Boosting the Stability of Oxygen Vacancies in α‐Co(OH)2 Nanosheets with Coordination Polyhedrons as Rivets for High‐Performance Alkaline Hydrogen Evolution Electrocatalyst

The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh al...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 12; no. 43
Main Authors Jiang, Li‐Wen, Huang, Yuan, Zou, Yang, Meng, Chao, Xiao, Yi, Liu, Hong, Wang, Jian‐Jun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction (HER). The addition of MoO42− in 1 m KOH can inhibit the attack of hydroxyl ions on oxygen vacancies in α‐Co(OH)2, and simultaneously modulate the electronic structure of active sites for HER. The theoretical calculations and experimental results reveal that MoO42− can be riveted on the surface of α‐Co(OH)2 to greatly stabilize oxygen vacancies and inhibit the formation of soluble ions of Co(OH)3−. The resultant active sites exhibit reduced maximum energy barriers for the optimized alkaline HER. Additionally, MoO42− near the interface between α‐Co(OH)2 and electrolyte can alleviate the accumulation of hydroxyl ions on α‐Co(OH)2 due to the electrostatic repulsion, improving the stability toward HER. This work offers insight into the role of coordination polyhedron ions in regulating and enhancing the stability of α‐Co(OH)2 for various potential electrochemical applications in alkaline electrolyte. The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction.
AbstractList The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH) 2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO 4 2− , WO 4 2− ) on the surface for hydrogen evolution reaction (HER). The addition of MoO 4 2− in 1  m KOH can inhibit the attack of hydroxyl ions on oxygen vacancies in α‐Co(OH) 2 , and simultaneously modulate the electronic structure of active sites for HER. The theoretical calculations and experimental results reveal that MoO 4 2− can be riveted on the surface of α‐Co(OH) 2 to greatly stabilize oxygen vacancies and inhibit the formation of soluble ions of Co(OH) 3 − . The resultant active sites exhibit reduced maximum energy barriers for the optimized alkaline HER. Additionally, MoO 4 2− near the interface between α‐Co(OH) 2 and electrolyte can alleviate the accumulation of hydroxyl ions on α‐Co(OH) 2 due to the electrostatic repulsion, improving the stability toward HER. This work offers insight into the role of coordination polyhedron ions in regulating and enhancing the stability of α‐Co(OH) 2 for various potential electrochemical applications in alkaline electrolyte.
The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction (HER). The addition of MoO42− in 1 m KOH can inhibit the attack of hydroxyl ions on oxygen vacancies in α‐Co(OH)2, and simultaneously modulate the electronic structure of active sites for HER. The theoretical calculations and experimental results reveal that MoO42− can be riveted on the surface of α‐Co(OH)2 to greatly stabilize oxygen vacancies and inhibit the formation of soluble ions of Co(OH)3−. The resultant active sites exhibit reduced maximum energy barriers for the optimized alkaline HER. Additionally, MoO42− near the interface between α‐Co(OH)2 and electrolyte can alleviate the accumulation of hydroxyl ions on α‐Co(OH)2 due to the electrostatic repulsion, improving the stability toward HER. This work offers insight into the role of coordination polyhedron ions in regulating and enhancing the stability of α‐Co(OH)2 for various potential electrochemical applications in alkaline electrolyte.
The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction (HER). The addition of MoO42− in 1 m KOH can inhibit the attack of hydroxyl ions on oxygen vacancies in α‐Co(OH)2, and simultaneously modulate the electronic structure of active sites for HER. The theoretical calculations and experimental results reveal that MoO42− can be riveted on the surface of α‐Co(OH)2 to greatly stabilize oxygen vacancies and inhibit the formation of soluble ions of Co(OH)3−. The resultant active sites exhibit reduced maximum energy barriers for the optimized alkaline HER. Additionally, MoO42− near the interface between α‐Co(OH)2 and electrolyte can alleviate the accumulation of hydroxyl ions on α‐Co(OH)2 due to the electrostatic repulsion, improving the stability toward HER. This work offers insight into the role of coordination polyhedron ions in regulating and enhancing the stability of α‐Co(OH)2 for various potential electrochemical applications in alkaline electrolyte. The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction.
Author Zou, Yang
Meng, Chao
Huang, Yuan
Liu, Hong
Jiang, Li‐Wen
Xiao, Yi
Wang, Jian‐Jun
Author_xml – sequence: 1
  givenname: Li‐Wen
  surname: Jiang
  fullname: Jiang, Li‐Wen
  organization: Shandong University
– sequence: 2
  givenname: Yuan
  surname: Huang
  fullname: Huang, Yuan
  organization: Shenzhen Research Institute of Shandong University
– sequence: 3
  givenname: Yang
  surname: Zou
  fullname: Zou, Yang
  organization: Shandong University
– sequence: 4
  givenname: Chao
  surname: Meng
  fullname: Meng, Chao
  organization: Shandong University
– sequence: 5
  givenname: Yi
  surname: Xiao
  fullname: Xiao, Yi
  organization: University of Jinan
– sequence: 6
  givenname: Hong
  orcidid: 0000-0003-1640-9620
  surname: Liu
  fullname: Liu, Hong
  email: hongliu@sdu.edu.cn
  organization: Technical University of Darmstadt
– sequence: 7
  givenname: Jian‐Jun
  surname: Wang
  fullname: Wang, Jian‐Jun
  email: wangjianjun@sdu.edu.cn
  organization: Shenzhen Research Institute of Shandong University
BookMark eNqFkc1uEzEUhS1UJErplrUlNrBIsMeemcwyRIFUKk3F33Z0x7nOuDh2azsts-MR-ijwIjwET4LToCIhISxLvpbOd47s85gcOO-QkKecjTljxUtAtxkXrMhblPwBOeQVl6NqItnB_SyKR-Q4xguWl2w4E-KQfHvlfUzGrWnqkb5P0Blr0kC9pssvwxod_QQKnDIYqXH0x_efX29n_vly8aKgZ-B87BFTpDcm9XTmfVgZB8l4R8-9HXpcBe8ihUjfmeudTvtAF2bdZ5dzDPm2yd5Ip_YzWOOQLoZM7FLn195u74zmFlUKXkECO8T0hDzUYCMe_z6PyMfX8w-zxeh0-eZkNj0dKcFrPppwPgFeosb8VBSyK5tOIgNcKa1ZBaKTtSqR6VICNljpArlkoqpK1ZVKNeKIPNv7XgZ_tcWY2gu_DS5HtkUtqqaWvC6zarxXqeBjDKjby2A2EIaWs3ZXTLsrpr0vJgPyL0CZdPdjKYCx_8aaPXZjLA7_CWmn87O3f9hfa1irMw
CitedBy_id crossref_primary_10_1039_D3EE01856C
crossref_primary_10_1016_j_cej_2023_145223
crossref_primary_10_1016_j_electacta_2023_142953
crossref_primary_10_1007_s10853_023_08389_4
crossref_primary_10_1016_j_seppur_2024_131037
crossref_primary_10_1039_D3QM00143A
crossref_primary_10_3390_molecules28196986
crossref_primary_10_1016_j_nanoen_2023_109249
crossref_primary_10_1016_j_esci_2024_100264
crossref_primary_10_1016_j_cej_2023_147288
crossref_primary_10_1002_sstr_202300028
crossref_primary_10_1002_ange_202316319
crossref_primary_10_1063_5_0218142
crossref_primary_10_1007_s43979_024_00101_y
crossref_primary_10_1002_adfm_202308191
crossref_primary_10_1016_j_jcis_2025_02_066
crossref_primary_10_1039_D3CC01593A
crossref_primary_10_1016_j_jcis_2025_137390
crossref_primary_10_1016_j_ijhydene_2023_07_131
crossref_primary_10_1002_smll_202309509
crossref_primary_10_1016_j_cej_2024_157848
crossref_primary_10_1016_j_apcatb_2023_122551
crossref_primary_10_1002_adma_202303360
crossref_primary_10_1016_j_actamat_2024_120507
crossref_primary_10_1016_j_jcis_2024_09_175
crossref_primary_10_1016_j_nanoen_2024_109300
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1016_j_jallcom_2024_176690
crossref_primary_10_1002_anie_202316319
crossref_primary_10_1016_j_jechem_2023_06_039
crossref_primary_10_1016_j_mser_2025_100978
crossref_primary_10_1016_j_checat_2023_100789
crossref_primary_10_1039_D4EY00252K
crossref_primary_10_1021_acsami_4c10714
crossref_primary_10_1039_D4CC05027D
crossref_primary_10_1002_adfm_202313927
crossref_primary_10_1021_acsami_3c11683
crossref_primary_10_3390_en16237787
crossref_primary_10_3390_molecules28155736
crossref_primary_10_1016_j_jcis_2024_12_172
crossref_primary_10_1002_aenm_202303261
crossref_primary_10_1007_s12274_023_5825_5
crossref_primary_10_1021_acsenergylett_4c02182
crossref_primary_10_1016_j_fuel_2024_131785
crossref_primary_10_1016_j_apcatb_2023_123136
crossref_primary_10_1039_D3CS00292F
crossref_primary_10_1016_j_jcis_2023_03_165
crossref_primary_10_1038_s41467_024_50535_2
crossref_primary_10_1039_D4QI00959B
crossref_primary_10_1021_acs_nanolett_4c05139
crossref_primary_10_1039_D4EE05379F
crossref_primary_10_1007_s12274_023_6219_4
crossref_primary_10_1016_j_microc_2024_110578
crossref_primary_10_1016_j_apcatb_2023_123348
crossref_primary_10_1016_j_cej_2024_156977
crossref_primary_10_1016_j_cej_2024_149498
crossref_primary_10_1016_j_apmate_2024_100227
Cites_doi 10.1038/nmat4738
10.1002/anie.202015723
10.1002/anie.202109065
10.1002/aenm.202100141
10.1038/nature11475
10.1016/j.apcatb.2019.118545
10.1149/1945-7111/abfefe
10.1021/jp0257449
10.1021/acs.jpcc.0c03453
10.1039/D0TA05238H
10.1021/acscatal.1c01607
10.1016/j.joule.2021.05.005
10.1021/acscatal.1c03918
10.1515/zna-1974-1208
10.1002/aenm.202200077
10.1038/s41467-022-28947-9
10.1021/acsenergylett.2c00167
10.1021/acsenergylett.8b00514
10.1021/acscatal.1c03960
10.1002/zaac.19733990108
10.1039/C5DT02319J
10.1021/ja0523338
10.1038/s41929-019-0325-4
10.1039/D0EE02250K
10.1021/acsenergylett.9b00382
10.1002/chem.201000661
10.1002/smll.201802760
10.1038/s41586-021-04068-z
10.1126/science.1103197
10.1016/j.apcatb.2022.121332
10.1002/adma.202104718
10.1002/adma.202108505
10.1002/ange.202114899
10.1016/j.apcatb.2020.119167
10.1016/j.matt.2021.05.025
10.1038/s41560-017-0057-0
10.1039/D0EE01347A
10.1021/jacs.9b01214
10.1002/anie.201900981
10.1002/aenm.201703290
10.1039/D0TA04800C
10.1021/acsnano.1c11169
10.1021/acsami.0c10010
10.1002/anie.201910716
10.1021/acs.energyfuels.0c03836
10.1149/2.0101902jss
10.1021/acsenergylett.9b00699
10.1007/s10854-018-9951-x
10.1002/adma.201704303
10.1016/j.mattod.2019.12.003
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202202351
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202202351
AENM202202351
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21802086
– fundername: Shandong Provincial Natural Science Foundation
  funderid: ZR2019MB048; ZR2020YQ09
– fundername: Shenzhen Fundamental Research Program
  funderid: JCYJ20190807093411445
– fundername: QiLu Young Scientist Program of Shandong University
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3171-8118a15efe049e34b59b4e0aedcff06a3b47c5e0f54ae9e6f2e1403665cb5cc93
ISSN 1614-6832
IngestDate Sun Jul 13 05:21:31 EDT 2025
Thu Apr 24 22:58:00 EDT 2025
Tue Jul 01 01:43:46 EDT 2025
Wed Jan 22 16:25:00 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3171-8118a15efe049e34b59b4e0aedcff06a3b47c5e0f54ae9e6f2e1403665cb5cc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1640-9620
PQID 2736974175
PQPubID 886389
PageCount 9
ParticipantIDs proquest_journals_2736974175
crossref_primary_10_1002_aenm_202202351
crossref_citationtrail_10_1002_aenm_202202351
wiley_primary_10_1002_aenm_202202351_AENM202202351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2022; 310
2022; 134
2018; 29
2021; 5
2019; 4
2010; 16
2021; 4
2021; 168
2019; 2
2020; 264
2021; 600
2019; 58
2020; 36
2020; 13
2020; 12
2020; 124
2012; 488
2019; 141
2004; 305
2016; 16
2020; 8
2021; 35
1973; 399
2018; 8
2018; 3
2021; 33
2021; 11
2022; 7
2005; 127
2015; 44
2022; 34
2022; 12
2002; 106
2022; 13
2018; 30
2020; 276
2021; 60
2022; 16
2018; 14
1974; 29
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
Huang J. (e_1_2_7_20_1) 2022; 134
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 29
  year: 2018
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 2
  start-page: 763
  year: 2019
  publication-title: Nat. Catal.
– volume: 7
  start-page: 1679
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 488
  start-page: 294
  year: 2012
  publication-title: Nature
– volume: 11
  start-page: 8174
  year: 2021
  publication-title: ACS Catal.
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 127
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 9463
  year: 2002
  publication-title: J. Phys. Chem. B
– volume: 134
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 16
  start-page: 9998
  year: 2010
  publication-title: Chem.‐Eur. J.
– volume: 4
  start-page: 2850
  year: 2021
  publication-title: Matter
– volume: 4
  start-page: 987
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 58
  start-page: 4669
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 141
  start-page: 7005
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 3082
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1754
  year: 1974
  publication-title: Z. Naturforsch., A: Phys. Sci.
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 14
  year: 2018
  publication-title: Small
– volume: 3
  start-page: 1360
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 4588
  year: 2022
  publication-title: ACS Nano
– volume: 5
  start-page: 1704
  year: 2021
  publication-title: Joule
– volume: 44
  year: 2015
  publication-title: Dalton Trans.
– volume: 3
  start-page: 53
  year: 2018
  publication-title: Nat. Energy
– volume: 168
  year: 2021
  publication-title: J. Electrochem. Soc.
– volume: 305
  start-page: 972
  year: 2004
  publication-title: Science
– volume: 310
  year: 2022
  publication-title: Appl. Catal., B
– volume: 13
  start-page: 1270
  year: 2022
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 35
  start-page: 2775
  year: 2021
  publication-title: Energy Fuels
– volume: 600
  start-page: 81
  year: 2021
  publication-title: Nature
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 11
  year: 2021
  publication-title: ACS Catal.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 264
  year: 2020
  publication-title: Appl. Catal. B
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 276
  year: 2020
  publication-title: Appl. Catal. B
– volume: 4
  start-page: 1336
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 16
  start-page: 57
  year: 2016
  publication-title: Nat. Mater.
– volume: 8
  start-page: P99
  year: 2019
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 399
  start-page: 57
  year: 1973
  publication-title: Z. Anorg. Allg. Chem.
– volume: 60
  start-page: 7051
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 36
  start-page: 125
  year: 2020
  publication-title: Mater. Today
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 13
  start-page: 4132
  year: 2020
  publication-title: Energy Environ. Sci.
– ident: e_1_2_7_3_1
  doi: 10.1038/nmat4738
– ident: e_1_2_7_38_1
  doi: 10.1002/anie.202015723
– ident: e_1_2_7_42_1
  doi: 10.1002/anie.202109065
– ident: e_1_2_7_26_1
  doi: 10.1002/aenm.202100141
– ident: e_1_2_7_2_1
  doi: 10.1038/nature11475
– ident: e_1_2_7_24_1
  doi: 10.1016/j.apcatb.2019.118545
– ident: e_1_2_7_33_1
  doi: 10.1149/1945-7111/abfefe
– ident: e_1_2_7_45_1
  doi: 10.1021/jp0257449
– ident: e_1_2_7_49_1
  doi: 10.1021/acs.jpcc.0c03453
– ident: e_1_2_7_29_1
  doi: 10.1039/D0TA05238H
– ident: e_1_2_7_50_1
  doi: 10.1021/acscatal.1c01607
– ident: e_1_2_7_5_1
  doi: 10.1016/j.joule.2021.05.005
– ident: e_1_2_7_34_1
  doi: 10.1021/acscatal.1c03918
– ident: e_1_2_7_48_1
  doi: 10.1515/zna-1974-1208
– ident: e_1_2_7_15_1
  doi: 10.1002/aenm.202200077
– ident: e_1_2_7_27_1
  doi: 10.1038/s41467-022-28947-9
– ident: e_1_2_7_16_1
  doi: 10.1021/acsenergylett.2c00167
– ident: e_1_2_7_10_1
  doi: 10.1021/acsenergylett.8b00514
– ident: e_1_2_7_23_1
  doi: 10.1021/acscatal.1c03960
– ident: e_1_2_7_43_1
  doi: 10.1002/zaac.19733990108
– ident: e_1_2_7_36_1
  doi: 10.1039/C5DT02319J
– ident: e_1_2_7_35_1
  doi: 10.1021/ja0523338
– ident: e_1_2_7_14_1
  doi: 10.1038/s41929-019-0325-4
– ident: e_1_2_7_22_1
  doi: 10.1039/D0EE02250K
– ident: e_1_2_7_7_1
  doi: 10.1021/acsenergylett.9b00382
– ident: e_1_2_7_40_1
  doi: 10.1002/chem.201000661
– ident: e_1_2_7_41_1
  doi: 10.1002/smll.201802760
– ident: e_1_2_7_46_1
  doi: 10.1038/s41586-021-04068-z
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1103197
– ident: e_1_2_7_9_1
  doi: 10.1016/j.apcatb.2022.121332
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.202104718
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.202108505
– volume: 134
  start-page: e202114899
  year: 2022
  ident: e_1_2_7_20_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202114899
– ident: e_1_2_7_25_1
  doi: 10.1016/j.apcatb.2020.119167
– ident: e_1_2_7_6_1
  doi: 10.1016/j.matt.2021.05.025
– ident: e_1_2_7_21_1
  doi: 10.1038/s41560-017-0057-0
– ident: e_1_2_7_31_1
  doi: 10.1039/D0EE01347A
– ident: e_1_2_7_8_1
  doi: 10.1021/jacs.9b01214
– ident: e_1_2_7_32_1
  doi: 10.1002/anie.201900981
– ident: e_1_2_7_11_1
  doi: 10.1002/aenm.201703290
– ident: e_1_2_7_47_1
  doi: 10.1039/D0TA04800C
– ident: e_1_2_7_28_1
  doi: 10.1021/acsnano.1c11169
– ident: e_1_2_7_30_1
  doi: 10.1021/acsami.0c10010
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201910716
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.energyfuels.0c03836
– ident: e_1_2_7_44_1
  doi: 10.1149/2.0101902jss
– ident: e_1_2_7_18_1
  doi: 10.1021/acsenergylett.9b00699
– ident: e_1_2_7_39_1
  doi: 10.1007/s10854-018-9951-x
– ident: e_1_2_7_19_1
  doi: 10.1002/adma.201704303
– ident: e_1_2_7_4_1
  doi: 10.1016/j.mattod.2019.12.003
SSID ssj0000491033
Score 2.6067538
Snippet The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms alkaline HER
Coordination
Electrocatalysts
Electrode materials
Electrolytes
Electronic structure
Hydrogen evolution reactions
Hydroxyl ions
MoO 4 2
Nanosheets
Oxygen
oxygen vacancy
Polyhedra
Rivets
Stability
α‐Co(OH) 2
Title Boosting the Stability of Oxygen Vacancies in α‐Co(OH)2 Nanosheets with Coordination Polyhedrons as Rivets for High‐Performance Alkaline Hydrogen Evolution Electrocatalyst
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202202351
https://www.proquest.com/docview/2736974175
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wIHxK8oLMgHKkBVIHHz0xy7oShC210Eu7BwiRzXVitWCdq0iHLiEXgUeBEeggfgGRj_xE34Zy9R5ThO6vliz0xmvkHoNrxEYBVI8OYscnxfeE4uM5ZFxKKZG7tCcOkamO6F6aH_-Cg46nS-NaKWVsv8Pnv_y7yS00gV2kCuMkv2PyRrB4UG-A3yhSNIGI7_JOOdsqyWdb4TqI0q0FV9Mt9_t4arBs8pU9V3VdBrP5n0dzwb3ZCUkmk07ZOYyDW2rOac18luSQk26UI7CmWI3HrOZycyqIZWg6ewPi4Vi4MKErHjPWmkIIyPX1Olv6ZruE4-yeStmYnBRBfeUX6jddX6NDCuAxK4zkgEbVpPo43zWRj39u7C3vfFJpktXZnTL1cb0L8qV6qJmj1asQ3rbsmclk23B1jMnnV76JUa9AonHBnnKG-2af4nu7yTBow1JZTZ6e0--NM2omlpKS8kVwGRFeYNK26Lr9v2DP7cV9MLT_am9vwZtEXArCFdtDV-ON19Zr2CYK957lBlhdT_r2YadcmD9k3amtTGPGoaWUpLOriAzhvzBo81Vi-iDi8uoXMN0svL6FONWgyoxRa1uBRYoxZb1OJFgb98_vrhY1Le3U_vEbzBKZY4xU2c4gZOMa2wxikGTGKJUxilgVBcIxTXCMUWofgHhF5Bh48mB0nqmLohDgNt2HNGYDRTL-CCw3TyoZ8Hce5zl_IZE8IN6TD3IxZwVwQ-5TEPBeGStTIMA5YHjMXDq6hblAW_hrAsUBDFoeBxPoNx6CgajWJGhAhpHvnM7SGnlkHGDKm-rO1ynGk6cJJJmWVWZj10x_Z_o-lkfttzuxZpZpacKgNbI4zBBoiCHiJKzH8ZJWvB7vppLrqBzm7ev23UXZ6s-E1QxJf5LYPe70T-2z4
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+the+Stability+of+Oxygen+Vacancies+in+%CE%B1%E2%80%90Co%28OH%292+Nanosheets+with+Coordination+Polyhedrons+as+Rivets+for+High%E2%80%90Performance+Alkaline+Hydrogen+Evolution+Electrocatalyst&rft.jtitle=Advanced+energy+materials&rft.au=Jiang%2C+Li%E2%80%90Wen&rft.au=Huang%2C+Yuan&rft.au=Zou%2C+Yang&rft.au=Meng%2C+Chao&rft.date=2022-11-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202202351&rft.externalDBID=10.1002%252Faenm.202202351&rft.externalDocID=AENM202202351
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon