Hydrogen Bonds in Perovskite for Efficient and Stable Photovoltaic

Comprehensive Summary Owing to their distinctive optical and physical properties, organic‐inorganic hybrid perovskite materials have gained significant attention in the field of electronic devices, especially solar cells. The achievement of high‐performance solar cells hinges upon the utilization of...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 42; no. 11; pp. 1284 - 1306
Main Authors Wang, Tian‐yun, Hao, Yang‐yang, Zhu, Ming‐zhe, Cao, Guo‐rui, Zhou, Zhong‐min
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.06.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Comprehensive Summary Owing to their distinctive optical and physical properties, organic‐inorganic hybrid perovskite materials have gained significant attention in the field of electronic devices, especially solar cells. The achievement of high‐performance solar cells hinges upon the utilization of top‐notch perovskite thin films. Nevertheless, the fabrication process involving solutions and the polycrystalline nature of perovskite result in the emergence of numerous defects within the perovskite films, consequently exerting a deleterious influence on the overall performance and stability of the devices. Improving the performance and stability of perovskite solar cells by additive engineering to suppress/passivate defects is a viable approach, which involves hydrogen bond interactions in these device engineering processes. This review explores the intrinsic hydrogen bonds in methylammonium and formamidium lead triiodide, while also considering cation rotations, phase transitions, and stability. Moreover, the review classifies additives into distinct categories, including organic small molecules, polymers, nanodots, classical salts, ionic liquids, and molten salts. The various forms and characterization techniques of hydrogen bonds are discussed, as well as their potential synergistic effects in conjunction with other chemical interactions. Furthermore, this review offers insights into the potential utilization of hydrogen bonds to further enhance the performance and stability of devices. Key Scientists In 2009, Tsutomu Miyasaka et al. prepared the first perovskite solar cell, which kicked off the research on perovskite light‐absorbing materials. However, the use of liquid electrolytes led to device instability. The transition to all‐solid‐state perovskite solar cells was realized by Nam‐Gyu Park's team in 2012, which was the beginning of high‐efficiency perovskite solar cells. Subsequently, a number of scientists have innovated the preparation ground process. Methods such as two‐step deposition by Michael Grätzel in 2013 and anti‐solvent extraction by Sang II Seok's team in 2014 were instrumental in advancing the development of perovskite. Liyuan Han's team then increased the cell's working area to 1 cm2 without compromising performance, making it possible to compare the performance metrics of perovskite solar cells with those of other types of solar cells on the same scale. Recently, You's team and Pan's team kept updating the world record by obtaining certified efficiencies of 25.6% and 25.8% in 2022 and 2023, respectively. In this review, we address the important role of hydrogen bonding in improving perovskite solar devices through various additives.
AbstractList Comprehensive Summary Owing to their distinctive optical and physical properties, organic‐inorganic hybrid perovskite materials have gained significant attention in the field of electronic devices, especially solar cells. The achievement of high‐performance solar cells hinges upon the utilization of top‐notch perovskite thin films. Nevertheless, the fabrication process involving solutions and the polycrystalline nature of perovskite result in the emergence of numerous defects within the perovskite films, consequently exerting a deleterious influence on the overall performance and stability of the devices. Improving the performance and stability of perovskite solar cells by additive engineering to suppress/passivate defects is a viable approach, which involves hydrogen bond interactions in these device engineering processes. This review explores the intrinsic hydrogen bonds in methylammonium and formamidium lead triiodide, while also considering cation rotations, phase transitions, and stability. Moreover, the review classifies additives into distinct categories, including organic small molecules, polymers, nanodots, classical salts, ionic liquids, and molten salts. The various forms and characterization techniques of hydrogen bonds are discussed, as well as their potential synergistic effects in conjunction with other chemical interactions. Furthermore, this review offers insights into the potential utilization of hydrogen bonds to further enhance the performance and stability of devices. Key Scientists In 2009, Tsutomu Miyasaka et al . prepared the first perovskite solar cell, which kicked off the research on perovskite light‐absorbing materials. However, the use of liquid electrolytes led to device instability. The transition to all‐solid‐state perovskite solar cells was realized by Nam‐Gyu Park's team in 2012, which was the beginning of high‐efficiency perovskite solar cells. Subsequently, a number of scientists have innovated the preparation ground process. Methods such as two‐step deposition by Michael Grätzel in 2013 and anti‐solvent extraction by Sang II Seok's team in 2014 were instrumental in advancing the development of perovskite. Liyuan Han's team then increased the cell's working area to 1 cm 2 without compromising performance, making it possible to compare the performance metrics of perovskite solar cells with those of other types of solar cells on the same scale. Recently, You's team and Pan's team kept updating the world record by obtaining certified efficiencies of 25.6% and 25.8% in 2022 and 2023, respectively.
Comprehensive Summary Owing to their distinctive optical and physical properties, organic‐inorganic hybrid perovskite materials have gained significant attention in the field of electronic devices, especially solar cells. The achievement of high‐performance solar cells hinges upon the utilization of top‐notch perovskite thin films. Nevertheless, the fabrication process involving solutions and the polycrystalline nature of perovskite result in the emergence of numerous defects within the perovskite films, consequently exerting a deleterious influence on the overall performance and stability of the devices. Improving the performance and stability of perovskite solar cells by additive engineering to suppress/passivate defects is a viable approach, which involves hydrogen bond interactions in these device engineering processes. This review explores the intrinsic hydrogen bonds in methylammonium and formamidium lead triiodide, while also considering cation rotations, phase transitions, and stability. Moreover, the review classifies additives into distinct categories, including organic small molecules, polymers, nanodots, classical salts, ionic liquids, and molten salts. The various forms and characterization techniques of hydrogen bonds are discussed, as well as their potential synergistic effects in conjunction with other chemical interactions. Furthermore, this review offers insights into the potential utilization of hydrogen bonds to further enhance the performance and stability of devices. Key Scientists In 2009, Tsutomu Miyasaka et al. prepared the first perovskite solar cell, which kicked off the research on perovskite light‐absorbing materials. However, the use of liquid electrolytes led to device instability. The transition to all‐solid‐state perovskite solar cells was realized by Nam‐Gyu Park's team in 2012, which was the beginning of high‐efficiency perovskite solar cells. Subsequently, a number of scientists have innovated the preparation ground process. Methods such as two‐step deposition by Michael Grätzel in 2013 and anti‐solvent extraction by Sang II Seok's team in 2014 were instrumental in advancing the development of perovskite. Liyuan Han's team then increased the cell's working area to 1 cm2 without compromising performance, making it possible to compare the performance metrics of perovskite solar cells with those of other types of solar cells on the same scale. Recently, You's team and Pan's team kept updating the world record by obtaining certified efficiencies of 25.6% and 25.8% in 2022 and 2023, respectively. In this review, we address the important role of hydrogen bonding in improving perovskite solar devices through various additives.
Comprehensive SummaryOwing to their distinctive optical and physical properties, organic‐inorganic hybrid perovskite materials have gained significant attention in the field of electronic devices, especially solar cells. The achievement of high‐performance solar cells hinges upon the utilization of top‐notch perovskite thin films. Nevertheless, the fabrication process involving solutions and the polycrystalline nature of perovskite result in the emergence of numerous defects within the perovskite films, consequently exerting a deleterious influence on the overall performance and stability of the devices. Improving the performance and stability of perovskite solar cells by additive engineering to suppress/passivate defects is a viable approach, which involves hydrogen bond interactions in these device engineering processes. This review explores the intrinsic hydrogen bonds in methylammonium and formamidium lead triiodide, while also considering cation rotations, phase transitions, and stability. Moreover, the review classifies additives into distinct categories, including organic small molecules, polymers, nanodots, classical salts, ionic liquids, and molten salts. The various forms and characterization techniques of hydrogen bonds are discussed, as well as their potential synergistic effects in conjunction with other chemical interactions. Furthermore, this review offers insights into the potential utilization of hydrogen bonds to further enhance the performance and stability of devices.Key ScientistsIn 2009, Tsutomu Miyasaka et al. prepared the first perovskite solar cell, which kicked off the research on perovskite light‐absorbing materials. However, the use of liquid electrolytes led to device instability. The transition to all‐solid‐state perovskite solar cells was realized by Nam‐Gyu Park's team in 2012, which was the beginning of high‐efficiency perovskite solar cells. Subsequently, a number of scientists have innovated the preparation ground process. Methods such as two‐step deposition by Michael Grätzel in 2013 and anti‐solvent extraction by Sang II Seok's team in 2014 were instrumental in advancing the development of perovskite. Liyuan Han's team then increased the cell's working area to 1 cm2 without compromising performance, making it possible to compare the performance metrics of perovskite solar cells with those of other types of solar cells on the same scale. Recently, You's team and Pan's team kept updating the world record by obtaining certified efficiencies of 25.6% and 25.8% in 2022 and 2023, respectively.
Author Zhou, Zhong‐min
Zhu, Ming‐zhe
Cao, Guo‐rui
Wang, Tian‐yun
Hao, Yang‐yang
Author_xml – sequence: 1
  givenname: Tian‐yun
  surname: Wang
  fullname: Wang, Tian‐yun
  organization: Qingdao University of Science and Technology
– sequence: 2
  givenname: Yang‐yang
  surname: Hao
  fullname: Hao, Yang‐yang
  organization: Qingdao University of Science and Technology
– sequence: 3
  givenname: Ming‐zhe
  surname: Zhu
  fullname: Zhu, Ming‐zhe
  email: zhouzm@qust.edu.cn
  organization: Qingdao University of Science and Technology
– sequence: 4
  givenname: Guo‐rui
  surname: Cao
  fullname: Cao, Guo‐rui
  organization: Qingdao University of Science and Technology
– sequence: 5
  givenname: Zhong‐min
  surname: Zhou
  fullname: Zhou, Zhong‐min
  organization: Qingdao University of Science and Technology
BookMark eNqFkEFLAzEQRoNUsK1ePQc8b81k0032aJdqlUILKngLaTbR1DWpybbSf--Wih6FgZmB983AG6CeD94gdAlkBITQa70OekQJzQkpxnCC-lAAy3i39LqZEMgKwl7O0CCldcdzTos-msz2dQyvxuNJ8HXCzuOliWGX3l1rsA0RT6112hnfYuVr_NiqVWPw8i20YReaVjl9jk6tapK5-OlD9Hw7fapm2Xxxd1_dzDOdA4cMFNM10FJoDRSEpjXhXFlNcw6aMd4VzcWqFsKOuRKl4SvBeKEMMxYoFfkQXR3vbmL43JrUynXYRt-9lDlhJSWMjXlHjY6UjiGlaKzcRPeh4l4CkQdP8uBJ_nrqAuUx8OUas_-HltXDovrLfgM0g2yZ
CitedBy_id crossref_primary_10_1021_jacs_4c00768
Cites_doi 10.3390/nano11123463
10.1039/C5CP05348J
10.1038/nchem.2324
10.1021/jp411112k
10.1021/acsenergylett.7b00729
10.1021/acsomega.0c03016
10.1002/solr.202000308
10.1021/acsami.1c05903
10.1002/smll.202208119
10.1002/anie.202212268
10.1021/nl500390f
10.1039/D2TA04788H
10.1021/acsaem.8b00060
10.1016/j.nanoen.2019.104313
10.1016/j.egypro.2016.11.322
10.1002/anie.202205012
10.1038/s41560-022-01096-5
10.1039/D1TA09470J
10.1016/j.solener.2016.02.015
10.1063/1.4978071
10.1002/adma.202205028
10.1002/anie.202114793
10.1021/acs.chemmater.8b01851
10.1021/acsami.9b02840
10.1002/adma.202200041
10.1038/nmat4014
10.1021/acs.jpclett.2c01089
10.1063/5.0148876
10.1021/acs.jpcc.7b07721
10.1002/solr.201800066
10.1002/adma.201701073
10.1021/ct100469b
10.1016/j.solener.2021.03.027
10.1021/acs.chemrev.7b00246
10.1016/0038-1098(85)90959-7
10.1002/anie.202217910
10.1002/anie.202109724
10.1021/acs.jpclett.7b03106
10.1016/j.matlet.2018.11.052
10.1002/adfm.201905190
10.1002/aenm.202001920
10.1002/anie.201906017
10.1016/j.jpowsour.2021.230734
10.1002/adma.202201315
10.1002/aenm.202101539
10.1021/acs.jpclett.1c00616
10.1021/acs.jpclett.6b02121
10.1039/C4CC09944C
10.1021/jacs.8b01037
10.1021/ja809598r
10.1038/ncomms15684
10.1016/j.jechem.2020.12.022
10.1016/j.xcrp.2021.100475
10.1021/acsaem.1c01537
10.1039/C6CP02917E
10.1002/aenm.201902650
10.1039/C6SE00061D
10.1016/j.solmat.2015.12.025
10.1016/j.cej.2020.127204
10.1021/acs.nanolett.7b00919
10.1002/anie.201603694
10.1021/acs.chemmater.8b05237
10.1039/C7RA12521F
10.1063/1.1736034
10.1021/acsami.9b11217
10.1039/C6TA08418D
10.1002/adma.201702157
10.1039/C8CS00853A
10.1088/1367-2630/19/1/017802
10.1021/acs.jpcc.8b05570
10.1126/sciadv.1601650
10.1016/j.chempr.2019.02.025
10.1002/anie.202306229
10.1016/j.jallcom.2021.158793
10.1002/solr.202000216
10.1016/j.cpletx.2019.100031
10.1016/j.cej.2020.125724
10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
10.1039/D2TA02084J
10.1039/D1SE00784J
10.1016/j.trechm.2021.04.004
10.1107/S0567739476001551
10.1002/ente.202200211
10.1021/jacs.6b12239
10.1002/smll.202302194
10.1016/j.nanoen.2021.105742
10.1002/adfm.202100931
10.1021/acsenergylett.3c01649
10.1002/adfm.202208392
10.1002/admi.202200421
10.1039/C6SC03542F
10.1002/aenm.201902579
10.1002/solr.202200717
10.1021/cr068040u
10.1002/adfm.202010813
10.1002/pssa.201700730
10.1016/j.solmat.2019.03.045
10.1063/1.439904
10.1016/j.cej.2022.137515
10.1016/j.matlet.2016.07.048
10.1002/adma.202303674
10.1039/C6CP01723A
10.1039/D0TA04589F
10.1073/pnas.95.22.12799
10.1021/acs.jpcc.7b04589
10.1021/acsenergylett.9b01735
10.1021/acsami.2c12539
10.1016/j.joule.2023.03.019
10.1002/anie.201702660
10.1039/D1TA06067H
10.1002/cssc.201600864
10.3390/life8010001
10.1021/acs.jpcc.0c10805
10.1016/j.nanoen.2020.104639
10.1002/anie.202005211
10.1002/ejic.202100077
10.1016/j.cej.2021.130841
10.1021/ic401215x
10.1039/C4TA05284F
10.1016/j.cej.2021.134193
10.1002/smtd.202200787
10.1039/D3CP00261F
10.1021/acs.jpclett.9b03763
10.1021/ar2000937
10.1039/D0MH00745E
10.1002/cssc.201701653
10.1021/acsenergylett.7b00981
10.1021/acsenergylett.0c00801
10.1039/D3EE00202K
10.1126/science.aad1015
10.1021/acsenergylett.2c00776
10.1016/j.cej.2021.133745
10.1021/acs.jpcc.3c02376
10.1021/acs.jpclett.5b01309
10.1002/adma.201903721
10.1016/j.joule.2020.03.007
10.1088/1674-1056/26/10/106301
10.1002/solr.201900304
10.1039/c3ee43822h
10.1007/s40820-022-00992-5
10.1016/j.jechem.2021.02.004
10.1038/s41467-020-17945-4
10.1038/s41598-018-36218-1
10.1002/solr.202000582
10.1021/acsenergylett.0c01190
10.1039/D2EE02277J
10.1016/j.nanoen.2023.108217
10.1016/j.nanoen.2020.105237
10.1002/solr.202100731
10.1021/acs.jpclett.8b02227
10.1002/adfm.202005776
10.1021/acsami.7b02349
10.1007/s41745-019-00139-3
10.3390/app9204393
10.1016/j.joule.2022.07.008
10.1021/acs.nanolett.0c01689
10.1002/smll.202207784
10.1021/acs.jpclett.5b01432
10.1021/ja100936w
10.1039/D0CP06713J
10.1021/acs.chemmater.8b05329
10.1021/acsaem.0c01422
10.1021/acs.jpclett.2c00454
10.1002/advs.202004662
10.1002/solr.202101057
10.1002/solr.202200284
10.1002/advs.202300056
10.1016/j.solmat.2017.09.038
10.1016/j.joule.2021.04.003
10.1021/acs.nanolett.5b04060
10.1002/aenm.201900198
10.1038/srep00591
10.1002/advs.201700387
10.1002/jcc.25073
10.1021/acsenergylett.6b00457
10.1016/j.orgel.2019.01.017
ContentType Journal Article
Copyright 2024 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
Copyright_xml – notice: 2024 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cjoc.202300651
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1614-7065
EndPage 1306
ExternalDocumentID 10_1002_cjoc_202300651
CJOC202300651
Genre reviewArticle
GrantInformation_xml – fundername: Taishan Scholars Project of Shandong Province
  funderid: No. 201909121; No. 201909121
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
29B
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VR
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXDM
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCEZO
CDRFL
CHBEP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
FA0
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P4D
Q.N
Q11
QB0
QRW
R.K
RK2
RNS
ROL
RWI
RX1
RYL
SUPJJ
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
-SB
-S~
.Y3
31~
53G
5XA
5XC
AASGY
AAYXX
ACBWZ
AFUIB
AZFZN
BDRZF
BZXJU
CAJEB
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
PALCI
Q--
RIWAO
RJQFR
SAMSI
U1G
U5L
ID FETCH-LOGICAL-c3171-1a4cd1298cc1218c2d077afc2371c447447238bd88f57a89e7b8476ae4ef12283
IEDL.DBID DR2
ISSN 1001-604X
IngestDate Thu Oct 10 18:46:41 EDT 2024
Fri Aug 23 00:41:53 EDT 2024
Sat Aug 24 00:57:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3171-1a4cd1298cc1218c2d077afc2371c447447238bd88f57a89e7b8476ae4ef12283
Notes Dedicated to the Special Issue of Perovskite.
PQID 3049204457
PQPubID 986331
PageCount 23
ParticipantIDs proquest_journals_3049204457
crossref_primary_10_1002_cjoc_202300651
wiley_primary_10_1002_cjoc_202300651_CJOC202300651
PublicationCentury 2000
PublicationDate 1 June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 1 June 2024
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationYear 2024
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2022 2021; 431 8
2021 2017; 82 117
2020; 20
2019; 11
2018 2017; 5 56
2016 2019 2021; 147 48 23
2020; 16
2008; 108
2020; 11
2020; 10
2023 2023; 13 19
2023; 62
2018; 8
2018; 2
2021 2023 2022; 426 62 9
2017 2021; 1 11
2013; 52
2022; 34
2018 2019; 140 31
2022 2022 2022 2020 2023; 518 13 6 31 11
2014; 14
2014; 13
2015 2017; 7 8
2018; 30
2022; 32
2016 2018; 1 8
2016 2017; 18 17
1998; 95
2022; 447
2022 2023; 10 108
2019; 7
2021 2019; 59 29
2019; 9
2019; 4
2019; 3
2019 2021 2017 2019; 31 864 9 11
2019; 5
2019; 31
2015; 51
2018 2017; 215 121
2015 2019 2018; 6 11 9
2016; 18
2016; 16
2011; 7
2017; 139
2020 2020 2020; 10 77 4
2016; 2
2019; 737
2022; 6
2022; 7
2017; 56
2022; 13
2022; 14
1976; A32
2022; 15
2022; 10
2018; 11
2021; 60
2016; 8
2016; 9
2021; 407
2017; 5
2018; 122
2017; 8
2017; 2
2023; 7
2021; 125
2023; 8
2019; 58
2021 2023; 3 19
2016; 102
2020; 59
1961; 32
2012 2015; 2 350
2021 2022; 61 10
2020; 8
2020; 7
2020; 5
2020; 4
2020; 3
2021; 31
2023; 25
2002; 41
1980; 73
2017; 38
2023 2018; 35 1
2017; 121
1985; 56
2019; 196
2014; 7
2014; 118
2021; 9
2022; 431
2023; 10
2015; 6
2015; 17
2021; 5
2021; 4
2021; 2
2017; 26
2023; 15
2023; 16
2023; 122
2023; 19
2023; 127
2020; 100
2017; 29
2017; 175
2021 2022; 403 14
2009; 131
2021; 220
2015; 7
2020 2021; 4 31
2021; 13
2015 2016; 3 7
2021; 15
2021; 12
2018 2016; 236 183
2021; 11
2022; 61
2020; 71
2010; 132
2022 2019 2021; 6 67 5
2011; 44
2020; 68
2016; 130
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
Matsui T. (e_1_2_6_68_1) 2017; 29
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_95_2
e_1_2_6_118_1
e_1_2_6_118_2
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_91_2
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_110_2
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_99_3
e_1_2_6_38_2
e_1_2_6_99_4
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_99_2
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_148_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
Wang X. (e_1_2_6_142_1) 2023; 13
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_151_1
e_1_2_6_132_2
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_35_2
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_2
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_84_4
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_84_3
e_1_2_6_147_2
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_84_5
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
Liu X. (e_1_2_6_92_1) 2019; 7
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_93_2
e_1_2_6_70_3
e_1_2_6_70_2
e_1_2_6_131_1
e_1_2_6_150_1
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_32_3
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_104_2
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_100_2
e_1_2_6_142_2
e_1_2_6_123_1
e_1_2_6_3_2
e_1_2_6_7_1
e_1_2_6_24_2
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_89_2
e_1_2_6_52_1
e_1_2_6_71_3
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_2
e_1_2_6_119_2
e_1_2_6_71_1
Li M. (e_1_2_6_103_2) 2022; 14
e_1_2_6_90_1
e_1_2_6_130_2
e_1_2_6_130_1
Bu T. (e_1_2_6_135_1) 2016; 9
e_1_2_6_134_1
e_1_2_6_14_1
e_1_2_6_33_2
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_37_3
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_14_3
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_63_1
Yin Y. (e_1_2_6_111_1) 2020; 16
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 13
  start-page: 34053
  year: 2021
  end-page: 34063
  article-title: Manipulated Crystallization and Passivated Defects for Efficient Perovskite Solar Cells via Addition of Ammonium Iodide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  year: 2021
  article-title: Engineering Long‐Term Stability into Perovskite Solar Cells via Application of a Multi‐Functional TFSI‐Based Ionic Liquid
  publication-title: Cell Rep. Phys. Sci.
– volume: 19
  start-page: 2207784
  year: 2023
  article-title: Synergistic Ionic Liquid in Hole Transport Layers for Highly Stable and Efficient Perovskite Solar Cells
  publication-title: Small
– volume: 8
  start-page: 6154
  year: 2017
  end-page: 6159
  article-title: How Strong is the Hydrogen Bond in Hybrid Perovskites?
  publication-title: J. Phys. Chem. Lett.
– volume: 58
  start-page: 13912
  year: 2019
  end-page: 13921
  article-title: Understanding Hydrogen Bonding Interactions in Crosslinked Methylammonium Lead Iodide Crystals: Towards Reducing Moisture and Light Degradation Pathways
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  year: 2023
  article-title: Dredging the Charge‐Carrier Transfer Pathway for Efficient LowDimensional Ruddlesden‐Popper Perovskite Solar Cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 13812
  year: 2019
  end-page: 13821
  article-title: Controllable Cs FA PbI Single‐Crystal Morphology Rationally Regulating the Diffusion and Collision of Micelles toward High‐Performance Photon Detectors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 431 8
  start-page: 2004662
  year: 2022 2021
  article-title: Multifunctional Interface Modifier Ammonium Silicofluoride for Efficient and Stable All‐Inorganic CsPbBr Perovskite Solar Cells Surface Fluorination of TiO Nanocrystals Reinforces Interface Binding of Perovskite Layer for Highly Efficient Solar Cells with Dramatically Enhanced Ultraviolet‐Light Stability
  publication-title: Chem. Eng. J. Adv. Sci.
– volume: 14
  start-page: 2584
  year: 2014
  end-page: 2590
  article-title: Atomistic Origins of High‐Performance in Hybrid Halide Perovskite Solar Cells
  publication-title: Nano Lett.
– volume: 4
  start-page: 10584
  year: 2021
  end-page: 10592
  publication-title: ACS Appl. Energy Mater.
– volume: 25
  start-page: 11286
  year: 2023
  end-page: 11300
  article-title: Hydrogen Bond Properties of Se in [ROH–Se (CH ) ] Complexes (R = H, CH , C H ): Matrix‐Isolation Infrared Spectroscopy and Theoretical Calculations
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 2100731
  year: 2022
  article-title: Sulfonyl and Carbonyl Groups in MSTC Effectively Improve the Performance and Stability of Perovskite Solar Cells
  publication-title: Sol. RRL
– volume: 122
  year: 2023
  article-title: Non‐Covalent Interactions Involving π Effect between Organic Cations in Low‐Dimensional Organic/Inorganic Hybrid Perovskites
  publication-title: Appl. Phys. Lett.
– volume: 10
  start-page: 3688
  year: 2022
  end-page: 3697
  article-title: Fabrication of Stable Perovskite Solar Cells with Efficiency over 20% in Open Air Using in situ Polymerized Bi‐Functional Additives
  publication-title: J. Mater. Chem. A
– volume: 737
  year: 2019
  article-title: Electronic substituent effect on Se‐H⋯N hydrogen bond: A computational study of para‐substituted pyridine‐SeH complexes
  publication-title: Chem. Phys. Lett.
– volume: 5
  start-page: 73
  year: 2017
  article-title: Effect of Guanidinium on Mesoscopic Perovskite Solar Cells
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 3503
  year: 2021
  end-page: 3508
  article-title: Cation Dynamics and Structural Stabilization in Formamidinium Lead Iodide Perovskites
  publication-title: J. Phys. Chem. Lett.
– volume: 68
  year: 2020
  article-title: Efficient and Stable Perovskite Solar Cells Thanks to Dual Functions of Oleyl Amine‐Coated PbSO (PbO) Quantum Dots: Defect Passivation and Moisture/Oxygen Blocking
  publication-title: Nano Energy
– volume: 61
  year: 2022
  article-title: Hydrazide Derivatives for Defect Passivation in Pure CsPbI3 Perovskite Solar Cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 31 864 9 11
  start-page: 1903721 18103 33254
  year: 2019 2021 2017 2019
  end-page: 18112 33262
  article-title: Highly Stable and Efficient FASnI ‐Based Perovskite Solar Cells by Introducing Hydrogen Bonding Enhanced Efficiency and Stability of Perovskite Solar Cell by Adding Polymer Mixture in Perovskite Photoactive Layer Enhancing the Durability and Carrier Selectivity of Perovskite Solar Cells Using a Blend Interlayer Exfoliated Graphitic Carbon Nitride Self‐Recognizing CH NH PbI Grain Boundaries by Hydrogen Bonding Interaction for Improved Perovskite Solar Cells
  publication-title: Adv. Mater. J. Alloys Compd. ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 31278
  year: 2015
  end-page: 31286
  article-title: Rotational Dynamics of Organic Cations in the CH NH PbI Perovskite
  publication-title: Phys. Chem. Chem. Phys.
– volume: 431
  year: 2022
  article-title: Electronic Defect Passivation of FASnI Films by Simultaneous Hydrogen‐bonding and Chlorine Coordination for Highly Efficient and Stable Perovskite Solar Cells
  publication-title: Chem. Eng. J.
– volume: 34
  start-page: 2201315
  year: 2022
  article-title: Strain Modulation for Light‐Stable n–i–p Perovskite/Silicon Tandem Solar Cells
  publication-title: Adv. Mater.
– volume: 95
  start-page: 12799
  year: 1998
  end-page: 12802
  article-title: On the Electronic Nature of Low‐Barrier Hydrogen Bonds in Enzymatic Reactions
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 518 13 6 31 11
  start-page: 5116 2200284 2005776 2200211
  year: 2022 2022 2022 2020 2023
  end-page: 5122
  article-title: Reduced Defects and Enhanced in Perovskite Absorbers through Synergetic Passivating Effect Using 4‐Methoxyphenylacetic Acid Simultaneous Bulk and Surface Defect Passivation for Efficient Inverted Perovskite Solar Cells Collaborative Strategy of Multifunctional Groups in Trifluoroacetamide Achieving Efficient and Stable Perovskite Solar Cells Multifunctional Enhancement for Highly Stable and Efficient Perovskite Solar Cells Amplify the Performance and Stability of Perovskite Solar Cells Using Fluorinated Salt as the Surface Passivator
  publication-title: J. Power Sources J. Phys. Chem. Lett. Sol. RRL Adv. Funct. Mater. Energy Technol.
– volume: 130
  start-page: 139
  year: 2016
  end-page: 147
  article-title: Tabulated Values of the Shockley‐Queisser Limit for Single Junction Solar Cells
  publication-title: Sol. Energy
– volume: 9
  start-page: 23597
  year: 2021
  article-title: Design of Surface Termination for High‐Performance Perovskite Solar Cells
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 449
  year: 2018
  end-page: 463
  article-title: Revealing the Chemistry between Band Gap and Binding Energy for Lead‐/Tin‐Based Trihalide Perovskite Solar Cell Semiconductors
  publication-title: ChemSusChem
– volume: 5 56
  start-page: 1700387 1190
  year: 2018 2017
  end-page: 1212
  article-title: Recent Progress on the Long‐Term Stability of Perovskite Solar Cells Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion
  publication-title: Adv. Sci. Angew. Chem. Int. Ed.
– volume: 14
  start-page: 43362
  year: 2022
  end-page: 43371
  article-title: Improving the Air Resistance of the Precursor Solution for Ambient‐Air Coating of an Sn–Pb Perovskite Film with Superior Photovoltaic Performance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  start-page: 581
  year: 1985
  end-page: 582
  article-title: Cation Rotation in Methylammonium Lead Halides
  publication-title: Solid State Commun.
– volume: 100
  start-page: 21
  year: 2020
  end-page: 30
  article-title: Hydrogen Bonding: A Coulombic σ‐Hole Interaction
  publication-title: J. Indian Inst. Sci.
– volume: 6 11 9
  start-page: 3209 13812 5987
  year: 2015 2019 2018
  end-page: 3212 13821 5997
  article-title: Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α‐[HC(NH ) ]PbI , at 298 K Controllable Cs FA PbI Single‐Crystal Morphology Rationally Regulating the Diffusion and Collision of Micelles toward High‐Performance Photon Detectors Rotational Cation Dynamics in Metal Halide Perovskites: Effect on Phonons and Material Properties
  publication-title: J. Phys. Chem. Lett. ACS Appl. Mater. Interfaces J. Phys. Chem. Lett.
– volume: 16
  start-page: 1009
  year: 2016
  end-page: 1016
  article-title: Guanidinium: A Route to Enhanced Carrier Lifetime and Open‐Circuit Voltage in Hybrid Perovskite Solar Cells
  publication-title: Nano Lett.
– volume: 10
  start-page: 2300056
  year: 2023
  article-title: The Formation Mechanism of (001) Facet Dominated α‐FAPbI Film by Pseudohalide Ions for High‐Performance Perovskite Solar Cells
  publication-title: Adv. Sci.
– volume: 71
  year: 2020
  article-title: Functional Additives for High‐Performance Inverted Planar Perovskite Solar Cells with Exceeding 20% Efficiency: Selective Complexation of Organic Cations in Precursors
  publication-title: Nano Energy
– volume: 13 19
  start-page: 2300700 2302194
  year: 2023 2023
  article-title: Highly Efficient Perovskite/Organic Tandem Solar Cells Enabled by Mixed‐Cation Surface Modulation Protic Amine Carboxylic Acid Ionic Liquids Additives Regulate α‐FAPbI Phase Transition for High‐Efficiency Perovskite Solar Cells
  publication-title: Adv. Energy Mater. Small
– volume: 26
  year: 2017
  article-title: First‐Principles Analysis of the Structural, Electronic, and Elastic Properties of Cubic Organic‐Inorganic Perovskite HC(NH ) PbI
  publication-title: Chin. Phys. B
– volume: 7
  start-page: 88
  year: 2011
  end-page: 96
  article-title: Assessment of the Performance of DFT and DFT‐D Methods for Describing Distance Dependence of Hydrogen‐Bonded Interactions
  publication-title: J. Chem. Theory Comput.
– volume: 2
  start-page: 2686
  year: 2017
  end-page: 2693
  article-title: The Many Faces of Mixed Ion Perovskites: Unraveling and Understanding the Crystallization Process
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 1
  year: 2018
  article-title: Hydrogen Bonds and Life in the Universe
  publication-title: Life
– volume: 11
  start-page: 4172
  year: 2020
  article-title: How Machine Learning Can Help Select Capping Layers to Suppress Perovskite Degradation
  publication-title: Nat. Commun.
– volume: 56
  start-page: 15806
  year: 2017
  end-page: 15817
  article-title: Theoretical Treatment of CH NH PbI Perovskite Solar Cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 3071
  year: 2016
  end-page: 3078
  article-title: A Novel Quadruple‐Cation Absorber for Universal Hysteresis Elimination for High Efficiency and Stable Perovskite Solar Cells
  publication-title: Energy Environ. Sci.
– volume: 132
  start-page: 6498
  year: 2010
  end-page: 6506
  article-title: Revealing Noncovalent Interactions
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 995
  year: 2019
  end-page: 1006
  article-title: Room‐Temperature Molten Salt for Facile Fabrication of Efficient and Stable Perovskite Solar Cells in Ambient Air
  publication-title: Chem
– volume: 5
  start-page: 1246
  year: 2021
  end-page: 1266
  article-title: Decoupling the Effects of Defects on Efficiency and Stability through Phosphonates in Stable Halide Perovskite Solar Cells
  publication-title: Joule
– volume: 8
  start-page: 3829
  year: 2023
  end-page: 3831
  article-title: Are Perovskite Solar Cells Reaching the Efficiency and Voltage Limits?
  publication-title: ACS Energy Lett.
– volume: 38
  start-page: 2802
  year: 2017
  end-page: 2818
  article-title: Hybrid Organic‐Inorganic CH NH PbI Perovskite Building Blocks: Revealing Ultra‐Strong Hydrogen Bonding and Mulliken Inner Complexes and Their Implications in Materials Design
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: 4393
  year: 2019
  article-title: A Review on Improving the Quality of Perovskite Films in Perovskite Solar Cells via the Weak Forces Induced by Additives
  publication-title: Appl. Sci.
– volume: 34
  start-page: 2200041
  year: 2022
  article-title: A Universal Strategy of Intermolecular Exchange to Stabilize α‐FAPbI and Manage Crystal Orientation for High‐Performance Humid‐Air‐Processed Perovskite Solar Cells
  publication-title: Adv. Mater.
– volume: 140 31
  start-page: 6317 1729
  year: 2018 2019
  end-page: 6324 1737
  article-title: Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells Adduct Approach Molecular Orientation Change in Naphthalene Diimide Thin Films Induced by Removal of Thermally Cleavable Substituents
  publication-title: J. Am. Chem. Soc. Chem. Mater.
– volume: 6
  start-page: 2203
  year: 2022
  end-page: 2217
  article-title: Direct and Stable ɑ‐Phase Formation via Ionic Liquid Solvation for Formamidinium‐Based Perovskite Solar Cells
  publication-title: Joule
– volume: 35 1
  start-page: 2303674 900
  year: 2023 2018
  end-page: 909
  article-title: Component Distribution Regulation in Sn‐Pb Perovskite Solar Cells through Selective Molecular Interaction Bifunctional Hydroxylamine Hydrochloride Incorporated Perovskite Films for Efficient and Stable Planar Perovskite Solar Cells
  publication-title: Adv. Mater. ACS Appl. Energy Mater.
– volume: 16
  start-page: 2177
  year: 2023
  end-page: 2186
  article-title: Environmentally Friendly Anti‐Solvent Engineering for High‐Efficiency Tin‐Based Perovskite Solar Cells
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 794
  year: 2022
  end-page: 807
  article-title: Advances and Challenges in Understanding the Microscopic Structure‐Property Performance Relationship in Perovskite Solar Cells
  publication-title: Nat Energy
– volume: 31
  start-page: 2497
  year: 2019
  end-page: 2506
  article-title: Formation and Composition‐Dependent Properties of Alloys of Cubic Halide Perovskites
  publication-title: Chem. Mater.
– volume: 10
  start-page: 2001920
  year: 2020
  article-title: High‐Performance Inverted Perovskite Solar Cells with Operational Stability n‐Type Small Molecule Additive‐Assisted Defect Passivation
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 11148
  year: 2020
  end-page: 11154
  article-title: A Favored Crystal Orientation for Efficient Printable Mesoscopic Perovskite Solar Cells
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 2648
  year: 2016
  end-page: 2655
  article-title: Hydrogen Bonding and Stability of Hybrid Organic‐Inorganic Perovskites
  publication-title: ChemSusChem
– volume: 41
  start-page: 48
  year: 2002
  end-page: 76
  article-title: The Hydrogen Bond in the Solid State
  publication-title: Angew. Chem. Int. Ed.
– volume: 407
  year: 2021
  article-title: Tailoring Multifunctional Passivation Molecules with Halogen Functional Groups for Efficient and Stable Perovskite Photovoltaics
  publication-title: Chem. Eng. J.
– volume: 82 117
  start-page: 6633
  year: 2021 2017
  end-page: 6635
  article-title: Multiple Functional Groups Synergistically Improve the Performance of Inverted Planar Perovskite Solar Cells R. Introduction: Ionic Liquids
  publication-title: Nano Energy Chem. Rev.
– volume: 11
  start-page: 1068
  year: 2020
  end-page: 1074
  article-title: Local Order and Rotational Dynamics in Mixed A‐Cation Lead Iodide Perovskites
  publication-title: J. Phys. Chem. Lett.
– volume: 7 8
  start-page: 703 15684
  year: 2015 2017
  end-page: 711
  article-title: Improved Performance and Stability of Perovskite Solar Cells by Crystal Crosslinking with Alkylphosphonic Acid ω‐Ammonium Chlorides One‐Year Stable Perovskite Solar Cells by 2D/3D Interface Engineering
  publication-title: Nat. Chem. Nat. Commun.
– volume: 8
  start-page: 800
  year: 2016
  end-page: 805
  article-title: Stable α/δ Phase Junction of Formamidinium Lead Iodide Perovskites for Enhanced Near‐Infrared Emission
  publication-title: Chem. Sci.
– volume: 10 108
  start-page: 13048
  year: 2022 2023
  article-title: Sulfonyl Passivation through Synergistic Hydrogen Bonding and Coordination Interactions for Efficient and Stable Perovskite Solar Cells Stable and Environmentally Friendly Perovskite Solar Cells Induced by Grain Boundary Engineering with Self‐Assembled Hydrogen‐Bonded Porous Frameworks
  publication-title: J. Mater. Chem. A Nano Energy
– volume: 73
  start-page: 105
  year: 1980
  end-page: 119
  article-title: The Effect of Pressure on the Raman Spectrum of NH I
  publication-title: J. Chem. Phys.
– volume: 220
  start-page: 70
  year: 2021
  end-page: 79
  article-title: Organic Cation Rotation in HC(NH ) PbI Perovskite Solar Cells: DFT & DOE Approach
  publication-title: Sol. Energy
– volume: 6 67 5
  start-page: 2200717 122 4268
  year: 2022 2019 2021
  end-page: 127
  article-title: Facile Synthesized Acetamidine Thiocyanate with Synergistic Passivation and Crystallization for Efficient Perovskite Solar Cells Hydrogen Bond Enables Highly Efficient and Stable Two‐Dimensional Perovskite Solar Cells Based on 4‐Pyridine‐Ethylamine Highly Stable and Efficient α‐Phase FA‐Based Perovskite Solar Cells Prepared in Ambient Air by Strategically Enhancing the Interaction between Ions in Crystal Lattices
  publication-title: Sol. RRL Org. Electron. Sustainable Energy Fuels
– volume: 7
  start-page: 1033
  year: 2023
  end-page: 1050
  article-title: Covalent Bonding Strategy to Enable Non‐Volatile Organic Cation Perovskite for Highly Stable and Efficient Solar Cells
  publication-title: Joule
– volume: 61
  year: 2022
  article-title: Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion
  publication-title: Angew. Chem. Int. Ed.
– volume: 215 121
  start-page: 1700730
  year: 2018 2017
  article-title: Optical Characteristics and Operational Principles of Hybrid Perovskite Solar Cells Universal Rules for Visible‐Light Absorption in Hybrid Perovskite Materials
  publication-title: Phys. Status Solidi A J. Appl. Phys.
– volume: 125
  start-page: 6555
  year: 2021
  end-page: 6563
  article-title: Tuning the Interactions of Methylammonium Acetate with Acetonitrile to Create Efficient Perovskite Solar Cells
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 4700
  year: 2022
  article-title: Stable Perovskite Solar Cells with 25.17% Efficiency Enabled by Improving Crystallization and Passivating Defects Synergistically
  publication-title: Energy Environ. Sci.
– volume: 44
  start-page: 1223
  year: 2011
  end-page: 1231
  article-title: From Molten Salts to Ionic Liquids: A “Nano” Journey
  publication-title: Acc. Chem. Res.
– volume: 426 62 9
  start-page: 2200421
  year: 2021 2023 2022
  article-title: Ionic Additive Engineering for Stable Planar Perovskite Solar Cells with Efficiency >22% Perovskite Films Regulation Hydrogen‐Bonded Polymer Network for Efficient and Stable Perovskite Solar Cells Waals Epitaxial Growth for High‐Performance Organic‐Free Perovskite Solar Cell: Experimental and Theoretical Insights
  publication-title: Chem. Eng. J. Angew. Chem. Int. Ed. Adv. Mater. Interfaces
– volume: 122
  start-page: 15966
  year: 2018
  end-page: 15972
  article-title: First‐Principles Calculations of the Rotational Motion and Hydrogen Bond Capability of Large Organic Cations in Hybrid Perovskites
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 1974
  year: 2020
  end-page: 1985
  article-title: Stabilization of Black Perovskite Phase in FAPbI and CsPbI
  publication-title: ACS Energy Lett.
– volume: 61 10
  start-page: 163 17782
  year: 2021 2022
  end-page: 169
  article-title: Reducing Defect of Inorganic Perovskite Film by Sulphur‐Containing Lewis Base for Robust Photodetectors Screening Interface Passivation Materials Intelligently through Machine Learning for Highly Efficient Perovskite Solar Cells
  publication-title: J. Energy Chem. J. Mater. Chem. A
– volume: 175
  start-page: 1
  year: 2017
  end-page: 19
  article-title: Interactions between Molecules and Perovskites in Halide Perovskite Solar Cells
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 2
  start-page: 1800066
  year: 2018
  article-title: Performance Enhancement of Perovskite Solar Cells Induced by Lead Acetate as an Additive
  publication-title: Sol. RRL
– volume: 32
  start-page: 2208392
  year: 2022
  article-title: Vapor Deposited Pure α‐FAPbI Perovskite Solar Cell Moisture‐Induced Phase Transition Strategy
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2200787
  year: 2022
  article-title: Suppressing Nickel Oxide/Perovskite Interface Redox Reaction and Defects for Highly Performed and Stable Inverted Perovskite Solar Cells
  publication-title: Small Methods
– volume: 2
  start-page: 2424
  year: 2017
  end-page: 2429
  article-title: Good Vibrations: Locking of Octahedral Tilting in Mixed‐Cation Iodide Perovskites for Solar Cells
  publication-title: ACS Energy Lett.
– volume: 59
  start-page: 15688
  year: 2020
  end-page: 15694
  article-title: Stabilization of Highly Efficient and Stable Phase‐Pure FAPbI Perovskite Solar Cells by Molecularly Tailored 2D‐Overlayers
  publication-title: Angew. Chem. Int. Ed.
– volume: 4 31
  start-page: 902 2100931
  year: 2020 2021
  end-page: 912
  article-title: Surface‐Controlled Oriented Growth of FASnI Crystals for Efficient Lead‐free Perovskite Solar Cells Making Room for Growing Oriented FASnI with Large Grains Cold Precursor Solution
  publication-title: Joule Adv. Funct. Mater.
– volume: 11
  start-page: 2101539
  year: 2021
  article-title: Ionic Liquid Stabilizing High‐Efficiency Tin Halide Perovskite Solar Cells
  publication-title: Adv. Energy Mater.
– volume: 3 19
  start-page: 575 2208119
  year: 2021 2023
  end-page: 588
  article-title: Mitigating Ion Migration in Perovskite Solar Cells Metal‐Organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives
  publication-title: Trends Chem. Small
– volume: 9
  start-page: 50
  year: 2019
  article-title: Significance of Hydrogen Bonding and Other Noncovalent Interactions in Determining Octahedral Tilting in the CH NH PbI Hybrid Organic‐Inorganic Halide Perovskite Solar Cell Semiconductor
  publication-title: Sci. Rep.
– volume: 20
  start-page: 5799
  year: 2020
  end-page: 5806
  article-title: Interface Engineering for Highly Efficient Electron‐Transport‐Layer‐Free Perovskite Solar Cells
  publication-title: Nano Lett.
– volume: 3 7
  start-page: 9067 4757
  year: 2015 2016
  end-page: 9070 4762
  article-title: Assessment of Polyanion (BF and PF ) Substitutions in Hybrid Halide Perovskites CH NH Pb(BF ) and (C H NH ) Pb(BF ) Family of 3D and 2D Perovskites without and with Iodide and Bromide Ions Substitution
  publication-title: J. Mater. Chem. A J. Phys. Chem. Lett.
– volume: 3
  start-page: 1900304
  year: 2019
  article-title: A Review on Energy Band‐Gap Engineering for Perovskite Photovoltaics
  publication-title: Sol. RRL
– volume: 6
  start-page: 2913
  year: 2015
  end-page: 2918
  article-title: Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 703
  year: 2015
  end-page: 711
  article-title: Improved Performance and Stability of Perovskite Solar Cells by Crystal Crosslinking with Alkylphosphonic Acid ω‐Ammonium Chlorides
  publication-title: Nat. Chem.
– volume: 4
  start-page: 2393
  year: 2019
  end-page: 2401
  article-title: Precursor Engineering for a Large‐Area Perovskite Solar Cell with >19% Efficiency
  publication-title: ACS Energy Lett.
– volume: 29
  start-page: 1702157
  year: 2017
  article-title: A Strategy to Produce High Efficiency, High Stability Perovskite Solar Cells Using Functionalized Ionic Liquid‐Dopants
  publication-title: Adv. Mater.
– volume: 7
  start-page: 12717
  year: 2019
  article-title: Pyrrole: An Additives for Improving Efficiency and Stability of the Perovskite Solar Cells
  publication-title: J. Mater. Chem. C
– volume: 108
  start-page: 206
  year: 2008
  end-page: 237
  article-title: Protic Ionic Liquids: Properties and Applications
  publication-title: Chem. Rev.
– volume: 127
  start-page: 15901
  year: 2023
  end-page: 15910
  article-title: Hydrogen Bonds in Lead Halide Perovskites: Insights from Ab Initio Molecular Dynamics
  publication-title: J. Phys. Chem. C
– volume: A32
  start-page: 751
  year: 1976
  end-page: 767
  article-title: Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides
  publication-title: Acta Crystallogr., Sect. A
– volume: 102
  start-page: 87
  year: 2016
  end-page: 95
  article-title: Perovskite FA MA PbI for Solar Cells: Films Formation and Properties
  publication-title: Energy Procedia
– volume: 4
  start-page: 2000216
  year: 2020
  article-title: Structurally Reinforced All‐Inorganic CsPbI Br Perovskite by Nonionic Polymer via Coordination and Hydrogen Bonds
  publication-title: Sol. RRL
– volume: 7
  start-page: 982
  year: 2014
  end-page: 988
  article-title: Formami‐dinium Lead Trihalide: A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 4068
  year: 2017
  end-page: 4074
  article-title: Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead‐Halide Perovskites
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 2079
  year: 2022
  end-page: 2083
  article-title: Smooth and Compact FASnI Films for Lead‐Free Perovskite Solar Cells with over 14% Efficiency
  publication-title: ACS Energy Lett.
– volume: 5
  start-page: 25723
  year: 2020
  end-page: 25732
  article-title: Effects of the van der Waals Interactions on Structural and Electronic Properties of CH NH (Pb,Sn)(I,Br,Cl) Halide Perovskites
  publication-title: ACS Omega
– volume: 26
  start-page: 17802
  year: 2017
  article-title: Temperature‐Dependent Photoluminescence on Organic‐Inorganic Metal Halide Perovskite CH NH PbI Cl Prepared on ZnO/FTO Substrates Using a Two‐Step Method
  publication-title: Chinese Phys. B
– volume: 2
  year: 2016
  article-title: Entropy‐Driven Structural Transition and Kinetic Trapping in Formamidinium Lead Iodide Perovskite
  publication-title: Sci. Adv.
– volume: 10
  start-page: 1902579
  year: 2020
  article-title: Additive Engineering for Efficient and Stable Perovskite Solar Cells
  publication-title: Adv. Energy Mater.
– volume: 196
  start-page: 105
  year: 2019
  end-page: 110
  article-title: Effects of Thiourea on the Perovskite Crystallization for Fully Printable Solar Cells
  publication-title: Sol. Energy Mat. Sol. C
– volume: 2 350
  start-page: 591 944
  year: 2012 2015
  end-page: 948
  article-title: Lead Iodide Perovskite Sensitized All‐Solid‐State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% Efficient and stable large‐area perovskite solar cells with inorganic charge extraction layers
  publication-title: Sci. Rep. Science
– volume: 1 8
  start-page: 1014 2900
  year: 2016 2018
  end-page: 1020 2905
  article-title: Improved Phase Stability of Formami‐dinium Lead Triiodide Perovskite by Strain Relaxation Cations Substitution Tuning Phase Stability in Hybrid Perovskite Single Crystals by Strain Relaxation
  publication-title: ACS Energy Lett. RSC Adv.
– volume: 31
  start-page: 2010813
  year: 2021
  article-title: Inorganic Ammonium Halide Additive Strategy for Highly Efficient and Stable CsPbI Perovskite Solar Cells
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 224
  year: 2020
  end-page: 230
  article-title: Efficient and Stable Ideal Bandgap Perovskite Solar Cell Achieved by a Small Amount of Tin Substituted Methylammonium Lead Iodide Electron
  publication-title: Mater. Lett.
– volume: 59 29
  start-page: 755 1905190
  year: 2021 2019
  end-page: 762
  article-title: Synergistic Passivation of MAPbI Perovskite Solar Cells by Compositional Engineering Using Acetamidinium Bromide Additives Triamine‐Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells
  publication-title: J. Energy Chem. Adv. Funct. Mater.
– volume: 447
  year: 2022
  article-title: Synergetic Surface Defect Passivation towards Efficient and Stable Inorganic Perovskite Solar Cells
  publication-title: Chem. Eng. J.
– volume: 15
  start-page: 1490
  year: 2021
  end-page: 1497
  article-title: Understanding the “Molten Salt” Synthesis of MAPbI – Characterization of New Lead(II)‐Ammine Complexes as Intermediates
  publication-title: Eur. J. Inorg. Chem.
– volume: 3
  start-page: 10447
  year: 2020
  end-page: 10452
  article-title: Stable and Efficient Tin‐Based Perovskite Solar Cell via Semi‐Conducting‐Insulating Structure
  publication-title: ACS Appl. Energy Mater.
– volume: 18 17
  start-page: 18112 4151
  year: 2016 2017
  end-page: 18118 4157
  article-title: Organic‐Inorganic Interactions of Single Crystalline Organo Lead Halide Perovskites Studied by Raman Spectroscopy Critical Role of Methylammonium Librational Motion in Methylammonium Lead Iodide (CH NH PbI ) Perovskite Photochemistry
  publication-title: Phys. Chem. Chem. Phys. Nano Lett.
– volume: 7
  start-page: 2208
  year: 2020
  end-page: 2236
  publication-title: Mater. Horiz.
– volume: 60
  start-page: 23164
  year: 2021
  end-page: 23170
  article-title: Rational Surface‐Defect Control Designed Passivation for High‐Efficiency Inorganic Perovskite Solar Cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 2101057
  year: 2022
  article-title: Urea Derivative‐Promoted CsPbI Br Perovskite Solar Cells with High Open‐Circuit Voltage
  publication-title: Sol. RRL
– volume: 29
  start-page: 1606258
  year: 2017
  article-title: Room Temperature Formation of Highly Crystalline Multication Perovskites for Efficient
  publication-title: Low‐Cost Solar Cells. Adv. Mater.
– volume: 121
  start-page: 14051
  year: 2017
  end-page: 14059
  article-title: Rotational Energy Barriers and Relaxation Times of the Organic Cation in Cubic Methylammonium Lead/Tin Halide Perovskites from First Principles
  publication-title: J. Phys. Chem. C
– volume: 1 11
  start-page: 308 3463
  year: 2017 2021
  end-page: 316
  article-title: Lead‐Free Pseudo‐Three‐Dimensional Organic–Inorganic Iodobismuthates for Photovoltaic Applications Degradation of Perovskite Thin Films and Solar Cells with Candle Soot C/Ag Electrode Exposed in a Control Ambient
  publication-title: Sustain. Enerr. Fuels Nanomaterials
– volume: 121
  start-page: 26188
  year: 2017
  end-page: 26195
  article-title: Theoretical Study on Rotational Controllability of Organic Cations in Organic‐Inorganic Hybrid Perovskites: Hydrogen Bonds and Halogen Substitution
  publication-title: J. Phys. Chem. C
– volume: 236 183
  start-page: 706 391
  year: 2018 2016
  end-page: 709 393
  article-title: Fabrication of Hole‐Transport‐Free Perovskite Solar Cells Using 5‐Ammonium Valeric Acid Iodide additive and Carbon as Counter Electrode Improved Oxidation Stability of Tin Iodide Cubic Perovskite Treated by 5‐Ammonium Valeric Acid Iodide
  publication-title: Mater. Lett. Mater. Lett.
– volume: 5
  start-page: 2000582
  year: 2021
  article-title: Efficient and Stable Perovskite Solar Cells by Fluorinated Ionic Liquid Induced Component Interaction
  publication-title: Sol. RRL
– volume: 32
  start-page: 510
  year: 1961
  end-page: 519
  article-title: Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
  publication-title: J. Appl. Phys.
– volume: 403 14
  start-page: 537
  year: 2021 2022
  article-title: Hydrazinium Cation Mixed FAPbI ‐Based Perovskite with 1D/3D Hybrid Orientated Crystallization of FA‐based Perovskite via Hydrogen‐Bonded Polymer Network for Efficient and Stable Solar Cells
  publication-title: Chem. Eng. J. Nat. Commun.
– volume: 147 48 23
  start-page: 255 3842 7376
  year: 2016 2019 2021
  end-page: 275 3867 7385
  article-title: Stability of Perovskite Solar Cells Imperfections and Their Passivation in Halide Perovskite Solar Cells Mixed Formamidinium‐Methylammonium Lead Iodide Perovskite from First‐Principles: Hydrogen‐ Bonding Impact on the Electronic Properties
  publication-title: Sol. Energy Mater. Sol. Cells Chem. Soc. Rev. Phys. Chem. Chem. Phys.
– volume: 5
  start-page: 2508
  year: 2020
  end-page: 2511
  article-title: Realizing a Cosolvent System for Stable Tin‐Based Perovskite Solar Cells Using a Two‐Step Deposition Approach
  publication-title: ACS Energy Lett.
– volume: 118
  start-page: 16458
  year: 2014
  end-page: 16462
  article-title: Formamidinium‐Containing Metal‐Halide: An Alternative Material for Near‐IR Absorption Perovskite Solar Cells
  publication-title: J. Phys. Chem. C
– volume: 61
  year: 2022
  article-title: Strain Control to Stabilize Perovskite Solar Cells
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  start-page: 897
  year: 2014
  end-page: 903
  article-title: Solvent Engineering for High‐Performance Inorganic−Organic Hybrid Perovskite Solar Cells
  publication-title: Nat. Mater.
– volume: 10 77 4
  start-page: 1902650 2000308
  year: 2020 2020 2020
  article-title: Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells Passivation of Defects in Perovskite Solar cell: From a Chemistry Point of View Toward Efficient and Stable Perovskite Solar Cells: Choosing Appropriate Passivator to Specific Defects
  publication-title: Adv. Energy Mater. Nano Energy Sol. RRL
– volume: 18
  start-page: 27109
  year: 2016
  end-page: 27118
  article-title: A Close Examination of the Structure and Dynamics of HC(NH ) PbI by MD Simulations and Group Theory
  publication-title: Phys. Chem. Chem. Phys.
– volume: 15
  start-page: 17
  year: 2023
  article-title: Stabilizing Buried Interface via Synergistic Effect of Fluorine and Sulfonyl Functional Groups Toward Efficient and Stable Perovskite Solar Cells
  publication-title: Nano‐Micro Lett.
– volume: 34
  start-page: 2205028
  year: 2022
  article-title: A Versatile Molten‐Salt Induction Strategy to Achieve Efficient CsPbI Perovskite Solar Cells with a High Open‐Circuit Voltage >1.2 V
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1701073
  year: 2017
  article-title: Thermally Stable MAPbI Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm Achieved by Additive Engineering
  publication-title: Adv. Mater.
– volume: 51
  start-page: 4180
  year: 2015
  end-page: 4183
  article-title: Complete Structure and Cation Orientation in the Perovskite Photovoltaic Methylammonium Lead Iodide between 100 and 352 K
  publication-title: Chem. Commun.
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  article-title: Organometal Halide Perovskites as Visible‐Light Sensitizers for Photovoltaic Cells
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 9019
  year: 2013
  end-page: 9038
  article-title: Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and near‐Infrared Photo‐luminescent Properties
  publication-title: Inorg. Chem.
– volume: 13
  start-page: 3089
  year: 2022
  end-page: 3095
  article-title: The Role of Thermal Fluctuations and Vibrational Entropy: A Theoretical Insight into the δ‐to‐α Transition of FAPbI
  publication-title: J. Phys. Chem. Lett.
– volume: 30
  start-page: 5194
  year: 2018
  end-page: 5204
  article-title: Mixed A‐Cation Perovskites for Solar Cells: Atomic‐Scale Insights into Structural Distortion, Hydrogen Bonding, and Electronic Properties
  publication-title: Chem. Mater.
– volume: 9
  start-page: 1900198
  year: 2019
  article-title: High‐Performance Perovskite Solar Cells with Excellent Humidity and Thermo‐Stability via Fluorinated Perylenediimide
  publication-title: Adv. Energy Mater.
– ident: e_1_2_6_110_2
  doi: 10.3390/nano11123463
– ident: e_1_2_6_44_1
  doi: 10.1039/C5CP05348J
– ident: e_1_2_6_129_1
  doi: 10.1038/nchem.2324
– ident: e_1_2_6_48_1
  doi: 10.1021/jp411112k
– ident: e_1_2_6_69_1
  doi: 10.1021/acsenergylett.7b00729
– ident: e_1_2_6_10_1
  doi: 10.1021/acsomega.0c03016
– ident: e_1_2_6_32_3
  doi: 10.1002/solr.202000308
– ident: e_1_2_6_107_1
  doi: 10.1021/acsami.1c05903
– ident: e_1_2_6_33_2
  doi: 10.1002/smll.202208119
– ident: e_1_2_6_34_1
  doi: 10.1002/anie.202212268
– ident: e_1_2_6_40_1
  doi: 10.1021/nl500390f
– ident: e_1_2_6_89_2
  doi: 10.1039/D2TA04788H
– ident: e_1_2_6_104_2
  doi: 10.1021/acsaem.8b00060
– ident: e_1_2_6_77_1
  doi: 10.1016/j.nanoen.2019.104313
– ident: e_1_2_6_64_1
  doi: 10.1016/j.egypro.2016.11.322
– ident: e_1_2_6_90_1
  doi: 10.1002/anie.202205012
– ident: e_1_2_6_4_1
  doi: 10.1038/s41560-022-01096-5
– ident: e_1_2_6_74_1
  doi: 10.1039/D1TA09470J
– ident: e_1_2_6_8_1
  doi: 10.1016/j.solener.2016.02.015
– ident: e_1_2_6_39_2
  doi: 10.1063/1.4978071
– ident: e_1_2_6_151_1
  doi: 10.1002/adma.202205028
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.202114793
– ident: e_1_2_6_105_1
  doi: 10.1021/acs.chemmater.8b01851
– ident: e_1_2_6_78_1
  doi: 10.1021/acsami.9b02840
– ident: e_1_2_6_51_1
  doi: 10.1002/adma.202200041
– ident: e_1_2_6_76_1
  doi: 10.1038/nmat4014
– ident: e_1_2_6_84_2
  doi: 10.1021/acs.jpclett.2c01089
– ident: e_1_2_6_13_1
  doi: 10.1063/5.0148876
– ident: e_1_2_6_61_1
  doi: 10.1021/acs.jpcc.7b07721
– ident: e_1_2_6_123_1
  doi: 10.1002/solr.201800066
– ident: e_1_2_6_139_1
  doi: 10.1002/adma.201701073
– ident: e_1_2_6_17_1
  doi: 10.1021/ct100469b
– ident: e_1_2_6_63_1
  doi: 10.1016/j.solener.2021.03.027
– ident: e_1_2_6_132_2
  doi: 10.1021/acs.chemrev.7b00246
– ident: e_1_2_6_23_1
  doi: 10.1016/0038-1098(85)90959-7
– ident: e_1_2_6_82_1
  doi: 10.1002/anie.202217910
– ident: e_1_2_6_94_1
  doi: 10.1002/anie.202109724
– ident: e_1_2_6_15_1
  doi: 10.1021/acs.jpclett.7b03106
– ident: e_1_2_6_118_1
  doi: 10.1016/j.matlet.2018.11.052
– ident: e_1_2_6_93_2
  doi: 10.1002/adfm.201905190
– ident: e_1_2_6_96_1
  doi: 10.1002/aenm.202001920
– ident: e_1_2_6_81_1
  doi: 10.1002/anie.201906017
– ident: e_1_2_6_84_1
  doi: 10.1016/j.jpowsour.2021.230734
– ident: e_1_2_6_97_1
  doi: 10.1002/adma.202201315
– ident: e_1_2_6_148_1
  doi: 10.1002/aenm.202101539
– ident: e_1_2_6_67_1
  doi: 10.1021/acs.jpclett.1c00616
– volume: 13
  start-page: 2300700
  year: 2023
  ident: e_1_2_6_142_1
  article-title: Highly Efficient Perovskite/Organic Tandem Solar Cells Enabled by Mixed‐Cation Surface Modulation
  publication-title: Adv. Energy Mater.
  contributor:
    fullname: Wang X.
– ident: e_1_2_6_147_2
  doi: 10.1021/acs.jpclett.6b02121
– ident: e_1_2_6_25_1
  doi: 10.1039/C4CC09944C
– ident: e_1_2_6_95_1
  doi: 10.1021/jacs.8b01037
– ident: e_1_2_6_37_2
  doi: 10.1021/acsami.9b02840
– ident: e_1_2_6_2_1
  doi: 10.1021/ja809598r
– ident: e_1_2_6_119_2
  doi: 10.1038/ncomms15684
– ident: e_1_2_6_93_1
  doi: 10.1016/j.jechem.2020.12.022
– ident: e_1_2_6_146_1
  doi: 10.1016/j.xcrp.2021.100475
– ident: e_1_2_6_144_1
  doi: 10.1021/acsaem.1c01537
– ident: e_1_2_6_60_1
  doi: 10.1039/C6CP02917E
– ident: e_1_2_6_32_1
  doi: 10.1002/aenm.201902650
– ident: e_1_2_6_110_1
  doi: 10.1039/C6SE00061D
– ident: e_1_2_6_70_1
  doi: 10.1016/j.solmat.2015.12.025
– ident: e_1_2_6_86_1
  doi: 10.1016/j.cej.2020.127204
– ident: e_1_2_6_24_2
  doi: 10.1021/acs.nanolett.7b00919
– ident: e_1_2_6_35_2
  doi: 10.1002/anie.201603694
– ident: e_1_2_6_95_2
  doi: 10.1021/acs.chemmater.8b05237
– ident: e_1_2_6_5_1
– ident: e_1_2_6_54_2
  doi: 10.1039/C7RA12521F
– ident: e_1_2_6_7_1
  doi: 10.1063/1.1736034
– ident: e_1_2_6_99_4
  doi: 10.1021/acsami.9b11217
– ident: e_1_2_6_117_1
  doi: 10.1039/C6TA08418D
– ident: e_1_2_6_134_1
  doi: 10.1002/adma.201702157
– ident: e_1_2_6_70_2
  doi: 10.1039/C8CS00853A
– ident: e_1_2_6_109_1
  doi: 10.1088/1367-2630/19/1/017802
– ident: e_1_2_6_116_1
  doi: 10.1021/acs.jpcc.8b05570
– ident: e_1_2_6_56_1
  doi: 10.1126/sciadv.1601650
– ident: e_1_2_6_136_1
  doi: 10.1016/j.chempr.2019.02.025
– ident: e_1_2_6_14_2
  doi: 10.1002/anie.202306229
– ident: e_1_2_6_99_2
  doi: 10.1016/j.jallcom.2021.158793
– ident: e_1_2_6_102_1
  doi: 10.1002/solr.202000216
– ident: e_1_2_6_127_1
  doi: 10.1016/j.cpletx.2019.100031
– ident: e_1_2_6_103_1
  doi: 10.1016/j.cej.2020.125724
– ident: e_1_2_6_19_1
  doi: 10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U
– ident: e_1_2_6_91_1
  doi: 10.1039/D2TA02084J
– ident: e_1_2_6_71_3
  doi: 10.1039/D1SE00784J
– ident: e_1_2_6_33_1
  doi: 10.1016/j.trechm.2021.04.004
– ident: e_1_2_6_62_1
  doi: 10.1107/S0567739476001551
– ident: e_1_2_6_84_5
  doi: 10.1002/ente.202200211
– volume: 16
  start-page: 224
  year: 2020
  ident: e_1_2_6_111_1
  article-title: Efficient and Stable Ideal Bandgap Perovskite Solar Cell Achieved by a Small Amount of Tin Substituted Methylammonium Lead Iodide Electron
  publication-title: Mater. Lett.
  contributor:
    fullname: Yin Y.
– ident: e_1_2_6_46_1
  doi: 10.1021/jacs.6b12239
– ident: e_1_2_6_142_2
  doi: 10.1002/smll.202302194
– ident: e_1_2_6_132_1
  doi: 10.1016/j.nanoen.2021.105742
– ident: e_1_2_6_100_2
  doi: 10.1002/adfm.202100931
– ident: e_1_2_6_6_1
  doi: 10.1021/acsenergylett.3c01649
– ident: e_1_2_6_52_1
  doi: 10.1002/adfm.202208392
– ident: e_1_2_6_14_3
  doi: 10.1002/admi.202200421
– ident: e_1_2_6_50_1
  doi: 10.1039/C6SC03542F
– ident: e_1_2_6_31_1
  doi: 10.1002/aenm.201902579
– ident: e_1_2_6_71_1
  doi: 10.1002/solr.202200717
– ident: e_1_2_6_133_1
  doi: 10.1021/cr068040u
– ident: e_1_2_6_122_1
  doi: 10.1002/adfm.202010813
– ident: e_1_2_6_39_1
  doi: 10.1002/pssa.201700730
– volume: 14
  start-page: 537
  year: 2022
  ident: e_1_2_6_103_2
  article-title: Orientated Crystallization of FA‐based Perovskite via Hydrogen‐Bonded Polymer Network for Efficient and Stable Solar Cells
  publication-title: Nat. Commun.
  contributor:
    fullname: Li M.
– ident: e_1_2_6_88_1
  doi: 10.1016/j.solmat.2019.03.045
– ident: e_1_2_6_16_1
  doi: 10.1063/1.439904
– ident: e_1_2_6_80_1
  doi: 10.1016/j.cej.2022.137515
– ident: e_1_2_6_118_2
  doi: 10.1016/j.matlet.2016.07.048
– ident: e_1_2_6_104_1
  doi: 10.1002/adma.202303674
– ident: e_1_2_6_24_1
  doi: 10.1039/C6CP01723A
– ident: e_1_2_6_113_1
  doi: 10.1039/D0TA04589F
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.95.22.12799
– ident: e_1_2_6_45_1
  doi: 10.1021/acs.jpcc.7b04589
– volume: 9
  start-page: 3071
  year: 2016
  ident: e_1_2_6_135_1
  article-title: A Novel Quadruple‐Cation Absorber for Universal Hysteresis Elimination for High Efficiency and Stable Perovskite Solar Cells
  publication-title: Energy Environ. Sci.
  contributor:
    fullname: Bu T.
– ident: e_1_2_6_140_1
  doi: 10.1021/acsenergylett.9b01735
– ident: e_1_2_6_143_1
  doi: 10.1021/acsami.2c12539
– ident: e_1_2_6_11_1
  doi: 10.1016/j.joule.2023.03.019
– ident: e_1_2_6_36_1
  doi: 10.1002/anie.201702660
– ident: e_1_2_6_66_1
  doi: 10.1021/acs.chemmater.8b01851
– ident: e_1_2_6_108_1
  doi: 10.1039/D1TA06067H
– ident: e_1_2_6_42_1
  doi: 10.1002/cssc.201600864
– ident: e_1_2_6_20_1
  doi: 10.3390/life8010001
– ident: e_1_2_6_73_1
  doi: 10.1021/acs.jpcc.0c10805
– ident: e_1_2_6_85_1
  doi: 10.1016/j.nanoen.2020.104639
– ident: e_1_2_6_47_1
  doi: 10.1002/anie.202005211
– ident: e_1_2_6_149_1
  doi: 10.1002/ejic.202100077
– ident: e_1_2_6_14_1
  doi: 10.1016/j.cej.2021.130841
– ident: e_1_2_6_57_1
  doi: 10.1021/ic401215x
– volume: 7
  start-page: 12717
  year: 2019
  ident: e_1_2_6_92_1
  article-title: Pyrrole: An Additives for Improving Efficiency and Stability of the Perovskite Solar Cells
  publication-title: J. Mater. Chem. C
  contributor:
    fullname: Liu X.
– ident: e_1_2_6_147_1
  doi: 10.1039/C4TA05284F
– ident: e_1_2_6_38_1
  doi: 10.1002/pssa.201700730
– ident: e_1_2_6_130_1
  doi: 10.1016/j.cej.2021.134193
– ident: e_1_2_6_121_1
  doi: 10.1002/smtd.202200787
– ident: e_1_2_6_128_1
  doi: 10.1039/D3CP00261F
– ident: e_1_2_6_58_1
  doi: 10.1021/acs.jpclett.9b03763
– ident: e_1_2_6_137_1
  doi: 10.1021/ar2000937
– ident: e_1_2_6_30_1
  doi: 10.1039/D0MH00745E
– ident: e_1_2_6_26_1
  doi: 10.1002/cssc.201701653
– ident: e_1_2_6_53_1
  doi: 10.1021/acsenergylett.7b00981
– ident: e_1_2_6_125_1
  doi: 10.1021/acsenergylett.0c00801
– ident: e_1_2_6_83_1
  doi: 10.1039/D3EE00202K
– ident: e_1_2_6_3_2
  doi: 10.1126/science.aad1015
– ident: e_1_2_6_87_1
  doi: 10.1021/acsenergylett.2c00776
– volume: 29
  start-page: 1606258
  year: 2017
  ident: e_1_2_6_68_1
  article-title: Room Temperature Formation of Highly Crystalline Multication Perovskites for Efficient
  publication-title: Low‐Cost Solar Cells. Adv. Mater.
  contributor:
    fullname: Matsui T.
– ident: e_1_2_6_115_1
  doi: 10.1016/j.cej.2021.133745
– ident: e_1_2_6_9_1
  doi: 10.1021/acs.jpcc.3c02376
– ident: e_1_2_6_22_1
  doi: 10.1021/acs.jpclett.5b01309
– ident: e_1_2_6_99_1
  doi: 10.1002/adma.201903721
– ident: e_1_2_6_100_1
  doi: 10.1016/j.joule.2020.03.007
– ident: e_1_2_6_59_1
  doi: 10.1088/1674-1056/26/10/106301
– ident: e_1_2_6_112_1
  doi: 10.1002/solr.201900304
– ident: e_1_2_6_49_1
  doi: 10.1039/c3ee43822h
– ident: e_1_2_6_126_1
  doi: 10.1007/s40820-022-00992-5
– ident: e_1_2_6_89_1
  doi: 10.1016/j.jechem.2021.02.004
– ident: e_1_2_6_114_1
  doi: 10.1038/s41467-020-17945-4
– ident: e_1_2_6_43_1
  doi: 10.1038/s41598-018-36218-1
– ident: e_1_2_6_145_1
  doi: 10.1002/solr.202000582
– ident: e_1_2_6_75_1
  doi: 10.1021/acsenergylett.0c01190
– ident: e_1_2_6_120_1
  doi: 10.1039/D2EE02277J
– ident: e_1_2_6_91_2
  doi: 10.1016/j.nanoen.2023.108217
– ident: e_1_2_6_32_2
  doi: 10.1016/j.nanoen.2020.105237
– ident: e_1_2_6_72_1
  doi: 10.1002/solr.202100731
– ident: e_1_2_6_37_3
  doi: 10.1021/acs.jpclett.8b02227
– ident: e_1_2_6_38_2
  doi: 10.1063/1.4978071
– ident: e_1_2_6_84_4
  doi: 10.1002/adfm.202005776
– ident: e_1_2_6_99_3
  doi: 10.1021/acsami.7b02349
– ident: e_1_2_6_18_1
  doi: 10.1007/s41745-019-00139-3
– ident: e_1_2_6_29_1
  doi: 10.3390/app9204393
– ident: e_1_2_6_141_1
  doi: 10.1016/j.joule.2022.07.008
– ident: e_1_2_6_138_1
  doi: 10.1021/acs.nanolett.0c01689
– ident: e_1_2_6_150_1
  doi: 10.1002/smll.202207784
– ident: e_1_2_6_37_1
  doi: 10.1021/acs.jpclett.5b01432
– ident: e_1_2_6_41_1
  doi: 10.1021/ja100936w
– ident: e_1_2_6_70_3
  doi: 10.1039/D0CP06713J
– ident: e_1_2_6_65_1
  doi: 10.1021/acs.chemmater.8b05329
– ident: e_1_2_6_101_1
  doi: 10.1021/acsaem.0c01422
– ident: e_1_2_6_55_1
  doi: 10.1021/acs.jpclett.2c00454
– ident: e_1_2_6_130_2
  doi: 10.1002/advs.202004662
– ident: e_1_2_6_98_1
  doi: 10.1002/solr.202101057
– ident: e_1_2_6_84_3
  doi: 10.1002/solr.202200284
– ident: e_1_2_6_124_1
  doi: 10.1002/advs.202300056
– ident: e_1_2_6_119_1
  doi: 10.1038/nchem.2324
– ident: e_1_2_6_28_1
  doi: 10.1016/j.solmat.2017.09.038
– ident: e_1_2_6_79_1
  doi: 10.1016/j.joule.2021.04.003
– ident: e_1_2_6_106_1
  doi: 10.1021/acs.nanolett.5b04060
– ident: e_1_2_6_131_1
  doi: 10.1002/aenm.201900198
– ident: e_1_2_6_3_1
  doi: 10.1038/srep00591
– ident: e_1_2_6_35_1
  doi: 10.1002/advs.201700387
– ident: e_1_2_6_27_1
  doi: 10.1002/jcc.25073
– ident: e_1_2_6_54_1
  doi: 10.1021/acsenergylett.6b00457
– ident: e_1_2_6_71_2
  doi: 10.1016/j.orgel.2019.01.017
SSID ssj0027726
Score 2.401627
Snippet Comprehensive Summary Owing to their distinctive optical and physical properties, organic‐inorganic hybrid perovskite materials have gained significant...
Comprehensive SummaryOwing to their distinctive optical and physical properties, organic‐inorganic hybrid perovskite materials have gained significant...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 1284
SubjectTerms Additive
Cations
Charge transfer
Chemical interactions
Cooperative effects
Defects
Electrolytes
Electrolytic cells
Electronic equipment
Fabrication
Hydrogen
Hydrogen bond
Hydrogen bonding
Hydrogen bonds
Inhibition
Ionic liquids
Liquids
Molten salts
Optical properties
Performance measurement
Perovskite solar cells
Perovskites
Phase transitions
Photovoltaic cells
Photovoltaics
Physical properties
Polymers
Reviews
Salts
Scientists
Solar cells
Solvent extraction
Stability
Synergistic effect
Thin films
Title Hydrogen Bonds in Perovskite for Efficient and Stable Photovoltaic
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.202300651
https://www.proquest.com/docview/3049204457
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcH6UUvvsVqlT0IntIm6aa7PWpoKQW1iIXewr6CVUmkSQX99M4mTR9eBIUcksOGZDKz89vN7n8ArjyuY9b1MNJEEDuYAgJHdALquBppmRvaNsUu_rv7zmBMh5NgsraLv9SHWE642cgo-msb4EJmrZVoqHpJrQQhIjRmUTv-sWp6looe_dWIixX11qzOkNNx6aRSbXT91mbzzay0Qs11YC0yTn8PRPWs5UKT1-Y8l0319UPG8T8vsw-7CxwlN6X_HMCWSQ5hO6yqwB3B7eBTz1L0MmILEGdkmpCRmaUfmZ31JUi8pFeIUGDuIiLRBOFVvhkyek7zFHu-XEzVMYz7vadw4CzqLjgKacJzPEGVRg7gSnlIAMrXLmMiVn6beYpShgcmeqk5jwMmeNcwiTmuIww1sWfldE6glqSJOQXiSspdyRBDNKIKx-APlGFthqPyWAvRrcN1ZffovZTXiEohZT-yNomWNqlDo_os0SLMssj-I_RdSgNWB7-w7y93icLhQ7i8OvtLo3PYwXNaLhdrQC2fzc0FgkkuLwvn-wY6l9dk
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwGG0MHvDibyOK2oOJp8E2unUcdUImAhIDCbema7uIms3AMNG_3q8bA_FioskuW9Jl-9bX99p9fR9Cl5YnI9q0AGnciQygAMfgrkMMU4Ja9hRpqGwXf6_vBiPSGTtFNqHeC5P7QywX3DQysvFaA1wvSNdXrqHiOdEehKChgUZhArQJmHc0Nm8f7dWci2YV17TTkOGaZFz4Npp2fb39Oi-txOZ3yZpxTnsHhcXT5qkmL7V5GtbE5w8jx3-9zi7aXihSfJ13oT20oeJ9VPaLQnAH6Cb4kNMEOhrWNYhneBLjgZom7zO98ItB9OJW5kMB9IV5LDHo1_BV4cFTkiYw-KV8Ig7RqN0a-oGxKL1gCBAUlmFxIiRIAU8IC0SAsKVJKY-E3aCWIITCAVwfSs-LHMq9pqIh0JzLFVGRpR11jlApTmJ1jLAZEs8MKSgRCWrFA_w7QtEGhYl5JDlvVtBVEXj2ljtssNxL2WY6JmwZkwqqFt-FLZA2Y_o3oW0S4tAKsrMA_3IX5nce_OXZyV8aXaByMOx1Wfeuf3-KtuA6ybPHqqiUTufqDHRKGp5nPfEL2vTbhA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDTFAv_hanU3MQPHXrj7TpjtptzKlziIPdQpqkOJV2bJ2gf70v7bofXgSFXlpIaV_z8j4vTb4PoUvLlxGtW-Bp3I0MCAGuwT2XGKYEWvYVcVS2i_-h67X7pDNwB0u7-HN9iPmEm_aMbLzWDj6SUW0hGipeEy1BCAgNURTyn3XiObZOvxpP9iLlolnBNS00ZHgmGRSyjaZdW22_GpYWrLlMrFnIae0gXjxsvtLkrTpNw6r4-qHj-J-32UXbMx7F13kH2kNrKt5Hm0FRBu4A3bQ_5TiBboZ1BeIJHsa4p8bJx0RP-2JAXtzMVCggeGEeSwz0Gr4r3HtJ0gSGvpQPxSHqt5rPQduYFV4wBOCEZVicCAkg4AthAQIIW5qU8kjYDrUEIRQOiPSh9P3IpdyvKxpCkPO4IiqytJ7OESrFSayOETZD4pshBQ6RwCo-eL8rFHUopOWR5LxeRleF3dko19dguZKyzbRN2NwmZVQpPgub-dmE6Z-EtkmIS8vIzuz7y11Y0HkM5mcnf2l0gTZ6jRa7v-3enaItuEzypWMVVErHU3UGkJKG51k__AZbn9oz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen+Bonds+in+Perovskite+for+Efficient+and+Stable+Photovoltaic&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Wang%2C+Tian%E2%80%90yun&rft.au=Hao%2C+Yang%E2%80%90yang&rft.au=Zhu%2C+Ming%E2%80%90zhe&rft.au=Cao%2C+Guo%E2%80%90rui&rft.date=2024-06-01&rft.pub=WILEY%E2%80%90VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=42&rft.issue=11&rft.spage=1284&rft.epage=1306&rft_id=info:doi/10.1002%2Fcjoc.202300651&rft.externalDBID=10.1002%252Fcjoc.202300651&rft.externalDocID=CJOC202300651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon