Boosting the Stability of Oxygen Vacancies in α‐Co(OH)2 Nanosheets with Coordination Polyhedrons as Rivets for High‐Performance Alkaline Hydrogen Evolution Electrocatalyst
The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh al...
Saved in:
Published in | Advanced energy materials Vol. 12; no. 43 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction (HER). The addition of MoO42− in 1 m KOH can inhibit the attack of hydroxyl ions on oxygen vacancies in α‐Co(OH)2, and simultaneously modulate the electronic structure of active sites for HER. The theoretical calculations and experimental results reveal that MoO42− can be riveted on the surface of α‐Co(OH)2 to greatly stabilize oxygen vacancies and inhibit the formation of soluble ions of Co(OH)3−. The resultant active sites exhibit reduced maximum energy barriers for the optimized alkaline HER. Additionally, MoO42− near the interface between α‐Co(OH)2 and electrolyte can alleviate the accumulation of hydroxyl ions on α‐Co(OH)2 due to the electrostatic repulsion, improving the stability toward HER. This work offers insight into the role of coordination polyhedron ions in regulating and enhancing the stability of α‐Co(OH)2 for various potential electrochemical applications in alkaline electrolyte.
The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction. |
---|---|
AbstractList | The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)
2
under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO
4
2−
, WO
4
2−
) on the surface for hydrogen evolution reaction (HER). The addition of MoO
4
2−
in 1
m
KOH can inhibit the attack of hydroxyl ions on oxygen vacancies in α‐Co(OH)
2
, and simultaneously modulate the electronic structure of active sites for HER. The theoretical calculations and experimental results reveal that MoO
4
2−
can be riveted on the surface of α‐Co(OH)
2
to greatly stabilize oxygen vacancies and inhibit the formation of soluble ions of Co(OH)
3
−
. The resultant active sites exhibit reduced maximum energy barriers for the optimized alkaline HER. Additionally, MoO
4
2−
near the interface between α‐Co(OH)
2
and electrolyte can alleviate the accumulation of hydroxyl ions on α‐Co(OH)
2
due to the electrostatic repulsion, improving the stability toward HER. This work offers insight into the role of coordination polyhedron ions in regulating and enhancing the stability of α‐Co(OH)
2
for various potential electrochemical applications in alkaline electrolyte. The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction (HER). The addition of MoO42− in 1 m KOH can inhibit the attack of hydroxyl ions on oxygen vacancies in α‐Co(OH)2, and simultaneously modulate the electronic structure of active sites for HER. The theoretical calculations and experimental results reveal that MoO42− can be riveted on the surface of α‐Co(OH)2 to greatly stabilize oxygen vacancies and inhibit the formation of soluble ions of Co(OH)3−. The resultant active sites exhibit reduced maximum energy barriers for the optimized alkaline HER. Additionally, MoO42− near the interface between α‐Co(OH)2 and electrolyte can alleviate the accumulation of hydroxyl ions on α‐Co(OH)2 due to the electrostatic repulsion, improving the stability toward HER. This work offers insight into the role of coordination polyhedron ions in regulating and enhancing the stability of α‐Co(OH)2 for various potential electrochemical applications in alkaline electrolyte. The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction (HER). The addition of MoO42− in 1 m KOH can inhibit the attack of hydroxyl ions on oxygen vacancies in α‐Co(OH)2, and simultaneously modulate the electronic structure of active sites for HER. The theoretical calculations and experimental results reveal that MoO42− can be riveted on the surface of α‐Co(OH)2 to greatly stabilize oxygen vacancies and inhibit the formation of soluble ions of Co(OH)3−. The resultant active sites exhibit reduced maximum energy barriers for the optimized alkaline HER. Additionally, MoO42− near the interface between α‐Co(OH)2 and electrolyte can alleviate the accumulation of hydroxyl ions on α‐Co(OH)2 due to the electrostatic repulsion, improving the stability toward HER. This work offers insight into the role of coordination polyhedron ions in regulating and enhancing the stability of α‐Co(OH)2 for various potential electrochemical applications in alkaline electrolyte. The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of high‐performance electrode materials with a great challenge. Here, an effective strategy is demonstrated to stabilize α‐Co(OH)2 under harsh alkaline electrochemical condition by coordination polyhedron pinning (MoO42−, WO42−) on the surface for hydrogen evolution reaction. |
Author | Zou, Yang Meng, Chao Huang, Yuan Liu, Hong Jiang, Li‐Wen Xiao, Yi Wang, Jian‐Jun |
Author_xml | – sequence: 1 givenname: Li‐Wen surname: Jiang fullname: Jiang, Li‐Wen organization: Shandong University – sequence: 2 givenname: Yuan surname: Huang fullname: Huang, Yuan organization: Shenzhen Research Institute of Shandong University – sequence: 3 givenname: Yang surname: Zou fullname: Zou, Yang organization: Shandong University – sequence: 4 givenname: Chao surname: Meng fullname: Meng, Chao organization: Shandong University – sequence: 5 givenname: Yi surname: Xiao fullname: Xiao, Yi organization: University of Jinan – sequence: 6 givenname: Hong orcidid: 0000-0003-1640-9620 surname: Liu fullname: Liu, Hong email: hongliu@sdu.edu.cn organization: Technical University of Darmstadt – sequence: 7 givenname: Jian‐Jun surname: Wang fullname: Wang, Jian‐Jun email: wangjianjun@sdu.edu.cn organization: Shenzhen Research Institute of Shandong University |
BookMark | eNqFkc1uEzEUhS1UJErplrUlNrBIsMeemcwyRIFUKk3F33Z0x7nOuDh2azsts-MR-ijwIjwET4LToCIhISxLvpbOd47s85gcOO-QkKecjTljxUtAtxkXrMhblPwBOeQVl6NqItnB_SyKR-Q4xguWl2w4E-KQfHvlfUzGrWnqkb5P0Blr0kC9pssvwxod_QQKnDIYqXH0x_efX29n_vly8aKgZ-B87BFTpDcm9XTmfVgZB8l4R8-9HXpcBe8ihUjfmeudTvtAF2bdZ5dzDPm2yd5Ip_YzWOOQLoZM7FLn195u74zmFlUKXkECO8T0hDzUYCMe_z6PyMfX8w-zxeh0-eZkNj0dKcFrPppwPgFeosb8VBSyK5tOIgNcKa1ZBaKTtSqR6VICNljpArlkoqpK1ZVKNeKIPNv7XgZ_tcWY2gu_DS5HtkUtqqaWvC6zarxXqeBjDKjby2A2EIaWs3ZXTLsrpr0vJgPyL0CZdPdjKYCx_8aaPXZjLA7_CWmn87O3f9hfa1irMw |
CitedBy_id | crossref_primary_10_1039_D3EE01856C crossref_primary_10_1016_j_cej_2023_145223 crossref_primary_10_1016_j_electacta_2023_142953 crossref_primary_10_1007_s10853_023_08389_4 crossref_primary_10_1016_j_seppur_2024_131037 crossref_primary_10_1039_D3QM00143A crossref_primary_10_3390_molecules28196986 crossref_primary_10_1016_j_nanoen_2023_109249 crossref_primary_10_1016_j_esci_2024_100264 crossref_primary_10_1016_j_cej_2023_147288 crossref_primary_10_1002_sstr_202300028 crossref_primary_10_1002_ange_202316319 crossref_primary_10_1063_5_0218142 crossref_primary_10_1007_s43979_024_00101_y crossref_primary_10_1002_adfm_202308191 crossref_primary_10_1016_j_jcis_2025_02_066 crossref_primary_10_1039_D3CC01593A crossref_primary_10_1016_j_jcis_2025_137390 crossref_primary_10_1016_j_ijhydene_2023_07_131 crossref_primary_10_1002_smll_202309509 crossref_primary_10_1016_j_cej_2024_157848 crossref_primary_10_1016_j_apcatb_2023_122551 crossref_primary_10_1002_adma_202303360 crossref_primary_10_1016_j_actamat_2024_120507 crossref_primary_10_1016_j_jcis_2024_09_175 crossref_primary_10_1016_j_nanoen_2024_109300 crossref_primary_10_1002_aenm_202404077 crossref_primary_10_1016_j_jallcom_2024_176690 crossref_primary_10_1002_anie_202316319 crossref_primary_10_1016_j_jechem_2023_06_039 crossref_primary_10_1016_j_mser_2025_100978 crossref_primary_10_1016_j_checat_2023_100789 crossref_primary_10_1039_D4EY00252K crossref_primary_10_1021_acsami_4c10714 crossref_primary_10_1039_D4CC05027D crossref_primary_10_1002_adfm_202313927 crossref_primary_10_1021_acsami_3c11683 crossref_primary_10_3390_en16237787 crossref_primary_10_3390_molecules28155736 crossref_primary_10_1016_j_jcis_2024_12_172 crossref_primary_10_1002_aenm_202303261 crossref_primary_10_1007_s12274_023_5825_5 crossref_primary_10_1021_acsenergylett_4c02182 crossref_primary_10_1016_j_fuel_2024_131785 crossref_primary_10_1016_j_apcatb_2023_123136 crossref_primary_10_1039_D3CS00292F crossref_primary_10_1016_j_jcis_2023_03_165 crossref_primary_10_1038_s41467_024_50535_2 crossref_primary_10_1039_D4QI00959B crossref_primary_10_1021_acs_nanolett_4c05139 crossref_primary_10_1039_D4EE05379F crossref_primary_10_1007_s12274_023_6219_4 crossref_primary_10_1016_j_microc_2024_110578 crossref_primary_10_1016_j_apcatb_2023_123348 crossref_primary_10_1016_j_cej_2024_156977 crossref_primary_10_1016_j_cej_2024_149498 crossref_primary_10_1016_j_apmate_2024_100227 |
Cites_doi | 10.1038/nmat4738 10.1002/anie.202015723 10.1002/anie.202109065 10.1002/aenm.202100141 10.1038/nature11475 10.1016/j.apcatb.2019.118545 10.1149/1945-7111/abfefe 10.1021/jp0257449 10.1021/acs.jpcc.0c03453 10.1039/D0TA05238H 10.1021/acscatal.1c01607 10.1016/j.joule.2021.05.005 10.1021/acscatal.1c03918 10.1515/zna-1974-1208 10.1002/aenm.202200077 10.1038/s41467-022-28947-9 10.1021/acsenergylett.2c00167 10.1021/acsenergylett.8b00514 10.1021/acscatal.1c03960 10.1002/zaac.19733990108 10.1039/C5DT02319J 10.1021/ja0523338 10.1038/s41929-019-0325-4 10.1039/D0EE02250K 10.1021/acsenergylett.9b00382 10.1002/chem.201000661 10.1002/smll.201802760 10.1038/s41586-021-04068-z 10.1126/science.1103197 10.1016/j.apcatb.2022.121332 10.1002/adma.202104718 10.1002/adma.202108505 10.1002/ange.202114899 10.1016/j.apcatb.2020.119167 10.1016/j.matt.2021.05.025 10.1038/s41560-017-0057-0 10.1039/D0EE01347A 10.1021/jacs.9b01214 10.1002/anie.201900981 10.1002/aenm.201703290 10.1039/D0TA04800C 10.1021/acsnano.1c11169 10.1021/acsami.0c10010 10.1002/anie.201910716 10.1021/acs.energyfuels.0c03836 10.1149/2.0101902jss 10.1021/acsenergylett.9b00699 10.1007/s10854-018-9951-x 10.1002/adma.201704303 10.1016/j.mattod.2019.12.003 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202202351 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202202351 AENM202202351 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21802086 – fundername: Shandong Provincial Natural Science Foundation funderid: ZR2019MB048; ZR2020YQ09 – fundername: Shenzhen Fundamental Research Program funderid: JCYJ20190807093411445 – fundername: QiLu Young Scientist Program of Shandong University |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3171-8118a15efe049e34b59b4e0aedcff06a3b47c5e0f54ae9e6f2e1403665cb5cc93 |
ISSN | 1614-6832 |
IngestDate | Sun Jul 13 05:21:31 EDT 2025 Thu Apr 24 22:58:00 EDT 2025 Tue Jul 01 01:43:46 EDT 2025 Wed Jan 22 16:25:00 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3171-8118a15efe049e34b59b4e0aedcff06a3b47c5e0f54ae9e6f2e1403665cb5cc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1640-9620 |
PQID | 2736974175 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2736974175 crossref_primary_10_1002_aenm_202202351 crossref_citationtrail_10_1002_aenm_202202351 wiley_primary_10_1002_aenm_202202351_AENM202202351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2022; 310 2022; 134 2018; 29 2021; 5 2019; 4 2010; 16 2021; 4 2021; 168 2019; 2 2020; 264 2021; 600 2019; 58 2020; 36 2020; 13 2020; 12 2020; 124 2012; 488 2019; 141 2004; 305 2016; 16 2020; 8 2021; 35 1973; 399 2018; 8 2018; 3 2021; 33 2021; 11 2022; 7 2005; 127 2015; 44 2022; 34 2022; 12 2002; 106 2022; 13 2018; 30 2020; 276 2021; 60 2022; 16 2018; 14 1974; 29 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 Huang J. (e_1_2_7_20_1) 2022; 134 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 29 year: 2018 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 2 start-page: 763 year: 2019 publication-title: Nat. Catal. – volume: 7 start-page: 1679 year: 2022 publication-title: ACS Energy Lett. – volume: 488 start-page: 294 year: 2012 publication-title: Nature – volume: 11 start-page: 8174 year: 2021 publication-title: ACS Catal. – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 127 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 9463 year: 2002 publication-title: J. Phys. Chem. B – volume: 134 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 16 start-page: 9998 year: 2010 publication-title: Chem.‐Eur. J. – volume: 4 start-page: 2850 year: 2021 publication-title: Matter – volume: 4 start-page: 987 year: 2019 publication-title: ACS Energy Lett. – volume: 58 start-page: 4669 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 141 start-page: 7005 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3082 year: 2020 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1754 year: 1974 publication-title: Z. Naturforsch., A: Phys. Sci. – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 14 year: 2018 publication-title: Small – volume: 3 start-page: 1360 year: 2018 publication-title: ACS Energy Lett. – volume: 16 start-page: 4588 year: 2022 publication-title: ACS Nano – volume: 5 start-page: 1704 year: 2021 publication-title: Joule – volume: 44 year: 2015 publication-title: Dalton Trans. – volume: 3 start-page: 53 year: 2018 publication-title: Nat. Energy – volume: 168 year: 2021 publication-title: J. Electrochem. Soc. – volume: 305 start-page: 972 year: 2004 publication-title: Science – volume: 310 year: 2022 publication-title: Appl. Catal., B – volume: 13 start-page: 1270 year: 2022 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 35 start-page: 2775 year: 2021 publication-title: Energy Fuels – volume: 600 start-page: 81 year: 2021 publication-title: Nature – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 11 year: 2021 publication-title: ACS Catal. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 264 year: 2020 publication-title: Appl. Catal. B – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 276 year: 2020 publication-title: Appl. Catal. B – volume: 4 start-page: 1336 year: 2019 publication-title: ACS Energy Lett. – volume: 16 start-page: 57 year: 2016 publication-title: Nat. Mater. – volume: 8 start-page: P99 year: 2019 publication-title: ECS J. Solid State Sci. Technol. – volume: 399 start-page: 57 year: 1973 publication-title: Z. Anorg. Allg. Chem. – volume: 60 start-page: 7051 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 36 start-page: 125 year: 2020 publication-title: Mater. Today – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 13 start-page: 4132 year: 2020 publication-title: Energy Environ. Sci. – ident: e_1_2_7_3_1 doi: 10.1038/nmat4738 – ident: e_1_2_7_38_1 doi: 10.1002/anie.202015723 – ident: e_1_2_7_42_1 doi: 10.1002/anie.202109065 – ident: e_1_2_7_26_1 doi: 10.1002/aenm.202100141 – ident: e_1_2_7_2_1 doi: 10.1038/nature11475 – ident: e_1_2_7_24_1 doi: 10.1016/j.apcatb.2019.118545 – ident: e_1_2_7_33_1 doi: 10.1149/1945-7111/abfefe – ident: e_1_2_7_45_1 doi: 10.1021/jp0257449 – ident: e_1_2_7_49_1 doi: 10.1021/acs.jpcc.0c03453 – ident: e_1_2_7_29_1 doi: 10.1039/D0TA05238H – ident: e_1_2_7_50_1 doi: 10.1021/acscatal.1c01607 – ident: e_1_2_7_5_1 doi: 10.1016/j.joule.2021.05.005 – ident: e_1_2_7_34_1 doi: 10.1021/acscatal.1c03918 – ident: e_1_2_7_48_1 doi: 10.1515/zna-1974-1208 – ident: e_1_2_7_15_1 doi: 10.1002/aenm.202200077 – ident: e_1_2_7_27_1 doi: 10.1038/s41467-022-28947-9 – ident: e_1_2_7_16_1 doi: 10.1021/acsenergylett.2c00167 – ident: e_1_2_7_10_1 doi: 10.1021/acsenergylett.8b00514 – ident: e_1_2_7_23_1 doi: 10.1021/acscatal.1c03960 – ident: e_1_2_7_43_1 doi: 10.1002/zaac.19733990108 – ident: e_1_2_7_36_1 doi: 10.1039/C5DT02319J – ident: e_1_2_7_35_1 doi: 10.1021/ja0523338 – ident: e_1_2_7_14_1 doi: 10.1038/s41929-019-0325-4 – ident: e_1_2_7_22_1 doi: 10.1039/D0EE02250K – ident: e_1_2_7_7_1 doi: 10.1021/acsenergylett.9b00382 – ident: e_1_2_7_40_1 doi: 10.1002/chem.201000661 – ident: e_1_2_7_41_1 doi: 10.1002/smll.201802760 – ident: e_1_2_7_46_1 doi: 10.1038/s41586-021-04068-z – ident: e_1_2_7_1_1 doi: 10.1126/science.1103197 – ident: e_1_2_7_9_1 doi: 10.1016/j.apcatb.2022.121332 – ident: e_1_2_7_17_1 doi: 10.1002/adma.202104718 – ident: e_1_2_7_12_1 doi: 10.1002/adma.202108505 – volume: 134 start-page: e202114899 year: 2022 ident: e_1_2_7_20_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202114899 – ident: e_1_2_7_25_1 doi: 10.1016/j.apcatb.2020.119167 – ident: e_1_2_7_6_1 doi: 10.1016/j.matt.2021.05.025 – ident: e_1_2_7_21_1 doi: 10.1038/s41560-017-0057-0 – ident: e_1_2_7_31_1 doi: 10.1039/D0EE01347A – ident: e_1_2_7_8_1 doi: 10.1021/jacs.9b01214 – ident: e_1_2_7_32_1 doi: 10.1002/anie.201900981 – ident: e_1_2_7_11_1 doi: 10.1002/aenm.201703290 – ident: e_1_2_7_47_1 doi: 10.1039/D0TA04800C – ident: e_1_2_7_28_1 doi: 10.1021/acsnano.1c11169 – ident: e_1_2_7_30_1 doi: 10.1021/acsami.0c10010 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201910716 – ident: e_1_2_7_37_1 doi: 10.1021/acs.energyfuels.0c03836 – ident: e_1_2_7_44_1 doi: 10.1149/2.0101902jss – ident: e_1_2_7_18_1 doi: 10.1021/acsenergylett.9b00699 – ident: e_1_2_7_39_1 doi: 10.1007/s10854-018-9951-x – ident: e_1_2_7_19_1 doi: 10.1002/adma.201704303 – ident: e_1_2_7_4_1 doi: 10.1016/j.mattod.2019.12.003 |
SSID | ssj0000491033 |
Score | 2.6067538 |
Snippet | The strong alkaline electrolytes are utilized in various key electrochemical applications and the severe corrosion by hydroxyl ions endows the development of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | alkaline HER Coordination Electrocatalysts Electrode materials Electrolytes Electronic structure Hydrogen evolution reactions Hydroxyl ions MoO 4 2 Nanosheets Oxygen oxygen vacancy Polyhedra Rivets Stability α‐Co(OH) 2 |
Title | Boosting the Stability of Oxygen Vacancies in α‐Co(OH)2 Nanosheets with Coordination Polyhedrons as Rivets for High‐Performance Alkaline Hydrogen Evolution Electrocatalyst |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202202351 https://www.proquest.com/docview/2736974175 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wIHxK8oLMgHKkBVIHHz0xy7oShC210Eu7BwiRzXVitWCdq0iHLiEXgUeBEeggfgGRj_xE34Zy9R5ThO6vliz0xmvkHoNrxEYBVI8OYscnxfeE4uM5ZFxKKZG7tCcOkamO6F6aH_-Cg46nS-NaKWVsv8Pnv_y7yS00gV2kCuMkv2PyRrB4UG-A3yhSNIGI7_JOOdsqyWdb4TqI0q0FV9Mt9_t4arBs8pU9V3VdBrP5n0dzwb3ZCUkmk07ZOYyDW2rOac18luSQk26UI7CmWI3HrOZycyqIZWg6ewPi4Vi4MKErHjPWmkIIyPX1Olv6ZruE4-yeStmYnBRBfeUX6jddX6NDCuAxK4zkgEbVpPo43zWRj39u7C3vfFJpktXZnTL1cb0L8qV6qJmj1asQ3rbsmclk23B1jMnnV76JUa9AonHBnnKG-2af4nu7yTBow1JZTZ6e0--NM2omlpKS8kVwGRFeYNK26Lr9v2DP7cV9MLT_am9vwZtEXArCFdtDV-ON19Zr2CYK957lBlhdT_r2YadcmD9k3amtTGPGoaWUpLOriAzhvzBo81Vi-iDi8uoXMN0svL6FONWgyoxRa1uBRYoxZb1OJFgb98_vrhY1Le3U_vEbzBKZY4xU2c4gZOMa2wxikGTGKJUxilgVBcIxTXCMUWofgHhF5Bh48mB0nqmLohDgNt2HNGYDRTL-CCw3TyoZ8Hce5zl_IZE8IN6TD3IxZwVwQ-5TEPBeGStTIMA5YHjMXDq6hblAW_hrAsUBDFoeBxPoNx6CgajWJGhAhpHvnM7SGnlkHGDKm-rO1ynGk6cJJJmWVWZj10x_Z_o-lkfttzuxZpZpacKgNbI4zBBoiCHiJKzH8ZJWvB7vppLrqBzm7ev23UXZ6s-E1QxJf5LYPe70T-2z4 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+the+Stability+of+Oxygen+Vacancies+in+%CE%B1%E2%80%90Co%28OH%292+Nanosheets+with+Coordination+Polyhedrons+as+Rivets+for+High%E2%80%90Performance+Alkaline+Hydrogen+Evolution+Electrocatalyst&rft.jtitle=Advanced+energy+materials&rft.au=Jiang%2C+Li%E2%80%90Wen&rft.au=Huang%2C+Yuan&rft.au=Zou%2C+Yang&rft.au=Meng%2C+Chao&rft.date=2022-11-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=12&rft.issue=43&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202202351&rft.externalDBID=10.1002%252Faenm.202202351&rft.externalDocID=AENM202202351 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |