Bioinspired Hierarchically Structured All‐Inorganic Nanocomposites with Significantly Improved Capacitive Performance
Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major ba...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 23 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO3‐Bi(Mg0.5Zr0.5)O3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm−3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design.
A conceptual material paradigm of structure design strategy inspired by nature is developed to break the inverse correlation between polarization and breakdown strength inherently existing in dielectrics, and thus to boost their energy storage performance, as successfully validated by the bioinspired hierarchical structured all‐inorganic BaTiO3‐Bi(Mg0.5Zr0.5)O3‐based nanocomposites with a high energy density of 3.41 J cm−3, and efficiency of 85.1% simultaneously. |
---|---|
AbstractList | Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO3‐Bi(Mg0.5Zr0.5)O3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm−3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design.
A conceptual material paradigm of structure design strategy inspired by nature is developed to break the inverse correlation between polarization and breakdown strength inherently existing in dielectrics, and thus to boost their energy storage performance, as successfully validated by the bioinspired hierarchical structured all‐inorganic BaTiO3‐Bi(Mg0.5Zr0.5)O3‐based nanocomposites with a high energy density of 3.41 J cm−3, and efficiency of 85.1% simultaneously. Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO3‐Bi(Mg0.5Zr0.5)O3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm−3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design. Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO 3 ‐Bi(Mg 0.5 Zr 0.5 )O 3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO 2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO 2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm −3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design. |
Author | Wang, Linxi Wang, Yifei Cheng, Shao‐Dong Yuan, Qibin Wang, Hong Mi, Shao‐Bo Wang, Xiaohui Yao, Fang‐Zhou Wang, Qing |
Author_xml | – sequence: 1 givenname: Qibin orcidid: 0000-0003-3076-7360 surname: Yuan fullname: Yuan, Qibin organization: Shaanxi University of Science and Technology – sequence: 2 givenname: Fang‐Zhou surname: Yao fullname: Yao, Fang‐Zhou email: yaofangzhou@xjtu.edu.cn organization: Xi'an Jiaotong University – sequence: 3 givenname: Shao‐Dong surname: Cheng fullname: Cheng, Shao‐Dong organization: Xi'an Jiaotong University – sequence: 4 givenname: Linxi surname: Wang fullname: Wang, Linxi organization: Xi'an Jiaotong University – sequence: 5 givenname: Yifei surname: Wang fullname: Wang, Yifei organization: University Connecticut – sequence: 6 givenname: Shao‐Bo surname: Mi fullname: Mi, Shao‐Bo organization: Xi'an Jiaotong University – sequence: 7 givenname: Qing surname: Wang fullname: Wang, Qing organization: The Pennsylvania State University – sequence: 8 givenname: Xiaohui surname: Wang fullname: Wang, Xiaohui organization: Tsinghua University – sequence: 9 givenname: Hong orcidid: 0000-0001-6799-1732 surname: Wang fullname: Wang, Hong email: wangh6@sustech.edu.cn organization: Southern University of Science and Technology |
BookMark | eNqFkMtKLDEQhoMoeN26bnA9Yyp9yfRynHPUAW-ggrumJl2tke6kT5JxmJ2P4DP6JGYYURAOrqqg_q_qr3-XbRpriLFD4EPgXBxj3XRDwQXnHErYYDtQQDFIuRhtfvXwsM12vX-OEinTbIctTrTVxvfaUZ2ca3Lo1JNW2LbL5Da4uQrz1WTctu-vb1Nj3SMarZIrNFbZrrdeB_LJQoen5FY_Gt1E1oQIT7ve2ZeITrBHpYN-oeSGXGNdh0bRPttqsPV08Fn32P3p37vJ-eDi-mw6GV8MVAoSBnldIBGBEJAXkOJIcpylqhhxWafQlPEtCZgBlbmcQS1GsikaKmfIM5KzvEz32NF6b3Tzb04-VM927kw8WYmMl5DJXGRRla1VylnvHTVVdIxBWxMc6rYCXq0irlYRV18RR2z4A-ud7tAt_w-Ua2ChW1r-oq7Gf04vv9kPcCqUFA |
CitedBy_id | crossref_primary_10_1039_D3TC00220A crossref_primary_10_1039_D2TA10098C crossref_primary_10_1016_j_ceramint_2024_01_323 crossref_primary_10_1002_smll_202206958 crossref_primary_10_1016_j_jmat_2021_04_001 crossref_primary_10_1016_j_cej_2022_136315 crossref_primary_10_1016_j_cej_2021_128760 crossref_primary_10_1002_advs_202300320 crossref_primary_10_1039_D1TC02972J crossref_primary_10_1016_j_cej_2021_129506 crossref_primary_10_1002_smll_202207997 crossref_primary_10_1063_5_0134282 crossref_primary_10_1002_smll_202206662 crossref_primary_10_1021_acsami_2c02086 crossref_primary_10_1039_D3QI00676J crossref_primary_10_1039_D2TA04200B crossref_primary_10_1016_j_jmat_2020_06_005 crossref_primary_10_1021_acsaelm_3c01657 crossref_primary_10_1016_j_jeurceramsoc_2023_07_047 crossref_primary_10_1016_j_jmat_2020_12_006 crossref_primary_10_1039_D1TA08167E crossref_primary_10_1016_j_nanoen_2022_107577 crossref_primary_10_1002_adfm_202100280 crossref_primary_10_1021_acsami_4c11161 crossref_primary_10_1021_acs_langmuir_1c00799 crossref_primary_10_1016_j_cej_2020_128231 crossref_primary_10_1021_acsami_0c03677 crossref_primary_10_1038_s41467_024_55491_5 crossref_primary_10_1111_jace_18589 crossref_primary_10_1016_j_materresbull_2023_112157 crossref_primary_10_1039_D3TC03477A crossref_primary_10_1021_acsaelm_4c01286 crossref_primary_10_1016_j_compositesb_2021_109493 crossref_primary_10_1016_j_cej_2022_135523 crossref_primary_10_1007_s10854_021_05995_3 crossref_primary_10_1016_j_jmat_2021_09_007 crossref_primary_10_1016_j_cej_2023_142251 crossref_primary_10_1002_adma_202409059 crossref_primary_10_1016_j_jeurceramsoc_2023_06_037 crossref_primary_10_1002_smll_202208105 crossref_primary_10_1021_acs_chemmater_2c01241 crossref_primary_10_1016_j_jmat_2022_02_003 crossref_primary_10_1016_j_compositesa_2020_106132 crossref_primary_10_1039_D0NR04479B crossref_primary_10_1007_s10854_024_13690_2 crossref_primary_10_1016_j_cej_2020_128376 crossref_primary_10_1002_smll_202309992 crossref_primary_10_1038_s41467_023_41494_1 crossref_primary_10_1007_s12598_023_02452_4 crossref_primary_10_3390_ma14247854 