Dual‐Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries
The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host hig...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 42 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host high‐active and independent ORR and OER sites in a single catalyst. Herein a dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for the ORR and nanosized phase for the OER is proposed. Specifically, single Co atoms supported on carbon nanotubes (single‐atom phase) and nanosized Co encapsulated in zeolitic‐imidazole‐framework‐derived carbon polyhedron (nanosized phase) are integrated together via carbon nanotube bridges. The obtained dual‐phasic carbon catalyst shows a small overpotential difference of 0.74 V between OER potential at 10 mA cm−2 and ORR half‐wave potential. The ZAB based on the bifunctional catalyst demonstrates a large power density of 172 mW cm−2. Furthermore, it shows a small charge‐discharge potential gap of 0.51 V at 5 mA cm−2 and outstanding discharge‐charge cycling durability. This study provides a feasible design concept to achieve multifunctional catalysts and promotes the development of rechargeable ZABs.
A dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for oxygen reduction reaction (ORR) and nanosized phase for oxygen evolution reaction (OER) is proposed to boost the oxygen electrode performance for rechargeable Zn–air batteries, showing a small OER‐ORR overpotential difference (0.74 V), large power density (172 mW cm–2), a small charge‐discharge potential gap (0.51 V at 5 mA cm–2), and outstanding discharge‐charge cycling durability. |
---|---|
AbstractList | The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host high‐active and independent ORR and OER sites in a single catalyst. Herein a dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for the ORR and nanosized phase for the OER is proposed. Specifically, single Co atoms supported on carbon nanotubes (single‐atom phase) and nanosized Co encapsulated in zeolitic‐imidazole‐framework‐derived carbon polyhedron (nanosized phase) are integrated together via carbon nanotube bridges. The obtained dual‐phasic carbon catalyst shows a small overpotential difference of 0.74 V between OER potential at 10 mA cm
−2
and ORR half‐wave potential. The ZAB based on the bifunctional catalyst demonstrates a large power density of 172 mW cm
−2
. Furthermore, it shows a small charge‐discharge potential gap of 0.51 V at 5 mA cm
−2
and outstanding discharge‐charge cycling durability. This study provides a feasible design concept to achieve multifunctional catalysts and promotes the development of rechargeable ZABs. The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host high‐active and independent ORR and OER sites in a single catalyst. Herein a dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for the ORR and nanosized phase for the OER is proposed. Specifically, single Co atoms supported on carbon nanotubes (single‐atom phase) and nanosized Co encapsulated in zeolitic‐imidazole‐framework‐derived carbon polyhedron (nanosized phase) are integrated together via carbon nanotube bridges. The obtained dual‐phasic carbon catalyst shows a small overpotential difference of 0.74 V between OER potential at 10 mA cm−2 and ORR half‐wave potential. The ZAB based on the bifunctional catalyst demonstrates a large power density of 172 mW cm−2. Furthermore, it shows a small charge‐discharge potential gap of 0.51 V at 5 mA cm−2 and outstanding discharge‐charge cycling durability. This study provides a feasible design concept to achieve multifunctional catalysts and promotes the development of rechargeable ZABs. The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to boost the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). It remains a great challenge to simultaneously host high‐active and independent ORR and OER sites in a single catalyst. Herein a dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for the ORR and nanosized phase for the OER is proposed. Specifically, single Co atoms supported on carbon nanotubes (single‐atom phase) and nanosized Co encapsulated in zeolitic‐imidazole‐framework‐derived carbon polyhedron (nanosized phase) are integrated together via carbon nanotube bridges. The obtained dual‐phasic carbon catalyst shows a small overpotential difference of 0.74 V between OER potential at 10 mA cm−2 and ORR half‐wave potential. The ZAB based on the bifunctional catalyst demonstrates a large power density of 172 mW cm−2. Furthermore, it shows a small charge‐discharge potential gap of 0.51 V at 5 mA cm−2 and outstanding discharge‐charge cycling durability. This study provides a feasible design concept to achieve multifunctional catalysts and promotes the development of rechargeable ZABs. A dual‐phasic carbon nanoarchitecture consisting of a single‐atom phase for oxygen reduction reaction (ORR) and nanosized phase for oxygen evolution reaction (OER) is proposed to boost the oxygen electrode performance for rechargeable Zn–air batteries, showing a small OER‐ORR overpotential difference (0.74 V), large power density (172 mW cm–2), a small charge‐discharge potential gap (0.51 V at 5 mA cm–2), and outstanding discharge‐charge cycling durability. |
Author | Zhang, Lili Shi, Zhicong Li, Guanzhou Li, Jin‐Cheng Meng, Yu Shao, Minhua Cheng, Hui‐Ming Hou, Peng‐Xiang Liu, Chang |
Author_xml | – sequence: 1 givenname: Jin‐Cheng orcidid: 0000-0002-0558-774X surname: Li fullname: Li, Jin‐Cheng email: jinchengli@kust.edu.cn organization: Hong Kong University of Science and Technology – sequence: 2 givenname: Yu surname: Meng fullname: Meng, Yu organization: Chinese Academy of Sciences – sequence: 3 givenname: Lili surname: Zhang fullname: Zhang, Lili organization: Chinese Academy of Sciences – sequence: 4 givenname: Guanzhou surname: Li fullname: Li, Guanzhou organization: Guangdong University of Technology – sequence: 5 givenname: Zhicong surname: Shi fullname: Shi, Zhicong organization: Guangdong University of Technology – sequence: 6 givenname: Peng‐Xiang surname: Hou fullname: Hou, Peng‐Xiang organization: Chinese Academy of Sciences – sequence: 7 givenname: Chang surname: Liu fullname: Liu, Chang email: cliu@imr.ac.cn organization: Chinese Academy of Sciences – sequence: 8 givenname: Hui‐Ming surname: Cheng fullname: Cheng, Hui‐Ming organization: Chinese Academy of Sciences – sequence: 9 givenname: Minhua orcidid: 0000-0003-4496-0057 surname: Shao fullname: Shao, Minhua email: kemshao@ust.hk organization: HKUST‐Shenzhen Research Institute |
BookMark | eNqFkE1LYzEUhoMo-DVb1wHXrfnovbdZ1voJVQedgWE2l3Nzz20jaVKTFO3OpUvBf9hf4i0dFAZECJwQ3uecnGeXbDrvkJADzrqcMXEEdTPtCiY4kzJnG2SH5zzvSCb6mx93_meb7MZ4zxgvCtnbIS8nc7DL59efE4hG0yGEyjv6aNKEDj29M25skQ6Sn0YKrqbX4PwMQjLaYvvSHnpsmrnTyXgHlt48Lcbo6KlFnYLXkMAuYqKND_QW9QTCGKFqO_51y-e3gQn0GFLCYDDuk60GbMQf_-oe-X12-mt40RndnF8OB6OOlrxgHVTIsiyvUGshIReVzlW7M-O1zmqo6lphlvFGNaLPKlGAqpUUWQFNVUOhKin3yOG67yz4hznGVN77eWj_HkuR9VsrvUL121R3ndLBxxiwKWfBTCEsSs7Kle1yZbv8sN0Cvf8AbRKsrKQAxn6NqTX2aCwuvhlSDk7Orj7Zdzg4mmw |
CitedBy_id | crossref_primary_10_1021_acsami_2c09725 crossref_primary_10_1016_j_cej_2023_143641 crossref_primary_10_1002_adfm_202112805 crossref_primary_10_1002_adma_202408139 crossref_primary_10_1039_D4NR00077C crossref_primary_10_1016_j_apsusc_2024_160497 crossref_primary_10_1021_acs_jpcc_3c02841 crossref_primary_10_1002_idm2_12011 crossref_primary_10_1039_D2TA06351D crossref_primary_10_1016_j_cej_2022_135585 crossref_primary_10_1002_adma_202311148 crossref_primary_10_1002_smll_202307776 crossref_primary_10_1002_adfm_202314554 crossref_primary_10_1039_D2CY00720G crossref_primary_10_3390_molecules29235721 crossref_primary_10_1002_smtd_202300816 crossref_primary_10_1002_adfm_202405328 crossref_primary_10_1039_D5TA00534E crossref_primary_10_1002_adfm_202207331 crossref_primary_10_1016_j_cej_2024_152909 crossref_primary_10_1007_s40820_024_01463_9 crossref_primary_10_1016_j_ensm_2022_11_001 crossref_primary_10_1021_acs_nanolett_3c02706 crossref_primary_10_1002_aenm_202203244 crossref_primary_10_1039_D2QM01288J crossref_primary_10_1002_adsu_202400881 crossref_primary_10_1016_j_ccr_2022_214839 crossref_primary_10_1021_acsnano_3c01287 crossref_primary_10_1016_j_cej_2025_160954 crossref_primary_10_1039_D4TA07226J crossref_primary_10_1002_adfm_202404484 crossref_primary_10_1016_j_fuel_2024_133072 crossref_primary_10_1039_D2TA08808H crossref_primary_10_1039_D2TA01188C crossref_primary_10_1016_j_apsusc_2024_159803 crossref_primary_10_1016_j_jcis_2023_08_038 crossref_primary_10_1002_adma_202411404 crossref_primary_10_1002_cnl2_145 crossref_primary_10_1021_acs_inorgchem_4c00787 crossref_primary_10_1039_D2NJ02098J crossref_primary_10_1021_acsami_3c06886 crossref_primary_10_1039_D2TA09626A crossref_primary_10_1039_D2NR03918D crossref_primary_10_1039_D3TA02217J crossref_primary_10_1002_cssc_202301146 crossref_primary_10_1016_j_cej_2024_156425 crossref_primary_10_1021_acsami_2c21751 crossref_primary_10_1016_j_apcatb_2024_124903 crossref_primary_10_1002_adfm_202410700 crossref_primary_10_1016_j_jelechem_2022_117016 crossref_primary_10_1002_sstr_202300007 crossref_primary_10_1039_D1TA10559K crossref_primary_10_1016_j_ensm_2023_103086 crossref_primary_10_1016_j_jcis_2023_05_074 crossref_primary_10_1021_acsami_1c16915 crossref_primary_10_1021_acscatal_2c05654 crossref_primary_10_1016_j_jelechem_2022_116946 crossref_primary_10_1002_adfm_202423552 crossref_primary_10_1021_acsaem_3c01880 crossref_primary_10_1016_j_cej_2023_144787 crossref_primary_10_1016_j_jcis_2023_05_111 crossref_primary_10_1016_j_jwpe_2024_105910 crossref_primary_10_1016_j_mtphys_2023_101209 crossref_primary_10_1002_adfm_202405908 crossref_primary_10_1007_s11426_023_1742_6 crossref_primary_10_1016_j_jcis_2024_06_162 crossref_primary_10_1002_adma_202401858 crossref_primary_10_1002_smll_202400095 crossref_primary_10_1007_s40820_023_01022_8 crossref_primary_10_1021_acs_analchem_2c05633 crossref_primary_10_1039_D2TA09788E crossref_primary_10_1007_s11426_024_2039_0 crossref_primary_10_1016_j_jallcom_2022_164829 crossref_primary_10_1039_D1TA08561A crossref_primary_10_1016_j_carbon_2023_01_034 crossref_primary_10_1007_s11426_023_1863_8 crossref_primary_10_3390_nanoenergyadv3010004 crossref_primary_10_1002_smll_202305390 crossref_primary_10_1016_j_cej_2023_144378 crossref_primary_10_1007_s12274_024_6940_7 crossref_primary_10_1016_j_cclet_2021_10_004 crossref_primary_10_1016_j_cej_2023_141301 crossref_primary_10_1016_j_jcis_2024_03_112 crossref_primary_10_1039_D4GC04687K crossref_primary_10_1021_acsnano_3c08839 crossref_primary_10_1039_D3QM00146F crossref_primary_10_1021_acsaem_1c03424 crossref_primary_10_1039_D4QI02213K crossref_primary_10_1016_j_cej_2022_140858 crossref_primary_10_3390_catal12121508 crossref_primary_10_1002_adfm_202309728 crossref_primary_10_1002_adfm_202416422 crossref_primary_10_1016_j_jallcom_2023_169095 crossref_primary_10_3390_molecules26216501 crossref_primary_10_1007_s12274_023_5381_z crossref_primary_10_1039_D2CY00930G crossref_primary_10_1016_j_cej_2024_148868 crossref_primary_10_1002_adfm_202311084 crossref_primary_10_1002_adma_202110585 crossref_primary_10_1016_j_ensm_2024_103520 crossref_primary_10_1002_smll_202305782 crossref_primary_10_1007_s42114_023_00685_6 crossref_primary_10_1039_D4NA00847B crossref_primary_10_1002_adma_202107291 crossref_primary_10_1002_aenm_202202984 crossref_primary_10_1016_j_apcatb_2022_121760 crossref_primary_10_1039_D3QM00732D crossref_primary_10_1002_advs_202103954 crossref_primary_10_1007_s12274_022_5127_3 crossref_primary_10_1360_nso_20220059 crossref_primary_10_1016_j_cej_2024_148798 crossref_primary_10_1002_sus2_201 crossref_primary_10_1002_er_8072 crossref_primary_10_1021_acsanm_3c02346 crossref_primary_10_1007_s12274_023_6331_5 crossref_primary_10_1016_j_ijhydene_2023_11_248 crossref_primary_10_1002_smtd_202401338 crossref_primary_10_1007_s12598_023_02397_8 crossref_primary_10_1021_acs_energyfuels_4c01798 crossref_primary_10_1039_D3EE02474A crossref_primary_10_3390_molecules29071595 crossref_primary_10_1002_adfm_202414269 crossref_primary_10_1016_j_jcis_2024_04_025 crossref_primary_10_1002_adfm_202200763 crossref_primary_10_1021_acs_langmuir_4c01976 crossref_primary_10_1007_s12274_023_5553_x crossref_primary_10_1016_j_apcatb_2022_122163 crossref_primary_10_1039_D2QM01352E crossref_primary_10_1039_D3QM01172K crossref_primary_10_1021_acsaem_2c02168 crossref_primary_10_1039_D3DT04263D crossref_primary_10_1039_D2NJ01697D crossref_primary_10_1016_j_jcis_2024_09_166 crossref_primary_10_1002_adma_202304713 crossref_primary_10_1016_j_cej_2023_145830 crossref_primary_10_1002_adfm_202316699 crossref_primary_10_3390_catal13091307 crossref_primary_10_1021_acsnano_2c01748 crossref_primary_10_1007_s40820_024_01366_9 crossref_primary_10_1002_adfm_202301013 crossref_primary_10_1002_advs_202206107 crossref_primary_10_1002_celc_202400034 crossref_primary_10_1039_D2TA02957J crossref_primary_10_1007_s12274_022_4972_4 crossref_primary_10_1039_D4TA02585G crossref_primary_10_1007_s11426_022_1303_x crossref_primary_10_1039_D4EY00014E crossref_primary_10_1016_j_mattod_2022_08_012 crossref_primary_10_1016_j_cej_2022_140401 crossref_primary_10_1039_D4EE03005B crossref_primary_10_1039_D2TA08305A crossref_primary_10_3390_catal12010035 crossref_primary_10_1016_j_jallcom_2024_177332 |
Cites_doi | 10.1002/aenm.201700544 10.1002/aenm.201701905 10.1002/adma.201706508 10.1039/C8EE00673C 10.1021/jacs.6b00757 10.1002/smll.201903610 10.1016/j.ensm.2018.06.001 10.1016/j.carbon.2018.12.099 10.1007/s40843-019-1207-y 10.1002/adfm.201908167 10.1002/smll.201704319 10.1002/adfm.201570041 10.1002/smtd.201800450 10.1016/j.matt.2020.01.001 10.1002/aenm.201702222 10.1038/nenergy.2015.6 10.1007/s12274-020-3127-8 10.1002/adma.201901666 10.1002/adma.201703657 10.1021/acs.nanolett.0c04898 10.1002/smtd.202000751 10.1002/anie.201604802 10.1002/smll.201703748 10.1021/acscatal.9b00869 10.1002/adma.201704609 10.1002/advs.202001178 10.1021/acs.chemrev.9b00818 10.1002/smll.201901518 10.1002/aenm.201802263 10.1021/acscatal.8b02556 10.1002/advs.201700691 10.1039/C4NR04357J 10.1016/j.ensm.2019.05.018 10.1002/adma.201902339 10.1039/c1cs15228a 10.1016/j.carbon.2016.08.078 10.1002/aenm.201903003 10.1002/smtd.201900827 10.1021/jacs.6b13100 10.1039/C6EE02169G 10.1039/C6EE00054A 10.1002/adma.201900592 10.1038/am.2017.212 10.1021/acscatal.9b04621 10.1002/adfm.201700795 10.1039/D0CS00415D 10.1002/anie.201610119 10.1016/j.carbon.2018.06.023 10.1002/aenm.201702838 10.1039/C4CS00015C 10.1021/acsmaterialslett.9b00093 10.1002/adma.201502696 10.1039/C7EE01913K 10.1016/j.apcatb.2021.120239 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202103360 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202103360 ADFM202103360 |
Genre | article |
GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation funderid: 2020A1515011044 – fundername: National Natural Science Foundation of China funderid: 51625203 – fundername: Department of Science and Technology of Guangdong Province funderid: 2019A050510043 – fundername: Shenzhen Science and Technology Innovation Committee funderid: JCYJ20180507183818040 – fundername: China Postdoctoral Science Foundation funderid: 2019M652843 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3170-e9e0556becc23a62bc6920201dc5dabdd9e551f9f280b27a9d93257afbda79b33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:53:20 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Tue Jul 01 04:12:34 EDT 2025 Wed Jan 22 16:27:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3170-e9e0556becc23a62bc6920201dc5dabdd9e551f9f280b27a9d93257afbda79b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0558-774X 0000-0003-4496-0057 |
PQID | 2581774798 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2581774798 crossref_primary_10_1002_adfm_202103360 crossref_citationtrail_10_1002_adfm_202103360 wiley_primary_10_1002_adfm_202103360_ADFM202103360 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017 2019 2019 2021 2019; 10 21 15 21 31 2018; 8 2015; 25 2020; 4 2020 2019 2021 2021 2018 2018 2021 2019; 7 31 14 5 8 30 294 1 2016; 1 2019; 3 2020 2016 2019 2018; 120 28 9 8 2019; 31 2020 2016; 10 138 2016; 109 2020; 63 2017; 27 2017 2012 2014; 7 41 43 2018; 30 2018; 11 2020 2018 2016 2020 2021 2020 2019 2019; 10 139 9 30 50 2 144 16 2018; 10 2014; 6 2016; 9 2018; 14 2018 2018 2017 2017 2019; 5 14 139 56 15 2016; 55 e_1_2_7_3_4 e_1_2_7_1_5 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_3_2 e_1_2_7_1_3 e_1_2_7_3_1 e_1_2_7_3_8 e_1_2_7_9_2 e_1_2_7_3_7 e_1_2_7_9_1 e_1_2_7_3_6 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_26_3 e_1_2_7_26_4 e_1_2_7_26_5 e_1_2_7_26_6 e_1_2_7_26_7 e_1_2_7_26_8 e_1_2_7_25_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_4_3 e_1_2_7_6_1 e_1_2_7_4_2 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_4_5 e_1_2_7_8_1 e_1_2_7_4_4 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_1 e_1_2_7_8_4 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_20_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1320 year: 2016 publication-title: Energy Environ. Sci. – volume: 63 start-page: 965 year: 2020 publication-title: Sci. China Mater. – volume: 3 year: 2019 publication-title: Small Methods – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 7 31 14 5 8 30 294 1 start-page: 868 123 year: 2020 2019 2021 2021 2018 2018 2021 2019 publication-title: Adv. Sci. Adv. Mater. Nano Res. Small Methods Adv. Energy Mater. Adv. Mater. Appl. Catal., B ACS Mater. Lett. – volume: 8 start-page: 8961 year: 2018 publication-title: ACS Catal. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 2208 year: 2018 publication-title: Energy Environ. Sci. – volume: 4 year: 2020 publication-title: Small Methods – volume: 25 start-page: 871 year: 2015 publication-title: Adv. Funct. Mater. – volume: 10 139 9 30 50 2 144 16 start-page: 156 3079 1354 526 557 243 year: 2020 2018 2016 2020 2021 2020 2019 2019 publication-title: Adv. Energy Mater. Carbon Energy Environ. Sci. Adv. Funct. Mater. Chem. Soc. Rev. Matter Carbon Energy Storage Mater. – volume: 14 year: 2018 publication-title: Small – volume: 10 138 start-page: 2452 3570 year: 2020 2016 publication-title: ACS Catal. J. Am. Chem. Soc. – volume: 5 14 139 56 15 start-page: 3336 610 year: 2018 2018 2017 2017 2019 publication-title: Adv. Sci. Small J. Am. Chem. Soc. Angew. Chem., Int. Ed. Small – volume: 7 41 43 start-page: 2172 5257 year: 2017 2012 2014 publication-title: Adv. Energy Mater. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 120 28 9 8 start-page: 215 5929 year: 2020 2016 2019 2018 publication-title: Chem. Rev. Adv. Mater. ACS Catal. Adv. Energy Mater. – volume: 10 21 15 21 31 start-page: 2056 253 1555 year: 2017 2019 2019 2021 2019 publication-title: Energy Environ. Sci. Energy Storage Mater. Small Nano Lett. Adv. Mater. – volume: 10 start-page: 461 year: 2018 publication-title: NPG Asia Mater – volume: 109 start-page: 632 year: 2016 publication-title: Carbon – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 55 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2014 publication-title: Nanoscale – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201700544 – ident: e_1_2_7_8_4 doi: 10.1002/aenm.201701905 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201706508 – ident: e_1_2_7_11_1 doi: 10.1039/C8EE00673C – ident: e_1_2_7_9_2 doi: 10.1021/jacs.6b00757 – ident: e_1_2_7_1_3 doi: 10.1002/smll.201903610 – ident: e_1_2_7_3_8 doi: 10.1016/j.ensm.2018.06.001 – ident: e_1_2_7_3_7 doi: 10.1016/j.carbon.2018.12.099 – ident: e_1_2_7_16_1 doi: 10.1007/s40843-019-1207-y – ident: e_1_2_7_3_4 doi: 10.1002/adfm.201908167 – ident: e_1_2_7_21_1 doi: 10.1002/smll.201704319 – ident: e_1_2_7_22_1 doi: 10.1002/adfm.201570041 – ident: e_1_2_7_19_1 doi: 10.1002/smtd.201800450 – ident: e_1_2_7_3_6 doi: 10.1016/j.matt.2020.01.001 – ident: e_1_2_7_24_1 doi: 10.1002/aenm.201702222 – ident: e_1_2_7_6_1 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_7_26_3 doi: 10.1007/s12274-020-3127-8 – ident: e_1_2_7_26_2 doi: 10.1002/adma.201901666 – ident: e_1_2_7_10_1 doi: 10.1002/adma.201703657 – ident: e_1_2_7_1_4 doi: 10.1021/acs.nanolett.0c04898 – ident: e_1_2_7_26_4 doi: 10.1002/smtd.202000751 – ident: e_1_2_7_13_1 doi: 10.1002/anie.201604802 – ident: e_1_2_7_4_2 doi: 10.1002/smll.201703748 – ident: e_1_2_7_8_3 doi: 10.1021/acscatal.9b00869 – ident: e_1_2_7_26_6 doi: 10.1002/adma.201704609 – ident: e_1_2_7_26_1 doi: 10.1002/advs.202001178 – ident: e_1_2_7_8_1 doi: 10.1021/acs.chemrev.9b00818 – ident: e_1_2_7_4_5 doi: 10.1002/smll.201901518 – ident: e_1_2_7_26_5 doi: 10.1002/aenm.201802263 – ident: e_1_2_7_7_1 doi: 10.1021/acscatal.8b02556 – ident: e_1_2_7_4_1 doi: 10.1002/advs.201700691 – ident: e_1_2_7_15_1 doi: 10.1039/C4NR04357J – ident: e_1_2_7_1_2 doi: 10.1016/j.ensm.2019.05.018 – ident: e_1_2_7_1_5 doi: 10.1002/adma.201902339 – ident: e_1_2_7_2_2 doi: 10.1039/c1cs15228a – ident: e_1_2_7_14_1 doi: 10.1016/j.carbon.2016.08.078 – ident: e_1_2_7_3_1 doi: 10.1002/aenm.201903003 – ident: e_1_2_7_17_1 doi: 10.1002/smtd.201900827 – ident: e_1_2_7_4_3 doi: 10.1021/jacs.6b13100 – ident: e_1_2_7_3_3 doi: 10.1039/C6EE02169G – ident: e_1_2_7_5_1 doi: 10.1039/C6EE00054A – ident: e_1_2_7_18_1 doi: 10.1002/adma.201900592 – ident: e_1_2_7_12_1 doi: 10.1038/am.2017.212 – ident: e_1_2_7_9_1 doi: 10.1021/acscatal.9b04621 – ident: e_1_2_7_23_1 doi: 10.1002/adfm.201700795 – ident: e_1_2_7_3_5 doi: 10.1039/D0CS00415D – ident: e_1_2_7_4_4 doi: 10.1002/anie.201610119 – ident: e_1_2_7_3_2 doi: 10.1016/j.carbon.2018.06.023 – ident: e_1_2_7_25_1 doi: 10.1002/aenm.201702838 – ident: e_1_2_7_2_3 doi: 10.1039/C4CS00015C – ident: e_1_2_7_26_8 doi: 10.1021/acsmaterialslett.9b00093 – ident: e_1_2_7_8_2 doi: 10.1002/adma.201502696 – ident: e_1_2_7_1_1 doi: 10.1039/C7EE01913K – ident: e_1_2_7_26_7 doi: 10.1016/j.apcatb.2021.120239 |
SSID | ssj0017734 |
Score | 2.6854608 |
Snippet | The great interest in rechargeable Zn–air batteries (ZABs) arouses extensive research on low‐cost, high‐active, and durable bifunctional electrocatalysts to... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | bifunctional oxygen electrocatalyst Carbon Carbon nanotubes Catalysts Discharge dual‐phasic carbon Durability Electrocatalysts Imidazole Materials science Metal air batteries Nanoparticles nanosized phase Oxygen evolution reactions Oxygen reduction reactions Rechargeable batteries rechargeable Zn–air batteries single‐atom phase Zinc-oxygen batteries |
Title | Dual‐Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202103360 https://www.proquest.com/docview/2581774798 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBUhvaSHfqQt3TYNOhR6cmLLXsk6urtZQummpWlg6cWMLJmEbL1l1wtNTznmGOg_zC_pjOV1NoVSaMEHG0bGkkbSm_HMG8ZeJ6pIZBzaQErjgsSpMtAmVgFA7ECFRkcpJQqPj-ThSfJu0p-sZfF7fojO4UYro9mvaYGDWezfkoaCLSmTHE2WOJZktFPAFqGiTx1_VKSU_60sIwrwiiYr1sZQ7N9tfvdUuoWa64C1OXFGDxmsvtUHmpzvLWuzV_z4jcbxfzrziD1o4SjPvP48Zhuu2mb310gKn7Cr4RKmN5fXH08BZ5QPYG5mFSf_LR_M-DHKTB3P6tnXBYfKctyu0Q5vw-044MXfntHp6Z2O_MP3C9RZfuDL7zTeo4tFzRE7c4SwxNvkKJuLf6luLn9mZ3PuGUDRoH_KTkYHnweHQVu_IShiqmfjtCOqHtISEYMUppAa-xhGtuhbMNZqh3it1KVIQyMUaItgsq-gNBYUakz8jG1Ws8o9Z1xoKVIbQWHRIjU6AQWqNGXokrDJze2xYDV_edGSm1ONjWnuaZlFTiOcdyPcY286-W-e1uOPkjsrdcjb5b3IRT9F3UqUTntMNPP6l7fk2XA07p5e_Eujl2yL7n0g4Q7brOdL9woBUW122b1sOH5_vNso_y9NSwbl |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQOQAHKF_qlgJzQOKUNnGydnzcbrtaoFsQtFLFJbJjR1Qs2Wo3K9GeeuSIxD_sL-lMnKQtEkICKZdEdhTbM_abycwbxl4lMk9EHNpACOOCxMkiUCaWgdax0zI0KkopUXiyL8aHydujfhtNSLkwnh-ic7iRZtT7NSk4OaS3rlhDtS0olRxtljgWaLXfprLetVX1sWOQiqT0P5ZFRCFe0VHL2xjyrZv9b55LV2DzOmStz5zRA2bar_WhJl83l5XZzM9-I3L8r-GssvsNIoWBF6GH7JYrH7F713gKH7MfO0s9vTj_-eGLxkWFoZ6bWQnkwoXhDD5hm6mDQTX7tgBdWsAdG03xJuIONF6wfUwHqPc7wvvvpyi2sOsr8NQOpNNFBQifAVEsUTc5SuiCz-XF-a_B8Rw8CSja9E_Y4Wj3YDgOmhIOQR5TSRunHLH1kKDwWAtucqFwjGFk877VxlrlELIVquBpaLjUyiKe7EtdGKslCk38lK2Us9KtMeBK8NRGOrdolBqVaKllYYrQJWGdnttjQbuAWd7wm1OZjWnmmZl5RjOcdTPcY6-79iee2eOPLTdaecgaDV9kvJ-icCVSpT3G64X9y1uywc5o0t2t_0unl-zO-GCyl-292X_3jN2l5z6ucIOtVPOle474qDIvag24BGdyCWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLamISE4jN9aYcA7IHHKljipHR9Lu2oMNiZgUsUleo4dbVqXTm0qbTvtyBGJ_3B_Cc9xmnVICAmkXBLZUWx_tr_nvPc9xt4kMk9EHJpACG2DxMoiUDqWAWJsUYZaRakLFN7bFzuHye6oO1qK4vf6EO2Bm5sZ9XrtJviZKbZuREPRFC6SnEyWOBZktN9JRJg6XA8-twJSkZT-v7KInIdXNFrINoZ863b929vSDddcZqz1ljN8wHDxsd7T5GRzXunN_PI3Hcf_ac1DttbwUeh5AD1iK7Z8zO4vqRQ-Yd8HcxxfX_04OEIaUujjVE9KcAe40J_AFyozttCrJqczwNIArddkiDf-doB0wbtjt336U0f4dH5BoIVtn3-nPj66mFVA5BmIwzrhJuvCueBbeX31s3c8BS8BShb9U3Y43P7a3wmaBA5BHruENlZZp9XjYMJjFFznQlEbw8jkXYPaGGWJsBWq4GmouURliE12JRbaoCTIxM_Yajkp7ToDrgRPTYS5IZNUqwQlykIXoU3COji3w4LF-GV5o27ukmyMM6_LzDPXw1nbwx32ti1_5nU9_lhyYwGHrJnfs4x3U8JWIlXaYbwe17-8JesNhnvt3fN_qfSa3T0YDLOP7_c_vGD33GPvVLjBVqvp3L4kclTpVzX-fwFg3Agk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual%E2%80%90Phasic+Carbon+with+Co+Single+Atoms+and+Nanoparticles+as+a+Bifunctional+Oxygen+Electrocatalyst+for+Rechargeable+Zn%E2%80%93Air+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Li%2C+Jin%E2%80%90Cheng&rft.au=Meng%2C+Yu&rft.au=Zhang%2C+Lili&rft.au=Li%2C+Guanzhou&rft.date=2021-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=42&rft_id=info:doi/10.1002%2Fadfm.202103360&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202103360 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |