration of the reaction from nitrite (NO2−) to NH3 facilitated by Ni doping. Combining the experimental observations and theoretical calculations it is revealed that the appropriate Ni doping level in MoS2 can enhance *NO3 adsorption strength, thereby facilitating subsequent electrocatalytic steps. Together with the demonstration of Zn−NO3− and Zn−NO2− battery devices, the work provides new insights into the design and regulation of the active sites in 2D material catalysts for efficient NO3−RR. Tailoring electrocatalytic activity in 2D materials through doping effect is fascinating. Herein, Ni‐doped MoS2 (Ni‐MoS2) nanosheets exhibit enhanced performance in NO3−RR, achieving a remarkable NH3 FE of 92.3% at −0.3 VRHE with excellent stability. The Ni dopants facilitate the adsorption of *NO3 and the stabilization of *N intermediates, offering new insights into the regulation of active sites in 2D materials. The electrocatalytic nitrate reduction reaction (NO 3 − RR) presents a promising pathway for achieving both ammonia (NH 3 ) electrosynthesis and water pollutant removal simultaneously. Among various electrocatalysts explored, 2D materials have emerged as promising candidates due to their ability to regulate electronic states and active sites through doping. However, the impact of doping effects in 2D materials on the mechanism of NO 3 − RR remains relatively unexplored. Here, Ni‐doped MoS 2 (Ni‐MoS 2 ) nanosheets are investigated as a model system, demonstrating enhanced NO 3 − RR performance compared to undoped counterparts. By controlling the doping concentration, the Ni‐MoS 2 nanosheets achieve a remarkable faradic efficiency (FE) of 92.3% for NH 3 at −0.3 V RHE with excellent stability. The mechanistic studies reveal that the elevation of the NO 3 − RR performances originates from the generation of more active hydrogen and the acceleration of the reaction from nitrite (NO 2 − ) to NH 3 facilitated by Ni doping. Combining the experimental observations and theoretical calculations it is revealed that the appropriate Ni doping level in MoS 2 can enhance *NO 3 adsorption strength, thereby facilitating subsequent electrocatalytic steps. Together with the demonstration of Zn−NO 3 − and Zn−NO 2 − battery devices, the work provides new insights into the design and regulation of the active sites in 2D material catalysts for efficient NO 3 − RR. |
Author | Lv, Jiangnan Sun, Xiaoting Yang, Qianwen Yang, Ruixia Liang, Tingting Wang, Lanfang Rong, Wanting Xue, Wuhong Liu, Yang Wang, Fang Xu, Xiaohong Zhang, Taisong |
Author_xml | – sequence: 1 givenname: Jiangnan surname: Lv fullname: Lv, Jiangnan organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 2 givenname: Xiaoting surname: Sun fullname: Sun, Xiaoting organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 3 givenname: Fang surname: Wang fullname: Wang, Fang organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 4 givenname: Ruixia surname: Yang fullname: Yang, Ruixia organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 5 givenname: Taisong surname: Zhang fullname: Zhang, Taisong organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 6 givenname: Tingting surname: Liang fullname: Liang, Tingting organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 7 givenname: Wanting surname: Rong fullname: Rong, Wanting organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 8 givenname: Qianwen surname: Yang fullname: Yang, Qianwen organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 9 givenname: Wuhong surname: Xue fullname: Xue, Wuhong organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 10 givenname: Lanfang surname: Wang fullname: Wang, Lanfang organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 11 givenname: Xiaohong surname: Xu fullname: Xu, Xiaohong email: xuxh@sxnu.edu.cn organization: Research Institute of Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education – sequence: 12 givenname: Yang orcidid: 0000-0001-5586-623X surname: Liu fullname: Liu, Yang email: liuyang_fd@fudan.edu.cn organization: Fudan University |
BookMark | eNqFkNtLwzAUxoMoOC-vPgd83sxJ0rV9HLs4wQuIgm8lTU9mZpvMNEX239sxURDEl3OB73c-zndCDp13SMgFsBEwxq9UZZoRZ1wCyBwOyADGMB4KxrPD7xlejslJ264ZgzQVckDi3K2sQwzWrei91W9Y05nfKBdbah2dRN9Yrep6S59e-_3O19uyQtc1dGbbrja2Qmp8oEu7eu1Fc2OstuhifysGFZE-YtXpaL2j0dNJ03hn1Rk5Mqpu8fyrn5LnxfxpuhzePlzfTCe3Qy0ghWGeCJ4kSTk2Y0yErjKJpagwlRlTosy4VAkHWeUZy01f0xwNyFSXCHkFkktxSi73dzfBv3fYxmLtu-B6y0KASFiSMw69arRX6eDbNqApNsE2KmwLYMUu2WKXbPGdbA_IX4C2Ue1-7F-29d9Yvsc-bI3bf0yKyWxx98N-AnadkGI |
CitedBy_id | crossref_primary_10_1021_acsami_4c16144 crossref_primary_10_1021_acscatal_4c06559 crossref_primary_10_1016_j_cej_2025_160574 crossref_primary_10_1021_acs_inorgchem_4c05229 |
Cites_doi | 10.1002/adfm.201803291 10.1016/j.cej.2023.146137 10.1002/anie.202303327 10.1002/adma.202313548 10.1038/s41467-022-35533-6 10.1038/s41929-021-00584-3 10.1021/jacs.3c13517 10.1002/anie.202400428 10.1002/anie.202218717 10.1038/s44160-023-00258-x 10.1002/aenm.202400790 10.1021/jacs.9b13347 10.1038/nnano.2015.340 10.1016/j.jcis.2022.09.049 10.1021/acs.nanolett.3c01994 10.1002/anie.202307952 10.1002/adma.202304508 10.1021/ar500280m 10.1002/adfm.201702317 10.1039/D1CS00330E 10.1021/acsenergylett.9b01573 10.1038/s41565-023-01407-1 10.1038/s41557-018-0035-6 10.1002/adfm.202211537 10.1021/jacs.8b12133 10.1038/s41467-022-28728-4 10.1002/anie.202400206 10.1038/s41929-023-00951-2 10.1002/aenm.202303863 10.1038/ncomms3995 10.1002/anie.202308044 10.1002/anie.202303483 10.1021/am404843b 10.1002/adfm.202108316 10.1039/D2TA06346H 10.1002/adma.202303107 10.1002/adma.202202952 10.1002/adma.202404774 10.1021/acsenergylett.3c01139 10.1002/anie.202315238 10.1038/s41467-022-35664-w 10.1021/jacs.4c04023 10.1021/acscatal.3c04541 10.1002/anie.202406750 10.1002/anie.202401924 10.1039/D4EE02775B 10.1002/anie.202315109 10.1002/adfm.202313548 10.1021/jacs.3c06904 10.1002/aenm.202103872 10.1016/j.apcatb.2022.122193 10.1038/nmat4465 10.1002/adfm.202302651 10.1038/s41560-020-0654-1 10.1039/D2QI01798A 10.1021/acsnano.2c07911 10.1002/anie.202319029 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202411491 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202411491 ADFM202411491 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 12174237; 52301298 – fundername: Science and Technology Commission of Shanghai Municipality funderid: 23ZR1405000; 22YF1401900 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3171-9532555b6f6e53cd84eb3de7480a3b824a5214d9809fd9879ef147cbe19d14243 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 23:45:40 EDT 2025 Tue Jul 01 04:15:41 EDT 2025 Thu Apr 24 22:54:56 EDT 2025 Wed Jan 22 17:14:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3171-9532555b6f6e53cd84eb3de7480a3b824a5214d9809fd9879ef147cbe19d14243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5586-623X |
PQID | 3135059021 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3135059021 crossref_primary_10_1002_adfm_202411491 crossref_citationtrail_10_1002_adfm_202411491 wiley_primary_10_1002_adfm_202411491_ADFM202411491 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023 2023; 6 35 2023 2022; 35 13 2024 2024; 14 146 2023 2023 2023; 35 34 324 2023; 33 2023 2023; 62 13 2023; 18 2015 2014; 48 5 2023 2024 2024; 62 146 63 2021; 50 2024; 36 2013; 5 2016; 11 2023; 62 2024 2023 2024 2024; 146 62 63 36 2020 2023 2024; 142 8 63 2016 2018 2017 2021; 15 28 27 4 2024 2022; 63 12 2024 2022; 63 13 2023; 475 2022 2023 2024 2022 2023; 32 629 63 10 10 2022; 13 2024; 63 2023 2024; 62 2020 2024; 5 14 2018 2019; 10 141 2023 2023; 33 17 2023 2019 2023; 2 4 23 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_2 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_2 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_28_1 e_1_2_7_28_2 e_1_2_7_9_5 e_1_2_7_9_4 e_1_2_7_9_3 e_1_2_7_25_1 e_1_2_7_21_4 e_1_2_7_23_2 e_1_2_7_21_3 e_1_2_7_23_1 e_1_2_7_21_2 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_4 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_14_1 e_1_2_7_10_3 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_27_2 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_22_2 e_1_2_7_22_1 e_1_2_7_20_2 e_1_2_7_20_1 |
References_xml | – volume: 2 4 23 start-page: 624 2111 7120 year: 2023 2019 2023 publication-title: Nat. Synth. ACS Energy Lett. Nano Lett. – volume: 35 13 start-page: 7899 year: 2023 2022 publication-title: Adv. Mater. Nat. Commun. – volume: 33 17 start-page: 1081 year: 2023 2023 publication-title: Adv. Funct. Mater. ACS Nano – volume: 35 34 324 year: 2023 2023 2023 publication-title: Adv. Mater. Adv. Funct. Mater. Appl. Catal. B: Environ. – volume: 11 start-page: 218 year: 2016 publication-title: Nat. Nanotech. – volume: 475 year: 2023 publication-title: Chem. Eng. Sci. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 14 146 year: 2024 2024 publication-title: Adv. Energy Mater. J. Am. Chem. Soc – volume: 48 5 start-page: 41 2995 year: 2015 2014 publication-title: Acc. Chem. Res. Nat. Commun. – volume: 62 13 year: 2023 2023 publication-title: Angew. Chem., Int. Ed. ACS Catal. – volume: 10 141 start-page: 638 790 year: 2018 2019 publication-title: Nat. Chem. J. Am. Chem. Soc – volume: 13 start-page: 1129 year: 2022 publication-title: Nat. Commun. – volume: 5 14 start-page: 605 year: 2020 2024 publication-title: Nat. Energy Adv. Energy Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 32 629 63 10 10 start-page: 950 1543 year: 2022 2023 2024 2022 2023 publication-title: Adv. Funct. Mater. J. Colloid Interf. Sci. Angew. Chem., Int. Ed. J. Mater. Chem. A Inorg. Chem. Front. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 63 12 year: 2024 2022 publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. – volume: 6 35 start-page: 402 year: 2023 2023 publication-title: Nat. Catal. Adv. Mater. – volume: 62 146 63 year: 2023 2024 2024 publication-title: Angew. Chem., Int. Ed. J. Am. Chem. Soc Angew. Chem., Int. Ed. – volume: 15 28 27 4 start-page: 48 242 year: 2016 2018 2017 2021 publication-title: Nat. Mater. Adv. Funct. Mater. Adv. Funct. Mater. Nat. Catal. – volume: 146 62 63 36 start-page: 2967 year: 2024 2023 2024 2024 publication-title: J. Am. Chem. Soc Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Adv. Mater. – volume: 63 year: 2024 publication-title: Angew. Chem., Int. Ed. – volume: 142 8 63 start-page: 5702 3843 year: 2020 2023 2024 publication-title: J. Am. Chem. Soc ACS Energy Lett. Angew. Chem., Int. Ed. – volume: 5 year: 2013 publication-title: ACS Appl. Mater. & Interfaces – volume: 62 year: 2023 2024 publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. – volume: 18 start-page: 763 year: 2023 publication-title: Nat. Nanotech. – volume: 50 start-page: 9817 year: 2021 publication-title: Chem. Soc. Rev. – volume: 63 13 start-page: 7958 year: 2024 2022 publication-title: Angew. Chem., Int. Ed. Nat. Commun. – ident: e_1_2_7_6_2 doi: 10.1002/adfm.201803291 – ident: e_1_2_7_3_1 doi: 10.1016/j.cej.2023.146137 – ident: e_1_2_7_21_2 doi: 10.1002/anie.202303327 – ident: e_1_2_7_21_4 doi: 10.1002/adma.202313548 – ident: e_1_2_7_23_2 doi: 10.1038/s41467-022-35533-6 – ident: e_1_2_7_6_4 doi: 10.1038/s41929-021-00584-3 – ident: e_1_2_7_24_2 doi: 10.1021/jacs.3c13517 – ident: e_1_2_7_25_1 doi: 10.1002/anie.202400428 – ident: e_1_2_7_27_1 doi: 10.1002/anie.202218717 – ident: e_1_2_7_2_1 doi: 10.1038/s44160-023-00258-x – ident: e_1_2_7_1_2 doi: 10.1002/aenm.202400790 – ident: e_1_2_7_10_1 doi: 10.1021/jacs.9b13347 – ident: e_1_2_7_5_1 doi: 10.1038/nnano.2015.340 – ident: e_1_2_7_9_2 doi: 10.1016/j.jcis.2022.09.049 – ident: e_1_2_7_2_3 doi: 10.1021/acs.nanolett.3c01994 – ident: e_1_2_7_11_1 doi: 10.1002/anie.202307952 – ident: e_1_2_7_23_1 doi: 10.1002/adma.202304508 – ident: e_1_2_7_14_1 doi: 10.1021/ar500280m – ident: e_1_2_7_6_3 doi: 10.1002/adfm.201702317 – ident: e_1_2_7_8_1 doi: 10.1039/D1CS00330E – ident: e_1_2_7_2_2 doi: 10.1021/acsenergylett.9b01573 – ident: e_1_2_7_12_1 doi: 10.1038/s41565-023-01407-1 – ident: e_1_2_7_13_1 doi: 10.1038/s41557-018-0035-6 – ident: e_1_2_7_19_1 doi: 10.1002/adfm.202211537 – ident: e_1_2_7_13_2 doi: 10.1021/jacs.8b12133 – ident: e_1_2_7_26_1 doi: 10.1038/s41467-022-28728-4 – ident: e_1_2_7_22_1 doi: 10.1002/anie.202400206 – ident: e_1_2_7_17_1 doi: 10.1038/s41929-023-00951-2 – ident: e_1_2_7_24_1 doi: 10.1002/aenm.202303863 – ident: e_1_2_7_14_2 doi: 10.1038/ncomms3995 – ident: e_1_2_7_20_1 doi: 10.1002/anie.202308044 – ident: e_1_2_7_7_1 doi: 10.1002/anie.202303483 – ident: e_1_2_7_15_1 doi: 10.1021/am404843b – ident: e_1_2_7_9_1 doi: 10.1002/adfm.202108316 – ident: e_1_2_7_9_4 doi: 10.1039/D2TA06346H – ident: e_1_2_7_17_2 doi: 10.1002/adma.202303107 – ident: e_1_2_7_4_1 doi: 10.1002/adma.202202952 – ident: e_1_2_7_16_1 doi: 10.1002/adma.202404774 – ident: e_1_2_7_10_2 doi: 10.1021/acsenergylett.3c01139 – ident: e_1_2_7_21_3 doi: 10.1002/anie.202315238 – ident: e_1_2_7_22_2 doi: 10.1038/s41467-022-35664-w – ident: e_1_2_7_11_2 doi: 10.1021/jacs.4c04023 – ident: e_1_2_7_20_2 doi: 10.1021/acscatal.3c04541 – ident: e_1_2_7_10_3 doi: 10.1002/anie.202406750 – ident: e_1_2_7_28_1 doi: 10.1002/anie.202401924 – ident: e_1_2_7_27_2 doi: 10.1039/D4EE02775B – ident: e_1_2_7_9_3 doi: 10.1002/anie.202315109 – ident: e_1_2_7_4_2 doi: 10.1002/adfm.202313548 – ident: e_1_2_7_21_1 doi: 10.1021/jacs.3c06904 – ident: e_1_2_7_28_2 doi: 10.1002/aenm.202103872 – ident: e_1_2_7_4_3 doi: 10.1016/j.apcatb.2022.122193 – ident: e_1_2_7_6_1 doi: 10.1038/nmat4465 – ident: e_1_2_7_18_1 doi: 10.1002/adfm.202302651 – ident: e_1_2_7_1_1 doi: 10.1038/s41560-020-0654-1 – ident: e_1_2_7_9_5 doi: 10.1039/D2QI01798A – ident: e_1_2_7_18_2 doi: 10.1021/acsnano.2c07911 – ident: e_1_2_7_11_3 doi: 10.1002/anie.202319029 |
SSID | ssj0017734 |
Score | 2.5525687 |
Snippet | The electrocatalytic nitrate reduction reaction (NO3−RR) presents a promising pathway for achieving both ammonia (NH3) electrosynthesis and water pollutant... The electrocatalytic nitrate reduction reaction (NO 3 − RR) presents a promising pathway for achieving both ammonia (NH 3 ) electrosynthesis and water... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 2D materials Acceleration Ammonia ammonia synthesis Chemical reduction Doping doping effect Electrocatalysts Electron states metal sulfide Molybdenum disulfide Nanosheets Nickel nitrate reduction Nitrates Nitrogen dioxide Two dimensional materials |
Title | Engineering Nickel Dopants in Atomically Thin Molybdenum Disulfide for Highly Efficient Nitrate Reduction to Ammonia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202411491 https://www.proquest.com/docview/3135059021 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kJz34FqtV9iB4StvNY7M5FmspQj0UC72FfQVKQyomPdRf70zSpq0ggl5CQnY3ye7MzjfZmW8JedAq4pEUiQPOj3V8pbQjtKcd6bFEama7boQJzqNXPpz4L9NgupPFX_FD1D_cUDPK-RoVXKq8syUNlSbBTHKwQADy0f_BgC1EReOaP4qFYbWszBkGeLHphrWx63b2q-9bpS3U3AWspcUZnBC5edcq0GTeXhaqrT-_0Tj-52NOyfEajtJeJT9n5MBm5-Roh6TwghQ7VxQEZ25T2gdXOytyOstor1iUjAPpiuIeoHS0SFfKYIA97c_yZZrMjKWAjClGlECh55KzAkwdtFUy49IxsseifNBiQXuoFzN5SSaD57enobPeq8HRgEAYrgKDcxIonnAbeNoIH7x0Y0NfdKWnhOtLwAm-iUQ3SuAYRjZhfqiVZZHBZDvvijSyRWavCRWe5oFrZcAFzDAwP4jAcgC2Cp9hDG8SZzNWsV4TmeN-GmlcUTC7MfZmXPdmkzzW5d8rCo8fS7Y2Qx-vVTmPPeYFJckN3HbLMfyllbjXH4zqq5u_VLolh3hehc20SKP4WNo7AD-Fui8F_AuIkPsn |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5ROLQcSl8ICrQ-gHoKrPNwnAOHFWG1FJYDAmlvafyItCLaoG5W1fZf9a_0F3UmLxakqhISh14iJXGcxJ7xfLZnvgHY1yoSUSozByc_1vGV0o7UnnZSj2ep5rbnRhTgPLoUwxv_6zgYr8CvNham5ofoFtxIM6rxmhScFqSP7llDU5NRKDmaIET5vPGrPLeLHzhrmx2fxdjFB647OL0-GTpNYgFHo7nktGWJSDpQIhM28LSRPk4pjQ192Us9JV0_RaPmm0j2ogyPYWQz7odaWR4ZigzzsN4XsEZpxImuP77qGKt4GNYb2YKTSxkftzyRPffo4fc-tIP34HYZIlc2brABv9vWqV1bbg_npTrUPx8RR_5XzfcGXjeIm_VrFXkLK3b6DtaXeBjfQ7l0xlA3bm3O4uKOXITYZMr6ZVGRKuQLRmlO2ajIF8pQDAGLJ7N5nk2MZQj-GTnNYKHTipYDrTnWVZH_sisiyCUVYGXB-qT6k_QD3DzLb2_C6rSY2i1g0tMicG0aCImDKA6BMrACsbuidxgjtsFphSPRDVc7pQzJk5pl2k2o95Ku97bhS1f-rmYp-WvJ3VbWkma0miUe94KKxwdvu5XQ_KOWpB8PRt3Zx6c89BleDq9HF8nF2eX5Dryi67WX0C6slt_ndg-xXqk-VdrF4Ntzy-Mf7Q1XCA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1La9wwEB6SFEJ66CNpadK01aElJyeWH7J86GGpsyRNN5SQwN5c62FYYtZL10vY_qr-lf6jzviVTaEECjn0YpAty7Y0o_lkzXwD8F6rWMSZzB1c_FgnUEo7UvvayXyeZ5pb14spwHl0Lk6ugs_jcLwGP7tYmIYfov_hRppRz9ek4DOTH92ShmYmp0hytEAI8nnrVnlmlze4aJt_PE1whD943vD48tOJ0-YVcDRaS047lgikQyVyYUNfGxngitLYKJBu5ivpBRnatMDE0o1zPEaxzXkQaWV5bCgwzMd21-FRINyYkkUkFz1hFY-iZh9bcPIo4-OOJtL1ju6-710zeIttVxFybeKGT-FX1zmNZ8v14aJSh_rHH7yR_1PvPYMnLd5mg0ZBnsOanW7D4xUWxh2oVkoMNePaFiwpZ-QgxCZTNqjKmlKhWDJKcspGZbFUhiIIWDKZL4p8YixD6M_IZQYrHdekHGjLsa2a-pddED0uKQCrSjYgxZ9kL-DqQT77JWxMy6l9BUz6WoSezUIhcQrFCVCGViByV_QMY8QuOJ1spLplaqeEIUXacEx7KY1e2o_eLhz09WcNR8lfa-53opa2c9U89bkf1iw-eNmrZeaeVtJBMhz1pb1_uekdbH5NhumX0_Oz17BFpxsXoX3YqL4v7BsEepV6W-sWg28PLY6_AWWRVbc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Nickel+Dopants+in+Atomically+Thin+Molybdenum+Disulfide+for+Highly+Efficient+Nitrate+Reduction+to+Ammonia&rft.jtitle=Advanced+functional+materials&rft.au=Lv%2C+Jiangnan&rft.au=Sun%2C+Xiaoting&rft.au=Wang%2C+Fang&rft.au=Yang%2C+Ruixia&rft.date=2024-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=49&rft_id=info:doi/10.1002%2Fadfm.202411491&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |