Design Strategies for Responsive Fluorine‐19 Magnetic Resonance Probes Using Paramagnetic Metal Complexes

Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to mon...

Full description

Saved in:
Bibliographic Details
Published inAnalysis & sensing Vol. 3; no. 2
Main Authors Ryan, Raphael T., Scott, Kathleen M., Que, Emily L.
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (19F) MRI agents are promising due to the 19F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous 19F in living systems, resulting in no background signal. In order to make responsive 19F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their 19F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the 19F MR signal by altering the relaxation rates and/or chemical shift of an appended 19F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive 19F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates. Responsive fluorine (19F) MRI agents can be created by using paramagnetic metals that quench or perturb the 19F signal of the coordinated fluorinated ligand. Through careful ligand design, these agents can interact with analytes and abnormal cellular conditions to change their magnetic properties to produce a “turn on” mechanism or alter their 19F signal.
AbstractList Abstract Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1 H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine ( 19 F) MRI agents are promising due to the 19 F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous 19 F in living systems, resulting in no background signal. In order to make responsive 19 F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their 19 F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the 19 F MR signal by altering the relaxation rates and/or chemical shift of an appended 19 F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive 19 F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates.
Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (19F) MRI agents are promising due to the 19F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous 19F in living systems, resulting in no background signal. In order to make responsive 19F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their 19F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the 19F MR signal by altering the relaxation rates and/or chemical shift of an appended 19F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive 19F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates. Responsive fluorine (19F) MRI agents can be created by using paramagnetic metals that quench or perturb the 19F signal of the coordinated fluorinated ligand. Through careful ligand design, these agents can interact with analytes and abnormal cellular conditions to change their magnetic properties to produce a “turn on” mechanism or alter their 19F signal.
Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In clinical practice, 1H MRI is employed for imaging anatomical and physiological states via monitoring of protons in water and lipids. In order to monitor biochemical processes at the molecular level, several research groups are exploring responsive MRI agents that alter their signal upon interaction with an analyte or biological environment of interest. Fluorine (19F) MRI agents are promising due to the 19F nucleus having similar magnetic resonance (MR) properties to proton and the absence of endogenous 19F in living systems, resulting in no background signal. In order to make responsive 19F MR agents for molecular imaging and analysis, fluorinated platforms must be developed in which their 19F MR signal changes after interacting with a target analyte. A promising strategy is to use paramagnetic metals to modulate the 19F MR signal by altering the relaxation rates and/or chemical shift of an appended 19F imaging tag. In this concept, we provide an overview of the theoretical principles and molecular design strategies that have been exploited in the design of responsive 19F MR agents, with a specific focus on agents based on small molecule paramagnetic metal ion chelates.
Author Scott, Kathleen M.
Que, Emily L.
Ryan, Raphael T.
Author_xml – sequence: 1
  givenname: Raphael T.
  orcidid: 0000-0001-7913-4439
  surname: Ryan
  fullname: Ryan, Raphael T.
  organization: The University of Texas at Austin
– sequence: 2
  givenname: Kathleen M.
  surname: Scott
  fullname: Scott, Kathleen M.
  organization: The University of Texas at Austin
– sequence: 3
  givenname: Emily L.
  orcidid: 0000-0001-6604-3052
  surname: Que
  fullname: Que, Emily L.
  email: emilyque@cm.utexas.edu
  organization: The University of Texas at Austin
BookMark eNqFkM1OAjEURhuDiYhsXU_iGmw7ZcosCYKagBqRddPp3E6KQzu2g8rOR_AZfRKH4N_O1f2Se869yXeMWtZZQOiU4D7BmJ5LG6BPMaUYY0YOUJsmNO1RzmjrTz5C3RBWDUJ5ghOetNHjBQRT2GhRe1lDYSBE2vnoHkLlbDDPEE3LjfPGwsfbO0mjuSws1EbtCGelVRDdeZc12jIYW0R30sv1NzOHWpbR2K2rEl4hnKBDLcsA3a_ZQcvp5GF81ZvdXl6PR7OeigknvXioslgRMkh4muRYac1ioCwnWaqbFQOuOM15xvNYpylgOZCYszTmjEmeaYg76Gx_t_LuaQOhFiu38bZ5KSgfJnjAKI8bqr-nlHcheNCi8mYt_VYQLHadil2n4qfTRkj3wospYfsPLUY3i8mv-wlRen5F
CitedBy_id crossref_primary_10_1039_D2SC05222A
crossref_primary_10_1021_acs_analchem_2c04539
Cites_doi 10.1039/C7SC03142D
10.1039/C8CC06129G
10.1039/B914348N
10.1002/cbic.201200331
10.3389/fchem.2018.00160
10.1007/s10334-018-0698-4
10.1016/j.cbpa.2018.04.006
10.1039/b911307j
10.1039/D0DT01182G
10.1002/chem.201400159
10.1016/j.ccr.2019.03.014
10.1039/C6SC04287B
10.1021/acs.accounts.0c00275
10.1021/ic502005u
10.1002/cmmi.1629
10.1021/acs.chemrev.1c00796
10.1021/ja077058z
10.1002/jmri.24347
10.1063/5.0041394
10.1039/c3cs60129c
10.1002/anie.201510956
10.2741/2796
10.1039/C6CC08207F
10.1021/acs.inorgchem.7b00500
10.1155/2019/4826520
10.1021/acs.jmedchem.8b00964
10.1021/jacs.8b05685
10.1007/s10858-020-00322-0
10.1021/acs.analchem.1c03744
10.1039/C9CC09977H
10.1021/jacs.9b09149
10.1016/j.pnmrs.2012.10.001
10.1002/mrm.24341
10.1021/acs.bioconjchem.9b00582
10.1002/anie.202100427
10.1002/chem.202100603
10.1073/pnas.1620145114
10.1021/acs.accounts.1c00278
10.1002/adma.202005657
10.1039/c1sc00071c
10.1021/jacs.5b13215
10.1021/acs.accounts.9b00352
10.1021/cr900033p
10.1016/j.jfluchem.2008.11.003
10.1155/2020/4327479
10.1016/j.bmc.2009.04.039
10.1039/D0CC01876G
10.1039/C9CC00375D
10.1016/j.bmcl.2010.11.013
10.1021/ja312610j
10.1002/anse.202000015
10.1002/chem.201200737
10.1016/j.ccr.2021.214069
10.1021/acs.chemrev.8b00363
10.1039/b802838a
10.1002/anie.201409365
10.1038/bjc.1984.146
10.1002/anie.202010587
10.1039/D0CC00778A
10.1002/wnan.87
10.1002/chem.200902300
10.1007/s00330-014-3474-5
10.1039/b705844f
10.1039/C8DT03780A
10.1021/jacs.6b10898
10.1021/cr100025t
10.1152/physrev.00049.2010
10.1016/j.bmc.2012.06.013
10.1002/anie.200806328
10.15302/J-ENG-2015103
10.1039/C7CC08158H
10.1021/cr500286d
10.1016/j.ccr.2018.12.012
10.1016/j.cbpa.2021.01.013
10.1002/chem.201403883
10.1039/C8DT04775H
10.1002/cmdc.201402034
10.1097/RLI.0000000000000731
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/anse.202200041
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2629-2742
EndPage n/a
ExternalDocumentID 10_1002_anse_202200041
ANSE202200041
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CHE-1945401
– fundername: Welch Foundation
  funderid: F-1883
GroupedDBID 0R~
1OC
33P
34L
ABDBF
ACCZN
AEIGN
AFFPM
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
BFHJK
DCZOG
EBS
HGLYW
LATKE
LEEKS
MEWTI
SUPJJ
WHAIN
WXSBR
AAYXX
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c3171-38cb3c1156796d0cff43e24d1b9f8cb4e7c72d7b7d3f99e0a5a07493744a7bfe3
ISSN 2629-2742
IngestDate Thu Oct 10 16:21:56 EDT 2024
Fri Aug 23 00:48:15 EDT 2024
Sat Aug 24 01:11:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3171-38cb3c1156796d0cff43e24d1b9f8cb4e7c72d7b7d3f99e0a5a07493744a7bfe3
ORCID 0000-0001-6604-3052
0000-0001-7913-4439
PQID 2786054273
PQPubID 5014758
PageCount 9
ParticipantIDs proquest_journals_2786054273
crossref_primary_10_1002_anse_202200041
wiley_primary_10_1002_anse_202200041_ANSE202200041
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Analysis & sensing
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 27
2019; 2019
2017; 8
2010; 16
2013; 69
2021; 22
2021; 445
2019; 55
2020; 59
2013; 70
2012; 18
2020; 56
2018; 45
2012; 13
2017; 114
2009; 48
2018; 47
2014; 20
2022; 122
1984; 50
2018; 6
2020; 53
2010; 110
2020; 49
2011; 21
2019; 119
2014; 9
2010; 2
2012; 20
2009; 17
2014; 53
2015; 1
2019; 390
2011; 2
2018; 140
2021; 2
2019; 30
2010; 39
2019; 32
2013; 42
2015; 10
2015; 54
2008
2007
2016; 52
2008; 13
2018; 61
2009; 130
2021; 1
2019; 141
2019; 383
2021; 93
2014; 40
2016; 55
2012; 92
2017; 53
2015; 25
2021; 54
2021; 56
2020; 2020
2015; 115
2020; 74
2021
2020
2019; 48
2017; 56
2013; 135
2016
2016; 138
2009; 5
2021; 61
2021; 60
2009; 109
2018; 54
2008; 130
e_1_2_13_24_2
e_1_2_13_47_2
e_1_2_13_20_2
e_1_2_13_43_2
e_1_2_13_66_2
e_1_2_13_101_2
e_1_2_13_85_2
e_1_2_13_62_2
Chen H.-M. (e_1_2_13_76_2) 2020
e_1_2_13_8_1
e_1_2_13_81_2
e_1_2_13_92_1
e_1_2_13_96_1
e_1_2_13_17_2
e_1_2_13_13_2
e_1_2_13_59_2
e_1_2_13_36_2
e_1_2_13_55_1
e_1_2_13_32_2
e_1_2_13_74_2
e_1_2_13_51_1
e_1_2_13_70_2
e_1_2_13_4_1
e_1_2_13_88_2
e_1_2_13_29_2
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_25_2
e_1_2_13_67_2
e_1_2_13_44_1
Bertini I. (e_1_2_13_41_2) 2016
e_1_2_13_21_2
e_1_2_13_63_2
e_1_2_13_86_1
e_1_2_13_40_1
e_1_2_13_82_2
e_1_2_13_5_2
e_1_2_13_9_2
e_1_2_13_91_2
e_1_2_13_95_2
e_1_2_13_99_2
e_1_2_13_18_2
e_1_2_13_14_2
e_1_2_13_37_2
e_1_2_13_79_1
e_1_2_13_56_1
e_1_2_13_10_2
e_1_2_13_52_2
e_1_2_13_75_2
e_1_2_13_71_2
e_1_2_13_1_1
e_1_2_13_49_2
e_1_2_13_68_2
e_1_2_13_26_1
e_1_2_13_45_1
e_1_2_13_87_2
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_83_2
e_1_2_13_6_2
e_1_2_13_60_2
e_1_2_13_90_2
e_1_2_13_94_2
e_1_2_13_98_2
e_1_2_13_19_2
Wang A. (e_1_2_13_22_2) 2021; 22
e_1_2_13_38_1
e_1_2_13_57_1
e_1_2_13_15_2
e_1_2_13_30_2
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_53_2
e_1_2_13_72_2
Rorabacher D. B. (e_1_2_13_78_1)
e_1_2_13_2_1
Li Y. (e_1_2_13_33_2) 2021
e_1_2_13_23_2
e_1_2_13_69_2
e_1_2_13_27_1
e_1_2_13_46_2
e_1_2_13_65_1
e_1_2_13_42_2
e_1_2_13_102_2
e_1_2_13_84_2
e_1_2_13_7_2
e_1_2_13_61_1
e_1_2_13_80_2
e_1_2_13_93_2
e_1_2_13_97_2
e_1_2_13_16_2
e_1_2_13_39_1
e_1_2_13_12_2
e_1_2_13_35_2
e_1_2_13_58_1
e_1_2_13_54_2
e_1_2_13_31_1
e_1_2_13_77_1
e_1_2_13_50_2
e_1_2_13_73_1
e_1_2_13_3_1
e_1_2_13_89_1
e_1_2_13_28_1
References_xml – volume: 49
  start-page: 16419
  year: 2020
  end-page: 16424
  publication-title: Dalton Trans.
– volume: 114
  start-page: 2325
  year: 2017
  end-page: 2330
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 3019
  year: 2010
  end-page: 3042
  publication-title: Chem. Rev.
– volume: 18
  start-page: 8748
  year: 2012
  end-page: 8757
  publication-title: Chem. Eur. J.
– volume: 17
  start-page: 3818
  year: 2009
  end-page: 3823
  publication-title: Bioorg. Med. Chem.
– volume: 56
  start-page: 3492
  year: 2020
  end-page: 3495
  publication-title: Chem. Commun.
– volume: 22
  year: 2021
  publication-title: Int. J. Mol. Sci.
– volume: 55
  start-page: 8860
  year: 2019
  end-page: 8863
  publication-title: Chem. Commun.
– volume: 48
  start-page: 3641
  year: 2009
  end-page: 3643
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 1
  start-page: 11
  year: 2021
  end-page: 29
  publication-title: Analysis & Sensing
– start-page: 2514
  year: 2008
  end-page: 2516
  publication-title: Chem. Commun.
– volume: 2020
  year: 2020
  publication-title: Contrast Media Mol. Imaging
– volume: 39
  start-page: 51
  year: 2010
  end-page: 60
  publication-title: Chem. Soc. Rev.
– volume: 54
  start-page: 9853
  year: 2018
  end-page: 9856
  publication-title: Chem. Commun.
– volume: 92
  start-page: 897
  year: 2012
  end-page: 965
  publication-title: Physiol. Rev.
– volume: 20
  start-page: 14507
  year: 2014
  end-page: 14513
  publication-title: Chem. Eur. J.
– volume: 53
  start-page: 1520
  year: 2020
  end-page: 1534
  publication-title: Acc. Chem. Res.
– year: 2020
  publication-title: Chin. J. Inorg. Chem.
– volume: 109
  start-page: 4108
  year: 2009
  end-page: 4139
  publication-title: Chem. Rev.
– volume: 54
  start-page: 1007
  year: 2015
  end-page: 1010
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 45
  start-page: 121
  year: 2018
  end-page: 130
  publication-title: Curr. Opin. Chem. Biol.
– volume: 13
  start-page: 1579
  year: 2012
  end-page: 1583
  publication-title: ChemBioChem
– volume: 2
  year: 2021
  publication-title: Chem. Phys. Rev.
– volume: 74
  start-page: 287
  year: 2020
  end-page: 309
  publication-title: J. Biomol. NMR
– volume: 70
  start-page: 25
  year: 2013
  end-page: 49
  publication-title: Prog. Nucl. Magn. Reson. Spectrosc.
– volume: 445
  year: 2021
  publication-title: Coord. Chem. Rev.
– volume: 30
  start-page: 2502
  year: 2019
  end-page: 2518
  publication-title: Bioconjugate Chem.
– volume: 130
  start-page: 132
  year: 2009
  end-page: 143
  publication-title: J. Fluorine Chem.
– volume: 20
  start-page: 4668
  year: 2012
  end-page: 4674
  publication-title: Bioorg. Med. Chem.
– volume: 69
  start-page: 1056
  year: 2013
  end-page: 1062
  publication-title: Magn. Reson. Med.
– volume: 48
  start-page: 3249
  year: 2019
  end-page: 3262
  publication-title: Dalton Trans.
– volume: 56
  start-page: 20
  year: 2021
  end-page: 34
  publication-title: Invest. Radiol.
– volume: 56
  start-page: 6257
  year: 2020
  end-page: 6260
  publication-title: Chem. Commun.
– volume: 54
  start-page: 3060
  year: 2021
  end-page: 3070
  publication-title: Acc. Chem. Res.
– volume: 20
  start-page: 7351
  year: 2014
  end-page: 7362
  publication-title: Chem. Eur. J.
– volume: 138
  start-page: 2937
  year: 2016
  end-page: 2940
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 16552
  year: 2021
  end-page: 16561
  publication-title: Anal. Chem.
– volume: 130
  start-page: 794
  year: 2008
  end-page: 795
  publication-title: J. Am. Chem. Soc.
– year: 2021
  publication-title: ChemMedChem
– volume: 61
  start-page: 8811
  year: 2018
  end-page: 8824
  publication-title: J. Med. Chem.
– volume: 52
  start-page: 13885
  year: 2016
  end-page: 13888
  publication-title: Chem. Commun.
– volume: 21
  start-page: 303
  year: 2011
  end-page: 306
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 10
  start-page: 245
  year: 2015
  end-page: 265
  publication-title: Contrast Media Mol. Imaging
– year: 2021
  publication-title: Adv. Mater.
– volume: 122
  start-page: 9422
  year: 2022
  end-page: 9467
  publication-title: Chem. Rev.
– volume: 8
  start-page: 2448
  year: 2017
  end-page: 2456
  publication-title: Chem. Sci.
– volume: 25
  start-page: 726
  year: 2015
  end-page: 735
  publication-title: Eur. Radiol.
– volume: 6
  start-page: 160
  year: 2018
  publication-title: Front. Chem.
– volume: 119
  start-page: 957
  year: 2019
  end-page: 1057
  publication-title: Chem. Rev.
– volume: 140
  start-page: 10546
  year: 2018
  end-page: 10552
  publication-title: J. Am. Chem. Soc.
– volume: 390
  start-page: 1
  year: 2019
  end-page: 31
  publication-title: Coord. Chem. Rev.
– volume: 2
  year: 2011
  publication-title: Chem. Sci.
– start-page: 2923
  year: 2007
  end-page: 2925
  publication-title: Chem. Commun.
– volume: 1
  start-page: 475
  year: 2015
  end-page: 489
  publication-title: Engineering
– volume: 115
  start-page: 1106
  year: 2015
  end-page: 1129
  publication-title: Chem. Rev.
– volume: 13
  start-page: 1733
  year: 2008
  end-page: 1752
  publication-title: Front. Biosci.
– volume: 40
  start-page: 162
  year: 2014
  end-page: 170
  publication-title: J. Magn. Reson. Imaging
– volume: 5
  start-page: 1279
  year: 2009
  end-page: 1291
  publication-title: Mol. BioSyst.
– volume: 2019
  year: 2019
  publication-title: Contrast Media Mol. Imaging
– year: 2016
– volume: 8
  start-page: 8345
  year: 2017
  end-page: 8350
  publication-title: Chem. Sci.
– volume: 32
  start-page: 89
  year: 2019
  end-page: 96
  publication-title: Magn. Reson. Mater. Phys. Biol. Med.
– volume: 61
  start-page: 154
  year: 2021
  end-page: 169
  publication-title: Curr. Opin. Chem. Biol.
– volume: 141
  start-page: 17025
  year: 2019
  end-page: 17041
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 113
  year: 1984
  end-page: 117
  publication-title: Br. J. Cancer
– volume: 16
  start-page: 134
  year: 2010
  end-page: 148
  publication-title: Chem. Eur. J.
– volume: 138
  start-page: 15861
  year: 2016
  end-page: 15864
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 4620
  year: 2013
  end-page: 4623
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 7038
  year: 2016
  end-page: 7046
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 53
  start-page: 2
  year: 2020
  end-page: 10
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 1116
  year: 2014
  end-page: 1129
  publication-title: ChemMedChem
– volume: 53
  start-page: 10748
  year: 2014
  end-page: 10761
  publication-title: Inorg. Chem.
– volume: 27
  start-page: 9839
  year: 2021
  end-page: 9849
  publication-title: Chem. Eur. J.
– volume: 53
  start-page: 12962
  year: 2017
  end-page: 12965
  publication-title: Chem. Commun.
– volume: 59
  start-page: 22523
  year: 2020
  end-page: 22530
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 56
  start-page: 6429
  year: 2017
  end-page: 6437
  publication-title: Inorg. Chem.
– volume: 383
  start-page: 30
  year: 2019
  end-page: 42
  publication-title: Coord. Chem. Rev.
– volume: 56
  start-page: 4106
  year: 2020
  end-page: 4109
  publication-title: Chem. Commun.
– volume: 60
  start-page: 15405
  year: 2021
  end-page: 15411
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 2
  start-page: 431
  year: 2010
  end-page: 440
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– volume: 42
  start-page: 7971
  year: 2013
  end-page: 7982
  publication-title: Chem. Soc. Rev.
– volume: 47
  start-page: 15024
  year: 2018
  end-page: 15030
  publication-title: Dalton Trans.
– ident: e_1_2_13_56_1
  doi: 10.1039/C7SC03142D
– ident: e_1_2_13_102_2
  doi: 10.1039/C8CC06129G
– ident: e_1_2_13_4_1
– ident: e_1_2_13_12_2
  doi: 10.1039/B914348N
– ident: e_1_2_13_49_2
  doi: 10.1002/cbic.201200331
– ident: e_1_2_13_27_1
  doi: 10.3389/fchem.2018.00160
– ident: e_1_2_13_77_1
  doi: 10.1007/s10334-018-0698-4
– year: 2021
  ident: e_1_2_13_33_2
  publication-title: ChemMedChem
  contributor:
    fullname: Li Y.
– ident: e_1_2_13_31_1
– ident: e_1_2_13_7_2
  doi: 10.1016/j.cbpa.2018.04.006
– ident: e_1_2_13_26_1
  doi: 10.1039/b911307j
– ident: e_1_2_13_84_2
  doi: 10.1039/D0DT01182G
– ident: e_1_2_13_28_1
– ident: e_1_2_13_62_2
  doi: 10.1002/chem.201400159
– ident: e_1_2_13_18_2
  doi: 10.1016/j.ccr.2019.03.014
– ident: e_1_2_13_91_2
  doi: 10.1039/C6SC04287B
– ident: e_1_2_13_57_1
  doi: 10.1021/acs.accounts.0c00275
– ident: e_1_2_13_67_2
  doi: 10.1021/ic502005u
– ident: e_1_2_13_14_2
  doi: 10.1002/cmmi.1629
– volume-title: NMR of Paramagnetic Molecules: Applications to Metallobiomolecules and Models, Vol. 2
  year: 2016
  ident: e_1_2_13_41_2
  contributor:
    fullname: Bertini I.
– ident: e_1_2_13_39_1
  doi: 10.1021/acs.chemrev.1c00796
– ident: e_1_2_13_46_2
  doi: 10.1021/ja077058z
– ident: e_1_2_13_99_2
  doi: 10.1002/jmri.24347
– ident: e_1_2_13_21_2
  doi: 10.1063/5.0041394
– ident: e_1_2_13_94_2
  doi: 10.1039/c3cs60129c
– ident: e_1_2_13_15_2
  doi: 10.1002/anie.201510956
– ident: e_1_2_13_3_1
  doi: 10.2741/2796
– ident: e_1_2_13_88_2
  doi: 10.1039/C6CC08207F
– ident: e_1_2_13_65_1
– ident: e_1_2_13_81_2
  doi: 10.1021/acs.inorgchem.7b00500
– ident: e_1_2_13_54_2
  doi: 10.1155/2019/4826520
– ident: e_1_2_13_8_1
– ident: e_1_2_13_70_2
  doi: 10.1021/acs.jmedchem.8b00964
– ident: e_1_2_13_87_2
  doi: 10.1021/jacs.8b05685
– ident: e_1_2_13_34_1
– ident: e_1_2_13_43_2
  doi: 10.1007/s10858-020-00322-0
– ident: e_1_2_13_29_2
  doi: 10.1021/acs.analchem.1c03744
– volume: 22
  year: 2021
  ident: e_1_2_13_22_2
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Wang A.
– ident: e_1_2_13_63_2
  doi: 10.1039/C9CC09977H
– ident: e_1_2_13_6_2
  doi: 10.1021/jacs.9b09149
– ident: e_1_2_13_44_1
  doi: 10.1016/j.pnmrs.2012.10.001
– ident: e_1_2_13_98_2
  doi: 10.1002/mrm.24341
– ident: e_1_2_13_16_2
  doi: 10.1021/acs.bioconjchem.9b00582
– ident: e_1_2_13_103_1
  doi: 10.1002/anie.202100427
– ident: e_1_2_13_85_2
  doi: 10.1002/chem.202100603
– ident: e_1_2_13_2_1
  doi: 10.1073/pnas.1620145114
– ident: e_1_2_13_25_2
  doi: 10.1021/acs.accounts.1c00278
– ident: e_1_2_13_20_2
  doi: 10.1002/adma.202005657
– ident: e_1_2_13_50_2
  doi: 10.1039/c1sc00071c
– ident: e_1_2_13_80_2
  doi: 10.1021/jacs.5b13215
– ident: e_1_2_13_23_2
  doi: 10.1021/acs.accounts.9b00352
– ident: e_1_2_13_40_1
– ident: e_1_2_13_42_2
  doi: 10.1021/cr900033p
– ident: e_1_2_13_95_2
  doi: 10.1016/j.jfluchem.2008.11.003
– ident: e_1_2_13_71_2
  doi: 10.1155/2020/4327479
– ident: e_1_2_13_37_2
  doi: 10.1016/j.bmc.2009.04.039
– ident: e_1_2_13_64_1
  doi: 10.1039/D0CC01876G
– ident: e_1_2_13_83_2
  doi: 10.1039/C9CC00375D
– ident: e_1_2_13_11_1
– ident: e_1_2_13_55_1
  doi: 10.1016/j.bmcl.2010.11.013
– ident: e_1_2_13_66_2
  doi: 10.1021/ja312610j
– ident: e_1_2_13_24_2
  doi: 10.1002/anse.202000015
– ident: e_1_2_13_53_2
  doi: 10.1002/chem.201200737
– ident: e_1_2_13_72_2
  doi: 10.1016/j.ccr.2021.214069
– ident: e_1_2_13_5_2
  doi: 10.1021/acs.chemrev.8b00363
– ident: e_1_2_13_60_2
  doi: 10.1039/b802838a
– ident: e_1_2_13_101_2
  doi: 10.1002/anie.201409365
– ident: e_1_2_13_93_2
  doi: 10.1038/bjc.1984.146
– ident: e_1_2_13_58_1
– ident: e_1_2_13_52_2
  doi: 10.1002/anie.202010587
– ident: e_1_2_13_75_2
  doi: 10.1039/D0CC00778A
– ident: e_1_2_13_32_2
  doi: 10.1002/wnan.87
– ident: e_1_2_13_96_1
– ident: e_1_2_13_38_1
  doi: 10.1002/chem.200902300
– ident: e_1_2_13_51_1
– ident: e_1_2_13_61_1
– ident: e_1_2_13_97_2
  doi: 10.1007/s00330-014-3474-5
– ident: e_1_2_13_79_1
– ident: e_1_2_13_92_1
– ident: e_1_2_13_59_2
  doi: 10.1039/b705844f
– ident: e_1_2_13_73_1
– ident: e_1_2_13_45_1
– ident: e_1_2_13_82_2
  doi: 10.1039/C8DT03780A
– ident: e_1_2_13_69_2
  doi: 10.1021/jacs.6b10898
– ident: e_1_2_13_10_2
  doi: 10.1021/cr100025t
– year: 2020
  ident: e_1_2_13_76_2
  publication-title: Chin. J. Inorg. Chem.
  contributor:
    fullname: Chen H.-M.
– ident: e_1_2_13_1_1
  doi: 10.1152/physrev.00049.2010
– ident: e_1_2_13_36_2
  doi: 10.1016/j.bmc.2012.06.013
– ident: e_1_2_13_47_2
  doi: 10.1002/anie.200806328
– ident: e_1_2_13_35_2
  doi: 10.15302/J-ENG-2015103
– ident: e_1_2_13_90_2
  doi: 10.1039/C7CC08158H
– ident: e_1_2_13_30_2
  doi: 10.1021/cr500286d
– volume-title: Encyclopedia of Electrochemistry
  ident: e_1_2_13_78_1
  contributor:
    fullname: Rorabacher D. B.
– ident: e_1_2_13_17_2
  doi: 10.1016/j.ccr.2018.12.012
– ident: e_1_2_13_19_2
  doi: 10.1016/j.cbpa.2021.01.013
– ident: e_1_2_13_48_1
– ident: e_1_2_13_68_2
  doi: 10.1002/chem.201403883
– ident: e_1_2_13_86_1
– ident: e_1_2_13_74_2
  doi: 10.1039/C8DT04775H
– ident: e_1_2_13_13_2
  doi: 10.1002/cmdc.201402034
– ident: e_1_2_13_89_1
– ident: e_1_2_13_9_2
  doi: 10.1097/RLI.0000000000000731
– ident: e_1_2_13_100_1
SSID ssj0002760676
Score 2.28029
Snippet Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation. In...
Abstract Magnetic resonance imaging (MRI) is a powerful and widely used in vivo imaging technique that enables whole body imaging without ionizing radiation....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms biosensors
Chemical equilibrium
Coordination compounds
Fluorine
fluorine magnetic resonance
Imaging techniques
In vivo methods and tests
Ionizing radiation
Lipids
Magnetic properties
Magnetic resonance imaging
MRI
NMR
Protons
Resonance probes
responsive sensors
Title Design Strategies for Responsive Fluorine‐19 Magnetic Resonance Probes Using Paramagnetic Metal Complexes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanse.202200041
https://www.proquest.com/docview/2786054273
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdKd4AL4ikKA_mAxCFKSRynTo57tJoQnYbopN0iO7E5DMK0tgg47bQzf-P-kn1-JhUTj12iynZT9ft-9vfw558Rek0VGBFeqFg1JY3BQjUxJ0kRNyyXJG-Smkmd0J8fTg6O6buT_GQwuOxVLa1XYlz_vPFcyW20Cm2gV31K9j80G14KDfAZ9AtP0DA8_0nH-6b8IvIMs9JwK-iMvCl7_Saj2ee1LrCToaQhLaM5_9Tqk4smc9-aEwNH-kzQMrLlA0f8nH_xY-ZyZbILmkP4uys3DNTLjs5Eg2ep6-CdEdTbNz_c9hI_00X50WLcbfi4ChFfxhHNQ9-HtcmuTk3K5f24n5AgWVeRZdctMiFlrHeArYm5oc0tvFkPX6RngYN9-m15t3SxYMM1wSnRp4wsa9Ymj3YYmf95rKX9Pfw4Df130BaBBasYoq2d3f3dWcjWEQaBnr2p0P8TzwCakLebP7Lp4XRhSz_4Md7L4gG678IOvGMx9BANZPsI3d3zt_09RqcWS7jDEgYs4Q5L2GPp6uJXWmKPIhxQhC2KsEER7qMIGxThgKIn6Hg2XewdxO4ijrgG9zKNs6IWWQ2xg046wvxVimaS0CYVpYIuKlnNSMMEazJVljLhOQfPFBxfSjkTSmZP0bD92spnCIMcmzpJRJ5NGJiPQihRlBC18JQkrKbFCL3xwqvOLN9KZZm1SaXFXAUxj9C2l23l5uSyIqyA-JyCTz5CxMj7L2-pNvT__DZfeoHuddNgGw1X52v5EjzVlXjlYHQNRPWLvg
link.rule.ids 315,783,787,27938,27939
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+Strategies+for+Responsive+Fluorine%E2%80%9019+Magnetic+Resonance+Probes+Using+Paramagnetic+Metal+Complexes&rft.jtitle=Analysis+%26+sensing&rft.au=Ryan%2C+Raphael+T.&rft.au=Scott%2C+Kathleen+M.&rft.au=Que%2C+Emily+L.&rft.date=2023-03-01&rft.issn=2629-2742&rft.eissn=2629-2742&rft.volume=3&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fanse.202200041&rft.externalDBID=10.1002%252Fanse.202200041&rft.externalDocID=ANSE202200041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2629-2742&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2629-2742&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2629-2742&client=summon