Meso‐Microporous Nanosheet‐Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production

Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electro...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 22
Main Authors Zhao, Heng, Liu, Jing, Li, Chao‐Fan, Zhang, Xu, Li, Yu, Hu, Zhi‐Yi, Li, Bei, Chen, Zhangxin, Hu, Jinguang, Su, Bao‐Lian
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electrons and holes. Herein, for the first time, a hierarchically two‐dimensional (2D) meso‐microporous perovskite nanosheet‐constructed 3DOM CaTiO3 to significantly reduce the grain boundaries is designed and fabricated. Using carbon quantum dots (CQDs) as a metal‐free co‐catalyst, the 3DOM CQDs‐CaTiO3 exhibits an outstanding photocatalytic activity for hydrogen generation of 0.13 mmol h−1 (20 mg photocatalyst) with remarkable apparent quantum efficiency (QAY) of 14.55% at 365 nm monochromatic light. This unprecedented performance is endowed by the synergy of a macro‐meso‐microporosity architecture, a large surface area, enhanced light harvesting, and improved charge carriers separation and transport. Density functional theory calculations and finite difference time‐domain simulations further reveal the mechanism behind the enhanced separation of photogenerated electrons and holes. The present work demonstrates a trial on rationally designing meso‐microporous nanosheet‐constructed 3DOM perovskites for solar driven hydrogen production. A perovskite meso‐microporous nanosheet‐constructed 3DOM CaTiO3 decorated with CQDs is designed for remarkable photocatalytic hydrogen production in a noble‐metal free system. The as‐synthesized composite exhibits extremely enhanced photocatalytic activity owing to the easy mass transfer by the synergistic effect of macro‐meso‐microporosity, large surface area, enhanced light harvesting, and improved separation of charge carriers.
AbstractList Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electrons and holes. Herein, for the first time, a hierarchically two‐dimensional (2D) meso‐microporous perovskite nanosheet‐constructed 3DOM CaTiO 3 to significantly reduce the grain boundaries is designed and fabricated. Using carbon quantum dots (CQDs) as a metal‐free co‐catalyst, the 3DOM CQDs‐CaTiO 3 exhibits an outstanding photocatalytic activity for hydrogen generation of 0.13 mmol h −1 (20 mg photocatalyst) with remarkable apparent quantum efficiency (QAY) of 14.55% at 365 nm monochromatic light. This unprecedented performance is endowed by the synergy of a macro‐meso‐microporosity architecture, a large surface area, enhanced light harvesting, and improved charge carriers separation and transport. Density functional theory calculations and finite difference time‐domain simulations further reveal the mechanism behind the enhanced separation of photogenerated electrons and holes. The present work demonstrates a trial on rationally designing meso‐microporous nanosheet‐constructed 3DOM perovskites for solar driven hydrogen production.
Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electrons and holes. Herein, for the first time, a hierarchically two‐dimensional (2D) meso‐microporous perovskite nanosheet‐constructed 3DOM CaTiO3 to significantly reduce the grain boundaries is designed and fabricated. Using carbon quantum dots (CQDs) as a metal‐free co‐catalyst, the 3DOM CQDs‐CaTiO3 exhibits an outstanding photocatalytic activity for hydrogen generation of 0.13 mmol h−1 (20 mg photocatalyst) with remarkable apparent quantum efficiency (QAY) of 14.55% at 365 nm monochromatic light. This unprecedented performance is endowed by the synergy of a macro‐meso‐microporosity architecture, a large surface area, enhanced light harvesting, and improved charge carriers separation and transport. Density functional theory calculations and finite difference time‐domain simulations further reveal the mechanism behind the enhanced separation of photogenerated electrons and holes. The present work demonstrates a trial on rationally designing meso‐microporous nanosheet‐constructed 3DOM perovskites for solar driven hydrogen production. A perovskite meso‐microporous nanosheet‐constructed 3DOM CaTiO3 decorated with CQDs is designed for remarkable photocatalytic hydrogen production in a noble‐metal free system. The as‐synthesized composite exhibits extremely enhanced photocatalytic activity owing to the easy mass transfer by the synergistic effect of macro‐meso‐microporosity, large surface area, enhanced light harvesting, and improved separation of charge carriers.
Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common nanoparticles‐constructed 3DOM photocatalysts possess numerous grain boundaries, unavoidably leading to a fast recombination of photogenerated electrons and holes. Herein, for the first time, a hierarchically two‐dimensional (2D) meso‐microporous perovskite nanosheet‐constructed 3DOM CaTiO3 to significantly reduce the grain boundaries is designed and fabricated. Using carbon quantum dots (CQDs) as a metal‐free co‐catalyst, the 3DOM CQDs‐CaTiO3 exhibits an outstanding photocatalytic activity for hydrogen generation of 0.13 mmol h−1 (20 mg photocatalyst) with remarkable apparent quantum efficiency (QAY) of 14.55% at 365 nm monochromatic light. This unprecedented performance is endowed by the synergy of a macro‐meso‐microporosity architecture, a large surface area, enhanced light harvesting, and improved charge carriers separation and transport. Density functional theory calculations and finite difference time‐domain simulations further reveal the mechanism behind the enhanced separation of photogenerated electrons and holes. The present work demonstrates a trial on rationally designing meso‐microporous nanosheet‐constructed 3DOM perovskites for solar driven hydrogen production.
Author Li, Yu
Li, Chao‐Fan
Liu, Jing
Su, Bao‐Lian
Chen, Zhangxin
Zhang, Xu
Li, Bei
Zhao, Heng
Hu, Zhi‐Yi
Hu, Jinguang
Author_xml – sequence: 1
  givenname: Heng
  surname: Zhao
  fullname: Zhao, Heng
  organization: University of Calgary
– sequence: 2
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Chao‐Fan
  surname: Li
  fullname: Li, Chao‐Fan
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Xu
  surname: Zhang
  fullname: Zhang, Xu
  organization: Wuhan University of Technology
– sequence: 5
  givenname: Yu
  orcidid: 0000-0002-1282-5312
  surname: Li
  fullname: Li, Yu
  email: yu.li@whut.edu.cn
  organization: Wuhan University of Technology
– sequence: 6
  givenname: Zhi‐Yi
  surname: Hu
  fullname: Hu, Zhi‐Yi
  organization: Wuhan University of Technology
– sequence: 7
  givenname: Bei
  surname: Li
  fullname: Li, Bei
  email: libei@whut.edu.cn
  organization: Wuhan University of Technology
– sequence: 8
  givenname: Zhangxin
  surname: Chen
  fullname: Chen, Zhangxin
  organization: University of Calgary
– sequence: 9
  givenname: Jinguang
  surname: Hu
  fullname: Hu, Jinguang
  email: jinguang.hu@ucalgary.ca
  organization: University of Calgary
– sequence: 10
  givenname: Bao‐Lian
  surname: Su
  fullname: Su, Bao‐Lian
  email: bao-lian.su@unamur.be
  organization: University of Namur
BookMark eNqFkE1Lw0AQhhdRsK1ePQc8t-5X83EsrbVCY4soeAubzaxNm2br7kbJzZ_gb_SXmFCpIIinGYb3eWfm7aLjUpeA0AXBA4IxvRKZ2g4opoTQkJEj1CE-8fsM0_D40JOnU9S1do0xCQLGO2gbg9Wf7x9xLo3eaaMr692JUtsVgGvmY11aZyrpIPPYZBF7SzD61W5yB9ZT2nj3sBVmI9ICvOVKOy2FE0XtcunN6szoZyi9pdFZ45Dr8gydKFFYOP-uPfQ4vX4Yz_rzxc3teDTvS0YC0uecQyD9iEOWMpA8UP5QZhCGFKswHUaKYUU5USJiOBI0koIBlmnaqAnOIGA9dLn33Rn9UoF1yVpXpmxWJtT3IzqMgrBV8b2qed1aAyqRuRPtnc6IvEgITtpgkzbY5BBsgw1-YTuTNyHUfwPRHnjLC6j_USejyTT-Yb8Aqw-SHw
CitedBy_id crossref_primary_10_1002_smll_202207767
crossref_primary_10_1016_j_jece_2024_114276
crossref_primary_10_1016_j_ijhydene_2022_09_174
crossref_primary_10_1039_D3NJ02912C
crossref_primary_10_1016_j_ijhydene_2024_09_448
crossref_primary_10_1016_j_ica_2023_121788
crossref_primary_10_1016_j_cej_2023_144490
crossref_primary_10_1016_j_ijhydene_2023_07_050
crossref_primary_10_1016_j_jcis_2023_05_138
crossref_primary_10_1016_j_jallcom_2023_168995
crossref_primary_10_1016_j_apsusc_2023_157494
crossref_primary_10_1039_D4QI01435A
crossref_primary_10_1002_smll_202410226
crossref_primary_10_1039_D3QI00657C
crossref_primary_10_1016_j_apsusc_2023_156774
crossref_primary_10_1016_j_fuel_2024_132475
crossref_primary_10_1002_cssc_202401307
crossref_primary_10_1016_j_colsurfa_2023_131896
crossref_primary_10_1016_j_jece_2024_113483
crossref_primary_10_1016_j_jcis_2023_01_123
crossref_primary_10_1016_j_apsusc_2023_157065
crossref_primary_10_1016_j_cej_2024_149808
crossref_primary_10_1016_j_jcis_2024_02_095
crossref_primary_10_1007_s11426_023_1574_1
crossref_primary_10_1007_s40843_022_2148_4
crossref_primary_10_1016_j_memsci_2024_123632
crossref_primary_10_1016_j_cej_2024_152586
crossref_primary_10_1039_D4NJ04075A
crossref_primary_10_1021_acs_inorgchem_3c00605
crossref_primary_10_1016_j_jphotochem_2023_114553
crossref_primary_10_1021_acsaem_3c00274
crossref_primary_10_1016_j_ijbiomac_2024_129587
crossref_primary_10_1039_D3GC01592K
crossref_primary_10_1016_j_jece_2024_113111
crossref_primary_10_1016_j_jallcom_2024_176040
crossref_primary_10_1002_cplu_202400002
crossref_primary_10_1021_acs_inorgchem_3c01317
crossref_primary_10_1002_adma_202202960
crossref_primary_10_1016_j_jcis_2023_03_128
crossref_primary_10_1021_acsanm_3c02012
crossref_primary_10_1016_j_colcom_2023_100749
crossref_primary_10_1016_j_jcis_2022_10_056
crossref_primary_10_1039_D2NR07017K
crossref_primary_10_1016_j_jallcom_2023_170403
crossref_primary_10_1016_j_jcis_2022_12_041
crossref_primary_10_1016_j_apsusc_2023_156739
crossref_primary_10_1016_j_matt_2022_05_011
crossref_primary_10_1039_D2NJ05981A
crossref_primary_10_3390_molecules28041653
crossref_primary_10_1002_smtd_202201365
Cites_doi 10.1039/C2CS35317B
10.1007/s40145-018-0293-1
10.1016/j.apcatb.2014.02.015
10.1021/acsenergylett.1c01454
10.1063/1.4794196
10.1021/acsami.6b08129
10.1016/j.apcatb.2015.11.018
10.1002/adma.201305299
10.1039/C6EE01182A
10.1002/smll.201303873
10.1021/acsenergylett.9b00940
10.1039/C3CS60425J
10.1021/acsami.8b00677
10.1002/adma.201701774
10.1039/c3ta15044e
10.1039/C6CS00829A
10.1039/D0DT01004A
10.1038/ncomms14921
10.1021/cr5001892
10.1021/acsami.8b06948
10.1016/j.nanoen.2018.02.052
10.1021/cr980129f
10.1016/j.apcatb.2014.12.045
10.1002/cssc.201100082
10.1021/acscatal.7b02003
10.1021/jacs.6b11067
10.1002/adma.201705516
10.1016/j.ijhydene.2008.02.001
10.1021/acsnano.7b04219
10.1093/nsr/nwaa183
10.1021/jz502646d
10.1021/acsami.5b12315
10.1002/adma.201605349
10.1016/j.ijhydene.2010.08.138
10.1039/c3ta14108j
10.1002/adma.201603765
10.1039/b922793h
10.1016/S0025-5408(02)00974-1
10.1021/jacs.5b01650
10.1002/adfm.201703923
10.1007/s10562-007-9316-1
10.1021/ic700777f
10.1021/ja106461u
10.1021/cr500032a
10.1039/C5CS00729A
10.1016/j.scitotenv.2018.02.296
10.1021/acs.jpclett.8b02761
10.1016/j.carbon.2012.10.028
10.1021/acsenergylett.7b00189
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202112831
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202112831
ADFM202112831
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: U20A20122; 52103285; 21805220
– fundername: 111 National Project
  funderid: B20002
– fundername: Open Fund Project of State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
  funderid: WUT: 2021‐KF‐1
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202602; 2021YFE0115800
– fundername: Natural Science Foundation of Hubei Province
  funderid: 2020CFB416
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2021III016GX
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3171-444e7c694edb3ec47f65cde8820f8b59f30f241fa9309a29ca3e0cbbdb310de73
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 04:44:04 EDT 2025
Thu Apr 24 22:58:12 EDT 2025
Tue Jul 01 00:30:26 EDT 2025
Wed Jan 22 16:24:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3171-444e7c694edb3ec47f65cde8820f8b59f30f241fa9309a29ca3e0cbbdb310de73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1282-5312
PQID 2669259787
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2669259787
crossref_citationtrail_10_1002_adfm_202112831
crossref_primary_10_1002_adfm_202112831
wiley_primary_10_1002_adfm_202112831_ADFM202112831
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2017; 7
2017; 8
2021; 6
2001; 101
2002; 37
2015; 6
2019; 4
2017; 2
2010; 35
2015; 168
2017; 27
2013; 42
2017; 46
2014; 26
2017; 29
2008; 33
2011; 4
2008; 121
2014; 114
2018; 47
2014; 156
2014; 43
2016; 184
2020; 7
2018; 9
2014; 2
2015; 137
2018; 630
2017; 11
2013; 52
2010; 132
2020; 49
2013; 113
2018; 30
2016; 138
2010; 3
2016; 28
2018; 10
2007; 46
2016; 8
2016; 9
2016; 45
2014; 10
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 113
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 137
  start-page: 6018
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 45
  start-page: 3039
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 101
  start-page: 1981
  year: 2001
  publication-title: Chem. Rev.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 8583
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 184
  start-page: 182
  year: 2016
  publication-title: Appl. Catal., B
– volume: 6
  start-page: 1087
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 9
  start-page: 5884
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 47
  start-page: 266
  year: 2018
  publication-title: Nano Energy
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1667
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 10
  start-page: 3038
  year: 2014
  publication-title: Small
– volume: 2
  start-page: 3344
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 168
  start-page: 274
  year: 2015
  publication-title: Appl. Catal., B
– volume: 4
  start-page: 1687
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 156
  start-page: 108
  year: 2014
  publication-title: Appl. Catal., B
– volume: 46
  start-page: 481
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 5051
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 7707
  year: 2007
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 1481
  year: 2011
  publication-title: ChemSusChem
– volume: 630
  start-page: 951
  year: 2018
  publication-title: Sci. Total Environ.
– volume: 42
  start-page: 2763
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 6
  start-page: 3400
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 2511
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 615
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 72
  year: 2019
  publication-title: J. Adv. Ceram.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 7081
  year: 2017
  publication-title: ACS Catal.
– volume: 33
  start-page: 1797
  year: 2008
  publication-title: Int. J. Hydrogen Energy
– volume: 49
  start-page: 6915
  year: 2020
  publication-title: Dalton Trans.
– volume: 114
  start-page: 9919
  year: 2014
  publication-title: Chem. Rev.
– volume: 26
  start-page: 3297
  year: 2014
  publication-title: Adv. Mater.
– volume: 37
  start-page: 2401
  year: 2002
  publication-title: Mater. Res. Bull.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 7787
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 583
  year: 2013
  publication-title: Carbon
– volume: 35
  year: 2010
  publication-title: Int. J. Hydrogen Energy
– volume: 121
  start-page: 165
  year: 2008
  publication-title: Catal. Lett.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1223
  year: 2017
  publication-title: ACS Energy Lett.
– ident: e_1_2_7_4_1
  doi: 10.1039/C2CS35317B
– ident: e_1_2_7_32_1
  doi: 10.1007/s40145-018-0293-1
– ident: e_1_2_7_24_1
  doi: 10.1016/j.apcatb.2014.02.015
– ident: e_1_2_7_8_1
  doi: 10.1021/acsenergylett.1c01454
– ident: e_1_2_7_20_1
  doi: 10.1063/1.4794196
– ident: e_1_2_7_39_1
  doi: 10.1021/acsami.6b08129
– ident: e_1_2_7_33_1
  doi: 10.1016/j.apcatb.2015.11.018
– ident: e_1_2_7_29_1
  doi: 10.1002/adma.201305299
– ident: e_1_2_7_2_1
  doi: 10.1039/C6EE01182A
– ident: e_1_2_7_35_1
  doi: 10.1002/smll.201303873
– ident: e_1_2_7_14_1
  doi: 10.1021/acsenergylett.9b00940
– ident: e_1_2_7_26_1
  doi: 10.1039/C3CS60425J
– ident: e_1_2_7_31_1
  doi: 10.1021/acsami.8b00677
– ident: e_1_2_7_41_1
  doi: 10.1002/adma.201701774
– ident: e_1_2_7_10_1
  doi: 10.1039/c3ta15044e
– ident: e_1_2_7_6_1
  doi: 10.1039/C6CS00829A
– ident: e_1_2_7_30_1
  doi: 10.1039/D0DT01004A
– ident: e_1_2_7_3_1
  doi: 10.1038/ncomms14921
– ident: e_1_2_7_42_1
  doi: 10.1021/cr5001892
– ident: e_1_2_7_48_1
  doi: 10.1021/acsami.8b06948
– ident: e_1_2_7_7_1
  doi: 10.1016/j.nanoen.2018.02.052
– ident: e_1_2_7_16_1
  doi: 10.1021/cr980129f
– ident: e_1_2_7_11_1
  doi: 10.1016/j.apcatb.2014.12.045
– ident: e_1_2_7_9_1
  doi: 10.1002/cssc.201100082
– ident: e_1_2_7_47_1
  doi: 10.1021/acscatal.7b02003
– ident: e_1_2_7_49_1
  doi: 10.1021/jacs.6b11067
– ident: e_1_2_7_44_1
  doi: 10.1002/adma.201705516
– ident: e_1_2_7_21_1
  doi: 10.1016/j.ijhydene.2008.02.001
– ident: e_1_2_7_36_1
  doi: 10.1021/acsnano.7b04219
– ident: e_1_2_7_5_1
  doi: 10.1093/nsr/nwaa183
– ident: e_1_2_7_13_1
  doi: 10.1021/jz502646d
– ident: e_1_2_7_34_1
  doi: 10.1021/acsami.5b12315
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201605349
– ident: e_1_2_7_18_1
  doi: 10.1016/j.ijhydene.2010.08.138
– ident: e_1_2_7_43_1
  doi: 10.1039/c3ta14108j
– ident: e_1_2_7_40_1
  doi: 10.1002/adma.201603765
– ident: e_1_2_7_23_1
  doi: 10.1039/b922793h
– ident: e_1_2_7_19_1
  doi: 10.1016/S0025-5408(02)00974-1
– ident: e_1_2_7_37_1
  doi: 10.1021/jacs.5b01650
– ident: e_1_2_7_45_1
  doi: 10.1002/adfm.201703923
– ident: e_1_2_7_46_1
  doi: 10.1007/s10562-007-9316-1
– ident: e_1_2_7_15_1
  doi: 10.1021/ic700777f
– ident: e_1_2_7_22_1
  doi: 10.1021/ja106461u
– ident: e_1_2_7_17_1
  doi: 10.1021/cr500032a
– ident: e_1_2_7_28_1
  doi: 10.1039/C5CS00729A
– ident: e_1_2_7_25_1
  doi: 10.1016/j.scitotenv.2018.02.296
– ident: e_1_2_7_12_1
  doi: 10.1021/acs.jpclett.8b02761
– ident: e_1_2_7_38_1
  doi: 10.1016/j.carbon.2012.10.028
– ident: e_1_2_7_27_1
  doi: 10.1021/acsenergylett.7b00189
SSID ssj0017734
Score 2.5964427
Snippet Three‐dimensionally ordered macroporous (3DOM) structures have been widely utilized to largely enhance a photocatalytic activity. However, the common...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Calcium titanate
carbon quantum dots
Catalytic activity
Current carriers
Density functional theory
Electrons
Finite difference method
Grain boundaries
Hydrogen production
macro‐meso‐microporosity
Materials science
Microporosity
Nanoparticles
Nanosheets
perovskite CaTiO 3
Perovskites
Photocatalysis
Photocatalysts
photonic crystals
Quantum dots
Quantum efficiency
Separation
Title Meso‐Microporous Nanosheet‐Constructed 3DOM Perovskites for Remarkable Photocatalytic Hydrogen Production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202112831
https://www.proquest.com/docview/2669259787
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBeje-keuq1badas6KGwJ7eKLVnWY1gWwpi70K2QN6M_Jwpt4xEng_RpH2GfsZ-kJztx0sEYrI82kmXrTrrfne9-IuQE0ARkVtnIp0kacZOKKNOJiISxxsvYaalCNXJ-no4u-eeJmGxV8Tf8EG3ALayMer8OC1yb6mxDGqqdD5Xk6MCghQz-T0jYCqjoouWP6knZ_FZOeyHBqzdZszay-Oxx98dWaQM1twFrbXGGL4lev2uTaHJ9upibU3v3B43jUz7mFdlbwVHab_TnNXkG033yYouk8A25zaEq73_9zkPqHqL1clFR3JPL6gpgjvfDkZ81CS04mgy-5nQMs_JnFaLCFUVITC_gVs-uQ4kWHV-V87KOGC1xQDpaulmJGkzHDe8s6shbcjn89P3jKFod0hBZhB7of3IO0qaKgzMJWC59KqwDBO7MZ0YonzCPKMFrlTClY2V1Aswag617zIFMDsjOtJzCIaEgrJCOS8u845l2mWDMBL59qSDm1ndItBZSYVcM5uEgjZui4V6OizCNRTuNHfKhbf-j4e74a8vuWubFag1XBUIXhc4hDt8hcS28fzyl6A-GeXv17n86HZHdONRX1BmVXbKD4oP3iHrm5pg87w_yL9-Oaw1_ABHQ_uA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcgAO_CO2FPABxCmt4_w4OXCoWFZb2pRV1Up7C7E9VqXSTbXZgpYTj8Cr8Co8Ak_COH9tkRASUg8cEzl24pnx_GTmG4AXSCog0an2bBzEXqjiyEuKIPIipZWVwhQyddXI2V48PgzfTaPpCnzvamEafIg-4OYkoz6vnYC7gPTmOWpoYawrJScPhlSk3-ZV7uDyM3lt1evtIZH4pRCjtwdvxl7bWMDTpC7JZwpDlDpOQzQqQB1KG0faIBmb3CYqSm3ALWk2W6QBTwuR6iJArpWi0T43KAOa9xpcd23EHVz_cL9HrPKlbH5kx75LKfOnHU4kF5uX3_eyHjw3bi-ayLWOG92BH93uNKktxxtnC7Whv_wGHPlfbd9duN1a3GyrEZF7sIKz-3DrAg7jAzjJsCp_fv2WuexEckjKs4qR2imrI8QF3XddTWucXTQsGL7P2ATn5afKBb4rRlY_28eTYn7sqtDY5KhclHVQbEkLsvHSzEsSUjZpoHVJDB7C4ZV87yNYnZUzfAwMIx1JE0rNrQmTwiQR58q1FJApilDbAXgdV-S6BWl3vUI-5g28tMgd2fKebAN41Y8_beBJ_jhyvWOyvD2mqpyss5T8X1p-AKLmlr_Mkm8NR1l_tfYvDz2HG-ODbDff3d7beQI3hSsnqRNI12GVSIlPychbqGe1WDH4cNWM-Atb-VzS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKkRAcKH8VCwV8AHFK6yROHB84VA2rLSVlVVFpbyG2x6pUuqk2W9By4hF4lL5KX6FP0nH-2iIhJKQeOCZy7MQz4_nJzDeEvAZUAYmW2rNxGHtcxZGXFGHkRUorKwJTCOmqkbPdeLTPP0yiyRI57WphGnyIPuDmJKM-r52AHxu7cQkaWhjrKsnRgUEN6bdplTuw-I5OW_VuO0UKvwmC4fvPWyOv7SvgadSW6DJxDkLHkoNRIWgubBxpA2hrMpuoSNqQWVRstpAhk0UgdREC00rhaJ8ZECHOe4vc5jGTrllEutcDVvlCNP-xY99llPmTDiaSBRvX3_e6Gry0ba9ayLWKG66Qs25zmsyWw_WTuVrXP37Djfyfdu8Bud_a23SzEZCHZAmmj8i9KyiMj8lRBlV5_vNX5nIT0R0pTyqKSqesDgDmeN_1NK1RdsHQMP2U0THMym-VC3tXFG1-ugdHxezQ1aDR8UE5L-uQ2AIXpKOFmZUoonTcAOuiEDwh-zfyvatkeVpO4SmhEOlIGC40s4YnhUkixpRrKCAkBFzbAfE6psh1C9HuOoV8zRtw6SB3ZMt7sg3I2378cQNO8seRax2P5e0hVeVom0n0fnH5AQlqZvnLLPlmOsz6q2f_8tArcmecDvOP27s7z8ndwNWS1Nmja2QZKQkv0MKbq5e1UFHy5ab58ALWX1uB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meso%E2%80%90Microporous+Nanosheet%E2%80%90Constructed+3DOM+Perovskites+for+Remarkable+Photocatalytic+Hydrogen+Production&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Heng&rft.au=Liu%2C+Jing&rft.au=Li%2C+Chao%E2%80%90Fan&rft.au=Zhang%2C+Xu&rft.date=2022-05-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=22&rft_id=info:doi/10.1002%2Fadfm.202112831&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202112831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon