Meso‐Microporous Nanosheet‐Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production
Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electro...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 22 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electrons and holes. Herein, for the first time, a hierarchically two‐dimensional (2D) meso‐microporous perovskite nanosheet‐constructed 3DOM CaTiO3 to significantly reduce the grain boundaries is designed and fabricated. Using carbon quantum dots (CQDs) as a metal‐free co‐catalyst, the 3DOM CQDs‐CaTiO3 exhibits an outstanding photocatalytic activity for hydrogen generation of 0.13 mmol h−1 (20 mg photocatalyst) with remarkable apparent quantum efficiency (QAY) of 14.55% at 365 nm monochromatic light. This unprecedented performance is endowed by the synergy of a macro‐meso‐microporosity architecture, a large surface area, enhanced light harvesting, and improved charge carriers separation and transport. Density functional theory calculations and finite difference time‐domain simulations further reveal the mechanism behind the enhanced separation of photogenerated electrons and holes. The present work demonstrates a trial on rationally designing meso‐microporous nanosheet‐constructed 3DOM perovskites for solar driven hydrogen production.
A perovskite meso‐microporous nanosheet‐constructed 3DOM CaTiO3 decorated with CQDs is designed for remarkable photocatalytic hydrogen production in a noble‐metal free system. The as‐synthesized composite exhibits extremely enhanced photocatalytic activity owing to the easy mass transfer by the synergistic effect of macro‐meso‐microporosity, large surface area, enhanced light harvesting, and improved separation of charge carriers. |
---|---|
AbstractList | Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electrons and holes. Herein, for the first time, a hierarchically two‐dimensional (2D) meso‐microporous perovskite nanosheet‐constructed 3DOM CaTiO
3
to significantly reduce the grain boundaries is designed and fabricated. Using carbon quantum dots (CQDs) as a metal‐free co‐catalyst, the 3DOM CQDs‐CaTiO
3
exhibits an outstanding photocatalytic activity for hydrogen generation of 0.13 mmol h
−1
(20 mg photocatalyst) with remarkable apparent quantum efficiency (QAY) of 14.55% at 365 nm monochromatic light. This unprecedented performance is endowed by the synergy of a macro‐meso‐microporosity architecture, a large surface area, enhanced light harvesting, and improved charge carriers separation and transport. Density functional theory calculations and finite difference time‐domain simulations further reveal the mechanism behind the enhanced separation of photogenerated electrons and holes. The present work demonstrates a trial on rationally designing meso‐microporous nanosheet‐constructed 3DOM perovskites for solar driven hydrogen production. Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electrons and holes. Herein, for the first time, a hierarchically two‐dimensional (2D) meso‐microporous perovskite nanosheet‐constructed 3DOM CaTiO3 to significantly reduce the grain boundaries is designed and fabricated. Using carbon quantum dots (CQDs) as a metal‐free co‐catalyst, the 3DOM CQDs‐CaTiO3 exhibits an outstanding photocatalytic activity for hydrogen generation of 0.13 mmol h−1 (20 mg photocatalyst) with remarkable apparent quantum efficiency (QAY) of 14.55% at 365 nm monochromatic light. This unprecedented performance is endowed by the synergy of a macro‐meso‐microporosity architecture, a large surface area, enhanced light harvesting, and improved charge carriers separation and transport. Density functional theory calculations and finite difference time‐domain simulations further reveal the mechanism behind the enhanced separation of photogenerated electrons and holes. The present work demonstrates a trial on rationally designing meso‐microporous nanosheet‐constructed 3DOM perovskites for solar driven hydrogen production. A perovskite meso‐microporous nanosheet‐constructed 3DOM CaTiO3 decorated with CQDs is designed for remarkable photocatalytic hydrogen production in a noble‐metal free system. The as‐synthesized composite exhibits extremely enhanced photocatalytic activity owing to the easy mass transfer by the synergistic effect of macro‐meso‐microporosity, large surface area, enhanced light harvesting, and improved separation of charge carriers. Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electrons and holes. Herein, for the first time, a hierarchically two‐dimensional (2D) meso‐microporous perovskite nanosheet‐constructed 3DOM CaTiO3 to significantly reduce the grain boundaries is designed and fabricated. Using carbon quantum dots (CQDs) as a metal‐free co‐catalyst, the 3DOM CQDs‐CaTiO3 exhibits an outstanding photocatalytic activity for hydrogen generation of 0.13 mmol h−1 (20 mg photocatalyst) with remarkable apparent quantum efficiency (QAY) of 14.55% at 365 nm monochromatic light. This unprecedented performance is endowed by the synergy of a macro‐meso‐microporosity architecture, a large surface area, enhanced light harvesting, and improved charge carriers separation and transport. Density functional theory calculations and finite difference time‐domain simulations further reveal the mechanism behind the enhanced separation of photogenerated electrons and holes. The present work demonstrates a trial on rationally designing meso‐microporous nanosheet‐constructed 3DOM perovskites for solar driven hydrogen production. |
Author | Li, Yu Li, Chao‐Fan Liu, Jing Su, Bao‐Lian Chen, Zhangxin Zhang, Xu Li, Bei Zhao, Heng Hu, Zhi‐Yi Hu, Jinguang |
Author_xml | – sequence: 1 givenname: Heng surname: Zhao fullname: Zhao, Heng organization: University of Calgary – sequence: 2 givenname: Jing surname: Liu fullname: Liu, Jing organization: Wuhan University of Technology – sequence: 3 givenname: Chao‐Fan surname: Li fullname: Li, Chao‐Fan organization: Wuhan University of Technology – sequence: 4 givenname: Xu surname: Zhang fullname: Zhang, Xu organization: Wuhan University of Technology – sequence: 5 givenname: Yu orcidid: 0000-0002-1282-5312 surname: Li fullname: Li, Yu email: yu.li@whut.edu.cn organization: Wuhan University of Technology – sequence: 6 givenname: Zhi‐Yi surname: Hu fullname: Hu, Zhi‐Yi organization: Wuhan University of Technology – sequence: 7 givenname: Bei surname: Li fullname: Li, Bei email: libei@whut.edu.cn organization: Wuhan University of Technology – sequence: 8 givenname: Zhangxin surname: Chen fullname: Chen, Zhangxin organization: University of Calgary – sequence: 9 givenname: Jinguang surname: Hu fullname: Hu, Jinguang email: jinguang.hu@ucalgary.ca organization: University of Calgary – sequence: 10 givenname: Bao‐Lian surname: Su fullname: Su, Bao‐Lian email: bao-lian.su@unamur.be organization: University of Namur |
BookMark | eNqFkE1Lw0AQhhdRsK1ePQc8t-5X83EsrbVCY4soeAubzaxNm2br7kbJzZ_gb_SXmFCpIIinGYb3eWfm7aLjUpeA0AXBA4IxvRKZ2g4opoTQkJEj1CE-8fsM0_D40JOnU9S1do0xCQLGO2gbg9Wf7x9xLo3eaaMr692JUtsVgGvmY11aZyrpIPPYZBF7SzD61W5yB9ZT2nj3sBVmI9ICvOVKOy2FE0XtcunN6szoZyi9pdFZ45Dr8gydKFFYOP-uPfQ4vX4Yz_rzxc3teDTvS0YC0uecQyD9iEOWMpA8UP5QZhCGFKswHUaKYUU5USJiOBI0koIBlmnaqAnOIGA9dLn33Rn9UoF1yVpXpmxWJtT3IzqMgrBV8b2qed1aAyqRuRPtnc6IvEgITtpgkzbY5BBsgw1-YTuTNyHUfwPRHnjLC6j_USejyTT-Yb8Aqw-SHw |
CitedBy_id | crossref_primary_10_1002_smll_202207767 crossref_primary_10_1016_j_jece_2024_114276 crossref_primary_10_1016_j_ijhydene_2022_09_174 crossref_primary_10_1039_D3NJ02912C crossref_primary_10_1016_j_ijhydene_2024_09_448 crossref_primary_10_1016_j_ica_2023_121788 crossref_primary_10_1016_j_cej_2023_144490 crossref_primary_10_1016_j_ijhydene_2023_07_050 crossref_primary_10_1016_j_jcis_2023_05_138 crossref_primary_10_1016_j_jallcom_2023_168995 crossref_primary_10_1016_j_apsusc_2023_157494 crossref_primary_10_1039_D4QI01435A crossref_primary_10_1002_smll_202410226 crossref_primary_10_1039_D3QI00657C crossref_primary_10_1016_j_apsusc_2023_156774 crossref_primary_10_1016_j_fuel_2024_132475 crossref_primary_10_1002_cssc_202401307 crossref_primary_10_1016_j_colsurfa_2023_131896 crossref_primary_10_1016_j_jece_2024_113483 crossref_primary_10_1016_j_jcis_2023_01_123 crossref_primary_10_1016_j_apsusc_2023_157065 crossref_primary_10_1016_j_cej_2024_149808 crossref_primary_10_1016_j_jcis_2024_02_095 crossref_primary_10_1007_s11426_023_1574_1 crossref_primary_10_1007_s40843_022_2148_4 crossref_primary_10_1016_j_memsci_2024_123632 crossref_primary_10_1016_j_cej_2024_152586 crossref_primary_10_1039_D4NJ04075A crossref_primary_10_1021_acs_inorgchem_3c00605 crossref_primary_10_1016_j_jphotochem_2023_114553 crossref_primary_10_1021_acsaem_3c00274 crossref_primary_10_1016_j_ijbiomac_2024_129587 crossref_primary_10_1039_D3GC01592K crossref_primary_10_1016_j_jece_2024_113111 crossref_primary_10_1016_j_jallcom_2024_176040 crossref_primary_10_1002_cplu_202400002 crossref_primary_10_1021_acs_inorgchem_3c01317 crossref_primary_10_1002_adma_202202960 crossref_primary_10_1016_j_jcis_2023_03_128 crossref_primary_10_1021_acsanm_3c02012 crossref_primary_10_1016_j_colcom_2023_100749 crossref_primary_10_1016_j_jcis_2022_10_056 crossref_primary_10_1039_D2NR07017K crossref_primary_10_1016_j_jallcom_2023_170403 crossref_primary_10_1016_j_jcis_2022_12_041 crossref_primary_10_1016_j_apsusc_2023_156739 crossref_primary_10_1016_j_matt_2022_05_011 crossref_primary_10_1039_D2NJ05981A crossref_primary_10_3390_molecules28041653 crossref_primary_10_1002_smtd_202201365 |
Cites_doi | 10.1039/C2CS35317B 10.1007/s40145-018-0293-1 10.1016/j.apcatb.2014.02.015 10.1021/acsenergylett.1c01454 10.1063/1.4794196 10.1021/acsami.6b08129 10.1016/j.apcatb.2015.11.018 10.1002/adma.201305299 10.1039/C6EE01182A 10.1002/smll.201303873 10.1021/acsenergylett.9b00940 10.1039/C3CS60425J 10.1021/acsami.8b00677 10.1002/adma.201701774 10.1039/c3ta15044e 10.1039/C6CS00829A 10.1039/D0DT01004A 10.1038/ncomms14921 10.1021/cr5001892 10.1021/acsami.8b06948 10.1016/j.nanoen.2018.02.052 10.1021/cr980129f 10.1016/j.apcatb.2014.12.045 10.1002/cssc.201100082 10.1021/acscatal.7b02003 10.1021/jacs.6b11067 10.1002/adma.201705516 10.1016/j.ijhydene.2008.02.001 10.1021/acsnano.7b04219 10.1093/nsr/nwaa183 10.1021/jz502646d 10.1021/acsami.5b12315 10.1002/adma.201605349 10.1016/j.ijhydene.2010.08.138 10.1039/c3ta14108j 10.1002/adma.201603765 10.1039/b922793h 10.1016/S0025-5408(02)00974-1 10.1021/jacs.5b01650 10.1002/adfm.201703923 10.1007/s10562-007-9316-1 10.1021/ic700777f 10.1021/ja106461u 10.1021/cr500032a 10.1039/C5CS00729A 10.1016/j.scitotenv.2018.02.296 10.1021/acs.jpclett.8b02761 10.1016/j.carbon.2012.10.028 10.1021/acsenergylett.7b00189 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202112831 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202112831 ADFM202112831 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: U20A20122; 52103285; 21805220 – fundername: 111 National Project funderid: B20002 – fundername: Open Fund Project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing funderid: WUT: 2021‐KF‐1 – fundername: National Key R&D Program of China funderid: 2016YFA0202602; 2021YFE0115800 – fundername: Natural Science Foundation of Hubei Province funderid: 2020CFB416 – fundername: Fundamental Research Funds for the Central Universities funderid: 2021III016GX |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3171-444e7c694edb3ec47f65cde8820f8b59f30f241fa9309a29ca3e0cbbdb310de73 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 04:44:04 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Tue Jul 01 00:30:26 EDT 2025 Wed Jan 22 16:24:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3171-444e7c694edb3ec47f65cde8820f8b59f30f241fa9309a29ca3e0cbbdb310de73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1282-5312 |
PQID | 2669259787 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2669259787 crossref_citationtrail_10_1002_adfm_202112831 crossref_primary_10_1002_adfm_202112831 wiley_primary_10_1002_adfm_202112831_ADFM202112831 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2017; 7 2017; 8 2021; 6 2001; 101 2002; 37 2015; 6 2019; 4 2017; 2 2010; 35 2015; 168 2017; 27 2013; 42 2017; 46 2014; 26 2017; 29 2008; 33 2011; 4 2008; 121 2014; 114 2018; 47 2014; 156 2014; 43 2016; 184 2020; 7 2018; 9 2014; 2 2015; 137 2018; 630 2017; 11 2013; 52 2010; 132 2020; 49 2013; 113 2018; 30 2016; 138 2010; 3 2016; 28 2018; 10 2007; 46 2016; 8 2016; 9 2016; 45 2014; 10 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 113 year: 2013 publication-title: J. Appl. Phys. – volume: 137 start-page: 6018 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 45 start-page: 3039 year: 2016 publication-title: Chem. Soc. Rev. – volume: 101 start-page: 1981 year: 2001 publication-title: Chem. Rev. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 8583 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 184 start-page: 182 year: 2016 publication-title: Appl. Catal., B – volume: 6 start-page: 1087 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 9 start-page: 5884 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 47 start-page: 266 year: 2018 publication-title: Nano Energy – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1667 year: 2020 publication-title: Natl. Sci. Rev. – volume: 10 start-page: 3038 year: 2014 publication-title: Small – volume: 2 start-page: 3344 year: 2014 publication-title: J. Mater. Chem. A – volume: 168 start-page: 274 year: 2015 publication-title: Appl. Catal., B – volume: 4 start-page: 1687 year: 2019 publication-title: ACS Energy Lett. – volume: 156 start-page: 108 year: 2014 publication-title: Appl. Catal., B – volume: 46 start-page: 481 year: 2017 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 5051 year: 2014 publication-title: J. Mater. Chem. A – volume: 46 start-page: 7707 year: 2007 publication-title: Inorg. Chem. – volume: 4 start-page: 1481 year: 2011 publication-title: ChemSusChem – volume: 630 start-page: 951 year: 2018 publication-title: Sci. Total Environ. – volume: 42 start-page: 2763 year: 2013 publication-title: Chem. Soc. Rev. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 6 start-page: 3400 year: 2021 publication-title: ACS Energy Lett. – volume: 9 start-page: 2511 year: 2016 publication-title: Energy Environ. Sci. – volume: 3 start-page: 615 year: 2010 publication-title: Energy Environ. Sci. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 28 year: 2016 publication-title: Adv. Mater. – volume: 8 start-page: 72 year: 2019 publication-title: J. Adv. Ceram. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 7081 year: 2017 publication-title: ACS Catal. – volume: 33 start-page: 1797 year: 2008 publication-title: Int. J. Hydrogen Energy – volume: 49 start-page: 6915 year: 2020 publication-title: Dalton Trans. – volume: 114 start-page: 9919 year: 2014 publication-title: Chem. Rev. – volume: 26 start-page: 3297 year: 2014 publication-title: Adv. Mater. – volume: 37 start-page: 2401 year: 2002 publication-title: Mater. Res. Bull. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 7787 year: 2014 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 583 year: 2013 publication-title: Carbon – volume: 35 year: 2010 publication-title: Int. J. Hydrogen Energy – volume: 121 start-page: 165 year: 2008 publication-title: Catal. Lett. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1223 year: 2017 publication-title: ACS Energy Lett. – ident: e_1_2_7_4_1 doi: 10.1039/C2CS35317B – ident: e_1_2_7_32_1 doi: 10.1007/s40145-018-0293-1 – ident: e_1_2_7_24_1 doi: 10.1016/j.apcatb.2014.02.015 – ident: e_1_2_7_8_1 doi: 10.1021/acsenergylett.1c01454 – ident: e_1_2_7_20_1 doi: 10.1063/1.4794196 – ident: e_1_2_7_39_1 doi: 10.1021/acsami.6b08129 – ident: e_1_2_7_33_1 doi: 10.1016/j.apcatb.2015.11.018 – ident: e_1_2_7_29_1 doi: 10.1002/adma.201305299 – ident: e_1_2_7_2_1 doi: 10.1039/C6EE01182A – ident: e_1_2_7_35_1 doi: 10.1002/smll.201303873 – ident: e_1_2_7_14_1 doi: 10.1021/acsenergylett.9b00940 – ident: e_1_2_7_26_1 doi: 10.1039/C3CS60425J – ident: e_1_2_7_31_1 doi: 10.1021/acsami.8b00677 – ident: e_1_2_7_41_1 doi: 10.1002/adma.201701774 – ident: e_1_2_7_10_1 doi: 10.1039/c3ta15044e – ident: e_1_2_7_6_1 doi: 10.1039/C6CS00829A – ident: e_1_2_7_30_1 doi: 10.1039/D0DT01004A – ident: e_1_2_7_3_1 doi: 10.1038/ncomms14921 – ident: e_1_2_7_42_1 doi: 10.1021/cr5001892 – ident: e_1_2_7_48_1 doi: 10.1021/acsami.8b06948 – ident: e_1_2_7_7_1 doi: 10.1016/j.nanoen.2018.02.052 – ident: e_1_2_7_16_1 doi: 10.1021/cr980129f – ident: e_1_2_7_11_1 doi: 10.1016/j.apcatb.2014.12.045 – ident: e_1_2_7_9_1 doi: 10.1002/cssc.201100082 – ident: e_1_2_7_47_1 doi: 10.1021/acscatal.7b02003 – ident: e_1_2_7_49_1 doi: 10.1021/jacs.6b11067 – ident: e_1_2_7_44_1 doi: 10.1002/adma.201705516 – ident: e_1_2_7_21_1 doi: 10.1016/j.ijhydene.2008.02.001 – ident: e_1_2_7_36_1 doi: 10.1021/acsnano.7b04219 – ident: e_1_2_7_5_1 doi: 10.1093/nsr/nwaa183 – ident: e_1_2_7_13_1 doi: 10.1021/jz502646d – ident: e_1_2_7_34_1 doi: 10.1021/acsami.5b12315 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201605349 – ident: e_1_2_7_18_1 doi: 10.1016/j.ijhydene.2010.08.138 – ident: e_1_2_7_43_1 doi: 10.1039/c3ta14108j – ident: e_1_2_7_40_1 doi: 10.1002/adma.201603765 – ident: e_1_2_7_23_1 doi: 10.1039/b922793h – ident: e_1_2_7_19_1 doi: 10.1016/S0025-5408(02)00974-1 – ident: e_1_2_7_37_1 doi: 10.1021/jacs.5b01650 – ident: e_1_2_7_45_1 doi: 10.1002/adfm.201703923 – ident: e_1_2_7_46_1 doi: 10.1007/s10562-007-9316-1 – ident: e_1_2_7_15_1 doi: 10.1021/ic700777f – ident: e_1_2_7_22_1 doi: 10.1021/ja106461u – ident: e_1_2_7_17_1 doi: 10.1021/cr500032a – ident: e_1_2_7_28_1 doi: 10.1039/C5CS00729A – ident: e_1_2_7_25_1 doi: 10.1016/j.scitotenv.2018.02.296 – ident: e_1_2_7_12_1 doi: 10.1021/acs.jpclett.8b02761 – ident: e_1_2_7_38_1 doi: 10.1016/j.carbon.2012.10.028 – ident: e_1_2_7_27_1 doi: 10.1021/acsenergylett.7b00189 |
SSID | ssj0017734 |
Score | 2.5964427 |
Snippet | Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Calcium titanate carbon quantum dots Catalytic activity Current carriers Density functional theory Electrons Finite difference method Grain boundaries Hydrogen production macro‐meso‐microporosity Materials science Microporosity Nanoparticles Nanosheets perovskite CaTiO 3 Perovskites Photocatalysis Photocatalysts photonic crystals Quantum dots Quantum efficiency Separation |
Title | Meso‐Microporous Nanosheet‐Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202112831 https://www.proquest.com/docview/2669259787 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBeje-keuq1badas6KGwJ7eKLVnWY1gWwpi70K2QN6M_Jwpt4xEng_RpH2GfsZ-kJztx0sEYrI82kmXrTrrfne9-IuQE0ARkVtnIp0kacZOKKNOJiISxxsvYaalCNXJ-no4u-eeJmGxV8Tf8EG3ALayMer8OC1yb6mxDGqqdD5Xk6MCghQz-T0jYCqjoouWP6knZ_FZOeyHBqzdZszay-Oxx98dWaQM1twFrbXGGL4lev2uTaHJ9upibU3v3B43jUz7mFdlbwVHab_TnNXkG033yYouk8A25zaEq73_9zkPqHqL1clFR3JPL6gpgjvfDkZ81CS04mgy-5nQMs_JnFaLCFUVITC_gVs-uQ4kWHV-V87KOGC1xQDpaulmJGkzHDe8s6shbcjn89P3jKFod0hBZhB7of3IO0qaKgzMJWC59KqwDBO7MZ0YonzCPKMFrlTClY2V1Aswag617zIFMDsjOtJzCIaEgrJCOS8u845l2mWDMBL59qSDm1ndItBZSYVcM5uEgjZui4V6OizCNRTuNHfKhbf-j4e74a8vuWubFag1XBUIXhc4hDt8hcS28fzyl6A-GeXv17n86HZHdONRX1BmVXbKD4oP3iHrm5pg87w_yL9-Oaw1_ABHQ_uA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CO2FPABxCmt4_w4OXCoWFZb2pRV1Up7C7E9VqXSTbXZgpYTj8Cr8Co8Ak_COH9tkRASUg8cEzl24pnx_GTmG4AXSCog0an2bBzEXqjiyEuKIPIipZWVwhQyddXI2V48PgzfTaPpCnzvamEafIg-4OYkoz6vnYC7gPTmOWpoYawrJScPhlSk3-ZV7uDyM3lt1evtIZH4pRCjtwdvxl7bWMDTpC7JZwpDlDpOQzQqQB1KG0faIBmb3CYqSm3ALWk2W6QBTwuR6iJArpWi0T43KAOa9xpcd23EHVz_cL9HrPKlbH5kx75LKfOnHU4kF5uX3_eyHjw3bi-ayLWOG92BH93uNKktxxtnC7Whv_wGHPlfbd9duN1a3GyrEZF7sIKz-3DrAg7jAzjJsCp_fv2WuexEckjKs4qR2imrI8QF3XddTWucXTQsGL7P2ATn5afKBb4rRlY_28eTYn7sqtDY5KhclHVQbEkLsvHSzEsSUjZpoHVJDB7C4ZV87yNYnZUzfAwMIx1JE0rNrQmTwiQR58q1FJApilDbAXgdV-S6BWl3vUI-5g28tMgd2fKebAN41Y8_beBJ_jhyvWOyvD2mqpyss5T8X1p-AKLmlr_Mkm8NR1l_tfYvDz2HG-ODbDff3d7beQI3hSsnqRNI12GVSIlPychbqGe1WDH4cNWM-Atb-VzS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAcKH8VCwV8AHFK6yROHB84VA2rLSVlVVFpbyG2x6pUuqk2W9By4hF4lL5KX6FP0nH-2iIhJKQeOCZy7MQz4_nJzDeEvAZUAYmW2rNxGHtcxZGXFGHkRUorKwJTCOmqkbPdeLTPP0yiyRI57WphGnyIPuDmJKM-r52AHxu7cQkaWhjrKsnRgUEN6bdplTuw-I5OW_VuO0UKvwmC4fvPWyOv7SvgadSW6DJxDkLHkoNRIWgubBxpA2hrMpuoSNqQWVRstpAhk0UgdREC00rhaJ8ZECHOe4vc5jGTrllEutcDVvlCNP-xY99llPmTDiaSBRvX3_e6Gry0ba9ayLWKG66Qs25zmsyWw_WTuVrXP37Djfyfdu8Bud_a23SzEZCHZAmmj8i9KyiMj8lRBlV5_vNX5nIT0R0pTyqKSqesDgDmeN_1NK1RdsHQMP2U0THMym-VC3tXFG1-ugdHxezQ1aDR8UE5L-uQ2AIXpKOFmZUoonTcAOuiEDwh-zfyvatkeVpO4SmhEOlIGC40s4YnhUkixpRrKCAkBFzbAfE6psh1C9HuOoV8zRtw6SB3ZMt7sg3I2378cQNO8seRax2P5e0hVeVom0n0fnH5AQlqZvnLLPlmOsz6q2f_8tArcmecDvOP27s7z8ndwNWS1Nmja2QZKQkv0MKbq5e1UFHy5ab58ALWX1uB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meso%E2%80%90Microporous+Nanosheet%E2%80%90Constructed+3DOM+Perovskites+for+Remarkable+Photocatalytic+Hydrogen+Production&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Heng&rft.au=Liu%2C+Jing&rft.au=Li%2C+Chao%E2%80%90Fan&rft.au=Zhang%2C+Xu&rft.date=2022-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=22&rft_id=info:doi/10.1002%2Fadfm.202112831&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202112831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |