Preparation of Shell/Core Atypical Spiral Conductive Microfibers and Composite Membrane with Good Conductivity and Mechanical Properties
Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (...
Saved in:
Published in | Macromolecular materials and engineering Vol. 307; no. 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (PDMS) are composited into membranes, and the microfibers and composite membranes are characterized. The research results show that the conductivity of shell conductive bulbine‐torta (BT) microfibers and the composite membrane are 0.125 1 and 0.880 2 s cm−1, respectively. The maximum strain of a single PEDOT: PSS core–shell conductive BT microfibers is 36.92% under a stress of 213.10 kPa, and the maximum strain of the composite membrane is 107.46% under a stress of 470.56 kPa, indicating that the composite membrane can effectively improve the properties and practicability of the conductive fiber. The change of resistivity of the composite membrane in the stretched state is observed, and it is found that the resistivity first steadily increases and then increases exponentially, indicating that composite membrane has potential application prospects in the fields of thin membrane sensors, electronic skins, smart wearable textiles, etc.
A new type of shell/core conductive microfibers with atypical spiral structure is prepared based on microfluidic spinning technology, and the conductive microfibers are composited with PDMS materials to form a membrane. The motion amplitude and frequency of the mover can be reflected through different resistance changes, and the composite membrane also can be used to prepare flexible electrodes. |
---|---|
AbstractList | Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (PDMS) are composited into membranes, and the microfibers and composite membranes are characterized. The research results show that the conductivity of shell conductive bulbine‐torta (BT) microfibers and the composite membrane are 0.125 1 and 0.880 2 s cm−1, respectively. The maximum strain of a single PEDOT: PSS core–shell conductive BT microfibers is 36.92% under a stress of 213.10 kPa, and the maximum strain of the composite membrane is 107.46% under a stress of 470.56 kPa, indicating that the composite membrane can effectively improve the properties and practicability of the conductive fiber. The change of resistivity of the composite membrane in the stretched state is observed, and it is found that the resistivity first steadily increases and then increases exponentially, indicating that composite membrane has potential application prospects in the fields of thin membrane sensors, electronic skins, smart wearable textiles, etc. Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (PDMS) are composited into membranes, and the microfibers and composite membranes are characterized. The research results show that the conductivity of shell conductive bulbine‐torta (BT) microfibers and the composite membrane are 0.125 1 and 0.880 2 s cm−1, respectively. The maximum strain of a single PEDOT: PSS core–shell conductive BT microfibers is 36.92% under a stress of 213.10 kPa, and the maximum strain of the composite membrane is 107.46% under a stress of 470.56 kPa, indicating that the composite membrane can effectively improve the properties and practicability of the conductive fiber. The change of resistivity of the composite membrane in the stretched state is observed, and it is found that the resistivity first steadily increases and then increases exponentially, indicating that composite membrane has potential application prospects in the fields of thin membrane sensors, electronic skins, smart wearable textiles, etc. A new type of shell/core conductive microfibers with atypical spiral structure is prepared based on microfluidic spinning technology, and the conductive microfibers are composited with PDMS materials to form a membrane. The motion amplitude and frequency of the mover can be reflected through different resistance changes, and the composite membrane also can be used to prepare flexible electrodes. Abstract Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (PDMS) are composited into membranes, and the microfibers and composite membranes are characterized. The research results show that the conductivity of shell conductive bulbine‐torta (BT) microfibers and the composite membrane are 0.125 1 and 0.880 2 s cm −1 , respectively. The maximum strain of a single PEDOT: PSS core–shell conductive BT microfibers is 36.92% under a stress of 213.10 kPa, and the maximum strain of the composite membrane is 107.46% under a stress of 470.56 kPa, indicating that the composite membrane can effectively improve the properties and practicability of the conductive fiber. The change of resistivity of the composite membrane in the stretched state is observed, and it is found that the resistivity first steadily increases and then increases exponentially, indicating that composite membrane has potential application prospects in the fields of thin membrane sensors, electronic skins, smart wearable textiles, etc. |
Author | Yu, Hui Ding, Shuiting Guo, Yongshi |
Author_xml | – sequence: 1 givenname: Shuiting surname: Ding fullname: Ding, Shuiting organization: Wuyi University – sequence: 2 givenname: Yongshi surname: Guo fullname: Guo, Yongshi organization: Wuyi University – sequence: 3 givenname: Hui orcidid: 0000-0001-9333-5966 surname: Yu fullname: Yu, Hui email: hui.yu@wyu.edu.cn organization: Wuyi University |
BookMark | eNqFkE9rwkAQxZdioWp77TnQc3T2jyZ7FLG2YKhgew67yQRXkmy6Gyt-g37sRi312NMMvN97w7wB6dW2RkIeKYwoABtXqsIRA8YABMAN6VPBZchgInrnPQ4jIdkdGXi_A6BRLHmffK8dNsqp1tg6sEWw2WJZjufWYTBrj43JVBlsGuO6Mbd1vs9a84VBYjJnC6PR-UDVeSdVjfWm7RSstFM1BgfTboOltfnVZ9rjmU4w26r6HL12tkHXGvT35LZQpceH3zkkH8-L9_lLuHpbvs5nqzDjNIIQdUxBAwqkVOSS6UKgzBVy5FppKqTUCAy5mIqIYyZjpiQvpnkx1XExYZwPydMlt3H2c4--TXd27-ruZMoiPokETEB01OhCdX9677BIG2cq5Y4phfTUdnpqO_1ruzPIi-FgSjz-Q6fJLFlcvT_sN4fg |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_150741 |
Cites_doi | 10.1002/marc.201900111 10.1002/mame.201900736 10.1039/C3LC51414E 10.1002/adma.201601504 10.1039/D1LC00252J 10.1021/acsami.9b10928 10.1016/j.coco.2019.12.001 10.3390/ma12020273 10.1002/adma.201903733 10.1002/adma.201501729 10.1021/acsami.9b23083 10.1021/acs.chemmater.9b01500 10.1103/PhysRevLett.104.074301 10.1146/annurev-fluid-120710-101244 10.1002/adhm.201900435 10.1002/adma.200904270 10.18533/journal.v6i8.1232 10.1016/j.nanoen.2020.105361 10.1002/adfm.202006213 10.1002/adma.201701664 10.1038/s41596-018-0051-4 10.1002/mame.202000804 10.1119/1.1996110 10.1016/j.jcis.2019.09.113 10.1039/D0TA00227E 10.1002/mame.202000716 10.1016/j.biomaterials.2016.10.040 10.1021/acsami.0c12410 10.1002/adma.201906994 10.1088/1758-5090/aa7307 10.1021/acsapm.0c01084 10.1039/C9MH00528E 10.1088/0957-4484/25/28/285203 10.1002/adma.201605765 10.1038/nature04969 10.1002/adma.201806133 10.1016/j.cej.2016.12.137 10.1016/j.cej.2021.131551 10.1002/advs.201901579 10.1039/C9TC00310J 10.1002/ange.201705667 10.1002/adfm.201910504 10.1039/D0QM00308E 10.1002/adma.201902869 10.1002/adma.201904752 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/mame.202200400 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1439-2054 |
EndPage | n/a |
ExternalDocumentID | 10_1002_mame_202200400 MAME202200400 |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJCF ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AVUZU AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HCIFZ HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KB. KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PDBOC PTHSS Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c3170-eb810b0e4e114d92bf4e9dae3e3bab1499be02e346473ec982a93f6df6b8f5233 |
IEDL.DBID | DR2 |
ISSN | 1438-7492 |
IngestDate | Thu Oct 10 22:42:51 EDT 2024 Thu Sep 12 16:47:44 EDT 2024 Sat Aug 24 01:09:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3170-eb810b0e4e114d92bf4e9dae3e3bab1499be02e346473ec982a93f6df6b8f5233 |
ORCID | 0000-0001-9333-5966 |
PQID | 2735740504 |
PQPubID | 1016395 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2735740504 crossref_primary_10_1002_mame_202200400 wiley_primary_10_1002_mame_202200400_MAME202200400 |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Macromolecular materials and engineering |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2019; 8 2017; 6 2019; 7 2021; 21 2019; 6 2021; 3 2019; 31 2019; 11 2021; 425 2019; 12 2010; 104 2021; 306 2020; 17 2014; 25 2020; 305 2020; 12 2020; 78 2017; 29 2020; 32 2017; 114 2017; 9 2017; 315 2020; 8 2010; 22 2020; 4 2015; 27 2019; 40 2020; 30 1958; 26 2020; 558 2014; 14 2016; 28 2012; 44 2006; 442 2018; 13 2017; 129 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 78 year: 2020 publication-title: Nano Energy – volume: 6 start-page: 54 year: 2017 publication-title: J. Arts Humanit. – volume: 129 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 205 year: 1958 publication-title: Am. J. Phys. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 6649 year: 2016 publication-title: Adv. Mater. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 98 year: 2021 publication-title: ACS Appl. Polym. Mater. – volume: 12 start-page: 273 year: 2019 publication-title: Materials – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 1938 year: 2019 publication-title: Mater Horiz. – volume: 8 start-page: 9496 year: 2020 publication-title: J. Mater. Chem. A – volume: 22 start-page: 2663 year: 2010 publication-title: Adv. Mater. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 21 start-page: 2594 year: 2021 publication-title: Lab Chip – volume: 442 start-page: 282 year: 2006 publication-title: Nanture – volume: 12 start-page: 6112 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 5238 year: 2019 publication-title: Chem. Mater. – volume: 27 start-page: 5512 year: 2015 publication-title: Adv. Mater. – volume: 17 start-page: 134 year: 2020 publication-title: Compos. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 315 start-page: 25 year: 2017 publication-title: Chem. Eng. J. – volume: 8 year: 2019 publication-title: Adv. Healthcare Mater. – volume: 40 year: 2019 publication-title: Macromol. Rapid Commun. – volume: 305 year: 2020 publication-title: Macromol. Mater. Eng. – volume: 44 start-page: 249 year: 2012 publication-title: Annu. Rev. Fluid Mech. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 306 year: 2021 publication-title: Macromol. Mater. Eng. – volume: 4 start-page: 3130 year: 2020 publication-title: Mater. Chem. Front. – volume: 13 start-page: 2557 year: 2018 publication-title: Nat. Protoc. – volume: 14 start-page: 2145 year: 2014 publication-title: Lab Chip – volume: 114 start-page: 121 year: 2017 publication-title: Biomaterials – volume: 558 start-page: 115 year: 2020 publication-title: Interfacial Sci. – volume: 9 year: 2017 publication-title: Biofabrication – volume: 25 year: 2014 publication-title: Nanotechnology – volume: 425 year: 2021 publication-title: Chem. Eng. J. – volume: 7 start-page: 4374 year: 2019 publication-title: J. Mater. Chem. C – ident: e_1_2_9_46_1 doi: 10.1002/marc.201900111 – ident: e_1_2_9_12_1 doi: 10.1002/mame.201900736 – ident: e_1_2_9_39_1 doi: 10.1039/C3LC51414E – ident: e_1_2_9_44_1 doi: 10.1002/adma.201601504 – ident: e_1_2_9_32_1 doi: 10.1039/D1LC00252J – ident: e_1_2_9_7_1 doi: 10.1021/acsami.9b10928 – ident: e_1_2_9_23_1 doi: 10.1016/j.coco.2019.12.001 – ident: e_1_2_9_25_1 doi: 10.3390/ma12020273 – ident: e_1_2_9_26_1 doi: 10.1002/adma.201903733 – ident: e_1_2_9_38_1 doi: 10.1002/adma.201501729 – ident: e_1_2_9_6_1 doi: 10.1021/acsami.9b23083 – ident: e_1_2_9_18_1 doi: 10.1021/acs.chemmater.9b01500 – ident: e_1_2_9_35_1 doi: 10.1103/PhysRevLett.104.074301 – ident: e_1_2_9_36_1 doi: 10.1146/annurev-fluid-120710-101244 – ident: e_1_2_9_37_1 doi: 10.1002/adhm.201900435 – ident: e_1_2_9_4_1 doi: 10.1002/adma.200904270 – ident: e_1_2_9_1_1 doi: 10.18533/journal.v6i8.1232 – ident: e_1_2_9_21_1 doi: 10.1016/j.nanoen.2020.105361 – ident: e_1_2_9_24_1 doi: 10.1002/adfm.202006213 – ident: e_1_2_9_43_1 doi: 10.1002/adma.201701664 – ident: e_1_2_9_30_1 doi: 10.1038/s41596-018-0051-4 – ident: e_1_2_9_11_1 doi: 10.1002/mame.202000804 – ident: e_1_2_9_34_1 doi: 10.1119/1.1996110 – ident: e_1_2_9_29_1 doi: 10.1016/j.jcis.2019.09.113 – ident: e_1_2_9_2_1 doi: 10.1039/D0TA00227E – ident: e_1_2_9_20_1 doi: 10.1002/mame.202000716 – ident: e_1_2_9_31_1 doi: 10.1016/j.biomaterials.2016.10.040 – ident: e_1_2_9_42_1 doi: 10.1002/marc.201900111 – ident: e_1_2_9_33_1 doi: 10.1021/acsami.0c12410 – ident: e_1_2_9_10_1 doi: 10.1002/adma.201906994 – ident: e_1_2_9_27_1 doi: 10.1088/1758-5090/aa7307 – ident: e_1_2_9_14_1 doi: 10.1021/acsapm.0c01084 – ident: e_1_2_9_40_1 doi: 10.1039/C9MH00528E – ident: e_1_2_9_3_1 doi: 10.1088/0957-4484/25/28/285203 – ident: e_1_2_9_41_1 doi: 10.1002/adma.201605765 – ident: e_1_2_9_5_1 doi: 10.1038/nature04969 – ident: e_1_2_9_19_1 doi: 10.1002/adma.201806133 – ident: e_1_2_9_28_1 doi: 10.1016/j.cej.2016.12.137 – ident: e_1_2_9_22_1 doi: 10.1016/j.cej.2021.131551 – ident: e_1_2_9_9_1 doi: 10.1002/advs.201901579 – ident: e_1_2_9_16_1 doi: 10.1039/C9TC00310J – ident: e_1_2_9_45_1 doi: 10.1002/ange.201705667 – ident: e_1_2_9_8_1 doi: 10.1002/adfm.201910504 – ident: e_1_2_9_17_1 doi: 10.1039/D0QM00308E – ident: e_1_2_9_13_1 doi: 10.1002/adma.201902869 – ident: e_1_2_9_15_1 doi: 10.1002/adma.201904752 |
SSID | ssj0017893 |
Score | 2.4129522 |
Snippet | Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic... Abstract Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | calcium alginate conductive fibers Electrical resistivity Mechanical properties Membranes Microfibers microfluidic spinning Microfluidics poly (3,4‐ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) Polydimethylsiloxane Smart sensors spiral fibers Strain Textiles |
Title | Preparation of Shell/Core Atypical Spiral Conductive Microfibers and Composite Membrane with Good Conductivity and Mechanical Properties |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.202200400 https://www.proquest.com/docview/2735740504 |
Volume | 307 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQF2DgUUAUCvKAxJQ2sZ3XWJWWCimoolTqFtnJeYEmqC0D_AJ-Nr6k6YMFCbZEia3EZ999Z999R8iNMWmJn3LPSpPAtkQQghWEjgFyjpfYrhKJ62NycvToDcbiYeJONrL4S36I1YYbroxCX-MCl2reXpOGTuUUaS4ZK-ahUcIO9zGm6-5pxR_l-EHBuoslvi1fhKxibbRZe7v5tlVaQ81NwFpYnP4hkdW3loEmL633hWolnz9oHP_zM0fkYAlHaaecP8dkB7I62e1WVeDqZH-DsPCEfA1nUJKF5xnNNR1hGGm7m8-AdhYfbyhwOsKj-1fazTOkkjXKlEYY9KcxNGVOZZZS1EEYK2aewNR8dQYUt4PpfZ6n63bGPSjejgCTk4uuh3hyMEMK2FMy7veeuwNrWcvBSjjWtgEVOLayQYBxwNKQKS0gTCVw4Eoq46aFCmwGXHjC55CEAZMh116qPRVo4yzzM1LL8gzOCRXSUUIzobUCY01V4KaOkL5yEpe7AlSD3FayjN9Kyo64JGdmMY5zvBrnBmlWoo6XS3ceGzzn-gbG2qJBWCGzX3qJo07UW91d_KXRJdnD6zLHsUlqi9k7XBmws1DXxYT-BgM--B8 |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730,50826,50935 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCk1sZztWpVCWIMQicYviZHyBJlUpB_gCPhtP0rSUCxIcs9hKPB7PG3vmDcCRMWmpnwnPytLAtmQQohWEjgFyjpfarpKp61NycnTjdR_l5ZNbRxNSLkzFDzHecCPNKNdrUnDakG5OWEN7SY94LjkvJ-IszBudF1S94fRuzCDl-EHJu0tFvi1fhrzmbbR5c7r9tF2agM3vkLW0OWcroOqvrUJNnk_ehuok_fhB5Piv31mF5REiZa1qCq3BDObrsNCuC8Gtw9I3zsIN-LwdYMUXXuSs0OyeIkmb7WKArDV875PM2T2d3r-wdpETm6xZT1lEcX-aolNeWZJnjJYhChczT7BnPjtHRjvC7Lwoskk74yGUb0dI-cll17d0eDAgFthNeDzrPLS71qicg5UKKm-DKnBsZaNE44NlIVdaYpglKFCoRBlPLVRocxTSk77ANAx4EgrtZdpTgTb-stiCubzIcRuYTBwlNZdaKzQGVQVu5sjEV07qCleiasBxLcy4X7F2xBU_M49pnOPxODdgr5Z1PNLe19hAOtc3SNaWDeCl0H7pJY5aUWd8tfOXRoew0H2IruPri5urXVik-1XK4x7MDQdvuG-wz1AdlLP7C3vW_Dc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xSCwHxCrK6gMSp6iJ7WzHqlDWoEpQhLhEcTw-0aRqy4E_4LPxJN04IXHMYh8827M98wbgwoa0PNQicHQeuY6MYnSi2LNAzgty11cy90MqTk6egtuevH_z3xaq-Gt-iNmBG1lG5a_JwAfaNOekof2sTzSXnFd6uAyrFmpwq-Orrdfee292kxBGFfEudfl2QhnzKXGjy5u_Z_gdmOZocxGzVkGnsw1bE7TIWrV4d2AJi11Yb0-btO3C5gKf4B58d4dYc3mXBSsNe6Ysz2a7HCJrjb8GJA_2TDfrH6xdFsT0an0dSygnz1DmyIhlhWbkIiiVy37Bvl2hAhmd1rKbstTzcRa9V38nSLXD1dRdOtgfEkPrPvQ61y_tW2fSasHJBbWeQRV5rnJRot0f6ZgrIzHWGQoUKlN2FxUrdDkKGchQYB5HPIuFCbQJVGTsXlYcwEpRFngITGaekoZLYxTaYKciX3syC5WX-8KXqBpwOV3ndFAzaqQ1dzJPSSLpTCINOJmKIZ1Y1ii1cMsPLcp0ZQN4JZo_ZkmTVnI9ezr6z6BzWOteddLHu6eHY9ig13U14gmsjIefeGphyVidTTTvB0SV21w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Shell%2FCore+Atypical+Spiral+Conductive+Microfibers+and+Composite+Membrane+with+Good+Conductivity+and+Mechanical+Properties&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Ding%2C+Shuiting&rft.au=Guo%2C+Yongshi&rft.au=Yu%2C+Hui&rft.date=2022-11-01&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=307&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmame.202200400&rft.externalDBID=10.1002%252Fmame.202200400&rft.externalDocID=MAME202200400 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon |