Preparation of Shell/Core Atypical Spiral Conductive Microfibers and Composite Membrane with Good Conductivity and Mechanical Properties

Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular materials and engineering Vol. 307; no. 11
Main Authors Ding, Shuiting, Guo, Yongshi, Yu, Hui
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (PDMS) are composited into membranes, and the microfibers and composite membranes are characterized. The research results show that the conductivity of shell conductive bulbine‐torta (BT) microfibers and the composite membrane are 0.125 1 and 0.880 2 s cm−1, respectively. The maximum strain of a single PEDOT: PSS core–shell conductive BT microfibers is 36.92% under a stress of 213.10 kPa, and the maximum strain of the composite membrane is 107.46% under a stress of 470.56 kPa, indicating that the composite membrane can effectively improve the properties and practicability of the conductive fiber. The change of resistivity of the composite membrane in the stretched state is observed, and it is found that the resistivity first steadily increases and then increases exponentially, indicating that composite membrane has potential application prospects in the fields of thin membrane sensors, electronic skins, smart wearable textiles, etc. A new type of shell/core conductive microfibers with atypical spiral structure is prepared based on microfluidic spinning technology, and the conductive microfibers are composited with PDMS materials to form a membrane. The motion amplitude and frequency of the mover can be reflected through different resistance changes, and the composite membrane also can be used to prepare flexible electrodes.
AbstractList Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (PDMS) are composited into membranes, and the microfibers and composite membranes are characterized. The research results show that the conductivity of shell conductive bulbine‐torta (BT) microfibers and the composite membrane are 0.125 1 and 0.880 2 s cm−1, respectively. The maximum strain of a single PEDOT: PSS core–shell conductive BT microfibers is 36.92% under a stress of 213.10 kPa, and the maximum strain of the composite membrane is 107.46% under a stress of 470.56 kPa, indicating that the composite membrane can effectively improve the properties and practicability of the conductive fiber. The change of resistivity of the composite membrane in the stretched state is observed, and it is found that the resistivity first steadily increases and then increases exponentially, indicating that composite membrane has potential application prospects in the fields of thin membrane sensors, electronic skins, smart wearable textiles, etc.
Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (PDMS) are composited into membranes, and the microfibers and composite membranes are characterized. The research results show that the conductivity of shell conductive bulbine‐torta (BT) microfibers and the composite membrane are 0.125 1 and 0.880 2 s cm−1, respectively. The maximum strain of a single PEDOT: PSS core–shell conductive BT microfibers is 36.92% under a stress of 213.10 kPa, and the maximum strain of the composite membrane is 107.46% under a stress of 470.56 kPa, indicating that the composite membrane can effectively improve the properties and practicability of the conductive fiber. The change of resistivity of the composite membrane in the stretched state is observed, and it is found that the resistivity first steadily increases and then increases exponentially, indicating that composite membrane has potential application prospects in the fields of thin membrane sensors, electronic skins, smart wearable textiles, etc. A new type of shell/core conductive microfibers with atypical spiral structure is prepared based on microfluidic spinning technology, and the conductive microfibers are composited with PDMS materials to form a membrane. The motion amplitude and frequency of the mover can be reflected through different resistance changes, and the composite membrane also can be used to prepare flexible electrodes.
Abstract Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic spinning technology (MST). The formation mechanism of the special‐shaped spiral structure is analyzed. The microfibers and polydimethylsiloxane (PDMS) are composited into membranes, and the microfibers and composite membranes are characterized. The research results show that the conductivity of shell conductive bulbine‐torta (BT) microfibers and the composite membrane are 0.125 1 and 0.880 2 s cm −1 , respectively. The maximum strain of a single PEDOT: PSS core–shell conductive BT microfibers is 36.92% under a stress of 213.10 kPa, and the maximum strain of the composite membrane is 107.46% under a stress of 470.56 kPa, indicating that the composite membrane can effectively improve the properties and practicability of the conductive fiber. The change of resistivity of the composite membrane in the stretched state is observed, and it is found that the resistivity first steadily increases and then increases exponentially, indicating that composite membrane has potential application prospects in the fields of thin membrane sensors, electronic skins, smart wearable textiles, etc.
Author Yu, Hui
Ding, Shuiting
Guo, Yongshi
Author_xml – sequence: 1
  givenname: Shuiting
  surname: Ding
  fullname: Ding, Shuiting
  organization: Wuyi University
– sequence: 2
  givenname: Yongshi
  surname: Guo
  fullname: Guo, Yongshi
  organization: Wuyi University
– sequence: 3
  givenname: Hui
  orcidid: 0000-0001-9333-5966
  surname: Yu
  fullname: Yu, Hui
  email: hui.yu@wyu.edu.cn
  organization: Wuyi University
BookMark eNqFkE9rwkAQxZdioWp77TnQc3T2jyZ7FLG2YKhgew67yQRXkmy6Gyt-g37sRi312NMMvN97w7wB6dW2RkIeKYwoABtXqsIRA8YABMAN6VPBZchgInrnPQ4jIdkdGXi_A6BRLHmffK8dNsqp1tg6sEWw2WJZjufWYTBrj43JVBlsGuO6Mbd1vs9a84VBYjJnC6PR-UDVeSdVjfWm7RSstFM1BgfTboOltfnVZ9rjmU4w26r6HL12tkHXGvT35LZQpceH3zkkH8-L9_lLuHpbvs5nqzDjNIIQdUxBAwqkVOSS6UKgzBVy5FppKqTUCAy5mIqIYyZjpiQvpnkx1XExYZwPydMlt3H2c4--TXd27-ruZMoiPokETEB01OhCdX9677BIG2cq5Y4phfTUdnpqO_1ruzPIi-FgSjz-Q6fJLFlcvT_sN4fg
CitedBy_id crossref_primary_10_1016_j_cej_2024_150741
Cites_doi 10.1002/marc.201900111
10.1002/mame.201900736
10.1039/C3LC51414E
10.1002/adma.201601504
10.1039/D1LC00252J
10.1021/acsami.9b10928
10.1016/j.coco.2019.12.001
10.3390/ma12020273
10.1002/adma.201903733
10.1002/adma.201501729
10.1021/acsami.9b23083
10.1021/acs.chemmater.9b01500
10.1103/PhysRevLett.104.074301
10.1146/annurev-fluid-120710-101244
10.1002/adhm.201900435
10.1002/adma.200904270
10.18533/journal.v6i8.1232
10.1016/j.nanoen.2020.105361
10.1002/adfm.202006213
10.1002/adma.201701664
10.1038/s41596-018-0051-4
10.1002/mame.202000804
10.1119/1.1996110
10.1016/j.jcis.2019.09.113
10.1039/D0TA00227E
10.1002/mame.202000716
10.1016/j.biomaterials.2016.10.040
10.1021/acsami.0c12410
10.1002/adma.201906994
10.1088/1758-5090/aa7307
10.1021/acsapm.0c01084
10.1039/C9MH00528E
10.1088/0957-4484/25/28/285203
10.1002/adma.201605765
10.1038/nature04969
10.1002/adma.201806133
10.1016/j.cej.2016.12.137
10.1016/j.cej.2021.131551
10.1002/advs.201901579
10.1039/C9TC00310J
10.1002/ange.201705667
10.1002/adfm.201910504
10.1039/D0QM00308E
10.1002/adma.201902869
10.1002/adma.201904752
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/mame.202200400
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1439-2054
EndPage n/a
ExternalDocumentID 10_1002_mame_202200400
MAME202200400
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AVUZU
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HCIFZ
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KB.
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PDBOC
PTHSS
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3170-eb810b0e4e114d92bf4e9dae3e3bab1499be02e346473ec982a93f6df6b8f5233
IEDL.DBID DR2
ISSN 1438-7492
IngestDate Thu Oct 10 22:42:51 EDT 2024
Thu Sep 12 16:47:44 EDT 2024
Sat Aug 24 01:09:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-eb810b0e4e114d92bf4e9dae3e3bab1499be02e346473ec982a93f6df6b8f5233
ORCID 0000-0001-9333-5966
PQID 2735740504
PQPubID 1016395
PageCount 9
ParticipantIDs proquest_journals_2735740504
crossref_primary_10_1002_mame_202200400
wiley_primary_10_1002_mame_202200400_MAME202200400
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular materials and engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 8
2017; 6
2019; 7
2021; 21
2019; 6
2021; 3
2019; 31
2019; 11
2021; 425
2019; 12
2010; 104
2021; 306
2020; 17
2014; 25
2020; 305
2020; 12
2020; 78
2017; 29
2020; 32
2017; 114
2017; 9
2017; 315
2020; 8
2010; 22
2020; 4
2015; 27
2019; 40
2020; 30
1958; 26
2020; 558
2014; 14
2016; 28
2012; 44
2006; 442
2018; 13
2017; 129
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 78
  year: 2020
  publication-title: Nano Energy
– volume: 6
  start-page: 54
  year: 2017
  publication-title: J. Arts Humanit.
– volume: 129
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 205
  year: 1958
  publication-title: Am. J. Phys.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 6649
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 98
  year: 2021
  publication-title: ACS Appl. Polym. Mater.
– volume: 12
  start-page: 273
  year: 2019
  publication-title: Materials
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 1938
  year: 2019
  publication-title: Mater Horiz.
– volume: 8
  start-page: 9496
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 22
  start-page: 2663
  year: 2010
  publication-title: Adv. Mater.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 21
  start-page: 2594
  year: 2021
  publication-title: Lab Chip
– volume: 442
  start-page: 282
  year: 2006
  publication-title: Nanture
– volume: 12
  start-page: 6112
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 5238
  year: 2019
  publication-title: Chem. Mater.
– volume: 27
  start-page: 5512
  year: 2015
  publication-title: Adv. Mater.
– volume: 17
  start-page: 134
  year: 2020
  publication-title: Compos. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 315
  start-page: 25
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 8
  year: 2019
  publication-title: Adv. Healthcare Mater.
– volume: 40
  year: 2019
  publication-title: Macromol. Rapid Commun.
– volume: 305
  year: 2020
  publication-title: Macromol. Mater. Eng.
– volume: 44
  start-page: 249
  year: 2012
  publication-title: Annu. Rev. Fluid Mech.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 306
  year: 2021
  publication-title: Macromol. Mater. Eng.
– volume: 4
  start-page: 3130
  year: 2020
  publication-title: Mater. Chem. Front.
– volume: 13
  start-page: 2557
  year: 2018
  publication-title: Nat. Protoc.
– volume: 14
  start-page: 2145
  year: 2014
  publication-title: Lab Chip
– volume: 114
  start-page: 121
  year: 2017
  publication-title: Biomaterials
– volume: 558
  start-page: 115
  year: 2020
  publication-title: Interfacial Sci.
– volume: 9
  year: 2017
  publication-title: Biofabrication
– volume: 25
  year: 2014
  publication-title: Nanotechnology
– volume: 425
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 4374
  year: 2019
  publication-title: J. Mater. Chem. C
– ident: e_1_2_9_46_1
  doi: 10.1002/marc.201900111
– ident: e_1_2_9_12_1
  doi: 10.1002/mame.201900736
– ident: e_1_2_9_39_1
  doi: 10.1039/C3LC51414E
– ident: e_1_2_9_44_1
  doi: 10.1002/adma.201601504
– ident: e_1_2_9_32_1
  doi: 10.1039/D1LC00252J
– ident: e_1_2_9_7_1
  doi: 10.1021/acsami.9b10928
– ident: e_1_2_9_23_1
  doi: 10.1016/j.coco.2019.12.001
– ident: e_1_2_9_25_1
  doi: 10.3390/ma12020273
– ident: e_1_2_9_26_1
  doi: 10.1002/adma.201903733
– ident: e_1_2_9_38_1
  doi: 10.1002/adma.201501729
– ident: e_1_2_9_6_1
  doi: 10.1021/acsami.9b23083
– ident: e_1_2_9_18_1
  doi: 10.1021/acs.chemmater.9b01500
– ident: e_1_2_9_35_1
  doi: 10.1103/PhysRevLett.104.074301
– ident: e_1_2_9_36_1
  doi: 10.1146/annurev-fluid-120710-101244
– ident: e_1_2_9_37_1
  doi: 10.1002/adhm.201900435
– ident: e_1_2_9_4_1
  doi: 10.1002/adma.200904270
– ident: e_1_2_9_1_1
  doi: 10.18533/journal.v6i8.1232
– ident: e_1_2_9_21_1
  doi: 10.1016/j.nanoen.2020.105361
– ident: e_1_2_9_24_1
  doi: 10.1002/adfm.202006213
– ident: e_1_2_9_43_1
  doi: 10.1002/adma.201701664
– ident: e_1_2_9_30_1
  doi: 10.1038/s41596-018-0051-4
– ident: e_1_2_9_11_1
  doi: 10.1002/mame.202000804
– ident: e_1_2_9_34_1
  doi: 10.1119/1.1996110
– ident: e_1_2_9_29_1
  doi: 10.1016/j.jcis.2019.09.113
– ident: e_1_2_9_2_1
  doi: 10.1039/D0TA00227E
– ident: e_1_2_9_20_1
  doi: 10.1002/mame.202000716
– ident: e_1_2_9_31_1
  doi: 10.1016/j.biomaterials.2016.10.040
– ident: e_1_2_9_42_1
  doi: 10.1002/marc.201900111
– ident: e_1_2_9_33_1
  doi: 10.1021/acsami.0c12410
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.201906994
– ident: e_1_2_9_27_1
  doi: 10.1088/1758-5090/aa7307
– ident: e_1_2_9_14_1
  doi: 10.1021/acsapm.0c01084
– ident: e_1_2_9_40_1
  doi: 10.1039/C9MH00528E
– ident: e_1_2_9_3_1
  doi: 10.1088/0957-4484/25/28/285203
– ident: e_1_2_9_41_1
  doi: 10.1002/adma.201605765
– ident: e_1_2_9_5_1
  doi: 10.1038/nature04969
– ident: e_1_2_9_19_1
  doi: 10.1002/adma.201806133
– ident: e_1_2_9_28_1
  doi: 10.1016/j.cej.2016.12.137
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cej.2021.131551
– ident: e_1_2_9_9_1
  doi: 10.1002/advs.201901579
– ident: e_1_2_9_16_1
  doi: 10.1039/C9TC00310J
– ident: e_1_2_9_45_1
  doi: 10.1002/ange.201705667
– ident: e_1_2_9_8_1
  doi: 10.1002/adfm.201910504
– ident: e_1_2_9_17_1
  doi: 10.1039/D0QM00308E
– ident: e_1_2_9_13_1
  doi: 10.1002/adma.201902869
– ident: e_1_2_9_15_1
  doi: 10.1002/adma.201904752
SSID ssj0017893
Score 2.4129522
Snippet Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on microfluidic...
Abstract Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) core–shell conductive atypical spiral microfibers are prepared based on...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms calcium alginate
conductive fibers
Electrical resistivity
Mechanical properties
Membranes
Microfibers
microfluidic spinning
Microfluidics
poly (3,4‐ethylenedioxythiophene)
poly (styrenesulfonate) (PEDOT: PSS)
Polydimethylsiloxane
Smart sensors
spiral fibers
Strain
Textiles
Title Preparation of Shell/Core Atypical Spiral Conductive Microfibers and Composite Membrane with Good Conductivity and Mechanical Properties
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.202200400
https://www.proquest.com/docview/2735740504
Volume 307
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQF2DgUUAUCvKAxJQ2sZ3XWJWWCimoolTqFtnJeYEmqC0D_AJ-Nr6k6YMFCbZEia3EZ999Z999R8iNMWmJn3LPSpPAtkQQghWEjgFyjpfYrhKJ62NycvToDcbiYeJONrL4S36I1YYbroxCX-MCl2reXpOGTuUUaS4ZK-ahUcIO9zGm6-5pxR_l-EHBuoslvi1fhKxibbRZe7v5tlVaQ81NwFpYnP4hkdW3loEmL633hWolnz9oHP_zM0fkYAlHaaecP8dkB7I62e1WVeDqZH-DsPCEfA1nUJKF5xnNNR1hGGm7m8-AdhYfbyhwOsKj-1fazTOkkjXKlEYY9KcxNGVOZZZS1EEYK2aewNR8dQYUt4PpfZ6n63bGPSjejgCTk4uuh3hyMEMK2FMy7veeuwNrWcvBSjjWtgEVOLayQYBxwNKQKS0gTCVw4Eoq46aFCmwGXHjC55CEAZMh116qPRVo4yzzM1LL8gzOCRXSUUIzobUCY01V4KaOkL5yEpe7AlSD3FayjN9Kyo64JGdmMY5zvBrnBmlWoo6XS3ceGzzn-gbG2qJBWCGzX3qJo07UW91d_KXRJdnD6zLHsUlqi9k7XBmws1DXxYT-BgM--B8
link.rule.ids 315,783,787,1378,27936,27937,46306,46730,50826,50935
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsPiBxCk1sZztWpVCWIMQicYviZHyBJlUpB_gCPhtP0rSUCxIcs9hKPB7PG3vmDcCRMWmpnwnPytLAtmQQohWEjgFyjpfarpKp61NycnTjdR_l5ZNbRxNSLkzFDzHecCPNKNdrUnDakG5OWEN7SY94LjkvJ-IszBudF1S94fRuzCDl-EHJu0tFvi1fhrzmbbR5c7r9tF2agM3vkLW0OWcroOqvrUJNnk_ehuok_fhB5Piv31mF5REiZa1qCq3BDObrsNCuC8Gtw9I3zsIN-LwdYMUXXuSs0OyeIkmb7WKArDV875PM2T2d3r-wdpETm6xZT1lEcX-aolNeWZJnjJYhChczT7BnPjtHRjvC7Lwoskk74yGUb0dI-cll17d0eDAgFthNeDzrPLS71qicg5UKKm-DKnBsZaNE44NlIVdaYpglKFCoRBlPLVRocxTSk77ANAx4EgrtZdpTgTb-stiCubzIcRuYTBwlNZdaKzQGVQVu5sjEV07qCleiasBxLcy4X7F2xBU_M49pnOPxODdgr5Z1PNLe19hAOtc3SNaWDeCl0H7pJY5aUWd8tfOXRoew0H2IruPri5urXVik-1XK4x7MDQdvuG-wz1AdlLP7C3vW_Dc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xSCwHxCrK6gMSp6iJ7WzHqlDWoEpQhLhEcTw-0aRqy4E_4LPxJN04IXHMYh8827M98wbgwoa0PNQicHQeuY6MYnSi2LNAzgty11cy90MqTk6egtuevH_z3xaq-Gt-iNmBG1lG5a_JwAfaNOekof2sTzSXnFd6uAyrFmpwq-Orrdfee292kxBGFfEudfl2QhnzKXGjy5u_Z_gdmOZocxGzVkGnsw1bE7TIWrV4d2AJi11Yb0-btO3C5gKf4B58d4dYc3mXBSsNe6Ysz2a7HCJrjb8GJA_2TDfrH6xdFsT0an0dSygnz1DmyIhlhWbkIiiVy37Bvl2hAhmd1rKbstTzcRa9V38nSLXD1dRdOtgfEkPrPvQ61y_tW2fSasHJBbWeQRV5rnJRot0f6ZgrIzHWGQoUKlN2FxUrdDkKGchQYB5HPIuFCbQJVGTsXlYcwEpRFngITGaekoZLYxTaYKciX3syC5WX-8KXqBpwOV3ndFAzaqQ1dzJPSSLpTCINOJmKIZ1Y1ii1cMsPLcp0ZQN4JZo_ZkmTVnI9ezr6z6BzWOteddLHu6eHY9ig13U14gmsjIefeGphyVidTTTvB0SV21w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preparation+of+Shell%2FCore+Atypical+Spiral+Conductive+Microfibers+and+Composite+Membrane+with+Good+Conductivity+and+Mechanical+Properties&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Ding%2C+Shuiting&rft.au=Guo%2C+Yongshi&rft.au=Yu%2C+Hui&rft.date=2022-11-01&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=307&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fmame.202200400&rft.externalDBID=10.1002%252Fmame.202200400&rft.externalDocID=MAME202200400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon