Multifunctional Phra Phrom‐like Graphene‐Based Membrane for Environmental Remediation and Resources Regeneration

Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 7
Main Authors Huang, Tsung‐Han, Tian, Xin‐Yuan, Chen, Yi‐Yun, Widakdo, Januar, Austria, Hannah Faye M., Setiawan, Owen, Subrahmanya, T. M., Hung, Wei‐Song, Wang, Da‐Ming, Chang, Ching‐Yuan, Wang, Chih‐Feng, Hu, Chien‐Chieh, Lin, Chia‐Her, Lai, Yu‐Lun, Lee, Kueir‐Rarn, Lai, Juin‐Yih
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This leads to a PVDF/graphene‐BaTiO3 nanocomposite with a unique capability of integrating Phra Phrom‐like four functions into one single asymmetric membrane: i) solar evaporation, ii) power generation, iii) piezo‐photodegradation, and iv) self‐cleaning/monitoring for environmental remediation and resources regeneration. The high heat accumulation capability and piezoelectric performance of the membrane enable it to simultaneously achieve a water production rate of 0.99 kgm−2h−1, in compliance with WHO standards, and a maximum power output of 5.73 Wm−2 in simulated natural environments. Upon subjecting the membranes to environmental cleaning, they not only show a 93% dye degradation rate due to the synergistic effect of piezoelectricity and photocatalysis but also resolve the membrane fouling issue, exhibiting ≈200% resistance change compared to the static state. The successful integration of these four functions into one membrane shows the great potential of this work toward a more sustainable and viable water and energy production approach. The Phra Phrom‐like graphene‐based membrane is prepared with four characteristics of solar evaporation, power generation, piezo‐photodegradation, and self‐cleaning/monitoring in a single membrane successfully. Based on the synergistic effect between each property, this research not only provides a new design of membranes but also shows great potential for the future of smart membranes used for environmental remediation and resource regeneration.
AbstractList Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO 3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This leads to a PVDF/graphene‐BaTiO 3 nanocomposite with a unique capability of integrating Phra Phrom‐like four functions into one single asymmetric membrane: i) solar evaporation, ii) power generation, iii) piezo‐photodegradation, and iv) self‐cleaning/monitoring for environmental remediation and resources regeneration. The high heat accumulation capability and piezoelectric performance of the membrane enable it to simultaneously achieve a water production rate of 0.99 kgm −2 h −1 , in compliance with WHO standards, and a maximum power output of 5.73 Wm −2 in simulated natural environments. Upon subjecting the membranes to environmental cleaning, they not only show a 93% dye degradation rate due to the synergistic effect of piezoelectricity and photocatalysis but also resolve the membrane fouling issue, exhibiting ≈200% resistance change compared to the static state. The successful integration of these four functions into one membrane shows the great potential of this work toward a more sustainable and viable water and energy production approach.
Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This leads to a PVDF/graphene‐BaTiO3 nanocomposite with a unique capability of integrating Phra Phrom‐like four functions into one single asymmetric membrane: i) solar evaporation, ii) power generation, iii) piezo‐photodegradation, and iv) self‐cleaning/monitoring for environmental remediation and resources regeneration. The high heat accumulation capability and piezoelectric performance of the membrane enable it to simultaneously achieve a water production rate of 0.99 kgm−2h−1, in compliance with WHO standards, and a maximum power output of 5.73 Wm−2 in simulated natural environments. Upon subjecting the membranes to environmental cleaning, they not only show a 93% dye degradation rate due to the synergistic effect of piezoelectricity and photocatalysis but also resolve the membrane fouling issue, exhibiting ≈200% resistance change compared to the static state. The successful integration of these four functions into one membrane shows the great potential of this work toward a more sustainable and viable water and energy production approach. The Phra Phrom‐like graphene‐based membrane is prepared with four characteristics of solar evaporation, power generation, piezo‐photodegradation, and self‐cleaning/monitoring in a single membrane successfully. Based on the synergistic effect between each property, this research not only provides a new design of membranes but also shows great potential for the future of smart membranes used for environmental remediation and resource regeneration.
Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically facilitate the self‐assembly of the β‐phase that is known to induce the piezoelectric properties of the polyvinylidene fluoride (PVDF). This leads to a PVDF/graphene‐BaTiO3 nanocomposite with a unique capability of integrating Phra Phrom‐like four functions into one single asymmetric membrane: i) solar evaporation, ii) power generation, iii) piezo‐photodegradation, and iv) self‐cleaning/monitoring for environmental remediation and resources regeneration. The high heat accumulation capability and piezoelectric performance of the membrane enable it to simultaneously achieve a water production rate of 0.99 kgm−2h−1, in compliance with WHO standards, and a maximum power output of 5.73 Wm−2 in simulated natural environments. Upon subjecting the membranes to environmental cleaning, they not only show a 93% dye degradation rate due to the synergistic effect of piezoelectricity and photocatalysis but also resolve the membrane fouling issue, exhibiting ≈200% resistance change compared to the static state. The successful integration of these four functions into one membrane shows the great potential of this work toward a more sustainable and viable water and energy production approach.
Author Lin, Chia‐Her
Wang, Da‐Ming
Austria, Hannah Faye M.
Setiawan, Owen
Chen, Yi‐Yun
Widakdo, Januar
Hung, Wei‐Song
Chang, Ching‐Yuan
Subrahmanya, T. M.
Lai, Juin‐Yih
Lai, Yu‐Lun
Lee, Kueir‐Rarn
Hu, Chien‐Chieh
Huang, Tsung‐Han
Wang, Chih‐Feng
Tian, Xin‐Yuan
Author_xml – sequence: 1
  givenname: Tsung‐Han
  orcidid: 0009-0006-7992-467X
  surname: Huang
  fullname: Huang, Tsung‐Han
  organization: National Taiwan University of Science and Technology
– sequence: 2
  givenname: Xin‐Yuan
  surname: Tian
  fullname: Tian, Xin‐Yuan
  organization: Asia Eastern University of Science and Technology
– sequence: 3
  givenname: Yi‐Yun
  surname: Chen
  fullname: Chen, Yi‐Yun
  organization: National Taiwan University of Science and Technology
– sequence: 4
  givenname: Januar
  orcidid: 0000-0001-7973-862X
  surname: Widakdo
  fullname: Widakdo, Januar
  organization: Universitas Indonesia
– sequence: 5
  givenname: Hannah Faye M.
  orcidid: 0000-0003-4468-1541
  surname: Austria
  fullname: Austria, Hannah Faye M.
  organization: National Taiwan University of Science and Technology
– sequence: 6
  givenname: Owen
  orcidid: 0000-0002-6776-2988
  surname: Setiawan
  fullname: Setiawan, Owen
  organization: National Taiwan University of Science and Technology
– sequence: 7
  givenname: T. M.
  orcidid: 0000-0002-4632-2617
  surname: Subrahmanya
  fullname: Subrahmanya, T. M.
  organization: National Taiwan University of Science and Technology
– sequence: 8
  givenname: Wei‐Song
  orcidid: 0000-0002-8483-2992
  surname: Hung
  fullname: Hung, Wei‐Song
  email: wshung@mail.ntust.edu.tw
  organization: National Taiwan University of Science and Technology
– sequence: 9
  givenname: Da‐Ming
  surname: Wang
  fullname: Wang, Da‐Ming
  organization: National Taiwan University
– sequence: 10
  givenname: Ching‐Yuan
  surname: Chang
  fullname: Chang, Ching‐Yuan
  organization: National Taipei University of Technology
– sequence: 11
  givenname: Chih‐Feng
  surname: Wang
  fullname: Wang, Chih‐Feng
  organization: National Sun Yat‐sen University
– sequence: 12
  givenname: Chien‐Chieh
  surname: Hu
  fullname: Hu, Chien‐Chieh
  organization: National Taiwan University of Science and Technology
– sequence: 13
  givenname: Chia‐Her
  surname: Lin
  fullname: Lin, Chia‐Her
  organization: National Taiwan Normal University
– sequence: 14
  givenname: Yu‐Lun
  surname: Lai
  fullname: Lai, Yu‐Lun
  organization: Industrial Technology Research Institute
– sequence: 15
  givenname: Kueir‐Rarn
  surname: Lee
  fullname: Lee, Kueir‐Rarn
  organization: Chung Yuan University
– sequence: 16
  givenname: Juin‐Yih
  surname: Lai
  fullname: Lai, Juin‐Yih
  organization: Yuan Ze University
BookMark eNqFkF1LwzAUhoNMcJveel3wejMfXZtezrlNYUMRBe9Kmp64zDadSafszp_gb_SXmG4yQRBvzgfnPG9y3g5qmcoAQqcE9wnG9FzkquxTTBnmjJID1CYRiXoMU97a1-TxCHWcW2JM4piFbVTP10Wt1drIWldGFMHtwoomVOXn-0ehnyGYWrFagAHfXwgHeTCHMrPCQKAqG4zNq7aVKcHUnr6DEnItGq1AmNz3rlpbCc5XT17DbkfH6FCJwsHJd-6ih8n4fnTVm91Mr0fDWU8yEpMez6OYCyZILjNBJc8VV3ggE8iU5IM4kn4sQ0ZICFzxKIoTFdJMZkoA4yrErIvOdrorW72swdXp0v_GX-lSmtCIhYwy5rf6uy1pK-csqHRldSnsJiU4bZxNG2fTvbMeCH8BUtfbw2ordPE3luywN13A5p9H0uHlZP7DfgHQmZR4
CitedBy_id crossref_primary_10_1002_adfm_202401149
crossref_primary_10_1039_D4MH00591K
crossref_primary_10_1016_j_measurement_2025_117225
crossref_primary_10_1016_j_seppur_2024_127317
crossref_primary_10_1002_smll_202408056
Cites_doi 10.1002/adfm.201910481
10.1021/acsami.5b04161
10.1002/smll.202007176
10.1021/acsnano.0c07677
10.1021/acssuschemeng.8b02466
10.1016/j.compositesb.2012.08.002
10.1038/s41467-022-34385-4
10.1039/C7RA01267E
10.1016/j.ssc.2012.04.064
10.1016/j.colsurfb.2019.110587
10.1016/j.msec.2019.03.030
10.1016/j.compscitech.2020.108600
10.1016/j.nanoen.2020.105102
10.1021/acsami.8b16621
10.1109/ACCESS.2019.2906402
10.1016/j.physrep.2011.02.002
10.1016/j.apcatb.2018.09.028
10.1016/j.carbon.2022.09.026
10.1016/j.rser.2013.08.063
10.1021/acsami.2c07911
10.1039/D0EE00341G
10.1002/adfm.201902014
10.1016/j.jece.2017.04.038
10.1039/c4ta01783h
10.1016/j.nanoen.2019.104006
10.1016/j.watres.2018.11.030
10.1016/j.cej.2016.08.144
10.1016/j.carbon.2021.06.047
10.1016/j.ultsonch.2019.104891
10.1039/C8TA10190F
10.1016/j.ultsonch.2019.104633
10.1039/C7EE01804E
10.1002/smll.201604245
10.1016/j.enconman.2021.114668
10.1002/aenm.201702149
10.1002/aenm.202100481
10.1002/adma.202006093
10.1016/j.joule.2019.10.008
10.1016/j.cej.2021.129340
10.3390/en15249289
10.1002/adfm.202010422
10.1016/j.watres.2018.09.056
10.1016/j.nanoen.2022.106930
10.1016/j.memsci.2019.01.010
10.1002/aenm.201800711
10.1016/j.cej.2017.09.193
10.1063/1.2172216
10.1016/j.rser.2009.11.003
10.1016/j.nanoen.2020.104922
10.1016/j.jenvman.2011.06.009
10.1016/j.memsci.2019.117204
10.1002/anie.201706549
10.1021/acsami.1c07091
10.1002/adfm.202005158
10.1021/acs.chemmater.0c01547
10.1002/adma.201102752
10.1016/j.rser.2016.07.020
10.1016/j.jcis.2015.05.002
10.1002/aenm.202200087
10.1016/j.progpolymsci.2013.07.006
10.1002/adma.201501832
10.1016/j.cej.2021.131030
10.1016/j.cej.2021.134425
10.1016/j.desal.2014.10.043
10.1016/j.cej.2021.129000
10.1039/C5EE02985F
10.1038/nature13792
10.1016/j.desal.2020.114530
10.1016/j.desal.2015.08.018
10.1016/j.bioactmat.2020.07.001
10.1016/j.joule.2018.07.015
10.1126/science.1061051
10.1016/j.biortech.2012.04.089
10.1016/j.nanoen.2018.10.041
10.1039/C9EE03059J
10.1016/j.cej.2022.135787
10.1021/acsami.0c08560
10.1002/adma.201900720
10.1016/j.nanoen.2018.12.046
10.1016/j.joule.2020.04.011
10.1016/j.memsci.2019.117174
10.1016/j.nanoen.2021.106527
10.1016/j.desal.2019.02.008
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202308321
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202308321
ADFM202308321
Genre article
GrantInformation_xml – fundername: SEED
– fundername: National Science and Technology Council
  funderid: 110‐2221‐E‐011‐122 ‐MY3; 108‐2628‐E‐011 ‐003‐MY3; 111‐2622‐E‐011 ‐025
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3171-8d678a3a1dcba2c8df8f05c9ebfc8576c678c43114e8f86679f42bcbfae38f403
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 02:04:11 EDT 2025
Tue Jul 01 00:30:51 EDT 2025
Thu Apr 24 22:56:20 EDT 2025
Wed Jan 22 16:15:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3171-8d678a3a1dcba2c8df8f05c9ebfc8576c678c43114e8f86679f42bcbfae38f403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4632-2617
0009-0006-7992-467X
0000-0002-8483-2992
0000-0002-6776-2988
0000-0003-4468-1541
0000-0001-7973-862X
PQID 2926343233
PQPubID 2045204
PageCount 14
ParticipantIDs proquest_journals_2926343233
crossref_primary_10_1002_adfm_202308321
crossref_citationtrail_10_1002_adfm_202308321
wiley_primary_10_1002_adfm_202308321_ADFM202308321
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2012; 122
2010; 14
2020; 62
2021; 246
2021 2019 2013; 33 588 45
2021; 202
2019; 57
2019; 58
2020; 14
2020; 13
2014; 29
2019; 241
2018; 6
2018; 8
2020; 5
2020; 4
2018; 2
2001; 293
2021; 31
2014; 2
2021; 432
2019; 65
2015; 376
2018; 333
2020; 490
2020 2019; 185 100
2019; 29
2012; 24
2019; 150
2016 2018; 9 6
2011 2017; 503 13
2014; 514
2019; 7
2019; 31
2022; 94
2023; 201
2018; 147
2021; 182
2019; 587
2020; 77
2020; 32
2015; 7
2021; 417
2017; 307
2020 2015; 12 453
2021; 13
2012; 152
2015; 27
2021; 11
2020; 30
2020; 74
2015; 356
2021
2006; 88
2011; 92
2021; 17
2017; 10
2017; 56
2021; 415
2016; 65
2022; 12
2022; 13
2022; 14
2019; 575
2022; 15
2021 2022; 90 439
2016
2019; 459
2014; 39
2022; 427
2018; 54
2018; 10
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_64_2
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_53_2
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
Xiao P. S. (e_1_2_8_69_1) 2016
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_40_3
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_54_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 201
  start-page: 318
  year: 2023
  publication-title: Carbon
– volume: 503 13
  start-page: 77
  year: 2011 2017
  publication-title: Phys. Rep. Small
– volume: 74
  year: 2020
  publication-title: Nano Energy
– volume: 54
  start-page: 437
  year: 2018
  publication-title: Nano Energy
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 5750
  year: 2020
  publication-title: Chem. Mater.
– volume: 459
  start-page: 59
  year: 2019
  publication-title: Desalination
– volume: 13
  start-page: 6771
  year: 2022
  publication-title: Nat. Commun.
– volume: 9 6
  start-page: 31
  year: 2016 2018
  publication-title: Energy Environ. Sci. ACS Sustain Chem Eng
– volume: 58
  year: 2019
  publication-title: Ultrason. Sonochem.
– volume: 65
  start-page: 319
  year: 2016
  publication-title: Renew. Sustain. Energy Rev.
– volume: 2
  start-page: 1452
  year: 2018
  publication-title: Joule
– volume: 12 453
  start-page: 169
  year: 2020 2015
  publication-title: ACS Appl. Mater. Interfaces J. Colloid. Interface Sci.
– volume: 293
  start-page: 269
  year: 2001
  publication-title: Science
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– year: 2021
– volume: 150
  start-page: 21
  year: 2019
  publication-title: Water Res.
– volume: 152
  start-page: 1341
  year: 2012
  publication-title: Solid State Commun.
– volume: 7
  start-page: 6514
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1087
  year: 2020
  publication-title: Bioact Mater
– volume: 13
  start-page: 868
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 899
  year: 2010
  publication-title: Renew. Sustain. Energy Rev.
– volume: 10
  start-page: 1923
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 490
  year: 2020
  publication-title: Desalination
– volume: 39
  start-page: 683
  year: 2014
  publication-title: Prog. Polym. Sci.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 94
  year: 2022
  publication-title: Nano Energy
– volume: 202
  year: 2021
  publication-title: Compos. Sci. Technol.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 514
  start-page: 470
  year: 2014
  publication-title: Nature
– volume: 7
  year: 2019
  publication-title: IEEE Access
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1137
  year: 2020
  publication-title: Joule
– volume: 575
  start-page: 160
  year: 2019
  publication-title: J. Membr. Sci.
– volume: 92
  start-page: 2355
  year: 2011
  publication-title: J Environ Manage
– volume: 182
  start-page: 545
  year: 2021
  publication-title: Carbon
– volume: 29
  start-page: 52
  year: 2014
  publication-title: Renewable Sustainable Energy Rev.
– volume: 2
  start-page: 9313
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 229
  year: 2012
  publication-title: Adv. Mater.
– volume: 90 439
  year: 2021 2022
  publication-title: Nano Energy Chem. Eng. J.
– volume: 241
  start-page: 256
  year: 2019
  publication-title: Appl. Catal., B
– volume: 417
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 176
  year: 2020
  publication-title: Joule
– volume: 13
  start-page: 1694
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 432
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 4302
  year: 2015
  publication-title: Adv. Mater.
– volume: 376
  start-page: 73
  year: 2015
  publication-title: Desalination
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– start-page: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 356
  start-page: 226
  year: 2015
  publication-title: Desalination
– volume: 33 588 45
  start-page: 1199
  year: 2021 2019 2013
  publication-title: Adv. Mater. J. Membr. Sci. Composites, Part B
– volume: 17
  year: 2021
  publication-title: Small
– volume: 307
  start-page: 897
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 57
  start-page: 507
  year: 2019
  publication-title: Nano Energy
– volume: 122
  start-page: 27
  year: 2012
  publication-title: Bioresour. Technol.
– volume: 77
  year: 2020
  publication-title: Nano Energy
– volume: 415
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 587
  year: 2019
  publication-title: J. Membr. Sci.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 185 100
  start-page: 809
  year: 2020 2019
  publication-title: Colloids Surf. B Mater. Sci. Eng. C
– volume: 147
  start-page: 276
  year: 2018
  publication-title: Water Res.
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 333
  start-page: 730
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 246
  year: 2021
  publication-title: Energy Convers. Manage.
– volume: 62
  year: 2020
  publication-title: Ultrason. Sonochem.
– volume: 7
  year: 2017
  publication-title: RSC Adv.
– volume: 65
  year: 2019
  publication-title: Nano Energy
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 9289
  year: 2022
  publication-title: Energies
– volume: 6
  start-page: 3565
  year: 2018
  publication-title: J. Environ. Chem. Eng.
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.201910481
– ident: e_1_2_8_43_1
  doi: 10.1021/acsami.5b04161
– ident: e_1_2_8_46_1
  doi: 10.1002/smll.202007176
– ident: e_1_2_8_47_1
  doi: 10.1021/acsnano.0c07677
– ident: e_1_2_8_21_2
  doi: 10.1021/acssuschemeng.8b02466
– ident: e_1_2_8_40_3
  doi: 10.1016/j.compositesb.2012.08.002
– ident: e_1_2_8_18_1
  doi: 10.1038/s41467-022-34385-4
– ident: e_1_2_8_36_1
  doi: 10.1039/C7RA01267E
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ssc.2012.04.064
– ident: e_1_2_8_55_1
  doi: 10.1016/j.colsurfb.2019.110587
– ident: e_1_2_8_55_2
  doi: 10.1016/j.msec.2019.03.030
– ident: e_1_2_8_58_1
  doi: 10.1016/j.compscitech.2020.108600
– ident: e_1_2_8_72_1
  doi: 10.1016/j.nanoen.2020.105102
– ident: e_1_2_8_42_1
  doi: 10.1021/acsami.8b16621
– ident: e_1_2_8_11_1
  doi: 10.1109/ACCESS.2019.2906402
– ident: e_1_2_8_53_1
  doi: 10.1016/j.physrep.2011.02.002
– ident: e_1_2_8_62_1
  doi: 10.1016/j.apcatb.2018.09.028
– ident: e_1_2_8_76_1
  doi: 10.1016/j.carbon.2022.09.026
– ident: e_1_2_8_8_1
  doi: 10.1016/j.rser.2013.08.063
– ident: e_1_2_8_57_1
  doi: 10.1021/acsami.2c07911
– ident: e_1_2_8_2_1
  doi: 10.1039/D0EE00341G
– ident: e_1_2_8_50_1
  doi: 10.1002/adfm.201902014
– ident: e_1_2_8_65_1
  doi: 10.1016/j.jece.2017.04.038
– ident: e_1_2_8_23_1
  doi: 10.1039/c4ta01783h
– ident: e_1_2_8_74_1
  doi: 10.1016/j.nanoen.2019.104006
– ident: e_1_2_8_32_1
  doi: 10.1016/j.watres.2018.11.030
– ident: e_1_2_8_29_1
  doi: 10.1016/j.cej.2016.08.144
– ident: e_1_2_8_44_1
  doi: 10.1016/j.carbon.2021.06.047
– ident: e_1_2_8_33_1
  doi: 10.1016/j.ultsonch.2019.104891
– ident: e_1_2_8_77_1
  doi: 10.1039/C8TA10190F
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ultsonch.2019.104633
– ident: e_1_2_8_75_1
  doi: 10.1039/C7EE01804E
– ident: e_1_2_8_53_2
  doi: 10.1002/smll.201604245
– ident: e_1_2_8_17_1
  doi: 10.1016/j.enconman.2021.114668
– ident: e_1_2_8_71_1
  doi: 10.1002/aenm.201702149
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.202100481
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.202006093
– ident: e_1_2_8_20_1
  doi: 10.1016/j.joule.2019.10.008
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cej.2021.129340
– ident: e_1_2_8_10_1
  doi: 10.3390/en15249289
– ident: e_1_2_8_78_1
  doi: 10.1002/adfm.202010422
– ident: e_1_2_8_48_1
– ident: e_1_2_8_24_1
  doi: 10.1016/j.watres.2018.09.056
– ident: e_1_2_8_67_1
  doi: 10.1016/j.nanoen.2022.106930
– ident: e_1_2_8_68_1
  doi: 10.1016/j.memsci.2019.01.010
– ident: e_1_2_8_15_1
  doi: 10.1002/aenm.201800711
– ident: e_1_2_8_31_1
  doi: 10.1016/j.cej.2017.09.193
– ident: e_1_2_8_51_1
  doi: 10.1063/1.2172216
– ident: e_1_2_8_70_1
  doi: 10.1016/j.rser.2009.11.003
– ident: e_1_2_8_19_1
  doi: 10.1016/j.nanoen.2020.104922
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jenvman.2011.06.009
– start-page: 3
  year: 2016
  ident: e_1_2_8_69_1
  publication-title: Adv. Sci.
– ident: e_1_2_8_40_2
  doi: 10.1016/j.memsci.2019.117204
– ident: e_1_2_8_61_1
  doi: 10.1002/anie.201706549
– ident: e_1_2_8_73_1
  doi: 10.1021/acsami.1c07091
– ident: e_1_2_8_63_1
  doi: 10.1002/adfm.202005158
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.chemmater.0c01547
– ident: e_1_2_8_60_1
  doi: 10.1002/adma.201102752
– ident: e_1_2_8_1_1
  doi: 10.1016/j.rser.2016.07.020
– ident: e_1_2_8_54_2
  doi: 10.1016/j.jcis.2015.05.002
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.202200087
– ident: e_1_2_8_41_1
  doi: 10.1016/j.progpolymsci.2013.07.006
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201501832
– ident: e_1_2_8_45_1
  doi: 10.1016/j.cej.2021.131030
– ident: e_1_2_8_26_1
  doi: 10.1016/j.cej.2021.134425
– ident: e_1_2_8_6_1
  doi: 10.1016/j.desal.2014.10.043
– ident: e_1_2_8_66_1
  doi: 10.1016/j.cej.2021.129000
– ident: e_1_2_8_21_1
  doi: 10.1039/C5EE02985F
– ident: e_1_2_8_52_1
  doi: 10.1038/nature13792
– ident: e_1_2_8_7_1
  doi: 10.1016/j.desal.2020.114530
– ident: e_1_2_8_22_1
  doi: 10.1016/j.desal.2015.08.018
– ident: e_1_2_8_35_1
  doi: 10.1016/j.bioactmat.2020.07.001
– ident: e_1_2_8_3_1
  doi: 10.1016/j.joule.2018.07.015
– ident: e_1_2_8_59_1
  doi: 10.1126/science.1061051
– ident: e_1_2_8_25_1
  doi: 10.1016/j.biortech.2012.04.089
– ident: e_1_2_8_38_1
  doi: 10.1016/j.nanoen.2018.10.041
– ident: e_1_2_8_56_1
  doi: 10.1039/C9EE03059J
– ident: e_1_2_8_64_2
  doi: 10.1016/j.cej.2022.135787
– ident: e_1_2_8_54_1
  doi: 10.1021/acsami.0c08560
– ident: e_1_2_8_49_1
  doi: 10.1002/adma.201900720
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nanoen.2018.12.046
– ident: e_1_2_8_9_1
  doi: 10.1016/j.joule.2020.04.011
– ident: e_1_2_8_30_1
  doi: 10.1016/j.memsci.2019.117174
– ident: e_1_2_8_64_1
  doi: 10.1016/j.nanoen.2021.106527
– ident: e_1_2_8_4_1
  doi: 10.1016/j.desal.2019.02.008
SSID ssj0017734
Score 2.4905403
Snippet Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO3 are used to synergistically...
Water and energy shortages are interdependent major worldwide issues that cannot be disregarded. In this work, graphene and BaTiO 3 are used to synergistically...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Barium titanates
Cleaning
Environmental restoration
Graphene
Maximum power
Membranes
Nanocomposites
Photodegradation
Piezoelectricity
piezo‐photodegradation
Polyvinylidene fluorides
power generation
Regeneration
Remediation
Self-assembly
self‐cleaning/monitoring
solar evaporator
Synergistic effect
β‐PVDF/Graphene/BaTiO3
Title Multifunctional Phra Phrom‐like Graphene‐Based Membrane for Environmental Remediation and Resources Regeneration
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202308321
https://www.proquest.com/docview/2926343233
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA6iFz34LU6n5CB4qlvSLk2P0zmHOBF1sFtJ00RFreLmxZM_wd_oL_F9m7XbBBH0UlLyQZqv52nyvk8I2QvQ7ddnymM6UF5geeJFgLOeUFyEFgEqP4rpnotOLzjtN_oTXvxOH6LccMOZka_XOMFVMqiNRUNVatGTHCg0XrYDizAabCEruiz1o1gYumNlwdDAi_UL1cY6r01nn0alMdWcJKw54rSXiCrq6gxN7g9eh8mBfvsm4_ifj1kmiyM6Sptu_KyQGZOtkoUJkcI14nx0Ef_ctiG9uH1R-Hh6_Hz_eLi7N_QEVa9h0YT3Q0DFlHbNI9QmMxQoMT0e-9JB7kuTO6tgWVRlKS3ODwYQusk1sDFqnfTax9dHHW90V4OngYEwT6aAespXLNWJ4lqmVtp6Q0cmsVrCP42GaA1khQVGWilEGNmAJzqxyvjSBnV_g8xmT5nZJBTaQsmGwv1qSGONlEZEvjSMC52GglWIV_RVrEdC5nifxkPsJJh5jK0Zl61ZIftl-mcn4fFjymrR9fFoKg9iHnGB3re-XyE878NfSombrXa3fNv6S6ZtMg_hwFmHV8ns8OXV7AD5GSa7ZK7Z6p5d7eYD_QtqbgAC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB5BOLQ9UPoSAQp7qNSTIbt21utjeITQJqhCicTNWq93KQKcKoQLJ35Cf2N_CTPe2CGVKqRysWzvQ-t9zefZmW8AvkTk9htyHXAT6SByIgsSlLOB1ELGjgRUeRQzOJW9UfTtvF1ZE5IvjOeHqBVutDLK_ZoWOCmk9-asoTp35EqOGJqi7SzDCoX1Jvr8w7OaQYrHsT9YlpxMvPh5xdvYEnuL5Rfl0hxsPoWspczpvoWsaq03NbnavZtmu-b-LyLHF33OGqzOECnr-Cn0DpZs8R7ePOEp_ADeTZdEoNccsh8_J5ou45s_D7-vL68sOybia9w38XkfBWPOBvYGm1NYhqiYHc3d6bD0mS39VagupoucVUcIt3h3UdJgU9JHGHWPhge9YBauITAIQnigchR8OtQ8N5kWRuVOuVbbJDZzRuFvjcFkg3iFR1Y5JWWcuEhkJnPahspFrfATNIpxYdeBYV9o1dakssY8ziplZRIqy4U0eSx5E4JqsFIz4zKnkBrXqWdhFin1Zlr3ZhO-1vl_eRaPf-bcqsY-na3m21QkQpIDbhg2QZSD-EwtaeewO6ifNv6n0A686g0H_bR_cvp9E17j-8gbi29BYzq5s58RC02z7XK2PwJQZwKK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL2iICG6aKEt6pSXF0hdBcaOx3GWtMPwHIRQkWYXOY4N1UBAMGy66if0G_mS3htPMgNShUQ3URI_5Ph1T2yfcwE2JdF-Y24ibqWJpBd5lKKdjZQRKvFkoKqtmP6J2j-Xh4POYIrFH_QhmgU3GhnVfE0D_Lbw2xPRUFN4YpIjhCZnO29gTqp2Ss4bumeNgBRPkrCvrDid8OKDWraxLbafpn9qliZYcxqxVian9x5MXdhw0mS49TDKt-yvZzqO__M1i_BujEfZTuhASzDjyg_wdkql8CMEki4ZwLBuyE4v7wxdbq4ff_-5-jl0bI9kr3HWxOdvaBYL1nfXWJrSMcTEbHdCpsPUZ65iq1BezJQFqzcQ7vHuohLBpqBPcN7b_fF9Pxo7a4gsQhAe6QLNnokNL2xuhNWF177dsanLvdX4U2Mx2CJa4dJpr5VKUi9FbnNvXKy9bMfLMFvelO4zMKwLozuGFqwxjndaO5XG2nGhbJEo3oKobqvMjpXMyaHGVRY0mEVGtZk1tdmCr03826Dh8c-Yq3XTZ-OxfJ-JVCii38ZxC0TVhi_kku10e_3m6ctrEm3A_Gm3lx0fnBytwAK-luGk-CrMju4e3BoCoVG-XvX1v0r-ATk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multifunctional+Phra+Phrom%E2%80%90like+Graphene%E2%80%90Based+Membrane+for+Environmental+Remediation+and+Resources+Regeneration&rft.jtitle=Advanced+functional+materials&rft.au=Huang%2C+Tsung%E2%80%90Han&rft.au=Tian%2C+Xin%E2%80%90Yuan&rft.au=Chen%2C+Yi%E2%80%90Yun&rft.au=Widakdo%2C+Januar&rft.date=2024-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=7&rft_id=info:doi/10.1002%2Fadfm.202308321&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202308321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon