Dual‐Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries

The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host hig...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 42
Main Authors Li, Jin‐Cheng, Meng, Yu, Zhang, Lili, Li, Guanzhou, Shi, Zhicong, Hou, Peng‐Xiang, Liu, Chang, Cheng, Hui‐Ming, Shao, Minhua
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host high‐active and independent ORR and OER sites in a single catalyst. Herein a dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for the ORR and nanosized phase for the OER is proposed. Specifically, single Co atoms supported on carbon nanotubes (single‐atom phase) and nanosized Co encapsulated in zeolitic‐imidazole‐framework‐derived carbon polyhedron (nanosized phase) are integrated together via carbon nanotube bridges. The obtained dual‐phasic carbon catalyst shows a small overpotential difference of 0.74 V between OER potential at 10 mA cm−2 and ORR half‐wave potential. The ZAB based on the bifunctional catalyst demonstrates a large power density of 172 mW cm−2. Furthermore, it shows a small charge‐discharge potential gap of 0.51 V at 5 mA cm−2 and outstanding discharge‐charge cycling durability. This study provides a feasible design concept to achieve multifunctional catalysts and promotes the development of rechargeable ZABs. A dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for oxygen reduction reaction (ORR) and nanosized phase for oxygen evolution reaction (OER) is proposed to boost the oxygen electrode performance for rechargeable Zn–air batteries, showing a small OER‐ORR overpotential difference (0.74 V), large power density (172 mW cm–2), a small charge‐discharge potential gap (0.51 V at 5 mA cm–2), and outstanding discharge‐charge cycling durability.
AbstractList The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host high‐active and independent ORR and OER sites in a single catalyst. Herein a dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for the ORR and nanosized phase for the OER is proposed. Specifically, single Co atoms supported on carbon nanotubes (single‐atom phase) and nanosized Co encapsulated in zeolitic‐imidazole‐framework‐derived carbon polyhedron (nanosized phase) are integrated together via carbon nanotube bridges. The obtained dual‐phasic carbon catalyst shows a small overpotential difference of 0.74 V between OER potential at 10 mA cm −2 and ORR half‐wave potential. The ZAB based on the bifunctional catalyst demonstrates a large power density of 172 mW cm −2 . Furthermore, it shows a small charge‐discharge potential gap of 0.51 V at 5 mA cm −2 and outstanding discharge‐charge cycling durability. This study provides a feasible design concept to achieve multifunctional catalysts and promotes the development of rechargeable ZABs.
The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host high‐active and independent ORR and OER sites in a single catalyst. Herein a dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for the ORR and nanosized phase for the OER is proposed. Specifically, single Co atoms supported on carbon nanotubes (single‐atom phase) and nanosized Co encapsulated in zeolitic‐imidazole‐framework‐derived carbon polyhedron (nanosized phase) are integrated together via carbon nanotube bridges. The obtained dual‐phasic carbon catalyst shows a small overpotential difference of 0.74 V between OER potential at 10 mA cm−2 and ORR half‐wave potential. The ZAB based on the bifunctional catalyst demonstrates a large power density of 172 mW cm−2. Furthermore, it shows a small charge‐discharge potential gap of 0.51 V at 5 mA cm−2 and outstanding discharge‐charge cycling durability. This study provides a feasible design concept to achieve multifunctional catalysts and promotes the development of rechargeable ZABs.
The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host high‐active and independent ORR and OER sites in a single catalyst. Herein a dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for the ORR and nanosized phase for the OER is proposed. Specifically, single Co atoms supported on carbon nanotubes (single‐atom phase) and nanosized Co encapsulated in zeolitic‐imidazole‐framework‐derived carbon polyhedron (nanosized phase) are integrated together via carbon nanotube bridges. The obtained dual‐phasic carbon catalyst shows a small overpotential difference of 0.74 V between OER potential at 10 mA cm−2 and ORR half‐wave potential. The ZAB based on the bifunctional catalyst demonstrates a large power density of 172 mW cm−2. Furthermore, it shows a small charge‐discharge potential gap of 0.51 V at 5 mA cm−2 and outstanding discharge‐charge cycling durability. This study provides a feasible design concept to achieve multifunctional catalysts and promotes the development of rechargeable ZABs. A dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for oxygen reduction reaction (ORR) and nanosized phase for oxygen evolution reaction (OER) is proposed to boost the oxygen electrode performance for rechargeable Zn–air batteries, showing a small OER‐ORR overpotential difference (0.74 V), large power density (172 mW cm–2), a small charge‐discharge potential gap (0.51 V at 5 mA cm–2), and outstanding discharge‐charge cycling durability.
Author Zhang, Lili
Shi, Zhicong
Li, Guanzhou
Li, Jin‐Cheng
Meng, Yu
Shao, Minhua
Cheng, Hui‐Ming
Hou, Peng‐Xiang
Liu, Chang
Author_xml – sequence: 1
  givenname: Jin‐Cheng
  orcidid: 0000-0002-0558-774X
  surname: Li
  fullname: Li, Jin‐Cheng
  email: jinchengli@kust.edu.cn
  organization: Hong Kong University of Science and Technology
– sequence: 2
  givenname: Yu
  surname: Meng
  fullname: Meng, Yu
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Lili
  surname: Zhang
  fullname: Zhang, Lili
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Guanzhou
  surname: Li
  fullname: Li, Guanzhou
  organization: Guangdong University of Technology
– sequence: 5
  givenname: Zhicong
  surname: Shi
  fullname: Shi, Zhicong
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Peng‐Xiang
  surname: Hou
  fullname: Hou, Peng‐Xiang
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  email: cliu@imr.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 8
  givenname: Hui‐Ming
  surname: Cheng
  fullname: Cheng, Hui‐Ming
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Minhua
  orcidid: 0000-0003-4496-0057
  surname: Shao
  fullname: Shao, Minhua
  email: kemshao@ust.hk
  organization: HKUST‐Shenzhen Research Institute
BookMark eNqFkE1LYzEUhoMo-DVb1wHXrfnovbdZ1voJVQedgWE2l3Nzz20jaVKTFO3OpUvBf9hf4i0dFAZECJwQ3uecnGeXbDrvkJADzrqcMXEEdTPtCiY4kzJnG2SH5zzvSCb6mx93_meb7MZ4zxgvCtnbIS8nc7DL59efE4hG0yGEyjv6aNKEDj29M25skQ6Sn0YKrqbX4PwMQjLaYvvSHnpsmrnTyXgHlt48Lcbo6KlFnYLXkMAuYqKND_QW9QTCGKFqO_51y-e3gQn0GFLCYDDuk60GbMQf_-oe-X12-mt40RndnF8OB6OOlrxgHVTIsiyvUGshIReVzlW7M-O1zmqo6lphlvFGNaLPKlGAqpUUWQFNVUOhKin3yOG67yz4hznGVN77eWj_HkuR9VsrvUL121R3ndLBxxiwKWfBTCEsSs7Kle1yZbv8sN0Cvf8AbRKsrKQAxn6NqTX2aCwuvhlSDk7Orj7Zdzg4mmw
CitedBy_id crossref_primary_10_1021_acsami_2c09725
crossref_primary_10_1016_j_cej_2023_143641
crossref_primary_10_1002_adfm_202112805
crossref_primary_10_1002_adma_202408139
crossref_primary_10_1039_D4NR00077C
crossref_primary_10_1016_j_apsusc_2024_160497
crossref_primary_10_1021_acs_jpcc_3c02841
crossref_primary_10_1002_idm2_12011
crossref_primary_10_1039_D2TA06351D
crossref_primary_10_1016_j_cej_2022_135585
crossref_primary_10_1002_adma_202311148
crossref_primary_10_1002_smll_202307776
crossref_primary_10_1002_adfm_202314554
crossref_primary_10_1039_D2CY00720G
crossref_primary_10_3390_molecules29235721
crossref_primary_10_1002_smtd_202300816
crossref_primary_10_1002_adfm_202405328
crossref_primary_10_1039_D5TA00534E
crossref_primary_10_1002_adfm_202207331
crossref_primary_10_1016_j_cej_2024_152909
crossref_primary_10_1007_s40820_024_01463_9
crossref_primary_10_1016_j_ensm_2022_11_001
crossref_primary_10_1021_acs_nanolett_3c02706
crossref_primary_10_1002_aenm_202203244
crossref_primary_10_1039_D2QM01288J
crossref_primary_10_1002_adsu_202400881
crossref_primary_10_1016_j_ccr_2022_214839
crossref_primary_10_1021_acsnano_3c01287
crossref_primary_10_1016_j_cej_2025_160954
crossref_primary_10_1039_D4TA07226J
crossref_primary_10_1002_adfm_202404484
crossref_primary_10_1016_j_fuel_2024_133072
crossref_primary_10_1039_D2TA08808H
crossref_primary_10_1039_D2TA01188C
crossref_primary_10_1016_j_apsusc_2024_159803
crossref_primary_10_1016_j_jcis_2023_08_038
crossref_primary_10_1002_adma_202411404
crossref_primary_10_1002_cnl2_145
crossref_primary_10_1021_acs_inorgchem_4c00787
crossref_primary_10_1039_D2NJ02098J
crossref_primary_10_1021_acsami_3c06886
crossref_primary_10_1039_D2TA09626A
crossref_primary_10_1039_D2NR03918D
crossref_primary_10_1039_D3TA02217J
crossref_primary_10_1002_cssc_202301146
crossref_primary_10_1016_j_cej_2024_156425
crossref_primary_10_1021_acsami_2c21751
crossref_primary_10_1016_j_apcatb_2024_124903
crossref_primary_10_1002_adfm_202410700
crossref_primary_10_1016_j_jelechem_2022_117016
crossref_primary_10_1002_sstr_202300007
crossref_primary_10_1039_D1TA10559K
crossref_primary_10_1016_j_ensm_2023_103086
crossref_primary_10_1016_j_jcis_2023_05_074
crossref_primary_10_1021_acsami_1c16915
crossref_primary_10_1021_acscatal_2c05654
crossref_primary_10_1016_j_jelechem_2022_116946
crossref_primary_10_1002_adfm_202423552
crossref_primary_10_1021_acsaem_3c01880
crossref_primary_10_1016_j_cej_2023_144787
crossref_primary_10_1016_j_jcis_2023_05_111
crossref_primary_10_1016_j_jwpe_2024_105910
crossref_primary_10_1016_j_mtphys_2023_101209
crossref_primary_10_1002_adfm_202405908
crossref_primary_10_1007_s11426_023_1742_6
crossref_primary_10_1016_j_jcis_2024_06_162
crossref_primary_10_1002_adma_202401858
crossref_primary_10_1002_smll_202400095
crossref_primary_10_1007_s40820_023_01022_8
crossref_primary_10_1021_acs_analchem_2c05633
crossref_primary_10_1039_D2TA09788E
crossref_primary_10_1007_s11426_024_2039_0
crossref_primary_10_1016_j_jallcom_2022_164829
crossref_primary_10_1039_D1TA08561A
crossref_primary_10_1016_j_carbon_2023_01_034
crossref_primary_10_1007_s11426_023_1863_8
crossref_primary_10_3390_nanoenergyadv3010004
crossref_primary_10_1002_smll_202305390
crossref_primary_10_1016_j_cej_2023_144378
crossref_primary_10_1007_s12274_024_6940_7
crossref_primary_10_1016_j_cclet_2021_10_004
crossref_primary_10_1016_j_cej_2023_141301
crossref_primary_10_1016_j_jcis_2024_03_112
crossref_primary_10_1039_D4GC04687K
crossref_primary_10_1021_acsnano_3c08839
crossref_primary_10_1039_D3QM00146F
crossref_primary_10_1021_acsaem_1c03424
crossref_primary_10_1039_D4QI02213K
crossref_primary_10_1016_j_cej_2022_140858
crossref_primary_10_3390_catal12121508
crossref_primary_10_1002_adfm_202309728
crossref_primary_10_1002_adfm_202416422
crossref_primary_10_1016_j_jallcom_2023_169095
crossref_primary_10_3390_molecules26216501
crossref_primary_10_1007_s12274_023_5381_z
crossref_primary_10_1039_D2CY00930G
crossref_primary_10_1016_j_cej_2024_148868
crossref_primary_10_1002_adfm_202311084
crossref_primary_10_1002_adma_202110585
crossref_primary_10_1016_j_ensm_2024_103520
crossref_primary_10_1002_smll_202305782
crossref_primary_10_1007_s42114_023_00685_6
crossref_primary_10_1039_D4NA00847B
crossref_primary_10_1002_adma_202107291
crossref_primary_10_1002_aenm_202202984
crossref_primary_10_1016_j_apcatb_2022_121760
crossref_primary_10_1039_D3QM00732D
crossref_primary_10_1002_advs_202103954
crossref_primary_10_1007_s12274_022_5127_3
crossref_primary_10_1360_nso_20220059
crossref_primary_10_1016_j_cej_2024_148798
crossref_primary_10_1002_sus2_201
crossref_primary_10_1002_er_8072
crossref_primary_10_1021_acsanm_3c02346
crossref_primary_10_1007_s12274_023_6331_5
crossref_primary_10_1016_j_ijhydene_2023_11_248
crossref_primary_10_1002_smtd_202401338
crossref_primary_10_1007_s12598_023_02397_8
crossref_primary_10_1021_acs_energyfuels_4c01798
crossref_primary_10_1039_D3EE02474A
crossref_primary_10_3390_molecules29071595
crossref_primary_10_1002_adfm_202414269
crossref_primary_10_1016_j_jcis_2024_04_025
crossref_primary_10_1002_adfm_202200763
crossref_primary_10_1021_acs_langmuir_4c01976
crossref_primary_10_1007_s12274_023_5553_x
crossref_primary_10_1016_j_apcatb_2022_122163
crossref_primary_10_1039_D2QM01352E
crossref_primary_10_1039_D3QM01172K
crossref_primary_10_1021_acsaem_2c02168
crossref_primary_10_1039_D3DT04263D
crossref_primary_10_1039_D2NJ01697D
crossref_primary_10_1016_j_jcis_2024_09_166
crossref_primary_10_1002_adma_202304713
crossref_primary_10_1016_j_cej_2023_145830
crossref_primary_10_1002_adfm_202316699
crossref_primary_10_3390_catal13091307
crossref_primary_10_1021_acsnano_2c01748
crossref_primary_10_1007_s40820_024_01366_9
crossref_primary_10_1002_adfm_202301013
crossref_primary_10_1002_advs_202206107
crossref_primary_10_1002_celc_202400034
crossref_primary_10_1039_D2TA02957J
crossref_primary_10_1007_s12274_022_4972_4
crossref_primary_10_1039_D4TA02585G
crossref_primary_10_1007_s11426_022_1303_x
crossref_primary_10_1039_D4EY00014E
crossref_primary_10_1016_j_mattod_2022_08_012
crossref_primary_10_1016_j_cej_2022_140401
crossref_primary_10_1039_D4EE03005B
crossref_primary_10_1039_D2TA08305A
crossref_primary_10_3390_catal12010035
crossref_primary_10_1016_j_jallcom_2024_177332
Cites_doi 10.1002/aenm.201700544
10.1002/aenm.201701905
10.1002/adma.201706508
10.1039/C8EE00673C
10.1021/jacs.6b00757
10.1002/smll.201903610
10.1016/j.ensm.2018.06.001
10.1016/j.carbon.2018.12.099
10.1007/s40843-019-1207-y
10.1002/adfm.201908167
10.1002/smll.201704319
10.1002/adfm.201570041
10.1002/smtd.201800450
10.1016/j.matt.2020.01.001
10.1002/aenm.201702222
10.1038/nenergy.2015.6
10.1007/s12274-020-3127-8
10.1002/adma.201901666
10.1002/adma.201703657
10.1021/acs.nanolett.0c04898
10.1002/smtd.202000751
10.1002/anie.201604802
10.1002/smll.201703748
10.1021/acscatal.9b00869
10.1002/adma.201704609
10.1002/advs.202001178
10.1021/acs.chemrev.9b00818
10.1002/smll.201901518
10.1002/aenm.201802263
10.1021/acscatal.8b02556
10.1002/advs.201700691
10.1039/C4NR04357J
10.1016/j.ensm.2019.05.018
10.1002/adma.201902339
10.1039/c1cs15228a
10.1016/j.carbon.2016.08.078
10.1002/aenm.201903003
10.1002/smtd.201900827
10.1021/jacs.6b13100
10.1039/C6EE02169G
10.1039/C6EE00054A
10.1002/adma.201900592
10.1038/am.2017.212
10.1021/acscatal.9b04621
10.1002/adfm.201700795
10.1039/D0CS00415D
10.1002/anie.201610119
10.1016/j.carbon.2018.06.023
10.1002/aenm.201702838
10.1039/C4CS00015C
10.1021/acsmaterialslett.9b00093
10.1002/adma.201502696
10.1039/C7EE01913K
10.1016/j.apcatb.2021.120239
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202103360
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202103360
ADFM202103360
Genre article
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  funderid: 2020A1515011044
– fundername: National Natural Science Foundation of China
  funderid: 51625203
– fundername: Department of Science and Technology of Guangdong Province
  funderid: 2019A050510043
– fundername: Shenzhen Science and Technology Innovation Committee
  funderid: JCYJ20180507183818040
– fundername: China Postdoctoral Science Foundation
  funderid: 2019M652843
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3170-e9e0556becc23a62bc6920201dc5dabdd9e551f9f280b27a9d93257afbda79b33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 02:53:20 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Tue Jul 01 04:12:34 EDT 2025
Wed Jan 22 16:27:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-e9e0556becc23a62bc6920201dc5dabdd9e551f9f280b27a9d93257afbda79b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0558-774X
0000-0003-4496-0057
PQID 2581774798
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2581774798
crossref_primary_10_1002_adfm_202103360
crossref_citationtrail_10_1002_adfm_202103360
wiley_primary_10_1002_adfm_202103360_ADFM202103360
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017 2019 2019 2021 2019; 10 21 15 21 31
2018; 8
2015; 25
2020; 4
2020 2019 2021 2021 2018 2018 2021 2019; 7 31 14 5 8 30 294 1
2016; 1
2019; 3
2020 2016 2019 2018; 120 28 9 8
2019; 31
2020 2016; 10 138
2016; 109
2020; 63
2017; 27
2017 2012 2014; 7 41 43
2018; 30
2018; 11
2020 2018 2016 2020 2021 2020 2019 2019; 10 139 9 30 50 2 144 16
2018; 10
2014; 6
2016; 9
2018; 14
2018 2018 2017 2017 2019; 5 14 139 56 15
2016; 55
e_1_2_7_3_4
e_1_2_7_1_5
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_3_2
e_1_2_7_1_3
e_1_2_7_3_1
e_1_2_7_3_8
e_1_2_7_9_2
e_1_2_7_3_7
e_1_2_7_9_1
e_1_2_7_3_6
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_26_4
e_1_2_7_26_5
e_1_2_7_26_6
e_1_2_7_26_7
e_1_2_7_26_8
e_1_2_7_25_1
e_1_2_7_23_1
e_1_2_7_21_1
e_1_2_7_4_3
e_1_2_7_6_1
e_1_2_7_4_2
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_4_5
e_1_2_7_8_1
e_1_2_7_4_4
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_8_4
e_1_2_7_24_1
e_1_2_7_22_1
e_1_2_7_20_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1320
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 63
  start-page: 965
  year: 2020
  publication-title: Sci. China Mater.
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 7 31 14 5 8 30 294 1
  start-page: 868 123
  year: 2020 2019 2021 2021 2018 2018 2021 2019
  publication-title: Adv. Sci. Adv. Mater. Nano Res. Small Methods Adv. Energy Mater. Adv. Mater. Appl. Catal., B ACS Mater. Lett.
– volume: 8
  start-page: 8961
  year: 2018
  publication-title: ACS Catal.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2208
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 25
  start-page: 871
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 10 139 9 30 50 2 144 16
  start-page: 156 3079 1354 526 557 243
  year: 2020 2018 2016 2020 2021 2020 2019 2019
  publication-title: Adv. Energy Mater. Carbon Energy Environ. Sci. Adv. Funct. Mater. Chem. Soc. Rev. Matter Carbon Energy Storage Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 10 138
  start-page: 2452 3570
  year: 2020 2016
  publication-title: ACS Catal. J. Am. Chem. Soc.
– volume: 5 14 139 56 15
  start-page: 3336 610
  year: 2018 2018 2017 2017 2019
  publication-title: Adv. Sci. Small J. Am. Chem. Soc. Angew. Chem., Int. Ed. Small
– volume: 7 41 43
  start-page: 2172 5257
  year: 2017 2012 2014
  publication-title: Adv. Energy Mater. Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 120 28 9 8
  start-page: 215 5929
  year: 2020 2016 2019 2018
  publication-title: Chem. Rev. Adv. Mater. ACS Catal. Adv. Energy Mater.
– volume: 10 21 15 21 31
  start-page: 2056 253 1555
  year: 2017 2019 2019 2021 2019
  publication-title: Energy Environ. Sci. Energy Storage Mater. Small Nano Lett. Adv. Mater.
– volume: 10
  start-page: 461
  year: 2018
  publication-title: NPG Asia Mater
– volume: 109
  start-page: 632
  year: 2016
  publication-title: Carbon
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 55
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2014
  publication-title: Nanoscale
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201700544
– ident: e_1_2_7_8_4
  doi: 10.1002/aenm.201701905
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201706508
– ident: e_1_2_7_11_1
  doi: 10.1039/C8EE00673C
– ident: e_1_2_7_9_2
  doi: 10.1021/jacs.6b00757
– ident: e_1_2_7_1_3
  doi: 10.1002/smll.201903610
– ident: e_1_2_7_3_8
  doi: 10.1016/j.ensm.2018.06.001
– ident: e_1_2_7_3_7
  doi: 10.1016/j.carbon.2018.12.099
– ident: e_1_2_7_16_1
  doi: 10.1007/s40843-019-1207-y
– ident: e_1_2_7_3_4
  doi: 10.1002/adfm.201908167
– ident: e_1_2_7_21_1
  doi: 10.1002/smll.201704319
– ident: e_1_2_7_22_1
  doi: 10.1002/adfm.201570041
– ident: e_1_2_7_19_1
  doi: 10.1002/smtd.201800450
– ident: e_1_2_7_3_6
  doi: 10.1016/j.matt.2020.01.001
– ident: e_1_2_7_24_1
  doi: 10.1002/aenm.201702222
– ident: e_1_2_7_6_1
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_7_26_3
  doi: 10.1007/s12274-020-3127-8
– ident: e_1_2_7_26_2
  doi: 10.1002/adma.201901666
– ident: e_1_2_7_10_1
  doi: 10.1002/adma.201703657
– ident: e_1_2_7_1_4
  doi: 10.1021/acs.nanolett.0c04898
– ident: e_1_2_7_26_4
  doi: 10.1002/smtd.202000751
– ident: e_1_2_7_13_1
  doi: 10.1002/anie.201604802
– ident: e_1_2_7_4_2
  doi: 10.1002/smll.201703748
– ident: e_1_2_7_8_3
  doi: 10.1021/acscatal.9b00869
– ident: e_1_2_7_26_6
  doi: 10.1002/adma.201704609
– ident: e_1_2_7_26_1
  doi: 10.1002/advs.202001178
– ident: e_1_2_7_8_1
  doi: 10.1021/acs.chemrev.9b00818
– ident: e_1_2_7_4_5
  doi: 10.1002/smll.201901518
– ident: e_1_2_7_26_5
  doi: 10.1002/aenm.201802263
– ident: e_1_2_7_7_1
  doi: 10.1021/acscatal.8b02556
– ident: e_1_2_7_4_1
  doi: 10.1002/advs.201700691
– ident: e_1_2_7_15_1
  doi: 10.1039/C4NR04357J
– ident: e_1_2_7_1_2
  doi: 10.1016/j.ensm.2019.05.018
– ident: e_1_2_7_1_5
  doi: 10.1002/adma.201902339
– ident: e_1_2_7_2_2
  doi: 10.1039/c1cs15228a
– ident: e_1_2_7_14_1
  doi: 10.1016/j.carbon.2016.08.078
– ident: e_1_2_7_3_1
  doi: 10.1002/aenm.201903003
– ident: e_1_2_7_17_1
  doi: 10.1002/smtd.201900827
– ident: e_1_2_7_4_3
  doi: 10.1021/jacs.6b13100
– ident: e_1_2_7_3_3
  doi: 10.1039/C6EE02169G
– ident: e_1_2_7_5_1
  doi: 10.1039/C6EE00054A
– ident: e_1_2_7_18_1
  doi: 10.1002/adma.201900592
– ident: e_1_2_7_12_1
  doi: 10.1038/am.2017.212
– ident: e_1_2_7_9_1
  doi: 10.1021/acscatal.9b04621
– ident: e_1_2_7_23_1
  doi: 10.1002/adfm.201700795
– ident: e_1_2_7_3_5
  doi: 10.1039/D0CS00415D
– ident: e_1_2_7_4_4
  doi: 10.1002/anie.201610119
– ident: e_1_2_7_3_2
  doi: 10.1016/j.carbon.2018.06.023
– ident: e_1_2_7_25_1
  doi: 10.1002/aenm.201702838
– ident: e_1_2_7_2_3
  doi: 10.1039/C4CS00015C
– ident: e_1_2_7_26_8
  doi: 10.1021/acsmaterialslett.9b00093
– ident: e_1_2_7_8_2
  doi: 10.1002/adma.201502696
– ident: e_1_2_7_1_1
  doi: 10.1039/C7EE01913K
– ident: e_1_2_7_26_7
  doi: 10.1016/j.apcatb.2021.120239
SSID ssj0017734
Score 2.6854608
Snippet The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms bifunctional oxygen electrocatalyst
Carbon
Carbon nanotubes
Catalysts
Discharge
dual‐phasic carbon
Durability
Electrocatalysts
Imidazole
Materials science
Metal air batteries
Nanoparticles
nanosized phase
Oxygen evolution reactions
Oxygen reduction reactions
Rechargeable batteries
rechargeable Zn–air batteries
single‐atom phase
Zinc-oxygen batteries
Title Dual‐Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202103360
https://www.proquest.com/docview/2581774798
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhvaSHfqQt3TYNOhR6cmLLXsk6urtZQummpWlg6cWMLJmEbL1l1wtNTznmGOg_zC_pjOV1NoVSaMEHG0bGkkbSm_HMG8ZeJ6pIZBzaQErjgsSpMtAmVgFA7ECFRkcpJQqPj-ThSfJu0p-sZfF7fojO4UYro9mvaYGDWezfkoaCLSmTHE2WOJZktFPAFqGiTx1_VKSU_60sIwrwiiYr1sZQ7N9tfvdUuoWa64C1OXFGDxmsvtUHmpzvLWuzV_z4jcbxfzrziD1o4SjPvP48Zhuu2mb310gKn7Cr4RKmN5fXH08BZ5QPYG5mFSf_LR_M-DHKTB3P6tnXBYfKctyu0Q5vw-044MXfntHp6Z2O_MP3C9RZfuDL7zTeo4tFzRE7c4SwxNvkKJuLf6luLn9mZ3PuGUDRoH_KTkYHnweHQVu_IShiqmfjtCOqHtISEYMUppAa-xhGtuhbMNZqh3it1KVIQyMUaItgsq-gNBYUakz8jG1Ws8o9Z1xoKVIbQWHRIjU6AQWqNGXokrDJze2xYDV_edGSm1ONjWnuaZlFTiOcdyPcY286-W-e1uOPkjsrdcjb5b3IRT9F3UqUTntMNPP6l7fk2XA07p5e_Eujl2yL7n0g4Q7brOdL9woBUW122b1sOH5_vNso_y9NSwbl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQOQAHKF_qlgJzQOKUNnGydnzcbrtaoFsQtFLFJbJjR1Qs2Wo3K9GeeuSIxD_sL-lMnKQtEkICKZdEdhTbM_abycwbxl4lMk9EHNpACOOCxMkiUCaWgdax0zI0KkopUXiyL8aHydujfhtNSLkwnh-ic7iRZtT7NSk4OaS3rlhDtS0olRxtljgWaLXfprLetVX1sWOQiqT0P5ZFRCFe0VHL2xjyrZv9b55LV2DzOmStz5zRA2bar_WhJl83l5XZzM9-I3L8r-GssvsNIoWBF6GH7JYrH7F713gKH7MfO0s9vTj_-eGLxkWFoZ6bWQnkwoXhDD5hm6mDQTX7tgBdWsAdG03xJuIONF6wfUwHqPc7wvvvpyi2sOsr8NQOpNNFBQifAVEsUTc5SuiCz-XF-a_B8Rw8CSja9E_Y4Wj3YDgOmhIOQR5TSRunHLH1kKDwWAtucqFwjGFk877VxlrlELIVquBpaLjUyiKe7EtdGKslCk38lK2Us9KtMeBK8NRGOrdolBqVaKllYYrQJWGdnttjQbuAWd7wm1OZjWnmmZl5RjOcdTPcY6-79iee2eOPLTdaecgaDV9kvJ-icCVSpT3G64X9y1uywc5o0t2t_0unl-zO-GCyl-292X_3jN2l5z6ucIOtVPOle474qDIvag24BGdyCWw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamISE4jN9aYcA7IHHKljipHR9Lu2oMNiZgUsUleo4dbVqXTm0qbTvtyBGJ_3B_Cc9xmnVICAmkXBLZUWx_tr_nvPc9xt4kMk9EHJpACG2DxMoiUDqWAWJsUYZaRakLFN7bFzuHye6oO1qK4vf6EO2Bm5sZ9XrtJviZKbZuREPRFC6SnEyWOBZktN9JRJg6XA8-twJSkZT-v7KInIdXNFrINoZ863b929vSDddcZqz1ljN8wHDxsd7T5GRzXunN_PI3Hcf_ac1DttbwUeh5AD1iK7Z8zO4vqRQ-Yd8HcxxfX_04OEIaUujjVE9KcAe40J_AFyozttCrJqczwNIArddkiDf-doB0wbtjt336U0f4dH5BoIVtn3-nPj66mFVA5BmIwzrhJuvCueBbeX31s3c8BS8BShb9U3Y43P7a3wmaBA5BHruENlZZp9XjYMJjFFznQlEbw8jkXYPaGGWJsBWq4GmouURliE12JRbaoCTIxM_Yajkp7ToDrgRPTYS5IZNUqwQlykIXoU3COji3w4LF-GV5o27ukmyMM6_LzDPXw1nbwx32ti1_5nU9_lhyYwGHrJnfs4x3U8JWIlXaYbwe17-8JesNhnvt3fN_qfSa3T0YDLOP7_c_vGD33GPvVLjBVqvp3L4kclTpVzX-fwFg3Agk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Phasic+Carbon+with+Co+Single+Atoms+and+Nanoparticles+as+a+Bifunctional+Oxygen+Electrocatalyst+for+Rechargeable+Zn%E2%80%93Air+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Jin%E2%80%90Cheng&rft.au=Meng%2C+Yu&rft.au=Zhang%2C+Lili&rft.au=Li%2C+Guanzhou&rft.date=2021-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=42&rft_id=info:doi/10.1002%2Fadfm.202103360&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202103360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon