Design Strategies for Responsive Fluorine‐19 Magnetic Resonance Probes Using Paramagnetic Metal Complexes
Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to mon...
Saved in:
Published in | Analysis & sensing Vol. 3; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (19F) MRI agents are promising due to the 19F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous 19F in living systems, resulting in no background signal. In order to make responsive 19F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their 19F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the 19F MR signal by altering the relaxation rates and/or chemical shift of an appended 19F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive 19F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates.
Responsive fluorine (19F) MRI agents can be created by using paramagnetic metals that quench or perturb the 19F signal of the coordinated fluorinated ligand. Through careful ligand design, these agents can interact with analytes and abnormal cellular conditions to change their magnetic properties to produce a “turn on” mechanism or alter their 19F signal. |
---|---|
AbstractList | Abstract
Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice,
1
H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (
19
F) MRI agents are promising due to the
19
F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous
19
F in living systems, resulting in no background signal. In order to make responsive
19
F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their
19
F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the
19
F MR signal by altering the relaxation rates and/or chemical shift of an appended
19
F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive
19
F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates. Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (19F) MRI agents are promising due to the 19F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous 19F in living systems, resulting in no background signal. In order to make responsive 19F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their 19F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the 19F MR signal by altering the relaxation rates and/or chemical shift of an appended 19F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive 19F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates. Responsive fluorine (19F) MRI agents can be created by using paramagnetic metals that quench or perturb the 19F signal of the coordinated fluorinated ligand. Through careful ligand design, these agents can interact with analytes and abnormal cellular conditions to change their magnetic properties to produce a “turn on” mechanism or alter their 19F signal. Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (19F) MRI agents are promising due to the 19F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous 19F in living systems, resulting in no background signal. In order to make responsive 19F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their 19F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the 19F MR signal by altering the relaxation rates and/or chemical shift of an appended 19F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive 19F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates. |
Author | Scott, Kathleen M. Que, Emily L. Ryan, Raphael T. |
Author_xml | – sequence: 1 givenname: Raphael T. orcidid: 0000-0001-7913-4439 surname: Ryan fullname: Ryan, Raphael T. organization: The University of Texas at Austin – sequence: 2 givenname: Kathleen M. surname: Scott fullname: Scott, Kathleen M. organization: The University of Texas at Austin – sequence: 3 givenname: Emily L. orcidid: 0000-0001-6604-3052 surname: Que fullname: Que, Emily L. email: emilyque@cm.utexas.edu organization: The University of Texas at Austin |
BookMark | eNqFkM1OAjEURhuDiYhsXU_iGmw7ZcosCYKagBqRddPp3E6KQzu2g8rOR_AZfRKH4N_O1f2Se869yXeMWtZZQOiU4D7BmJ5LG6BPMaUYY0YOUJsmNO1RzmjrTz5C3RBWDUJ5ghOetNHjBQRT2GhRe1lDYSBE2vnoHkLlbDDPEE3LjfPGwsfbO0mjuSws1EbtCGelVRDdeZc12jIYW0R30sv1NzOHWpbR2K2rEl4hnKBDLcsA3a_ZQcvp5GF81ZvdXl6PR7OeigknvXioslgRMkh4muRYac1ioCwnWaqbFQOuOM15xvNYpylgOZCYszTmjEmeaYg76Gx_t_LuaQOhFiu38bZ5KSgfJnjAKI8bqr-nlHcheNCi8mYt_VYQLHadil2n4qfTRkj3wospYfsPLUY3i8mv-wlRen5F |
CitedBy_id | crossref_primary_10_1039_D2SC05222A crossref_primary_10_1021_acs_analchem_2c04539 |
Cites_doi | 10.1039/C7SC03142D 10.1039/C8CC06129G 10.1039/B914348N 10.1002/cbic.201200331 10.3389/fchem.2018.00160 10.1007/s10334-018-0698-4 10.1016/j.cbpa.2018.04.006 10.1039/b911307j 10.1039/D0DT01182G 10.1002/chem.201400159 10.1016/j.ccr.2019.03.014 10.1039/C6SC04287B 10.1021/acs.accounts.0c00275 10.1021/ic502005u 10.1002/cmmi.1629 10.1021/acs.chemrev.1c00796 10.1021/ja077058z 10.1002/jmri.24347 10.1063/5.0041394 10.1039/c3cs60129c 10.1002/anie.201510956 10.2741/2796 10.1039/C6CC08207F 10.1021/acs.inorgchem.7b00500 10.1155/2019/4826520 10.1021/acs.jmedchem.8b00964 10.1021/jacs.8b05685 10.1007/s10858-020-00322-0 10.1021/acs.analchem.1c03744 10.1039/C9CC09977H 10.1021/jacs.9b09149 10.1016/j.pnmrs.2012.10.001 10.1002/mrm.24341 10.1021/acs.bioconjchem.9b00582 10.1002/anie.202100427 10.1002/chem.202100603 10.1073/pnas.1620145114 10.1021/acs.accounts.1c00278 10.1002/adma.202005657 10.1039/c1sc00071c 10.1021/jacs.5b13215 10.1021/acs.accounts.9b00352 10.1021/cr900033p 10.1016/j.jfluchem.2008.11.003 10.1155/2020/4327479 10.1016/j.bmc.2009.04.039 10.1039/D0CC01876G 10.1039/C9CC00375D 10.1016/j.bmcl.2010.11.013 10.1021/ja312610j 10.1002/anse.202000015 10.1002/chem.201200737 10.1016/j.ccr.2021.214069 10.1021/acs.chemrev.8b00363 10.1039/b802838a 10.1002/anie.201409365 10.1038/bjc.1984.146 10.1002/anie.202010587 10.1039/D0CC00778A 10.1002/wnan.87 10.1002/chem.200902300 10.1007/s00330-014-3474-5 10.1039/b705844f 10.1039/C8DT03780A 10.1021/jacs.6b10898 10.1021/cr100025t 10.1152/physrev.00049.2010 10.1016/j.bmc.2012.06.013 10.1002/anie.200806328 10.15302/J-ENG-2015103 10.1039/C7CC08158H 10.1021/cr500286d 10.1016/j.ccr.2018.12.012 10.1016/j.cbpa.2021.01.013 10.1002/chem.201403883 10.1039/C8DT04775H 10.1002/cmdc.201402034 10.1097/RLI.0000000000000731 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1002/anse.202200041 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2629-2742 |
EndPage | n/a |
ExternalDocumentID | 10_1002_anse_202200041 ANSE202200041 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: CHE-1945401 – fundername: Welch Foundation funderid: F-1883 |
GroupedDBID | 0R~ 1OC 33P 34L ABDBF ACCZN AEIGN AFFPM ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB BFHJK DCZOG EBS HGLYW LATKE LEEKS MEWTI SUPJJ WHAIN WXSBR AAYXX CITATION 7U5 8FD L7M |
ID | FETCH-LOGICAL-c3171-38cb3c1156796d0cff43e24d1b9f8cb4e7c72d7b7d3f99e0a5a07493744a7bfe3 |
ISSN | 2629-2742 |
IngestDate | Thu Oct 10 16:21:56 EDT 2024 Fri Aug 23 00:48:15 EDT 2024 Sat Aug 24 01:11:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3171-38cb3c1156796d0cff43e24d1b9f8cb4e7c72d7b7d3f99e0a5a07493744a7bfe3 |
ORCID | 0000-0001-6604-3052 0000-0001-7913-4439 |
PQID | 2786054273 |
PQPubID | 5014758 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2786054273 crossref_primary_10_1002_anse_202200041 wiley_primary_10_1002_anse_202200041_ANSE202200041 |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Analysis & sensing |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 27 2019; 2019 2017; 8 2010; 16 2013; 69 2021; 22 2021; 445 2019; 55 2020; 59 2013; 70 2012; 18 2020; 56 2018; 45 2012; 13 2017; 114 2009; 48 2018; 47 2014; 20 2022; 122 1984; 50 2018; 6 2020; 53 2010; 110 2020; 49 2011; 21 2019; 119 2014; 9 2010; 2 2012; 20 2009; 17 2014; 53 2015; 1 2019; 390 2011; 2 2018; 140 2021; 2 2019; 30 2010; 39 2019; 32 2013; 42 2015; 10 2015; 54 2008 2007 2016; 52 2008; 13 2018; 61 2009; 130 2021; 1 2019; 141 2019; 383 2021; 93 2014; 40 2016; 55 2012; 92 2017; 53 2015; 25 2021; 54 2021; 56 2020; 2020 2015; 115 2020; 74 2021 2020 2019; 48 2017; 56 2013; 135 2016 2016; 138 2009; 5 2021; 61 2021; 60 2009; 109 2018; 54 2008; 130 e_1_2_13_24_2 e_1_2_13_47_2 e_1_2_13_20_2 e_1_2_13_43_2 e_1_2_13_66_2 e_1_2_13_101_2 e_1_2_13_85_2 e_1_2_13_62_2 Chen H.-M. (e_1_2_13_76_2) 2020 e_1_2_13_8_1 e_1_2_13_81_2 e_1_2_13_92_1 e_1_2_13_96_1 e_1_2_13_17_2 e_1_2_13_13_2 e_1_2_13_59_2 e_1_2_13_36_2 e_1_2_13_55_1 e_1_2_13_32_2 e_1_2_13_74_2 e_1_2_13_51_1 e_1_2_13_70_2 e_1_2_13_4_1 e_1_2_13_88_2 e_1_2_13_29_2 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_25_2 e_1_2_13_67_2 e_1_2_13_44_1 Bertini I. (e_1_2_13_41_2) 2016 e_1_2_13_21_2 e_1_2_13_63_2 e_1_2_13_86_1 e_1_2_13_40_1 e_1_2_13_82_2 e_1_2_13_5_2 e_1_2_13_9_2 e_1_2_13_91_2 e_1_2_13_95_2 e_1_2_13_99_2 e_1_2_13_18_2 e_1_2_13_14_2 e_1_2_13_37_2 e_1_2_13_79_1 e_1_2_13_56_1 e_1_2_13_10_2 e_1_2_13_52_2 e_1_2_13_75_2 e_1_2_13_71_2 e_1_2_13_1_1 e_1_2_13_49_2 e_1_2_13_68_2 e_1_2_13_26_1 e_1_2_13_45_1 e_1_2_13_87_2 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_83_2 e_1_2_13_6_2 e_1_2_13_60_2 e_1_2_13_90_2 e_1_2_13_94_2 e_1_2_13_98_2 e_1_2_13_19_2 Wang A. (e_1_2_13_22_2) 2021; 22 e_1_2_13_38_1 e_1_2_13_57_1 e_1_2_13_15_2 e_1_2_13_30_2 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_53_2 e_1_2_13_72_2 Rorabacher D. B. (e_1_2_13_78_1) e_1_2_13_2_1 Li Y. (e_1_2_13_33_2) 2021 e_1_2_13_23_2 e_1_2_13_69_2 e_1_2_13_27_1 e_1_2_13_46_2 e_1_2_13_65_1 e_1_2_13_42_2 e_1_2_13_102_2 e_1_2_13_84_2 e_1_2_13_7_2 e_1_2_13_61_1 e_1_2_13_80_2 e_1_2_13_93_2 e_1_2_13_97_2 e_1_2_13_16_2 e_1_2_13_39_1 e_1_2_13_12_2 e_1_2_13_35_2 e_1_2_13_58_1 e_1_2_13_54_2 e_1_2_13_31_1 e_1_2_13_77_1 e_1_2_13_50_2 e_1_2_13_73_1 e_1_2_13_3_1 e_1_2_13_89_1 e_1_2_13_28_1 |
References_xml | – volume: 49 start-page: 16419 year: 2020 end-page: 16424 publication-title: Dalton Trans. – volume: 114 start-page: 2325 year: 2017 end-page: 2330 publication-title: Proc. Natl. Acad. Sci. USA – volume: 110 start-page: 3019 year: 2010 end-page: 3042 publication-title: Chem. Rev. – volume: 18 start-page: 8748 year: 2012 end-page: 8757 publication-title: Chem. Eur. J. – volume: 17 start-page: 3818 year: 2009 end-page: 3823 publication-title: Bioorg. Med. Chem. – volume: 56 start-page: 3492 year: 2020 end-page: 3495 publication-title: Chem. Commun. – volume: 22 year: 2021 publication-title: Int. J. Mol. Sci. – volume: 55 start-page: 8860 year: 2019 end-page: 8863 publication-title: Chem. Commun. – volume: 48 start-page: 3641 year: 2009 end-page: 3643 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 1 start-page: 11 year: 2021 end-page: 29 publication-title: Analysis & Sensing – start-page: 2514 year: 2008 end-page: 2516 publication-title: Chem. Commun. – volume: 2020 year: 2020 publication-title: Contrast Media Mol. Imaging – volume: 39 start-page: 51 year: 2010 end-page: 60 publication-title: Chem. Soc. Rev. – volume: 54 start-page: 9853 year: 2018 end-page: 9856 publication-title: Chem. Commun. – volume: 92 start-page: 897 year: 2012 end-page: 965 publication-title: Physiol. Rev. – volume: 20 start-page: 14507 year: 2014 end-page: 14513 publication-title: Chem. Eur. J. – volume: 53 start-page: 1520 year: 2020 end-page: 1534 publication-title: Acc. Chem. Res. – year: 2020 publication-title: Chin. J. Inorg. Chem. – volume: 109 start-page: 4108 year: 2009 end-page: 4139 publication-title: Chem. Rev. – volume: 54 start-page: 1007 year: 2015 end-page: 1010 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 45 start-page: 121 year: 2018 end-page: 130 publication-title: Curr. Opin. Chem. Biol. – volume: 13 start-page: 1579 year: 2012 end-page: 1583 publication-title: ChemBioChem – volume: 2 year: 2021 publication-title: Chem. Phys. Rev. – volume: 74 start-page: 287 year: 2020 end-page: 309 publication-title: J. Biomol. NMR – volume: 70 start-page: 25 year: 2013 end-page: 49 publication-title: Prog. Nucl. Magn. Reson. Spectrosc. – volume: 445 year: 2021 publication-title: Coord. Chem. Rev. – volume: 30 start-page: 2502 year: 2019 end-page: 2518 publication-title: Bioconjugate Chem. – volume: 130 start-page: 132 year: 2009 end-page: 143 publication-title: J. Fluorine Chem. – volume: 20 start-page: 4668 year: 2012 end-page: 4674 publication-title: Bioorg. Med. Chem. – volume: 69 start-page: 1056 year: 2013 end-page: 1062 publication-title: Magn. Reson. Med. – volume: 48 start-page: 3249 year: 2019 end-page: 3262 publication-title: Dalton Trans. – volume: 56 start-page: 20 year: 2021 end-page: 34 publication-title: Invest. Radiol. – volume: 56 start-page: 6257 year: 2020 end-page: 6260 publication-title: Chem. Commun. – volume: 54 start-page: 3060 year: 2021 end-page: 3070 publication-title: Acc. Chem. Res. – volume: 20 start-page: 7351 year: 2014 end-page: 7362 publication-title: Chem. Eur. J. – volume: 138 start-page: 2937 year: 2016 end-page: 2940 publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 16552 year: 2021 end-page: 16561 publication-title: Anal. Chem. – volume: 130 start-page: 794 year: 2008 end-page: 795 publication-title: J. Am. Chem. Soc. – year: 2021 publication-title: ChemMedChem – volume: 61 start-page: 8811 year: 2018 end-page: 8824 publication-title: J. Med. Chem. – volume: 52 start-page: 13885 year: 2016 end-page: 13888 publication-title: Chem. Commun. – volume: 21 start-page: 303 year: 2011 end-page: 306 publication-title: Bioorg. Med. Chem. Lett. – volume: 10 start-page: 245 year: 2015 end-page: 265 publication-title: Contrast Media Mol. Imaging – year: 2021 publication-title: Adv. Mater. – volume: 122 start-page: 9422 year: 2022 end-page: 9467 publication-title: Chem. Rev. – volume: 8 start-page: 2448 year: 2017 end-page: 2456 publication-title: Chem. Sci. – volume: 25 start-page: 726 year: 2015 end-page: 735 publication-title: Eur. Radiol. – volume: 6 start-page: 160 year: 2018 publication-title: Front. Chem. – volume: 119 start-page: 957 year: 2019 end-page: 1057 publication-title: Chem. Rev. – volume: 140 start-page: 10546 year: 2018 end-page: 10552 publication-title: J. Am. Chem. Soc. – volume: 390 start-page: 1 year: 2019 end-page: 31 publication-title: Coord. Chem. Rev. – volume: 2 year: 2011 publication-title: Chem. Sci. – start-page: 2923 year: 2007 end-page: 2925 publication-title: Chem. Commun. – volume: 1 start-page: 475 year: 2015 end-page: 489 publication-title: Engineering – volume: 115 start-page: 1106 year: 2015 end-page: 1129 publication-title: Chem. Rev. – volume: 13 start-page: 1733 year: 2008 end-page: 1752 publication-title: Front. Biosci. – volume: 40 start-page: 162 year: 2014 end-page: 170 publication-title: J. Magn. Reson. Imaging – volume: 5 start-page: 1279 year: 2009 end-page: 1291 publication-title: Mol. BioSyst. – volume: 2019 year: 2019 publication-title: Contrast Media Mol. Imaging – year: 2016 – volume: 8 start-page: 8345 year: 2017 end-page: 8350 publication-title: Chem. Sci. – volume: 32 start-page: 89 year: 2019 end-page: 96 publication-title: Magn. Reson. Mater. Phys. Biol. Med. – volume: 61 start-page: 154 year: 2021 end-page: 169 publication-title: Curr. Opin. Chem. Biol. – volume: 141 start-page: 17025 year: 2019 end-page: 17041 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 113 year: 1984 end-page: 117 publication-title: Br. J. Cancer – volume: 16 start-page: 134 year: 2010 end-page: 148 publication-title: Chem. Eur. J. – volume: 138 start-page: 15861 year: 2016 end-page: 15864 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 4620 year: 2013 end-page: 4623 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 7038 year: 2016 end-page: 7046 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 53 start-page: 2 year: 2020 end-page: 10 publication-title: Acc. Chem. Res. – volume: 9 start-page: 1116 year: 2014 end-page: 1129 publication-title: ChemMedChem – volume: 53 start-page: 10748 year: 2014 end-page: 10761 publication-title: Inorg. Chem. – volume: 27 start-page: 9839 year: 2021 end-page: 9849 publication-title: Chem. Eur. J. – volume: 53 start-page: 12962 year: 2017 end-page: 12965 publication-title: Chem. Commun. – volume: 59 start-page: 22523 year: 2020 end-page: 22530 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 56 start-page: 6429 year: 2017 end-page: 6437 publication-title: Inorg. Chem. – volume: 383 start-page: 30 year: 2019 end-page: 42 publication-title: Coord. Chem. Rev. – volume: 56 start-page: 4106 year: 2020 end-page: 4109 publication-title: Chem. Commun. – volume: 60 start-page: 15405 year: 2021 end-page: 15411 publication-title: Angew. Chem. Int. Ed. Engl. – volume: 2 start-page: 431 year: 2010 end-page: 440 publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 42 start-page: 7971 year: 2013 end-page: 7982 publication-title: Chem. Soc. Rev. – volume: 47 start-page: 15024 year: 2018 end-page: 15030 publication-title: Dalton Trans. – ident: e_1_2_13_56_1 doi: 10.1039/C7SC03142D – ident: e_1_2_13_102_2 doi: 10.1039/C8CC06129G – ident: e_1_2_13_4_1 – ident: e_1_2_13_12_2 doi: 10.1039/B914348N – ident: e_1_2_13_49_2 doi: 10.1002/cbic.201200331 – ident: e_1_2_13_27_1 doi: 10.3389/fchem.2018.00160 – ident: e_1_2_13_77_1 doi: 10.1007/s10334-018-0698-4 – year: 2021 ident: e_1_2_13_33_2 publication-title: ChemMedChem contributor: fullname: Li Y. – ident: e_1_2_13_31_1 – ident: e_1_2_13_7_2 doi: 10.1016/j.cbpa.2018.04.006 – ident: e_1_2_13_26_1 doi: 10.1039/b911307j – ident: e_1_2_13_84_2 doi: 10.1039/D0DT01182G – ident: e_1_2_13_28_1 – ident: e_1_2_13_62_2 doi: 10.1002/chem.201400159 – ident: e_1_2_13_18_2 doi: 10.1016/j.ccr.2019.03.014 – ident: e_1_2_13_91_2 doi: 10.1039/C6SC04287B – ident: e_1_2_13_57_1 doi: 10.1021/acs.accounts.0c00275 – ident: e_1_2_13_67_2 doi: 10.1021/ic502005u – ident: e_1_2_13_14_2 doi: 10.1002/cmmi.1629 – volume-title: NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models, Vol. 2 year: 2016 ident: e_1_2_13_41_2 contributor: fullname: Bertini I. – ident: e_1_2_13_39_1 doi: 10.1021/acs.chemrev.1c00796 – ident: e_1_2_13_46_2 doi: 10.1021/ja077058z – ident: e_1_2_13_99_2 doi: 10.1002/jmri.24347 – ident: e_1_2_13_21_2 doi: 10.1063/5.0041394 – ident: e_1_2_13_94_2 doi: 10.1039/c3cs60129c – ident: e_1_2_13_15_2 doi: 10.1002/anie.201510956 – ident: e_1_2_13_3_1 doi: 10.2741/2796 – ident: e_1_2_13_88_2 doi: 10.1039/C6CC08207F – ident: e_1_2_13_65_1 – ident: e_1_2_13_81_2 doi: 10.1021/acs.inorgchem.7b00500 – ident: e_1_2_13_54_2 doi: 10.1155/2019/4826520 – ident: e_1_2_13_8_1 – ident: e_1_2_13_70_2 doi: 10.1021/acs.jmedchem.8b00964 – ident: e_1_2_13_87_2 doi: 10.1021/jacs.8b05685 – ident: e_1_2_13_34_1 – ident: e_1_2_13_43_2 doi: 10.1007/s10858-020-00322-0 – ident: e_1_2_13_29_2 doi: 10.1021/acs.analchem.1c03744 – volume: 22 year: 2021 ident: e_1_2_13_22_2 publication-title: Int. J. Mol. Sci. contributor: fullname: Wang A. – ident: e_1_2_13_63_2 doi: 10.1039/C9CC09977H – ident: e_1_2_13_6_2 doi: 10.1021/jacs.9b09149 – ident: e_1_2_13_44_1 doi: 10.1016/j.pnmrs.2012.10.001 – ident: e_1_2_13_98_2 doi: 10.1002/mrm.24341 – ident: e_1_2_13_16_2 doi: 10.1021/acs.bioconjchem.9b00582 – ident: e_1_2_13_103_1 doi: 10.1002/anie.202100427 – ident: e_1_2_13_85_2 doi: 10.1002/chem.202100603 – ident: e_1_2_13_2_1 doi: 10.1073/pnas.1620145114 – ident: e_1_2_13_25_2 doi: 10.1021/acs.accounts.1c00278 – ident: e_1_2_13_20_2 doi: 10.1002/adma.202005657 – ident: e_1_2_13_50_2 doi: 10.1039/c1sc00071c – ident: e_1_2_13_80_2 doi: 10.1021/jacs.5b13215 – ident: e_1_2_13_23_2 doi: 10.1021/acs.accounts.9b00352 – ident: e_1_2_13_40_1 – ident: e_1_2_13_42_2 doi: 10.1021/cr900033p – ident: e_1_2_13_95_2 doi: 10.1016/j.jfluchem.2008.11.003 – ident: e_1_2_13_71_2 doi: 10.1155/2020/4327479 – ident: e_1_2_13_37_2 doi: 10.1016/j.bmc.2009.04.039 – ident: e_1_2_13_64_1 doi: 10.1039/D0CC01876G – ident: e_1_2_13_83_2 doi: 10.1039/C9CC00375D – ident: e_1_2_13_11_1 – ident: e_1_2_13_55_1 doi: 10.1016/j.bmcl.2010.11.013 – ident: e_1_2_13_66_2 doi: 10.1021/ja312610j – ident: e_1_2_13_24_2 doi: 10.1002/anse.202000015 – ident: e_1_2_13_53_2 doi: 10.1002/chem.201200737 – ident: e_1_2_13_72_2 doi: 10.1016/j.ccr.2021.214069 – ident: e_1_2_13_5_2 doi: 10.1021/acs.chemrev.8b00363 – ident: e_1_2_13_60_2 doi: 10.1039/b802838a – ident: e_1_2_13_101_2 doi: 10.1002/anie.201409365 – ident: e_1_2_13_93_2 doi: 10.1038/bjc.1984.146 – ident: e_1_2_13_58_1 – ident: e_1_2_13_52_2 doi: 10.1002/anie.202010587 – ident: e_1_2_13_75_2 doi: 10.1039/D0CC00778A – ident: e_1_2_13_32_2 doi: 10.1002/wnan.87 – ident: e_1_2_13_96_1 – ident: e_1_2_13_38_1 doi: 10.1002/chem.200902300 – ident: e_1_2_13_51_1 – ident: e_1_2_13_61_1 – ident: e_1_2_13_97_2 doi: 10.1007/s00330-014-3474-5 – ident: e_1_2_13_79_1 – ident: e_1_2_13_92_1 – ident: e_1_2_13_59_2 doi: 10.1039/b705844f – ident: e_1_2_13_73_1 – ident: e_1_2_13_45_1 – ident: e_1_2_13_82_2 doi: 10.1039/C8DT03780A – ident: e_1_2_13_69_2 doi: 10.1021/jacs.6b10898 – ident: e_1_2_13_10_2 doi: 10.1021/cr100025t – year: 2020 ident: e_1_2_13_76_2 publication-title: Chin. J. Inorg. Chem. contributor: fullname: Chen H.-M. – ident: e_1_2_13_1_1 doi: 10.1152/physrev.00049.2010 – ident: e_1_2_13_36_2 doi: 10.1016/j.bmc.2012.06.013 – ident: e_1_2_13_47_2 doi: 10.1002/anie.200806328 – ident: e_1_2_13_35_2 doi: 10.15302/J-ENG-2015103 – ident: e_1_2_13_90_2 doi: 10.1039/C7CC08158H – ident: e_1_2_13_30_2 doi: 10.1021/cr500286d – volume-title: Encyclopedia of Electrochemistry ident: e_1_2_13_78_1 contributor: fullname: Rorabacher D. B. – ident: e_1_2_13_17_2 doi: 10.1016/j.ccr.2018.12.012 – ident: e_1_2_13_19_2 doi: 10.1016/j.cbpa.2021.01.013 – ident: e_1_2_13_48_1 – ident: e_1_2_13_68_2 doi: 10.1002/chem.201403883 – ident: e_1_2_13_86_1 – ident: e_1_2_13_74_2 doi: 10.1039/C8DT04775H – ident: e_1_2_13_13_2 doi: 10.1002/cmdc.201402034 – ident: e_1_2_13_89_1 – ident: e_1_2_13_9_2 doi: 10.1097/RLI.0000000000000731 – ident: e_1_2_13_100_1 |
SSID | ssj0002760676 |
Score | 2.28029 |
Snippet | Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In... Abstract Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | biosensors Chemical equilibrium Coordination compounds Fluorine fluorine magnetic resonance Imaging techniques In vivo methods and tests Ionizing radiation Lipids Magnetic properties Magnetic resonance imaging MRI NMR Protons Resonance probes responsive sensors |
Title | Design Strategies for Responsive Fluorine‐19 Magnetic Resonance Probes Using Paramagnetic Metal Complexes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanse.202200041 https://www.proquest.com/docview/2786054273 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdKd4AL4ikKA_mAxCFKSRynTo57tJoQnYbopN0iO7E5DMK0tgg47bQzf-P-kn1-JhUTj12iynZT9ft-9vfw558Rek0VGBFeqFg1JY3BQjUxJ0kRNyyXJG-Smkmd0J8fTg6O6buT_GQwuOxVLa1XYlz_vPFcyW20Cm2gV31K9j80G14KDfAZ9AtP0DA8_0nH-6b8IvIMs9JwK-iMvCl7_Saj2ee1LrCToaQhLaM5_9Tqk4smc9-aEwNH-kzQMrLlA0f8nH_xY-ZyZbILmkP4uys3DNTLjs5Eg2ep6-CdEdTbNz_c9hI_00X50WLcbfi4ChFfxhHNQ9-HtcmuTk3K5f24n5AgWVeRZdctMiFlrHeArYm5oc0tvFkPX6RngYN9-m15t3SxYMM1wSnRp4wsa9Ymj3YYmf95rKX9Pfw4Df130BaBBasYoq2d3f3dWcjWEQaBnr2p0P8TzwCakLebP7Lp4XRhSz_4Md7L4gG678IOvGMx9BANZPsI3d3zt_09RqcWS7jDEgYs4Q5L2GPp6uJXWmKPIhxQhC2KsEER7qMIGxThgKIn6Hg2XewdxO4ijrgG9zKNs6IWWQ2xg046wvxVimaS0CYVpYIuKlnNSMMEazJVljLhOQfPFBxfSjkTSmZP0bD92spnCIMcmzpJRJ5NGJiPQihRlBC18JQkrKbFCL3xwqvOLN9KZZm1SaXFXAUxj9C2l23l5uSyIqyA-JyCTz5CxMj7L2-pNvT__DZfeoHuddNgGw1X52v5EjzVlXjlYHQNRPWLvg |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Strategies+for+Responsive+Fluorine%E2%80%9019+Magnetic+Resonance+Probes+Using+Paramagnetic+Metal+Complexes&rft.jtitle=Analysis+%26+sensing&rft.au=Ryan%2C+Raphael+T.&rft.au=Scott%2C+Kathleen+M.&rft.au=Que%2C+Emily+L.&rft.date=2023-03-01&rft.issn=2629-2742&rft.eissn=2629-2742&rft.volume=3&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanse.202200041&rft.externalDBID=10.1002%252Fanse.202200041&rft.externalDocID=ANSE202200041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2629-2742&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2629-2742&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2629-2742&client=summon |