crossref_primary_10_1021_acsami_4c11906 crossref_primary_10_1142_S2010135X22420048 crossref_primary_10_1016_j_cej_2023_145506 crossref_primary_10_1021_acsami_2c05205 crossref_primary_10_1002_adfm_202102644 crossref_primary_10_1002_cssc_202402064 crossref_primary_10_1002_smll_202306803 crossref_primary_10_1002_smll_202106515 crossref_primary_10_1002_smll_202406080 crossref_primary_10_1016_j_cej_2022_141023 crossref_primary_10_1039_D0TC01711F crossref_primary_10_1021_acsaem_2c02664 crossref_primary_10_1039_D2TC00056C crossref_primary_10_1016_j_nanoen_2023_108477 crossref_primary_10_1016_j_cej_2021_130811 crossref_primary_10_1002_adfm_202425711 crossref_primary_10_1016_j_nanoen_2024_109394 crossref_primary_10_1039_D3TA03294A crossref_primary_10_1016_j_mattod_2023_07_023 crossref_primary_10_1016_j_cej_2021_131465 crossref_primary_10_1039_D1TA02853G crossref_primary_10_1016_j_ceramint_2021_05_308 crossref_primary_10_1016_j_cej_2021_130130 crossref_primary_10_1016_j_jeurceramsoc_2022_07_023 crossref_primary_10_1021_acsami_2c01507 crossref_primary_10_1007_s12274_023_5580_7 crossref_primary_10_1016_j_cej_2020_128032 crossref_primary_10_7498_aps_69_20201006 crossref_primary_10_1016_j_cej_2021_130669 crossref_primary_10_1021_acsami_0c13067 crossref_primary_10_1007_s10854_024_12082_w crossref_primary_10_1021_acsami_2c17170 crossref_primary_10_1002_adma_202420566 crossref_primary_10_1007_s10853_021_05858_6 crossref_primary_10_1039_D2TA02893J crossref_primary_10_1021_acsami_2c11599 crossref_primary_10_1007_s40145_021_0516_8 crossref_primary_10_1016_j_cej_2020_127375 crossref_primary_10_1039_D1TA06848B crossref_primary_10_1016_j_cej_2023_147973 crossref_primary_10_1016_j_cej_2021_129601 crossref_primary_10_1002_aelm_202200793 crossref_primary_10_1002_smll_202206125 crossref_primary_10_1039_D2TA08074E crossref_primary_10_1039_D4TC04001E crossref_primary_10_1039_D2TA00380E crossref_primary_10_1049_hve2_12080 crossref_primary_10_1002_adfm_202204155 |
Cites_doi | 10.1039/C9TA05182A 10.1039/C9DT01738K 10.1002/adfm.201907312 10.1016/S0025-5408(03)00028-X 10.1002/adma.201503881 10.1016/j.jeurceramsoc.2017.06.028 10.1038/nmat3915 10.1002/aenm.201803048 10.1039/C8TA00474A 10.1039/C7TA09857J 10.1063/1.3645054 10.1021/jacs.5b12728 10.1002/adma.201601727 10.1111/jace.13325 10.1021/acsami.8b14958 10.1111/jace.15429 10.1002/adma.201701824 10.1002/adma.201802155 10.1039/C9NR00874H 10.1111/jace.12443 10.1021/acssuschemeng.8b01926 10.1016/j.jeurceramsoc.2014.11.022 10.1111/j.1551-2916.2009.03474.x 10.1038/nature14647 10.1002/adfm.201807321 10.1016/j.jallcom.2018.09.252 10.1002/adfm.201903877 10.1063/1.4979467 10.1016/j.apsusc.2010.12.124 10.1016/j.nanoen.2017.12.018 10.1039/C7TC02478A 10.1063/1.4941803 10.1002/adma.201705662 10.1111/jace.13614 10.1039/C7TA10821D 10.1016/j.jeurceramsoc.2019.03.047 10.1016/j.nanoen.2018.07.055 10.1111/jace.14564 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202000191 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202000191 ADFM202000191 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation of China funderid: 61631166004; 51702252 – fundername: National Key Research Program of China funderid: 2017YFB0406303 – fundername: Shenzhen Science and Technology Program funderid: KQTD20180411143514543; JCYJ20180504165831308 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3171-5d6aeee12215613a870ab3c6807d31f916171a41e957b1d287f6fe9ba04e7b593 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 04:54:53 EDT 2025 Tue Jul 01 04:12:12 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Wed Jan 22 16:34:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3171-5d6aeee12215613a870ab3c6807d31f916171a41e957b1d287f6fe9ba04e7b593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3076-7360 0000-0001-6799-1732 |
PQID | 2409147524 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2409147524 crossref_citationtrail_10_1002_adfm_202000191 crossref_primary_10_1002_adfm_202000191 wiley_primary_10_1002_adfm_202000191_ADFM202000191 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2015; 35 2019; 7 2011; 257 2019; 9 2015; 523 2016; 108 2019; 11 2018; 101 2015; 98 2019; 39 2003; 38 2017; 29 2017; 110 2018; 44 2011; 110 2018; 6 2017; 37 2020; 30 2019; 48 2013; 96 2019; 773 2019; 29 2014; 13 2018; 30 2018; 52 2016; 138 2017; 100 2016; 28 2018; 10 2010; 93 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
References_xml | – volume: 96 start-page: 2061 year: 2013 publication-title: J. Am. Ceram. Soc. – volume: 38 start-page: 555 year: 2003 publication-title: Mater. Res. Bull. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 6 start-page: 4133 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 start-page: 9823 year: 2018 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: Acs Sustain. Chem. Eng. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 5 start-page: 9552 year: 2017 publication-title: J. Mater. Chem. C – volume: 110 year: 2011 publication-title: J. Appl. Phys. – volume: 37 start-page: 4645 year: 2017 publication-title: J. Eur. Ceram. Soc. – volume: 39 start-page: 2889 year: 2019 publication-title: J. Eur. Ceram. Soc. – volume: 13 start-page: 508 year: 2014 publication-title: Nat. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Inter. – volume: 93 start-page: 865 year: 2010 publication-title: J. Am. Ceram. Soc. – volume: 6 start-page: 4477 year: 2018 publication-title: J. Mater. Chem. A – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 98 start-page: 559 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 101 start-page: 2976 year: 2018 publication-title: J. Am. Ceram. Soc. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 48 year: 2019 publication-title: Dalton Trans. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 28 start-page: 2055 year: 2016 publication-title: Adv. Mater. – volume: 257 start-page: 4695 year: 2011 publication-title: Appl. Surf. Sci. – volume: 35 start-page: 1469 year: 2015 publication-title: J. Eur. Ceram. Soc. – volume: 44 start-page: 364 year: 2018 publication-title: Nano Energy – volume: 11 year: 2019 publication-title: Nanoscale – volume: 523 start-page: 576 year: 2015 publication-title: Nature – volume: 52 start-page: 203 year: 2018 publication-title: Nano Energy – volume: 98 start-page: 2641 year: 2015 publication-title: J. Am. Ceram. Soc. – volume: 138 start-page: 1727 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 100 start-page: 265 year: 2017 publication-title: J. Am. Ceram. Soc. – volume: 773 start-page: 244 year: 2019 publication-title: J. Alloys Compd. – ident: e_1_2_7_17_1 doi: 10.1039/C9TA05182A – ident: e_1_2_7_9_1 doi: 10.1039/C9DT01738K – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201907312 – ident: e_1_2_7_29_1 doi: 10.1016/S0025-5408(03)00028-X – ident: e_1_2_7_2_1 doi: 10.1002/adma.201503881 – ident: e_1_2_7_14_1 doi: 10.1016/j.jeurceramsoc.2017.06.028 – ident: e_1_2_7_19_1 doi: 10.1038/nmat3915 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201803048 – ident: e_1_2_7_32_1 doi: 10.1039/C8TA00474A – ident: e_1_2_7_23_1 doi: 10.1039/C7TA09857J – ident: e_1_2_7_28_1 doi: 10.1063/1.3645054 – ident: e_1_2_7_18_1 doi: 10.1021/jacs.5b12728 – ident: e_1_2_7_5_1 doi: 10.1002/adma.201601727 – ident: e_1_2_7_10_1 doi: 10.1111/jace.13325 – ident: e_1_2_7_26_1 doi: 10.1021/acsami.8b14958 – ident: e_1_2_7_33_1 doi: 10.1111/jace.15429 – ident: e_1_2_7_34_1 doi: 10.1002/adma.201701824 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201802155 – ident: e_1_2_7_36_1 doi: 10.1039/C9NR00874H – ident: e_1_2_7_8_1 doi: 10.1111/jace.12443 – ident: e_1_2_7_27_1 doi: 10.1021/acssuschemeng.8b01926 – ident: e_1_2_7_12_1 doi: 10.1016/j.jeurceramsoc.2014.11.022 – ident: e_1_2_7_22_1 doi: 10.1111/j.1551-2916.2009.03474.x – ident: e_1_2_7_1_1 doi: 10.1038/nature14647 – ident: e_1_2_7_3_1 doi: 10.1002/adfm.201807321 – ident: e_1_2_7_37_1 doi: 10.1016/j.jallcom.2018.09.252 – ident: e_1_2_7_4_1 doi: 10.1002/adfm.201903877 – ident: e_1_2_7_11_1 doi: 10.1063/1.4979467 – ident: e_1_2_7_30_1 doi: 10.1016/j.apsusc.2010.12.124 – ident: e_1_2_7_35_1 doi: 10.1016/j.nanoen.2017.12.018 – ident: e_1_2_7_6_1 doi: 10.1039/C7TC02478A – ident: e_1_2_7_31_1 doi: 10.1063/1.4941803 – ident: e_1_2_7_38_1 doi: 10.1002/adma.201705662 – ident: e_1_2_7_15_1 doi: 10.1111/jace.13614 – ident: e_1_2_7_16_1 doi: 10.1039/C7TA10821D – ident: e_1_2_7_13_1 doi: 10.1016/j.jeurceramsoc.2019.03.047 – ident: e_1_2_7_21_1 doi: 10.1016/j.nanoen.2018.07.055 – ident: e_1_2_7_24_1 doi: 10.1111/jace.14564 |
SSID | ssj0017734 |
Score | 2.6326063 |
Snippet | Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | all‐inorganic nanocomposites Barium titanates bioinspired hierarchical structures Biomimetics breakdown strength Ceramics Dielectric breakdown Dielectric strength Energy storage Ferroelectric materials Ferroelectricity Flux density Materials science Nanocomposites Nanoparticles Polarization Relaxors Silicon dioxide Structural hierarchy Thermal stability |
Title | Bioinspired Hierarchically Structured All‐Inorganic Nanocomposites with Significantly Improved Capacitive Performance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000191 https://www.proquest.com/docview/2409147524 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA-iL_rgf3E6Rx8En6pN1jTt4_wzpjgRp7C3kjSpDEsnbEP0yY_gZ_STeNds3SaIoG8tzZU2d7n7Jbn7hZDDFGKMZtJzhZYwQQmlcqXk3A3BfrQWXiQU7ui2b4LWg3_V5d2ZKn7LD1EuuOHIKPw1DnCpBidT0lCpU6wkZwVKwfkPJmwhKror-aOoEHZbOaCY4EW7E9ZGj53Mi89HpSnUnAWsRcRprhE5-VabaPJ0PBqq4-TtG43jf35mnayO4ajTsPazQRZMvklWZkgKt8jLaa_fy3FD3min1cOC5eL8lCx7dToF--wInzSy7PP94zK3x0QlDrjtPuarY1KYGTi43ut0eo85piaBNkHYrmeA6BkE7KTIYXJup3UM2-SheXF_1nLHxzW4CYAQ6nIdSGMMZYAiACRI8ARS1ZMg9ISu0zTCmRSVPjURFwoMJBRpkJpISc83QvGovkMW835udolDWRoyTX0NzhcQpVKcBqGJEskjEzKlKsSdqCtOxlzmeKRGFlsWZhZjh8Zlh1bIUdn-2bJ4_NiyOtF-PB7NgxhQT0R9wZlfIaxQ4y9viRvnzXZ5t_cXoX2yjNc2K61KFkGf5gDwz1DVyFLjvH3dqRW2_gUh3ADT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V7QE4UH7VhQI-gDiljd04Tg4cli6rXdqtEG2lvQU7dtCKKIu0rapy4hF4lb5KH4EnYSZOsi0SQkLqgWN-HMX22PN5_PkbgJcF-hgrdBgoq3GBkmgTaC1lkKD9WKvCVBna0Z0cxKPj6P1UTlfgoj0L4_UhuoAbjYx6vqYBTgHp7aVqqLYFHSUXNUzhDa9yz52f4apt8WY8wC5-JcTw3dHuKGgSCwQ5ukseSBtr5xwX6O_QnWm0WW128jgJld3hRUqYn-uIu1Qqg1VJVBEXLjU6jJwykvSXcNZfozTiJNc_-NgpVnGl_EZ2zIlSxqetTmQotq__73U_uAS3VyFy7eOG63DZto6ntnzZOj0xW_m334Qj_6vmuwd3G8TN-n6I3IcVVz2AO1d0GB_C2dvZfFYR58BZNprRmew6RUxZnrPDWmD3lJ70y_Ln9x_jymfCyhl6pjlR8on35haMQtrscPa5IvYVGiwW9iEbLLqLmCSvaVrsw_KoxiM4vpGaP4bVal65DWBcFImwPLLoXxA0GyN5nLg01zJ1iTCmB0FrH1neyLVT1pAy80LTIqMOzLoO7MHr7v2vXqjkj29utuaWNRPWIkNgl_JISRH1QNR285evZP3BcNJdPfmXQi_g1uhosp_tjw_2nsJtuu9JeJuwin3rniHcOzHP6wHG4NNNm-Qvw1xbTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRUJwoPyqSwv4AOKUNnbjODn0sO2y2qW0qiiV9hbs2EEromylbVWVE4_Ao_RVeAWepDNxkm2REBJSDxzz4yi2x57P9jffALwu0MdYocNAWY0LlESbQGspgwTtx1oVpsrQie7-QTw6jt5P5GQJLttYGK8P0W240cio52sa4Ce22FyIhmpbUCS5qFEKb2iVe-7iHBdt8-3xAHv4jRDDd592R0GTVyDI0VvyQNpYO-e4QHeH3kyjyWqzlcdJqOwWL1KC_FxH3KVSGaxJooq4cKnRYeSUkSS_hJP-nSgOU0oWMfjYCVZxpfw5dsyJUcYnrUxkKDZv_u9NN7jAttcRcu3ihivws20cz2z5unF2ajbyb7_pRv5PrfcQHjR4m_X9AHkES656DPevqTA-gfOd6WxaEePAWTaaUkR2nSCmLC_YUS2ve0ZP-mX56_uPceXzYOUM_dKMCPnEenNzRhva7Gj6pSLuFZorFvYbNlh0FxFJXpO02OEiUOMpHN9KzZ_BcjWr3CowLopEWB5Z9C4ImY2RPE5cmmuZukQY04OgNY8sb8TaKWdImXmZaZFRB2ZdB_bgbff-iZcp-eOb6621Zc10Nc8Q1qU8UlJEPRC12fzlK1l_MNzvrp7_S6FXcPdwMMw-jA_21uAe3fYMvHVYxq51LxDrnZqX9fBi8Pm2LfIKNl9Z_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Hierarchically+Structured+All%E2%80%90Inorganic+Nanocomposites+with+Significantly+Improved+Capacitive+Performance&rft.jtitle=Advanced+functional+materials&rft.au=Yuan%2C+Qibin&rft.au=Yao%2C+Fang%E2%80%90Zhou&rft.au=Cheng%2C+Shao%E2%80%90Dong&rft.au=Wang%2C+Linxi&rft.date=2020-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202000191&rft.externalDBID=10.1002%252Fadfm.202000191&rft.externalDocID=ADFM202000191 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |