Bioinspired Hierarchically Structured All‐Inorganic Nanocomposites with Significantly Improved Capacitive Performance

Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major ba...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 23
Main Authors Yuan, Qibin, Yao, Fang‐Zhou, Cheng, Shao‐Dong, Wang, Linxi, Wang, Yifei, Mi, Shao‐Bo, Wang, Qing, Wang, Xiaohui, Wang, Hong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.06.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO3‐Bi(Mg0.5Zr0.5)O3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm−3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design. A conceptual material paradigm of structure design strategy inspired by nature is developed to break the inverse correlation between polarization and breakdown strength inherently existing in dielectrics, and thus to boost their energy storage performance, as successfully validated by the bioinspired hierarchical structured all‐inorganic BaTiO3‐Bi(Mg0.5Zr0.5)O3‐based nanocomposites with a high energy density of 3.41 J cm−3, and efficiency of 85.1% simultaneously.
AbstractList Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO3‐Bi(Mg0.5Zr0.5)O3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm−3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design. A conceptual material paradigm of structure design strategy inspired by nature is developed to break the inverse correlation between polarization and breakdown strength inherently existing in dielectrics, and thus to boost their energy storage performance, as successfully validated by the bioinspired hierarchical structured all‐inorganic BaTiO3‐Bi(Mg0.5Zr0.5)O3‐based nanocomposites with a high energy density of 3.41 J cm−3, and efficiency of 85.1% simultaneously.
Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO3‐Bi(Mg0.5Zr0.5)O3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm−3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design.
Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the ever‐increasing environmental concerns. However, the inverse correlation between the polarization and dielectric breakdown strength is the major barrier hindering the provision of sufficient energy densities in lead‐free dielectric ceramics and practical applications thereof. Herein, a rational structure design inspired by nature is demonstrated as an effective strategy to overcome these challenges. Bioinspired raspberry‐like hierarchically structured all‐inorganic nanocomposites have been prepared by enclosing microsized BaTiO 3 ‐Bi(Mg 0.5 Zr 0.5 )O 3 (BT‐BMZ) relaxor ferroelectrics using core‐shell BT‐BMZ@SiO 2 nanoparticles. The synergistic effects of the bioinspired hierarchical structure and insulating SiO 2 nano‐coating result in significantly improved dielectric breakdown strength and sustained large polarization in the nanocomposites, as corroborated by experimental characterizations and theoretical simulations. As a result, an ultrahigh energy density of 3.41 J cm −3 and a high efficiency of 85.1%, together with outstanding thermal stability within a broad temperature range, have been simultaneously achieved in the hierarchically structured nanocomposites. This contribution provides a feasible and paradigmatic approach to develop high‐performance dielectrics for electrostatic energy storage applications using bioinspired structure design.
Author Wang, Linxi
Wang, Yifei
Cheng, Shao‐Dong
Yuan, Qibin
Wang, Hong
Mi, Shao‐Bo
Wang, Xiaohui
Yao, Fang‐Zhou
Wang, Qing
Author_xml – sequence: 1
  givenname: Qibin
  orcidid: 0000-0003-3076-7360
  surname: Yuan
  fullname: Yuan, Qibin
  organization: Shaanxi University of Science and Technology
– sequence: 2
  givenname: Fang‐Zhou
  surname: Yao
  fullname: Yao, Fang‐Zhou
  email: yaofangzhou@xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 3
  givenname: Shao‐Dong
  surname: Cheng
  fullname: Cheng, Shao‐Dong
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Linxi
  surname: Wang
  fullname: Wang, Linxi
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Yifei
  surname: Wang
  fullname: Wang, Yifei
  organization: University Connecticut
– sequence: 6
  givenname: Shao‐Bo
  surname: Mi
  fullname: Mi, Shao‐Bo
  organization: Xi'an Jiaotong University
– sequence: 7
  givenname: Qing
  surname: Wang
  fullname: Wang, Qing
  organization: The Pennsylvania State University
– sequence: 8
  givenname: Xiaohui
  surname: Wang
  fullname: Wang, Xiaohui
  organization: Tsinghua University
– sequence: 9
  givenname: Hong
  orcidid: 0000-0001-6799-1732
  surname: Wang
  fullname: Wang, Hong
  email: wangh6@sustech.edu.cn
  organization: Southern University of Science and Technology
BookMark eNqFkMtKLDEQhoMoeN26bnA9Yyp9yfRynHPUAW-ggrumJl2tke6kT5JxmJ2P4DP6JGYYURAOrqqg_q_qr3-XbRpriLFD4EPgXBxj3XRDwQXnHErYYDtQQDFIuRhtfvXwsM12vX-OEinTbIctTrTVxvfaUZ2ca3Lo1JNW2LbL5Da4uQrz1WTctu-vb1Nj3SMarZIrNFbZrrdeB_LJQoen5FY_Gt1E1oQIT7ve2ZeITrBHpYN-oeSGXGNdh0bRPttqsPV08Fn32P3p37vJ-eDi-mw6GV8MVAoSBnldIBGBEJAXkOJIcpylqhhxWafQlPEtCZgBlbmcQS1GsikaKmfIM5KzvEz32NF6b3Tzb04-VM927kw8WYmMl5DJXGRRla1VylnvHTVVdIxBWxMc6rYCXq0irlYRV18RR2z4A-ud7tAt_w-Ua2ChW1r-oq7Gf04vv9kPcCqUFA
CitedBy_id crossref_primary_10_1039_D3TC00220A
crossref_primary_10_1039_D2TA10098C
crossref_primary_10_1016_j_ceramint_2024_01_323
crossref_primary_10_1002_smll_202206958
crossref_primary_10_1016_j_jmat_2021_04_001
crossref_primary_10_1016_j_cej_2022_136315
crossref_primary_10_1016_j_cej_2021_128760
crossref_primary_10_1002_advs_202300320
crossref_primary_10_1039_D1TC02972J
crossref_primary_10_1016_j_cej_2021_129506
crossref_primary_10_1002_smll_202207997
crossref_primary_10_1063_5_0134282
crossref_primary_10_1002_smll_202206662
crossref_primary_10_1021_acsami_2c02086
crossref_primary_10_1039_D3QI00676J
crossref_primary_10_1039_D2TA04200B
crossref_primary_10_1016_j_jmat_2020_06_005
crossref_primary_10_1021_acsaelm_3c01657
crossref_primary_10_1016_j_jeurceramsoc_2023_07_047
crossref_primary_10_1016_j_jmat_2020_12_006
crossref_primary_10_1039_D1TA08167E
crossref_primary_10_1016_j_nanoen_2022_107577
crossref_primary_10_1002_adfm_202100280
crossref_primary_10_1021_acsami_4c11161
crossref_primary_10_1021_acs_langmuir_1c00799
crossref_primary_10_1016_j_cej_2020_128231
crossref_primary_10_1021_acsami_0c03677
crossref_primary_10_1038_s41467_024_55491_5
crossref_primary_10_1111_jace_18589
crossref_primary_10_1016_j_materresbull_2023_112157
crossref_primary_10_1039_D3TC03477A
crossref_primary_10_1021_acsaelm_4c01286
crossref_primary_10_1016_j_compositesb_2021_109493
crossref_primary_10_1016_j_cej_2022_135523
crossref_primary_10_1007_s10854_021_05995_3
crossref_primary_10_1016_j_jmat_2021_09_007
crossref_primary_10_1016_j_cej_2023_142251
crossref_primary_10_1002_adma_202409059
crossref_primary_10_1016_j_jeurceramsoc_2023_06_037
crossref_primary_10_1002_smll_202208105
crossref_primary_10_1021_acs_chemmater_2c01241
crossref_primary_10_1016_j_jmat_2022_02_003
crossref_primary_10_1016_j_compositesa_2020_106132
crossref_primary_10_1039_D0NR04479B
crossref_primary_10_1007_s10854_024_13690_2
crossref_primary_10_1016_j_cej_2020_128376
crossref_primary_10_1002_smll_202309992
crossref_primary_10_1038_s41467_023_41494_1
crossref_primary_10_1007_s12598_023_02452_4
crossref_primary_10_3390_ma14247854
crossref_primary_10_1021_acsami_4c11906
crossref_primary_10_1142_S2010135X22420048
crossref_primary_10_1016_j_cej_2023_145506
crossref_primary_10_1021_acsami_2c05205
crossref_primary_10_1002_adfm_202102644
crossref_primary_10_1002_cssc_202402064
crossref_primary_10_1002_smll_202306803
crossref_primary_10_1002_smll_202106515
crossref_primary_10_1002_smll_202406080
crossref_primary_10_1016_j_cej_2022_141023
crossref_primary_10_1039_D0TC01711F
crossref_primary_10_1021_acsaem_2c02664
crossref_primary_10_1039_D2TC00056C
crossref_primary_10_1016_j_nanoen_2023_108477
crossref_primary_10_1016_j_cej_2021_130811
crossref_primary_10_1002_adfm_202425711
crossref_primary_10_1016_j_nanoen_2024_109394
crossref_primary_10_1039_D3TA03294A
crossref_primary_10_1016_j_mattod_2023_07_023
crossref_primary_10_1016_j_cej_2021_131465
crossref_primary_10_1039_D1TA02853G
crossref_primary_10_1016_j_ceramint_2021_05_308
crossref_primary_10_1016_j_cej_2021_130130
crossref_primary_10_1016_j_jeurceramsoc_2022_07_023
crossref_primary_10_1021_acsami_2c01507
crossref_primary_10_1007_s12274_023_5580_7
crossref_primary_10_1016_j_cej_2020_128032
crossref_primary_10_7498_aps_69_20201006
crossref_primary_10_1016_j_cej_2021_130669
crossref_primary_10_1021_acsami_0c13067
crossref_primary_10_1007_s10854_024_12082_w
crossref_primary_10_1021_acsami_2c17170
crossref_primary_10_1002_adma_202420566
crossref_primary_10_1007_s10853_021_05858_6
crossref_primary_10_1039_D2TA02893J
crossref_primary_10_1021_acsami_2c11599
crossref_primary_10_1007_s40145_021_0516_8
crossref_primary_10_1016_j_cej_2020_127375
crossref_primary_10_1039_D1TA06848B
crossref_primary_10_1016_j_cej_2023_147973
crossref_primary_10_1016_j_cej_2021_129601
crossref_primary_10_1002_aelm_202200793
crossref_primary_10_1002_smll_202206125
crossref_primary_10_1039_D2TA08074E
crossref_primary_10_1039_D4TC04001E
crossref_primary_10_1039_D2TA00380E
crossref_primary_10_1049_hve2_12080
crossref_primary_10_1002_adfm_202204155
Cites_doi 10.1039/C9TA05182A
10.1039/C9DT01738K
10.1002/adfm.201907312
10.1016/S0025-5408(03)00028-X
10.1002/adma.201503881
10.1016/j.jeurceramsoc.2017.06.028
10.1038/nmat3915
10.1002/aenm.201803048
10.1039/C8TA00474A
10.1039/C7TA09857J
10.1063/1.3645054
10.1021/jacs.5b12728
10.1002/adma.201601727
10.1111/jace.13325
10.1021/acsami.8b14958
10.1111/jace.15429
10.1002/adma.201701824
10.1002/adma.201802155
10.1039/C9NR00874H
10.1111/jace.12443
10.1021/acssuschemeng.8b01926
10.1016/j.jeurceramsoc.2014.11.022
10.1111/j.1551-2916.2009.03474.x
10.1038/nature14647
10.1002/adfm.201807321
10.1016/j.jallcom.2018.09.252
10.1002/adfm.201903877
10.1063/1.4979467
10.1016/j.apsusc.2010.12.124
10.1016/j.nanoen.2017.12.018
10.1039/C7TC02478A
10.1063/1.4941803
10.1002/adma.201705662
10.1111/jace.13614
10.1039/C7TA10821D
10.1016/j.jeurceramsoc.2019.03.047
10.1016/j.nanoen.2018.07.055
10.1111/jace.14564
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202000191
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202000191
ADFM202000191
Genre article
GrantInformation_xml – fundername: National Science Foundation of China
  funderid: 61631166004; 51702252
– fundername: National Key Research Program of China
  funderid: 2017YFB0406303
– fundername: Shenzhen Science and Technology Program
  funderid: KQTD20180411143514543; JCYJ20180504165831308
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3171-5d6aeee12215613a870ab3c6807d31f916171a41e957b1d287f6fe9ba04e7b593
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:54:53 EDT 2025
Tue Jul 01 04:12:12 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Wed Jan 22 16:34:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3171-5d6aeee12215613a870ab3c6807d31f916171a41e957b1d287f6fe9ba04e7b593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3076-7360
0000-0001-6799-1732
PQID 2409147524
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2409147524
crossref_citationtrail_10_1002_adfm_202000191
crossref_primary_10_1002_adfm_202000191
wiley_primary_10_1002_adfm_202000191_ADFM202000191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 35
2019; 7
2011; 257
2019; 9
2015; 523
2016; 108
2019; 11
2018; 101
2015; 98
2019; 39
2003; 38
2017; 29
2017; 110
2018; 44
2011; 110
2018; 6
2017; 37
2020; 30
2019; 48
2013; 96
2019; 773
2019; 29
2014; 13
2018; 30
2018; 52
2016; 138
2017; 100
2016; 28
2018; 10
2010; 93
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – volume: 96
  start-page: 2061
  year: 2013
  publication-title: J. Am. Ceram. Soc.
– volume: 38
  start-page: 555
  year: 2003
  publication-title: Mater. Res. Bull.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 4133
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 9823
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: Acs Sustain. Chem. Eng.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 9552
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 110
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 37
  start-page: 4645
  year: 2017
  publication-title: J. Eur. Ceram. Soc.
– volume: 39
  start-page: 2889
  year: 2019
  publication-title: J. Eur. Ceram. Soc.
– volume: 13
  start-page: 508
  year: 2014
  publication-title: Nat. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Inter.
– volume: 93
  start-page: 865
  year: 2010
  publication-title: J. Am. Ceram. Soc.
– volume: 6
  start-page: 4477
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 98
  start-page: 559
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 101
  start-page: 2976
  year: 2018
  publication-title: J. Am. Ceram. Soc.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 48
  year: 2019
  publication-title: Dalton Trans.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 2055
  year: 2016
  publication-title: Adv. Mater.
– volume: 257
  start-page: 4695
  year: 2011
  publication-title: Appl. Surf. Sci.
– volume: 35
  start-page: 1469
  year: 2015
  publication-title: J. Eur. Ceram. Soc.
– volume: 44
  start-page: 364
  year: 2018
  publication-title: Nano Energy
– volume: 11
  year: 2019
  publication-title: Nanoscale
– volume: 523
  start-page: 576
  year: 2015
  publication-title: Nature
– volume: 52
  start-page: 203
  year: 2018
  publication-title: Nano Energy
– volume: 98
  start-page: 2641
  year: 2015
  publication-title: J. Am. Ceram. Soc.
– volume: 138
  start-page: 1727
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 100
  start-page: 265
  year: 2017
  publication-title: J. Am. Ceram. Soc.
– volume: 773
  start-page: 244
  year: 2019
  publication-title: J. Alloys Compd.
– ident: e_1_2_7_17_1
  doi: 10.1039/C9TA05182A
– ident: e_1_2_7_9_1
  doi: 10.1039/C9DT01738K
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201907312
– ident: e_1_2_7_29_1
  doi: 10.1016/S0025-5408(03)00028-X
– ident: e_1_2_7_2_1
  doi: 10.1002/adma.201503881
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jeurceramsoc.2017.06.028
– ident: e_1_2_7_19_1
  doi: 10.1038/nmat3915
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201803048
– ident: e_1_2_7_32_1
  doi: 10.1039/C8TA00474A
– ident: e_1_2_7_23_1
  doi: 10.1039/C7TA09857J
– ident: e_1_2_7_28_1
  doi: 10.1063/1.3645054
– ident: e_1_2_7_18_1
  doi: 10.1021/jacs.5b12728
– ident: e_1_2_7_5_1
  doi: 10.1002/adma.201601727
– ident: e_1_2_7_10_1
  doi: 10.1111/jace.13325
– ident: e_1_2_7_26_1
  doi: 10.1021/acsami.8b14958
– ident: e_1_2_7_33_1
  doi: 10.1111/jace.15429
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.201701824
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201802155
– ident: e_1_2_7_36_1
  doi: 10.1039/C9NR00874H
– ident: e_1_2_7_8_1
  doi: 10.1111/jace.12443
– ident: e_1_2_7_27_1
  doi: 10.1021/acssuschemeng.8b01926
– ident: e_1_2_7_12_1
  doi: 10.1016/j.jeurceramsoc.2014.11.022
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1551-2916.2009.03474.x
– ident: e_1_2_7_1_1
  doi: 10.1038/nature14647
– ident: e_1_2_7_3_1
  doi: 10.1002/adfm.201807321
– ident: e_1_2_7_37_1
  doi: 10.1016/j.jallcom.2018.09.252
– ident: e_1_2_7_4_1
  doi: 10.1002/adfm.201903877
– ident: e_1_2_7_11_1
  doi: 10.1063/1.4979467
– ident: e_1_2_7_30_1
  doi: 10.1016/j.apsusc.2010.12.124
– ident: e_1_2_7_35_1
  doi: 10.1016/j.nanoen.2017.12.018
– ident: e_1_2_7_6_1
  doi: 10.1039/C7TC02478A
– ident: e_1_2_7_31_1
  doi: 10.1063/1.4941803
– ident: e_1_2_7_38_1
  doi: 10.1002/adma.201705662
– ident: e_1_2_7_15_1
  doi: 10.1111/jace.13614
– ident: e_1_2_7_16_1
  doi: 10.1039/C7TA10821D
– ident: e_1_2_7_13_1
  doi: 10.1016/j.jeurceramsoc.2019.03.047
– ident: e_1_2_7_21_1
  doi: 10.1016/j.nanoen.2018.07.055
– ident: e_1_2_7_24_1
  doi: 10.1111/jace.14564
SSID ssj0017734
Score 2.6326063
Snippet Lead‐free dielectric ceramics have been the spotlight in the search for environmentally benign materials for electrostatic energy storage because of the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms all‐inorganic nanocomposites
Barium titanates
bioinspired hierarchical structures
Biomimetics
breakdown strength
Ceramics
Dielectric breakdown
Dielectric strength
Energy storage
Ferroelectric materials
Ferroelectricity
Flux density
Materials science
Nanocomposites
Nanoparticles
Polarization
Relaxors
Silicon dioxide
Structural hierarchy
Thermal stability
Title Bioinspired Hierarchically Structured All‐Inorganic Nanocomposites with Significantly Improved Capacitive Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202000191
https://www.proquest.com/docview/2409147524
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwEA-iL_rgf3E6Rx8En6pN1jTt4_wzpjgRp7C3kjSpDEsnbEP0yY_gZ_STeNds3SaIoG8tzZU2d7n7Jbn7hZDDFGKMZtJzhZYwQQmlcqXk3A3BfrQWXiQU7ui2b4LWg3_V5d2ZKn7LD1EuuOHIKPw1DnCpBidT0lCpU6wkZwVKwfkPJmwhKror-aOoEHZbOaCY4EW7E9ZGj53Mi89HpSnUnAWsRcRprhE5-VabaPJ0PBqq4-TtG43jf35mnayO4ajTsPazQRZMvklWZkgKt8jLaa_fy3FD3min1cOC5eL8lCx7dToF--wInzSy7PP94zK3x0QlDrjtPuarY1KYGTi43ut0eo85piaBNkHYrmeA6BkE7KTIYXJup3UM2-SheXF_1nLHxzW4CYAQ6nIdSGMMZYAiACRI8ARS1ZMg9ISu0zTCmRSVPjURFwoMJBRpkJpISc83QvGovkMW835udolDWRoyTX0NzhcQpVKcBqGJEskjEzKlKsSdqCtOxlzmeKRGFlsWZhZjh8Zlh1bIUdn-2bJ4_NiyOtF-PB7NgxhQT0R9wZlfIaxQ4y9viRvnzXZ5t_cXoX2yjNc2K61KFkGf5gDwz1DVyFLjvH3dqRW2_gUh3ADT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5V7QE4UH7VhQI-gDiljd04Tg4cli6rXdqtEG2lvQU7dtCKKIu0rapy4hF4lb5KH4EnYSZOsi0SQkLqgWN-HMX22PN5_PkbgJcF-hgrdBgoq3GBkmgTaC1lkKD9WKvCVBna0Z0cxKPj6P1UTlfgoj0L4_UhuoAbjYx6vqYBTgHp7aVqqLYFHSUXNUzhDa9yz52f4apt8WY8wC5-JcTw3dHuKGgSCwQ5ukseSBtr5xwX6O_QnWm0WW128jgJld3hRUqYn-uIu1Qqg1VJVBEXLjU6jJwykvSXcNZfozTiJNc_-NgpVnGl_EZ2zIlSxqetTmQotq__73U_uAS3VyFy7eOG63DZto6ntnzZOj0xW_m334Qj_6vmuwd3G8TN-n6I3IcVVz2AO1d0GB_C2dvZfFYR58BZNprRmew6RUxZnrPDWmD3lJ70y_Ln9x_jymfCyhl6pjlR8on35haMQtrscPa5IvYVGiwW9iEbLLqLmCSvaVrsw_KoxiM4vpGaP4bVal65DWBcFImwPLLoXxA0GyN5nLg01zJ1iTCmB0FrH1neyLVT1pAy80LTIqMOzLoO7MHr7v2vXqjkj29utuaWNRPWIkNgl_JISRH1QNR285evZP3BcNJdPfmXQi_g1uhosp_tjw_2nsJtuu9JeJuwin3rniHcOzHP6wHG4NNNm-Qvw1xbTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB5VRUJwoPyqSwv4AOKUNnbjODn0sO2y2qW0qiiV9hbs2EEromylbVWVE4_Ao_RVeAWepDNxkm2REBJSDxzz4yi2x57P9jffALwu0MdYocNAWY0LlESbQGspgwTtx1oVpsrQie7-QTw6jt5P5GQJLttYGK8P0W240cio52sa4Ce22FyIhmpbUCS5qFEKb2iVe-7iHBdt8-3xAHv4jRDDd592R0GTVyDI0VvyQNpYO-e4QHeH3kyjyWqzlcdJqOwWL1KC_FxH3KVSGaxJooq4cKnRYeSUkSS_hJP-nSgOU0oWMfjYCVZxpfw5dsyJUcYnrUxkKDZv_u9NN7jAttcRcu3ihivws20cz2z5unF2ajbyb7_pRv5PrfcQHjR4m_X9AHkES656DPevqTA-gfOd6WxaEePAWTaaUkR2nSCmLC_YUS2ve0ZP-mX56_uPceXzYOUM_dKMCPnEenNzRhva7Gj6pSLuFZorFvYbNlh0FxFJXpO02OEiUOMpHN9KzZ_BcjWr3CowLopEWB5Z9C4ImY2RPE5cmmuZukQY04OgNY8sb8TaKWdImXmZaZFRB2ZdB_bgbff-iZcp-eOb6621Zc10Nc8Q1qU8UlJEPRC12fzlK1l_MNzvrp7_S6FXcPdwMMw-jA_21uAe3fYMvHVYxq51LxDrnZqX9fBi8Pm2LfIKNl9Z_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Hierarchically+Structured+All%E2%80%90Inorganic+Nanocomposites+with+Significantly+Improved+Capacitive+Performance&rft.jtitle=Advanced+functional+materials&rft.au=Yuan%2C+Qibin&rft.au=Yao%2C+Fang%E2%80%90Zhou&rft.au=Cheng%2C+Shao%E2%80%90Dong&rft.au=Wang%2C+Linxi&rft.date=2020-06-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202000191&rft.externalDBID=10.1002%252Fadfm.202000191&rft.externalDocID=ADFM202000191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon