Multifunctional Phra Phrom‐like Graphene‐Based Membrane for Environmental Remediation and Resources Regeneration
Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 7 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This leads to a PVDF/graphene‐BaTiO3 nanocomposite with a unique capability of integrating Phra Phrom‐like four functions into one single asymmetric membrane: i) solar evaporation, ii) power generation, iii) piezo‐photodegradation, and iv) self‐cleaning/monitoring for environmental remediation and resources regeneration. The high heat accumulation capability and piezoelectric performance of the membrane enable it to simultaneously achieve a water production rate of 0.99 kgm−2h−1, in compliance with WHO standards, and a maximum power output of 5.73 Wm−2 in simulated natural environments. Upon subjecting the membranes to environmental cleaning, they not only show a 93% dye degradation rate due to the synergistic effect of piezoelectricity and photocatalysis but also resolve the membrane fouling issue, exhibiting ≈200% resistance change compared to the static state. The successful integration of these four functions into one membrane shows the great potential of this work toward a more sustainable and viable water and energy production approach.
The Phra Phrom‐like graphene‐based membrane is prepared with four characteristics of solar evaporation, power generation, piezo‐photodegradation, and self‐cleaning/monitoring in a single membrane successfully. Based on the synergistic effect between each property, this research not only provides a new design of membranes but also shows great potential for the future of smart membranes used for environmental remediation and resource regeneration. |
---|---|
AbstractList | Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO
3
are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This leads to a PVDF/graphene‐BaTiO
3
nanocomposite with a unique capability of integrating Phra Phrom‐like four functions into one single asymmetric membrane: i) solar evaporation, ii) power generation, iii) piezo‐photodegradation, and iv) self‐cleaning/monitoring for environmental remediation and resources regeneration. The high heat accumulation capability and piezoelectric performance of the membrane enable it to simultaneously achieve a water production rate of 0.99 kgm
−2
h
−1
, in compliance with WHO standards, and a maximum power output of 5.73 Wm
−2
in simulated natural environments. Upon subjecting the membranes to environmental cleaning, they not only show a 93% dye degradation rate due to the synergistic effect of piezoelectricity and photocatalysis but also resolve the membrane fouling issue, exhibiting ≈200% resistance change compared to the static state. The successful integration of these four functions into one membrane shows the great potential of this work toward a more sustainable and viable water and energy production approach. Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This leads to a PVDF/graphene‐BaTiO3 nanocomposite with a unique capability of integrating Phra Phrom‐like four functions into one single asymmetric membrane: i) solar evaporation, ii) power generation, iii) piezo‐photodegradation, and iv) self‐cleaning/monitoring for environmental remediation and resources regeneration. The high heat accumulation capability and piezoelectric performance of the membrane enable it to simultaneously achieve a water production rate of 0.99 kgm−2h−1, in compliance with WHO standards, and a maximum power output of 5.73 Wm−2 in simulated natural environments. Upon subjecting the membranes to environmental cleaning, they not only show a 93% dye degradation rate due to the synergistic effect of piezoelectricity and photocatalysis but also resolve the membrane fouling issue, exhibiting ≈200% resistance change compared to the static state. The successful integration of these four functions into one membrane shows the great potential of this work toward a more sustainable and viable water and energy production approach. The Phra Phrom‐like graphene‐based membrane is prepared with four characteristics of solar evaporation, power generation, piezo‐photodegradation, and self‐cleaning/monitoring in a single membrane successfully. Based on the synergistic effect between each property, this research not only provides a new design of membranes but also shows great potential for the future of smart membranes used for environmental remediation and resource regeneration. Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This leads to a PVDF/graphene‐BaTiO3 nanocomposite with a unique capability of integrating Phra Phrom‐like four functions into one single asymmetric membrane: i) solar evaporation, ii) power generation, iii) piezo‐photodegradation, and iv) self‐cleaning/monitoring for environmental remediation and resources regeneration. The high heat accumulation capability and piezoelectric performance of the membrane enable it to simultaneously achieve a water production rate of 0.99 kgm−2h−1, in compliance with WHO standards, and a maximum power output of 5.73 Wm−2 in simulated natural environments. Upon subjecting the membranes to environmental cleaning, they not only show a 93% dye degradation rate due to the synergistic effect of piezoelectricity and photocatalysis but also resolve the membrane fouling issue, exhibiting ≈200% resistance change compared to the static state. The successful integration of these four functions into one membrane shows the great potential of this work toward a more sustainable and viable water and energy production approach. |
Author | Lin, Chia‐Her Wang, Da‐Ming Austria, Hannah Faye M. Setiawan, Owen Chen, Yi‐Yun Widakdo, Januar Hung, Wei‐Song Chang, Ching‐Yuan Subrahmanya, T. M. Lai, Juin‐Yih Lai, Yu‐Lun Lee, Kueir‐Rarn Hu, Chien‐Chieh Huang, Tsung‐Han Wang, Chih‐Feng Tian, Xin‐Yuan |
Author_xml | – sequence: 1 givenname: Tsung‐Han orcidid: 0009-0006-7992-467X surname: Huang fullname: Huang, Tsung‐Han organization: National Taiwan University of Science and Technology – sequence: 2 givenname: Xin‐Yuan surname: Tian fullname: Tian, Xin‐Yuan organization: Asia Eastern University of Science and Technology – sequence: 3 givenname: Yi‐Yun surname: Chen fullname: Chen, Yi‐Yun organization: National Taiwan University of Science and Technology – sequence: 4 givenname: Januar orcidid: 0000-0001-7973-862X surname: Widakdo fullname: Widakdo, Januar organization: Universitas Indonesia – sequence: 5 givenname: Hannah Faye M. orcidid: 0000-0003-4468-1541 surname: Austria fullname: Austria, Hannah Faye M. organization: National Taiwan University of Science and Technology – sequence: 6 givenname: Owen orcidid: 0000-0002-6776-2988 surname: Setiawan fullname: Setiawan, Owen organization: National Taiwan University of Science and Technology – sequence: 7 givenname: T. M. orcidid: 0000-0002-4632-2617 surname: Subrahmanya fullname: Subrahmanya, T. M. organization: National Taiwan University of Science and Technology – sequence: 8 givenname: Wei‐Song orcidid: 0000-0002-8483-2992 surname: Hung fullname: Hung, Wei‐Song email: wshung@mail.ntust.edu.tw organization: National Taiwan University of Science and Technology – sequence: 9 givenname: Da‐Ming surname: Wang fullname: Wang, Da‐Ming organization: National Taiwan University – sequence: 10 givenname: Ching‐Yuan surname: Chang fullname: Chang, Ching‐Yuan organization: National Taipei University of Technology – sequence: 11 givenname: Chih‐Feng surname: Wang fullname: Wang, Chih‐Feng organization: National Sun Yat‐sen University – sequence: 12 givenname: Chien‐Chieh surname: Hu fullname: Hu, Chien‐Chieh organization: National Taiwan University of Science and Technology – sequence: 13 givenname: Chia‐Her surname: Lin fullname: Lin, Chia‐Her organization: National Taiwan Normal University – sequence: 14 givenname: Yu‐Lun surname: Lai fullname: Lai, Yu‐Lun organization: Industrial Technology Research Institute – sequence: 15 givenname: Kueir‐Rarn surname: Lee fullname: Lee, Kueir‐Rarn organization: Chung Yuan University – sequence: 16 givenname: Juin‐Yih surname: Lai fullname: Lai, Juin‐Yih organization: Yuan Ze University |
BookMark | eNqFkF1LwzAUhoNMcJveel3wejMfXZtezrlNYUMRBe9Kmp64zDadSafszp_gb_SXmG4yQRBvzgfnPG9y3g5qmcoAQqcE9wnG9FzkquxTTBnmjJID1CYRiXoMU97a1-TxCHWcW2JM4piFbVTP10Wt1drIWldGFMHtwoomVOXn-0ehnyGYWrFagAHfXwgHeTCHMrPCQKAqG4zNq7aVKcHUnr6DEnItGq1AmNz3rlpbCc5XT17DbkfH6FCJwsHJd-6ih8n4fnTVm91Mr0fDWU8yEpMez6OYCyZILjNBJc8VV3ggE8iU5IM4kn4sQ0ZICFzxKIoTFdJMZkoA4yrErIvOdrorW72swdXp0v_GX-lSmtCIhYwy5rf6uy1pK-csqHRldSnsJiU4bZxNG2fTvbMeCH8BUtfbw2ordPE3luywN13A5p9H0uHlZP7DfgHQmZR4 |
CitedBy_id | crossref_primary_10_1002_adfm_202401149 crossref_primary_10_1039_D4MH00591K crossref_primary_10_1016_j_measurement_2025_117225 crossref_primary_10_1016_j_seppur_2024_127317 crossref_primary_10_1002_smll_202408056 |
Cites_doi | 10.1002/adfm.201910481 10.1021/acsami.5b04161 10.1002/smll.202007176 10.1021/acsnano.0c07677 10.1021/acssuschemeng.8b02466 10.1016/j.compositesb.2012.08.002 10.1038/s41467-022-34385-4 10.1039/C7RA01267E 10.1016/j.ssc.2012.04.064 10.1016/j.colsurfb.2019.110587 10.1016/j.msec.2019.03.030 10.1016/j.compscitech.2020.108600 10.1016/j.nanoen.2020.105102 10.1021/acsami.8b16621 10.1109/ACCESS.2019.2906402 10.1016/j.physrep.2011.02.002 10.1016/j.apcatb.2018.09.028 10.1016/j.carbon.2022.09.026 10.1016/j.rser.2013.08.063 10.1021/acsami.2c07911 10.1039/D0EE00341G 10.1002/adfm.201902014 10.1016/j.jece.2017.04.038 10.1039/c4ta01783h 10.1016/j.nanoen.2019.104006 10.1016/j.watres.2018.11.030 10.1016/j.cej.2016.08.144 10.1016/j.carbon.2021.06.047 10.1016/j.ultsonch.2019.104891 10.1039/C8TA10190F 10.1016/j.ultsonch.2019.104633 10.1039/C7EE01804E 10.1002/smll.201604245 10.1016/j.enconman.2021.114668 10.1002/aenm.201702149 10.1002/aenm.202100481 10.1002/adma.202006093 10.1016/j.joule.2019.10.008 10.1016/j.cej.2021.129340 10.3390/en15249289 10.1002/adfm.202010422 10.1016/j.watres.2018.09.056 10.1016/j.nanoen.2022.106930 10.1016/j.memsci.2019.01.010 10.1002/aenm.201800711 10.1016/j.cej.2017.09.193 10.1063/1.2172216 10.1016/j.rser.2009.11.003 10.1016/j.nanoen.2020.104922 10.1016/j.jenvman.2011.06.009 10.1016/j.memsci.2019.117204 10.1002/anie.201706549 10.1021/acsami.1c07091 10.1002/adfm.202005158 10.1021/acs.chemmater.0c01547 10.1002/adma.201102752 10.1016/j.rser.2016.07.020 10.1016/j.jcis.2015.05.002 10.1002/aenm.202200087 10.1016/j.progpolymsci.2013.07.006 10.1002/adma.201501832 10.1016/j.cej.2021.131030 10.1016/j.cej.2021.134425 10.1016/j.desal.2014.10.043 10.1016/j.cej.2021.129000 10.1039/C5EE02985F 10.1038/nature13792 10.1016/j.desal.2020.114530 10.1016/j.desal.2015.08.018 10.1016/j.bioactmat.2020.07.001 10.1016/j.joule.2018.07.015 10.1126/science.1061051 10.1016/j.biortech.2012.04.089 10.1016/j.nanoen.2018.10.041 10.1039/C9EE03059J 10.1016/j.cej.2022.135787 10.1021/acsami.0c08560 10.1002/adma.201900720 10.1016/j.nanoen.2018.12.046 10.1016/j.joule.2020.04.011 10.1016/j.memsci.2019.117174 10.1016/j.nanoen.2021.106527 10.1016/j.desal.2019.02.008 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202308321 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202308321 ADFM202308321 |
Genre | article |
GrantInformation_xml | – fundername: SEED – fundername: National Science and Technology Council funderid: 110‐2221‐E‐011‐122 ‐MY3; 108‐2628‐E‐011 ‐003‐MY3; 111‐2622‐E‐011 ‐025 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3171-8d678a3a1dcba2c8df8f05c9ebfc8576c678c43114e8f86679f42bcbfae38f403 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 02:04:11 EDT 2025 Tue Jul 01 00:30:51 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Wed Jan 22 16:15:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3171-8d678a3a1dcba2c8df8f05c9ebfc8576c678c43114e8f86679f42bcbfae38f403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4632-2617 0009-0006-7992-467X 0000-0002-8483-2992 0000-0002-6776-2988 0000-0003-4468-1541 0000-0001-7973-862X |
PQID | 2926343233 |
PQPubID | 2045204 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2926343233 crossref_primary_10_1002_adfm_202308321 crossref_citationtrail_10_1002_adfm_202308321 wiley_primary_10_1002_adfm_202308321_ADFM202308321 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2012; 122 2010; 14 2020; 62 2021; 246 2021 2019 2013; 33 588 45 2021; 202 2019; 57 2019; 58 2020; 14 2020; 13 2014; 29 2019; 241 2018; 6 2018; 8 2020; 5 2020; 4 2018; 2 2001; 293 2021; 31 2014; 2 2021; 432 2019; 65 2015; 376 2018; 333 2020; 490 2020 2019; 185 100 2019; 29 2012; 24 2019; 150 2016 2018; 9 6 2011 2017; 503 13 2014; 514 2019; 7 2019; 31 2022; 94 2023; 201 2018; 147 2021; 182 2019; 587 2020; 77 2020; 32 2015; 7 2021; 417 2017; 307 2020 2015; 12 453 2021; 13 2012; 152 2015; 27 2021; 11 2020; 30 2020; 74 2015; 356 2021 2006; 88 2011; 92 2021; 17 2017; 10 2017; 56 2021; 415 2016; 65 2022; 12 2022; 13 2022; 14 2019; 575 2022; 15 2021 2022; 90 439 2016 2019; 459 2014; 39 2022; 427 2018; 54 2018; 10 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_64_2 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_53_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 Xiao P. S. (e_1_2_8_69_1) 2016 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_40_3 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_21_2 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_54_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 201 start-page: 318 year: 2023 publication-title: Carbon – volume: 503 13 start-page: 77 year: 2011 2017 publication-title: Phys. Rep. Small – volume: 74 year: 2020 publication-title: Nano Energy – volume: 54 start-page: 437 year: 2018 publication-title: Nano Energy – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 5750 year: 2020 publication-title: Chem. Mater. – volume: 459 start-page: 59 year: 2019 publication-title: Desalination – volume: 13 start-page: 6771 year: 2022 publication-title: Nat. Commun. – volume: 9 6 start-page: 31 year: 2016 2018 publication-title: Energy Environ. Sci. ACS Sustain Chem Eng – volume: 58 year: 2019 publication-title: Ultrason. Sonochem. – volume: 65 start-page: 319 year: 2016 publication-title: Renew. Sustain. Energy Rev. – volume: 2 start-page: 1452 year: 2018 publication-title: Joule – volume: 12 453 start-page: 169 year: 2020 2015 publication-title: ACS Appl. Mater. Interfaces J. Colloid. Interface Sci. – volume: 293 start-page: 269 year: 2001 publication-title: Science – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – year: 2021 – volume: 150 start-page: 21 year: 2019 publication-title: Water Res. – volume: 152 start-page: 1341 year: 2012 publication-title: Solid State Commun. – volume: 7 start-page: 6514 year: 2019 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1087 year: 2020 publication-title: Bioact Mater – volume: 13 start-page: 868 year: 2020 publication-title: Energy Environ. Sci. – volume: 14 start-page: 899 year: 2010 publication-title: Renew. Sustain. Energy Rev. – volume: 10 start-page: 1923 year: 2017 publication-title: Energy Environ. Sci. – volume: 490 year: 2020 publication-title: Desalination – volume: 39 start-page: 683 year: 2014 publication-title: Prog. Polym. Sci. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 94 year: 2022 publication-title: Nano Energy – volume: 202 year: 2021 publication-title: Compos. Sci. Technol. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 514 start-page: 470 year: 2014 publication-title: Nature – volume: 7 year: 2019 publication-title: IEEE Access – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1137 year: 2020 publication-title: Joule – volume: 575 start-page: 160 year: 2019 publication-title: J. Membr. Sci. – volume: 92 start-page: 2355 year: 2011 publication-title: J Environ Manage – volume: 182 start-page: 545 year: 2021 publication-title: Carbon – volume: 29 start-page: 52 year: 2014 publication-title: Renewable Sustainable Energy Rev. – volume: 2 start-page: 9313 year: 2014 publication-title: J. Mater. Chem. A – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 24 start-page: 229 year: 2012 publication-title: Adv. Mater. – volume: 90 439 year: 2021 2022 publication-title: Nano Energy Chem. Eng. J. – volume: 241 start-page: 256 year: 2019 publication-title: Appl. Catal., B – volume: 417 year: 2021 publication-title: Chem. Eng. J. – volume: 4 start-page: 176 year: 2020 publication-title: Joule – volume: 13 start-page: 1694 year: 2020 publication-title: Energy Environ. Sci. – volume: 432 year: 2021 publication-title: Chem. Eng. J. – volume: 27 start-page: 4302 year: 2015 publication-title: Adv. Mater. – volume: 376 start-page: 73 year: 2015 publication-title: Desalination – volume: 427 year: 2022 publication-title: Chem. Eng. J. – start-page: 3 year: 2016 publication-title: Adv. Sci. – volume: 356 start-page: 226 year: 2015 publication-title: Desalination – volume: 33 588 45 start-page: 1199 year: 2021 2019 2013 publication-title: Adv. Mater. J. Membr. Sci. Composites, Part B – volume: 17 year: 2021 publication-title: Small – volume: 307 start-page: 897 year: 2017 publication-title: Chem. Eng. J. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 57 start-page: 507 year: 2019 publication-title: Nano Energy – volume: 122 start-page: 27 year: 2012 publication-title: Bioresour. Technol. – volume: 77 year: 2020 publication-title: Nano Energy – volume: 415 year: 2021 publication-title: Chem. Eng. J. – volume: 587 year: 2019 publication-title: J. Membr. Sci. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 185 100 start-page: 809 year: 2020 2019 publication-title: Colloids Surf. B Mater. Sci. Eng. C – volume: 147 start-page: 276 year: 2018 publication-title: Water Res. – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 333 start-page: 730 year: 2018 publication-title: Chem. Eng. J. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 246 year: 2021 publication-title: Energy Convers. Manage. – volume: 62 year: 2020 publication-title: Ultrason. Sonochem. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 65 year: 2019 publication-title: Nano Energy – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 15 start-page: 9289 year: 2022 publication-title: Energies – volume: 6 start-page: 3565 year: 2018 publication-title: J. Environ. Chem. Eng. – ident: e_1_2_8_14_1 doi: 10.1002/adfm.201910481 – ident: e_1_2_8_43_1 doi: 10.1021/acsami.5b04161 – ident: e_1_2_8_46_1 doi: 10.1002/smll.202007176 – ident: e_1_2_8_47_1 doi: 10.1021/acsnano.0c07677 – ident: e_1_2_8_21_2 doi: 10.1021/acssuschemeng.8b02466 – ident: e_1_2_8_40_3 doi: 10.1016/j.compositesb.2012.08.002 – ident: e_1_2_8_18_1 doi: 10.1038/s41467-022-34385-4 – ident: e_1_2_8_36_1 doi: 10.1039/C7RA01267E – ident: e_1_2_8_39_1 doi: 10.1016/j.ssc.2012.04.064 – ident: e_1_2_8_55_1 doi: 10.1016/j.colsurfb.2019.110587 – ident: e_1_2_8_55_2 doi: 10.1016/j.msec.2019.03.030 – ident: e_1_2_8_58_1 doi: 10.1016/j.compscitech.2020.108600 – ident: e_1_2_8_72_1 doi: 10.1016/j.nanoen.2020.105102 – ident: e_1_2_8_42_1 doi: 10.1021/acsami.8b16621 – ident: e_1_2_8_11_1 doi: 10.1109/ACCESS.2019.2906402 – ident: e_1_2_8_53_1 doi: 10.1016/j.physrep.2011.02.002 – ident: e_1_2_8_62_1 doi: 10.1016/j.apcatb.2018.09.028 – ident: e_1_2_8_76_1 doi: 10.1016/j.carbon.2022.09.026 – ident: e_1_2_8_8_1 doi: 10.1016/j.rser.2013.08.063 – ident: e_1_2_8_57_1 doi: 10.1021/acsami.2c07911 – ident: e_1_2_8_2_1 doi: 10.1039/D0EE00341G – ident: e_1_2_8_50_1 doi: 10.1002/adfm.201902014 – ident: e_1_2_8_65_1 doi: 10.1016/j.jece.2017.04.038 – ident: e_1_2_8_23_1 doi: 10.1039/c4ta01783h – ident: e_1_2_8_74_1 doi: 10.1016/j.nanoen.2019.104006 – ident: e_1_2_8_32_1 doi: 10.1016/j.watres.2018.11.030 – ident: e_1_2_8_29_1 doi: 10.1016/j.cej.2016.08.144 – ident: e_1_2_8_44_1 doi: 10.1016/j.carbon.2021.06.047 – ident: e_1_2_8_33_1 doi: 10.1016/j.ultsonch.2019.104891 – ident: e_1_2_8_77_1 doi: 10.1039/C8TA10190F – ident: e_1_2_8_28_1 doi: 10.1016/j.ultsonch.2019.104633 – ident: e_1_2_8_75_1 doi: 10.1039/C7EE01804E – ident: e_1_2_8_53_2 doi: 10.1002/smll.201604245 – ident: e_1_2_8_17_1 doi: 10.1016/j.enconman.2021.114668 – ident: e_1_2_8_71_1 doi: 10.1002/aenm.201702149 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.202100481 – ident: e_1_2_8_40_1 doi: 10.1002/adma.202006093 – ident: e_1_2_8_20_1 doi: 10.1016/j.joule.2019.10.008 – ident: e_1_2_8_27_1 doi: 10.1016/j.cej.2021.129340 – ident: e_1_2_8_10_1 doi: 10.3390/en15249289 – ident: e_1_2_8_78_1 doi: 10.1002/adfm.202010422 – ident: e_1_2_8_48_1 – ident: e_1_2_8_24_1 doi: 10.1016/j.watres.2018.09.056 – ident: e_1_2_8_67_1 doi: 10.1016/j.nanoen.2022.106930 – ident: e_1_2_8_68_1 doi: 10.1016/j.memsci.2019.01.010 – ident: e_1_2_8_15_1 doi: 10.1002/aenm.201800711 – ident: e_1_2_8_31_1 doi: 10.1016/j.cej.2017.09.193 – ident: e_1_2_8_51_1 doi: 10.1063/1.2172216 – ident: e_1_2_8_70_1 doi: 10.1016/j.rser.2009.11.003 – ident: e_1_2_8_19_1 doi: 10.1016/j.nanoen.2020.104922 – ident: e_1_2_8_5_1 doi: 10.1016/j.jenvman.2011.06.009 – start-page: 3 year: 2016 ident: e_1_2_8_69_1 publication-title: Adv. Sci. – ident: e_1_2_8_40_2 doi: 10.1016/j.memsci.2019.117204 – ident: e_1_2_8_61_1 doi: 10.1002/anie.201706549 – ident: e_1_2_8_73_1 doi: 10.1021/acsami.1c07091 – ident: e_1_2_8_63_1 doi: 10.1002/adfm.202005158 – ident: e_1_2_8_37_1 doi: 10.1021/acs.chemmater.0c01547 – ident: e_1_2_8_60_1 doi: 10.1002/adma.201102752 – ident: e_1_2_8_1_1 doi: 10.1016/j.rser.2016.07.020 – ident: e_1_2_8_54_2 doi: 10.1016/j.jcis.2015.05.002 – ident: e_1_2_8_13_1 doi: 10.1002/aenm.202200087 – ident: e_1_2_8_41_1 doi: 10.1016/j.progpolymsci.2013.07.006 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201501832 – ident: e_1_2_8_45_1 doi: 10.1016/j.cej.2021.131030 – ident: e_1_2_8_26_1 doi: 10.1016/j.cej.2021.134425 – ident: e_1_2_8_6_1 doi: 10.1016/j.desal.2014.10.043 – ident: e_1_2_8_66_1 doi: 10.1016/j.cej.2021.129000 – ident: e_1_2_8_21_1 doi: 10.1039/C5EE02985F – ident: e_1_2_8_52_1 doi: 10.1038/nature13792 – ident: e_1_2_8_7_1 doi: 10.1016/j.desal.2020.114530 – ident: e_1_2_8_22_1 doi: 10.1016/j.desal.2015.08.018 – ident: e_1_2_8_35_1 doi: 10.1016/j.bioactmat.2020.07.001 – ident: e_1_2_8_3_1 doi: 10.1016/j.joule.2018.07.015 – ident: e_1_2_8_59_1 doi: 10.1126/science.1061051 – ident: e_1_2_8_25_1 doi: 10.1016/j.biortech.2012.04.089 – ident: e_1_2_8_38_1 doi: 10.1016/j.nanoen.2018.10.041 – ident: e_1_2_8_56_1 doi: 10.1039/C9EE03059J – ident: e_1_2_8_64_2 doi: 10.1016/j.cej.2022.135787 – ident: e_1_2_8_54_1 doi: 10.1021/acsami.0c08560 – ident: e_1_2_8_49_1 doi: 10.1002/adma.201900720 – ident: e_1_2_8_12_1 doi: 10.1016/j.nanoen.2018.12.046 – ident: e_1_2_8_9_1 doi: 10.1016/j.joule.2020.04.011 – ident: e_1_2_8_30_1 doi: 10.1016/j.memsci.2019.117174 – ident: e_1_2_8_64_1 doi: 10.1016/j.nanoen.2021.106527 – ident: e_1_2_8_4_1 doi: 10.1016/j.desal.2019.02.008 |
SSID | ssj0017734 |
Score | 2.4905403 |
Snippet | Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically... Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO 3 are used to synergistically... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Barium titanates Cleaning Environmental restoration Graphene Maximum power Membranes Nanocomposites Photodegradation Piezoelectricity piezo‐photodegradation Polyvinylidene fluorides power generation Regeneration Remediation Self-assembly self‐cleaning/monitoring solar evaporator Synergistic effect β‐PVDF/Graphene/BaTiO3 |
Title | Multifunctional Phra Phrom‐like Graphene‐Based Membrane for Environmental Remediation and Resources Regeneration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202308321 https://www.proquest.com/docview/2926343233 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6iFz34LU6n5CB4qlvSLk2P0zmHOBF1sFtJ00RFreLmxZM_wd_oL_F9m7XbBBH0UlLyQZqv52nyvk8I2QvQ7ddnymM6UF5geeJFgLOeUFyEFgEqP4rpnotOLzjtN_oTXvxOH6LccMOZka_XOMFVMqiNRUNVatGTHCg0XrYDizAabCEruiz1o1gYumNlwdDAi_UL1cY6r01nn0alMdWcJKw54rSXiCrq6gxN7g9eh8mBfvsm4_ifj1kmiyM6Sptu_KyQGZOtkoUJkcI14nx0Ef_ctiG9uH1R-Hh6_Hz_eLi7N_QEVa9h0YT3Q0DFlHbNI9QmMxQoMT0e-9JB7kuTO6tgWVRlKS3ODwYQusk1sDFqnfTax9dHHW90V4OngYEwT6aAespXLNWJ4lqmVtp6Q0cmsVrCP42GaA1khQVGWilEGNmAJzqxyvjSBnV_g8xmT5nZJBTaQsmGwv1qSGONlEZEvjSMC52GglWIV_RVrEdC5nifxkPsJJh5jK0Zl61ZIftl-mcn4fFjymrR9fFoKg9iHnGB3re-XyE878NfSombrXa3fNv6S6ZtMg_hwFmHV8ns8OXV7AD5GSa7ZK7Z6p5d7eYD_QtqbgAC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BOLQ9UPoSAQp7qNSTIbt21utjeITQJqhCicTNWq93KQKcKoQLJ35Cf2N_CTPe2CGVKqRysWzvQ-t9zefZmW8AvkTk9htyHXAT6SByIgsSlLOB1ELGjgRUeRQzOJW9UfTtvF1ZE5IvjOeHqBVutDLK_ZoWOCmk9-asoTp35EqOGJqi7SzDCoX1Jvr8w7OaQYrHsT9YlpxMvPh5xdvYEnuL5Rfl0hxsPoWspczpvoWsaq03NbnavZtmu-b-LyLHF33OGqzOECnr-Cn0DpZs8R7ePOEp_ADeTZdEoNccsh8_J5ou45s_D7-vL68sOybia9w38XkfBWPOBvYGm1NYhqiYHc3d6bD0mS39VagupoucVUcIt3h3UdJgU9JHGHWPhge9YBauITAIQnigchR8OtQ8N5kWRuVOuVbbJDZzRuFvjcFkg3iFR1Y5JWWcuEhkJnPahspFrfATNIpxYdeBYV9o1dakssY8ziplZRIqy4U0eSx5E4JqsFIz4zKnkBrXqWdhFin1Zlr3ZhO-1vl_eRaPf-bcqsY-na3m21QkQpIDbhg2QZSD-EwtaeewO6ifNv6n0A686g0H_bR_cvp9E17j-8gbi29BYzq5s58RC02z7XK2PwJQZwKK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2iICG6aKEt6pSXF0hdBcaOx3GWtMPwHIRQkWYXOY4N1UBAMGy66if0G_mS3htPMgNShUQ3URI_5Ph1T2yfcwE2JdF-Y24ibqWJpBd5lKKdjZQRKvFkoKqtmP6J2j-Xh4POYIrFH_QhmgU3GhnVfE0D_Lbw2xPRUFN4YpIjhCZnO29gTqp2Ss4bumeNgBRPkrCvrDid8OKDWraxLbafpn9qliZYcxqxVian9x5MXdhw0mS49TDKt-yvZzqO__M1i_BujEfZTuhASzDjyg_wdkql8CMEki4ZwLBuyE4v7wxdbq4ff_-5-jl0bI9kr3HWxOdvaBYL1nfXWJrSMcTEbHdCpsPUZ65iq1BezJQFqzcQ7vHuohLBpqBPcN7b_fF9Pxo7a4gsQhAe6QLNnokNL2xuhNWF177dsanLvdX4U2Mx2CJa4dJpr5VKUi9FbnNvXKy9bMfLMFvelO4zMKwLozuGFqwxjndaO5XG2nGhbJEo3oKobqvMjpXMyaHGVRY0mEVGtZk1tdmCr03826Dh8c-Yq3XTZ-OxfJ-JVCii38ZxC0TVhi_kku10e_3m6ctrEm3A_Gm3lx0fnBytwAK-luGk-CrMju4e3BoCoVG-XvX1v0r-ATk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Phra+Phrom%E2%80%90like+Graphene%E2%80%90Based+Membrane+for+Environmental+Remediation+and+Resources+Regeneration&rft.jtitle=Advanced+functional+materials&rft.au=Huang%2C+Tsung%E2%80%90Han&rft.au=Tian%2C+Xin%E2%80%90Yuan&rft.au=Chen%2C+Yi%E2%80%90Yun&rft.au=Widakdo%2C+Januar&rft.date=2024-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=7&rft_id=info:doi/10.1002%2Fadfm.202308321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202308321 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |