Bimetallic‐Based Electrocatalysts for Oxygen Evolution Reaction
The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel, synthetic ammonia, etc. However, the sluggish kinetics of the OER result in a high overpotential and limit the widespread application of OER‐based...
Saved in:
Published in | Advanced functional materials Vol. 33; no. 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel, synthetic ammonia, etc. However, the sluggish kinetics of the OER result in a high overpotential and limit the widespread application of OER‐based technologies. Recent studies have shown that bimetallic‐based materials with the synergism of different metal components to regulate the adsorption and dissociation energy of intermediates are promising OER electrocatalyst candidates with a lower cost and energy consumption. In the past two decades, tremendous efforts have been devoted to developing OER applications of bimetallic‐based materials with a focus on compositions, phase, structure, etc., to highlight the synergism of different metal components. However, there is a lack of critical thinking and organized analysis of OER applications with bimetallic‐based materials. This review critically discusses the challenges of developing bimetallic‐based OER materials, summarizes the current optimization strategies to enhance both activity and stability, and highlights the state‐of‐the‐art electrocatalysts for OER. The relationship between the componential/structural features of bimetallic‐based materials and their electrocatalytic properties is presented to form comprehensive electronic and geometric modifications based on thorough analysis of the reported works and discuss future efforts to realize sustainable bimetallic‐based OER applications.
The impressive progress in the rational design of bimetals and bimetallic compounds toward oxygen evolution reaction (OER) is summarized. Based on the main advantages and challenges for the bimetallic‐based OER electrocatalysts, the optimization strategies are presented to modify the electronic structure and geometric construction to highlight the synergism characteristics, including compositional regulation, elemental doping, coordination adjustment, interfacial structure establishment, morphology control, and support interaction for achieving efficient OER performance. |
---|---|
AbstractList | The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel, synthetic ammonia, etc. However, the sluggish kinetics of the OER result in a high overpotential and limit the widespread application of OER‐based technologies. Recent studies have shown that bimetallic‐based materials with the synergism of different metal components to regulate the adsorption and dissociation energy of intermediates are promising OER electrocatalyst candidates with a lower cost and energy consumption. In the past two decades, tremendous efforts have been devoted to developing OER applications of bimetallic‐based materials with a focus on compositions, phase, structure, etc., to highlight the synergism of different metal components. However, there is a lack of critical thinking and organized analysis of OER applications with bimetallic‐based materials. This review critically discusses the challenges of developing bimetallic‐based OER materials, summarizes the current optimization strategies to enhance both activity and stability, and highlights the state‐of‐the‐art electrocatalysts for OER. The relationship between the componential/structural features of bimetallic‐based materials and their electrocatalytic properties is presented to form comprehensive electronic and geometric modifications based on thorough analysis of the reported works and discuss future efforts to realize sustainable bimetallic‐based OER applications. The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel, synthetic ammonia, etc. However, the sluggish kinetics of the OER result in a high overpotential and limit the widespread application of OER‐based technologies. Recent studies have shown that bimetallic‐based materials with the synergism of different metal components to regulate the adsorption and dissociation energy of intermediates are promising OER electrocatalyst candidates with a lower cost and energy consumption. In the past two decades, tremendous efforts have been devoted to developing OER applications of bimetallic‐based materials with a focus on compositions, phase, structure, etc., to highlight the synergism of different metal components. However, there is a lack of critical thinking and organized analysis of OER applications with bimetallic‐based materials. This review critically discusses the challenges of developing bimetallic‐based OER materials, summarizes the current optimization strategies to enhance both activity and stability, and highlights the state‐of‐the‐art electrocatalysts for OER. The relationship between the componential/structural features of bimetallic‐based materials and their electrocatalytic properties is presented to form comprehensive electronic and geometric modifications based on thorough analysis of the reported works and discuss future efforts to realize sustainable bimetallic‐based OER applications. The impressive progress in the rational design of bimetals and bimetallic compounds toward oxygen evolution reaction (OER) is summarized. Based on the main advantages and challenges for the bimetallic‐based OER electrocatalysts, the optimization strategies are presented to modify the electronic structure and geometric construction to highlight the synergism characteristics, including compositional regulation, elemental doping, coordination adjustment, interfacial structure establishment, morphology control, and support interaction for achieving efficient OER performance. |
Author | Yu, Yan Lv, Hua‐Gang Jiang, Jun Zhou, Xiao‐Li Yu, Han‐Qing |
Author_xml | – sequence: 1 givenname: Jun surname: Jiang fullname: Jiang, Jun organization: Central South University – sequence: 2 givenname: Xiao‐Li surname: Zhou fullname: Zhou, Xiao‐Li organization: Nanjing University of Science and Technology – sequence: 3 givenname: Hua‐Gang surname: Lv fullname: Lv, Hua‐Gang organization: Central South University – sequence: 4 givenname: Han‐Qing surname: Yu fullname: Yu, Han‐Qing email: hqyu@ustc.edu.cn organization: University of Science & Technology of China – sequence: 5 givenname: Yan orcidid: 0000-0002-3685-7773 surname: Yu fullname: Yu, Yan email: yanyumse@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNqFkEFLw0AQhRepYFu9eg54Tt3ZbLLpsa2tChVBFLyFze6spKTZupuqufkT_I3-EhMqFQTxNI_hfTOPNyC9ylZIyCnQEVDKzqU26xGjjAGDhB6QPiSQhBFlaW-v4fGIDLxfUQpCRLxPJtNijbUsy0J9vn9MpUcdzEtUtbNKtvvG1z4w1gW3b80TVsH8xZbburBVcIdSdeKYHBpZejz5nkPysJjfz67C5e3l9WyyDFUEgoYYKa5zwBwUjjnmccS1jo3JecxTk0LKk4jGiWAaU4Q8pppqYQwVaqxMghANydnu7sbZ5y36OlvZravalxkTKQBNRERbF9-5lLPeOzSZKmrZ5aydLMoMaNaVlXVlZfuyWmz0C9u4Yi1d8zcw3gGvRYnNP-5scrG4-WG_AL3vgCk |
CitedBy_id | crossref_primary_10_1002_smll_202311356 crossref_primary_10_1002_adfm_202316544 crossref_primary_10_1016_j_apsusc_2023_158332 crossref_primary_10_1039_D3CP02849F crossref_primary_10_1016_j_cej_2023_147723 crossref_primary_10_1021_acsami_4c13769 crossref_primary_10_1002_adfm_202413474 crossref_primary_10_1007_s12678_024_00924_4 crossref_primary_10_1039_D4TA04113E crossref_primary_10_1039_D2TA09676E crossref_primary_10_1002_advs_202415065 crossref_primary_10_1016_j_foodchem_2025_144021 crossref_primary_10_1002_cctc_202301332 crossref_primary_10_1002_smll_202310380 crossref_primary_10_1016_j_est_2023_109224 crossref_primary_10_1002_adfm_202405384 crossref_primary_10_1039_D5NR00346F crossref_primary_10_1021_acssuschemeng_3c04505 crossref_primary_10_26599_NRE_2024_9120151 crossref_primary_10_1016_j_diamond_2025_111961 crossref_primary_10_1007_s12598_024_02718_5 crossref_primary_10_3390_molecules29030657 crossref_primary_10_3390_molecules29163966 crossref_primary_10_1016_j_cej_2024_148787 crossref_primary_10_1002_adfm_202503692 crossref_primary_10_1002_adfm_202315080 crossref_primary_10_1016_j_apsusc_2025_162743 crossref_primary_10_1073_pnas_2306835120 crossref_primary_10_1038_s41598_024_74031_1 crossref_primary_10_1002_smll_202410739 crossref_primary_10_1002_smll_202405567 crossref_primary_10_1016_j_jssc_2023_124213 crossref_primary_10_1016_j_fuel_2024_132509 crossref_primary_10_1021_acs_inorgchem_3c03115 crossref_primary_10_1080_10643389_2024_2379028 crossref_primary_10_1016_j_cej_2024_154211 crossref_primary_10_3866_PKU_WHXB202305021 crossref_primary_10_1016_j_jcat_2024_115540 crossref_primary_10_1016_j_jallcom_2024_173514 crossref_primary_10_1016_j_jcis_2024_04_079 crossref_primary_10_1016_j_jcis_2024_04_156 crossref_primary_10_3390_nano13182515 crossref_primary_10_1039_D4SU00538D crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1021_acsanm_3c06102 crossref_primary_10_1039_D4CE00075G crossref_primary_10_1002_cctc_202401166 crossref_primary_10_1016_j_jpowsour_2025_236782 crossref_primary_10_3390_catal14080477 crossref_primary_10_1103_PhysRevMaterials_8_095801 crossref_primary_10_1021_acsaem_4c00653 crossref_primary_10_1021_acs_jpclett_4c01150 crossref_primary_10_1039_D3MH02090H crossref_primary_10_1016_j_jallcom_2023_170479 crossref_primary_10_1016_j_jelechem_2023_117897 crossref_primary_10_1039_D4MA00088A crossref_primary_10_1021_acs_chemmater_4c00701 crossref_primary_10_1039_D4CE00641K crossref_primary_10_1016_j_mtchem_2024_102328 crossref_primary_10_1016_j_jcis_2023_05_032 crossref_primary_10_1016_j_cej_2024_150602 crossref_primary_10_1016_j_cej_2024_148601 crossref_primary_10_1021_acsami_4c16113 crossref_primary_10_1021_acs_energyfuels_3c03758 crossref_primary_10_1039_D4CE00179F crossref_primary_10_1016_j_ccr_2025_216465 crossref_primary_10_1002_aenm_202402886 crossref_primary_10_1039_D3CY01630G crossref_primary_10_1016_j_jcis_2024_08_046 crossref_primary_10_1016_j_jcis_2024_08_167 crossref_primary_10_1016_j_apsusc_2024_160128 crossref_primary_10_1039_D4TA06862A crossref_primary_10_1039_D3CS01031G crossref_primary_10_1002_aenm_202401227 crossref_primary_10_1039_D4TA07696F crossref_primary_10_1016_j_ces_2024_120919 crossref_primary_10_1021_acs_energyfuels_3c05226 crossref_primary_10_1016_j_jelechem_2023_117824 crossref_primary_10_1002_adfm_202414935 crossref_primary_10_1021_acsanm_4c00933 |
Cites_doi | 10.3389/fchem.2020.00412 10.1016/j.nanoen.2017.11.049 10.1016/j.electacta.2019.01.052 10.1002/adfm.201905992 10.1002/anie.201406455 10.1039/D0DT04397D 10.1002/aenm.201601275 10.1002/adma.201801430 10.1126/sciadv.aat5778 10.1021/acscatal.9b00928 10.1016/j.apcatb.2019.05.009 10.1002/aenm.201902104 10.1002/aenm.201703189 10.1021/acs.inorgchem.9b00868 10.1016/j.chempr.2018.02.006 10.1007/BF01020219 10.1002/anie.201701477 10.1039/C8CS00671G 10.1021/acsnano.7b01409 10.1002/adma.201902509 10.1021/acs.accounts.8b00010 10.1126/science.aaf5039 10.1002/adma.201701820 10.1006/jcat.1999.2464 10.1002/aenm.201602547 10.1002/anie.201402822 10.1002/adma.201602270 10.1021/acsami.8b06272 10.1016/j.jcis.2021.09.096 10.1016/j.mattod.2015.10.006 10.1002/aenm.201502585 10.1002/anie.201914245 10.1021/acsenergylett.8b01338 10.1021/acscatal.0c00340 10.1002/aenm.201602148 10.1021/acsnano.0c04309 10.1021/jacs.6b00332 10.1016/j.chempr.2017.09.003 10.1039/C8CY00304A 10.1002/aenm.201700107 10.1021/acsami.8b09941 10.1002/adfm.201901783 10.1016/j.rser.2014.11.093 10.1002/anie.201808929 10.1021/jacs.7b07117 10.1021/jacs.8b04546 10.1126/science.aaf1525 10.1002/adma.201808167 10.1021/cr030027b 10.1002/aenm.201703341 10.1039/C8MH00664D 10.1016/j.chempr.2018.03.012 10.1016/j.apcatb.2018.12.036 10.1039/C6EE03265F 10.1002/anie.201905281 10.1016/j.nanoen.2019.103880 10.1039/C4CP04838E 10.1021/cs3003098 10.1002/aenm.201803358 10.1021/acs.jpcc.8b04622 10.1039/b716441f 10.1038/s41929-019-0364-x 10.1002/advs.201800949 10.1021/ja5127165 10.1016/j.ijhydene.2016.05.044 10.1016/j.jcat.2019.04.016 10.1021/ja4027715 10.1039/C4CS00448E 10.1126/science.aau4414 10.1039/C8TC04087G 10.1002/adma.201807898 10.1002/anie.201612635 10.1002/anie.202213318 10.1002/cctc.201801248 10.1021/jp506946b 10.1021/acsaem.0c02579 10.1039/C7CC07259G 10.1002/adma.201604437 10.1039/D0TA05102K 10.1002/adma.201905025 10.1016/j.jpowsour.2017.09.006 10.1038/nchem.931 10.1021/jacs.8b09805 10.1016/j.cej.2021.132955 10.1002/adma.202000607 10.1002/adma.201705442 10.1021/acscatal.7b03429 10.1016/j.nanoen.2020.105644 10.1002/adfm.201702300 10.1016/j.ijhydene.2016.11.125 10.1038/nchem.2886 10.1016/j.jenvman.2019.110011 10.1021/acscatal.8b03489 10.1002/adfm.201801397 10.1016/j.ijhydene.2014.02.114 10.1002/adma.201803151 10.1002/anie.202016199 10.1002/adma.201705538 10.1016/j.microc.2020.105910 10.1002/adfm.201705094 10.1016/j.rser.2016.05.077 10.1039/C7EE03457A 10.1016/j.nanoen.2020.105619 10.1039/C4TA04758C 10.1021/acs.jpcc.0c04360 10.1016/S1872-2067(17)62949-8 10.1002/cnma.201900613 10.1039/D0EE03697H 10.1002/adma.202006042 10.1021/jacs.1c01525 10.1021/acsami.7b01096 10.1002/aenm.201702774 10.1038/s41467-020-15391-w 10.1002/smll.201700610 10.1016/j.nanoen.2016.07.032 10.1016/j.coelec.2018.04.006 10.1016/j.mtnano.2018.11.005 10.1016/j.jechem.2021.09.016 10.1021/acsami.0c01303 10.1002/aenm.201901945 10.1021/acs.accounts.7b00187 10.1038/s41467-018-05341-y 10.1039/C7EE02052J 10.1007/s12274-010-0018-4 10.1039/C2CS35244C 10.1021/acssuschemeng.0c06969 10.1021/acsestengg.2c00012 10.1016/j.nanoen.2019.02.020 10.1016/j.ijhydene.2021.03.046 10.1016/S1872-2067(18)63130-4 10.1038/s41467-017-02429-9 10.1039/a805753b 10.1002/admi.201500454 10.1002/adfm.201702324 10.1002/9781119941798 10.1021/acs.nanolett.9b03168 10.1021/acsnano.6b04252 10.1002/anie.202205946 10.1038/s41560-019-0355-9 10.1039/D1TA04455A 10.1038/s41929-019-0325-4 10.1002/aenm.202003755 10.1002/adfm.201802463 10.1002/anie.201608601 10.1002/adma.201802912 10.1038/ncomms11981 10.1021/acsami.9b16937 10.1021/ja405351s 10.1016/j.joule.2019.03.014 10.1149/1945-7111/ab6b10 10.1038/nmat4777 10.1002/anie.201908092 10.1007/s12274-014-0591-z 10.1039/C9CS00607A 10.1039/C6TA08075H 10.1016/j.electacta.2020.136716 10.1039/C4CS00302K 10.1021/jz2016507 10.1002/aenm.201800980 10.1038/nature11115 10.1002/adma.201901139 10.1088/1361-6528/aa8f6f 10.1021/acscatal.9b05445 10.1021/jacs.1c06349 10.1021/acs.chemmater.7b04534 10.1016/j.cattod.2015.08.014 10.1002/anie.202112880 10.1039/c2ee23475k 10.1021/acscatal.8b03702 10.1021/jacs.8b09402 10.1016/j.chemgeo.2016.08.026 10.1002/anie.201912785 10.1021/acs.chemmater.6b02796 10.1002/smtd.201800344 10.1016/j.nanoen.2018.12.094 10.1021/acsenergylett.8b00888 10.1039/C8TA02492H 10.1039/D0CY02339F 10.1039/c0ee00731e 10.1038/s41467-018-07790-x 10.1016/j.apcatb.2017.05.081 10.1021/acs.chemmater.9b02011 10.1002/advs.201700226 10.1126/science.aad4998 10.1126/sciadv.aav6262 10.1002/anie.201909939 10.1021/acs.energyfuels.1c02810 10.1073/pnas.1519212112 10.1016/j.teac.2021.e00145 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202212160 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202212160 ADFM202212160 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Synchrotron Radiation Laboratory funderid: KY2060000173 – fundername: National Natural Science Foundation of Hunan Province funderid: 2021JJ30792 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences funderid: XDA21000000 – fundername: Transformational Technologies for Clean Energy and Demonstration – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 51821006; 42177391; 52192684; 51925207; U1910210; 52161145101; 51872277; 22176183 – fundername: Joint Fund of the Yulin University – fundername: Central South University – fundername: Dalian National Laboratory for Clean Energy funderid: 2021002 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3170-e3c4db1eb1ce94eb534dd5ffb4548f81846305672de8e1b50d0d7ff07c9cf6e13 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:01:53 EDT 2025 Tue Jul 01 00:30:38 EDT 2025 Thu Apr 24 23:01:28 EDT 2025 Wed Jan 22 16:23:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3170-e3c4db1eb1ce94eb534dd5ffb4548f81846305672de8e1b50d0d7ff07c9cf6e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3685-7773 |
PQID | 2781106730 |
PQPubID | 2045204 |
PageCount | 29 |
ParticipantIDs | proquest_journals_2781106730 crossref_citationtrail_10_1002_adfm_202212160 crossref_primary_10_1002_adfm_202212160 wiley_primary_10_1002_adfm_202212160_ADFM202212160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 608 2012; 486 2019; 11 2008; 37 2019; 19 2020; 14 2021; 163 2020; 167 2020; 12 2020; 11 2020; 10 2018; 43 2016; 262 2018; 6 2018; 9 2018; 39 2018; 8 2018; 3 2018; 5 2018; 4 2015; 137 2019; 29 2018; 30 2010; 3 2021; 81 2021; 46 2019; 9 2018; 28 2019; 4 2019; 3 2019; 6 2019; 5 2016; 19 2019; 31 2019; 2 2016; 10 1999; 184 2016; 441 2020; 32 2021; 143 2011; 4 2021; 50 2011; 3 2017; 139 2016; 4 2017; 50 2016; 6 2016; 7 2016; 3 2020; 30 2015; 112 2019; 48 2017; 56 2014; 39 2022; 2 2016; 28 2018; 11 2021; 60 2018; 10 2016; 27 2018; 362 2017; 42 2018; 122 2017; 7 2017; 3 2017; 4 2019; 57 2019; 59 2019; 58 2020; 59 2019; 245 2020; 124 2022; 66 2017; 355 2017; 9 2020; 8 2021; 35 2020; 6 2021; 32 2021; 33 2019; 63 2015; 44 2015; 43 2020; 259 2020; 49 2016; 352 2017; 366 2014; 53 2014; 118 2021; 9 2022; 430 2015; 17 2004; 104 2021; 4 2018; 140 2015; 3 2012 2017; 28 2017; 27 2013; 42 2019; 300 2017; 29 2015; 8 1998; 22 2017; 217 2021; 14 2012; 2 2012; 3 2021; 11 1991; 21 2022; 61 2017; 16 2017; 11 2017; 10 2017; 13 2016; 64 2013; 135 2020; 354 2018; 51 2016; 138 2018; 54 2012; 5 2019; 254 2019; 374 2018; 57 e_1_2_7_108_1 e_1_2_7_3_1 e_1_2_7_104_1 e_1_2_7_127_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_100_1 e_1_2_7_123_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_161_1 e_1_2_7_184_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_142_1 e_1_2_7_165_1 e_1_2_7_188_1 e_1_2_7_146_1 e_1_2_7_169_1 e_1_2_7_116_1 e_1_2_7_90_1 e_1_2_7_112_1 e_1_2_7_94_1 e_1_2_7_71_1 e_1_2_7_180_1 e_1_2_7_52_1 e_1_2_7_98_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_75_1 e_1_2_7_56_1 e_1_2_7_150_1 e_1_2_7_37_1 e_1_2_7_79_1 e_1_2_7_173_1 e_1_2_7_131_1 e_1_2_7_154_1 e_1_2_7_177_1 e_1_2_7_135_1 e_1_2_7_158_1 e_1_2_7_139_1 e_1_2_7_109_1 e_1_2_7_4_1 e_1_2_7_128_1 e_1_2_7_105_1 e_1_2_7_8_1 e_1_2_7_124_1 e_1_2_7_101_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_82_1 e_1_2_7_120_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_86_1 e_1_2_7_67_1 e_1_2_7_185_1 e_1_2_7_48_1 e_1_2_7_162_1 e_1_2_7_143_1 e_1_2_7_189_1 e_1_2_7_29_1 e_1_2_7_166_1 e_1_2_7_147_1 e_1_2_7_117_1 e_1_2_7_113_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 e_1_2_7_181_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_97_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_151_1 e_1_2_7_174_1 e_1_2_7_132_1 e_1_2_7_155_1 e_1_2_7_178_1 e_1_2_7_136_1 e_1_2_7_159_1 e_1_2_7_5_1 e_1_2_7_106_1 e_1_2_7_129_1 e_1_2_7_9_1 e_1_2_7_102_1 e_1_2_7_125_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_81_1 e_1_2_7_121_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_170_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_140_1 e_1_2_7_163_1 e_1_2_7_182_1 e_1_2_7_28_1 e_1_2_7_144_1 e_1_2_7_167_1 e_1_2_7_186_1 e_1_2_7_148_1 e_1_2_7_118_1 e_1_2_7_114_1 Dindar C. K. (e_1_2_7_38_1) 2021; 32 e_1_2_7_73_1 e_1_2_7_110_1 e_1_2_7_50_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_77_1 e_1_2_7_54_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_171_1 e_1_2_7_58_1 e_1_2_7_152_1 e_1_2_7_39_1 e_1_2_7_175_1 e_1_2_7_133_1 e_1_2_7_156_1 e_1_2_7_179_1 e_1_2_7_137_1 e_1_2_7_6_1 e_1_2_7_107_1 e_1_2_7_80_1 e_1_2_7_126_1 e_1_2_7_103_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_122_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_88_1 e_1_2_7_65_1 e_1_2_7_190_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_160_1 e_1_2_7_69_1 e_1_2_7_141_1 e_1_2_7_183_1 e_1_2_7_27_1 e_1_2_7_164_1 e_1_2_7_145_1 e_1_2_7_187_1 e_1_2_7_168_1 e_1_2_7_149_1 e_1_2_7_119_1 e_1_2_7_91_1 e_1_2_7_115_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_111_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_99_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_172_1 e_1_2_7_130_1 e_1_2_7_153_1 e_1_2_7_176_1 e_1_2_7_134_1 e_1_2_7_157_1 e_1_2_7_138_1 |
References_xml | – volume: 10 start-page: 742 year: 2017 publication-title: Energy Environ. Sci. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 763 year: 2019 publication-title: Nat. Catal. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 23 year: 2015 publication-title: Nano Res. – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 44 start-page: 5148 year: 2015 publication-title: Chem. Soc. Rev. – volume: 12 start-page: 4423 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 4736 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 217 start-page: 201 year: 2017 publication-title: Appl. Catal. B Environ. – volume: 42 start-page: 2601 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 1698 year: 2018 publication-title: ACS Energy Lett. – volume: 9 start-page: 2047 year: 2021 publication-title: ACS Sustainable Chem. Eng. – volume: 29 start-page: 120 year: 2017 publication-title: Chem. Mater. – volume: 44 start-page: 637 year: 2015 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 574 year: 2010 publication-title: Nano Res. – volume: 54 start-page: 78 year: 2018 publication-title: Chem. Commun. – volume: 81 year: 2021 publication-title: Nano Energy – volume: 59 start-page: 146 year: 2019 publication-title: Nano Energy – volume: 3 start-page: 812 year: 2017 publication-title: Chem – volume: 3 start-page: 956 year: 2019 publication-title: Joule – volume: 37 start-page: 1619 year: 2008 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 329 year: 2019 publication-title: Nat. Energy – volume: 6 start-page: 154 year: 2020 publication-title: ChemNanoMat – volume: 9 start-page: 214 year: 2018 publication-title: Curr. Opin. Electrochem. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9765 year: 2012 publication-title: Energy Environ. Sci. – volume: 32 year: 2021 publication-title: Trends Anal. Chem. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 259 year: 2020 publication-title: J. Environ. Manag. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 27 start-page: 526 year: 2016 publication-title: Nano Energy – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 19 start-page: 7457 year: 2019 publication-title: Nano Lett. – volume: 4 start-page: 1510 year: 2018 publication-title: Chem – volume: 49 start-page: 2196 year: 2020 publication-title: Chem. Soc. Rev. – volume: 355 year: 2017 publication-title: Science – volume: 64 start-page: 34 year: 2016 publication-title: Renewable Sustainable Energy Rev. – volume: 300 start-page: 85 year: 2019 publication-title: Electrochim. Acta – volume: 42 start-page: 8450 year: 2017 publication-title: Int. J. Hydrogen Energy – volume: 352 start-page: 1210 year: 2016 publication-title: Science – volume: 143 start-page: 5201 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 744 year: 2018 publication-title: Energy Environ. Sci. – volume: 35 year: 2021 publication-title: Energy Fuels – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 184 start-page: 535 year: 1999 publication-title: J. Catal. – volume: 112 year: 2015 publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 262 start-page: 170 year: 2016 publication-title: Catal. Today – volume: 63 year: 2019 publication-title: Nano Energy – volume: 9 start-page: 2885 year: 2018 publication-title: Nat. Commun. – volume: 48 start-page: 3181 year: 2019 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 2190 year: 2017 publication-title: Energy Environ. Sci. – volume: 50 start-page: 4720 year: 2021 publication-title: Dalton Trans. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 56 start-page: 3897 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 143 year: 2021 publication-title: J. Am. Chem. Soc. – volume: 66 start-page: 619 year: 2022 publication-title: J. Energy Chem. – volume: 137 start-page: 2688 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 79 year: 2011 publication-title: Nat. Chem. – volume: 2 start-page: 2002 year: 2022 publication-title: ACS EST Engg. – volume: 46 year: 2021 publication-title: Int. J. Hydrogen Energy – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 2 start-page: 955 year: 2019 publication-title: Nat. Catal. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 4 start-page: 1323 year: 2021 publication-title: ACS Appl. Energy Mater. – volume: 354 year: 2020 publication-title: Electrochim. Acta – volume: 50 start-page: 2194 year: 2017 publication-title: Acc. Chem. Res. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 58 start-page: 8570 year: 2019 publication-title: Inorg. Chem. – volume: 14 start-page: 1897 year: 2021 publication-title: Energy Environ. Sci. – volume: 39 start-page: 6967 year: 2014 publication-title: Int. J. Hydrogen Energy – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 366 start-page: 33 year: 2017 publication-title: J. Power Sources – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 13 year: 2017 publication-title: Small – volume: 608 start-page: 599 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 18 year: 2019 publication-title: ChemCatChem – volume: 10 start-page: 4411 year: 2020 publication-title: ACS Catal. – volume: 10 start-page: 149 year: 2018 publication-title: Nat. Chem. – volume: 60 start-page: 8243 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 124 year: 2020 publication-title: J. Phys. Chem. C – volume: 4 start-page: 1263 year: 2018 publication-title: Chem – volume: 140 start-page: 7748 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 5309 year: 2018 publication-title: Nat. Commun. – volume: 22 start-page: 1179 year: 1998 publication-title: New J. Chem. – volume: 53 start-page: 7584 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2018 publication-title: ACS Catal. – volume: 8 start-page: 3450 year: 2018 publication-title: Catal. Sci. Technol. – volume: 3 start-page: 399 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 213 year: 2016 publication-title: Mater. Today – volume: 8 start-page: 412 year: 2020 publication-title: Front. Chem. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 8 start-page: 2081 year: 2018 publication-title: ACS Catal. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 51 start-page: 910 year: 2018 publication-title: Acc. Chem. Res. – volume: 11 start-page: 1590 year: 2020 publication-title: Nat. Commun. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 43 start-page: 300 year: 2018 publication-title: Nano Energy – volume: 254 start-page: 292 year: 2019 publication-title: Appl. Catal. B Environ. – volume: 362 start-page: 560 year: 2018 publication-title: Science – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 29 year: 2017 publication-title: Chem. Mater. – volume: 28 year: 2017 publication-title: Nanotechnology – volume: 3 start-page: 499 year: 2015 publication-title: J. Mater. Chem. A – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1765 year: 2012 publication-title: ACS Catal. – volume: 43 start-page: 1151 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 441 start-page: 204 year: 2016 publication-title: Chem. Geol. – volume: 374 start-page: 51 year: 2019 publication-title: J. Catal. – volume: 28 start-page: 9266 year: 2016 publication-title: Adv. Mater. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 21 start-page: 335 year: 1991 publication-title: J. Appl. Electrochem. – volume: 57 start-page: 644 year: 2019 publication-title: Nano Energy – volume: 10 start-page: 8738 year: 2016 publication-title: ACS Nano – volume: 6 start-page: 115 year: 2019 publication-title: Mater. Horiz. – volume: 11 start-page: 2652 year: 2021 publication-title: Catal. Sci. Technol. – volume: 135 start-page: 8452 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 5800 year: 2017 publication-title: ACS Nano – volume: 3 start-page: 2038 year: 2018 publication-title: ACS Energy Lett. – volume: 486 start-page: 43 year: 2012 publication-title: Nature – volume: 56 start-page: 5994 year: 2017 publication-title: Angew. Chem., Int. Ed. – year: 2012 – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 9 start-page: 7389 year: 2019 publication-title: ACS Catal. – volume: 16 start-page: 45 year: 2017 publication-title: Nat. Mater. – volume: 39 start-page: 1575 year: 2018 publication-title: Chinese J. Catal. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2019 publication-title: Small Methods – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 163 year: 2021 publication-title: Microchemical J. – volume: 3 start-page: 54 year: 2018 publication-title: Mater. Today Nano – volume: 140 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 138 start-page: 5603 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 4909 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 2003 year: 2011 publication-title: Energy Environ. Sci. – volume: 31 start-page: 5867 year: 2019 publication-title: Chem. Mater. – volume: 245 start-page: 1 year: 2019 publication-title: Appl. Catal. B Environ. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 42 start-page: 3956 year: 2013 publication-title: Chem. Soc. Rev. – volume: 104 start-page: 3893 year: 2004 publication-title: Chem. Rev. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 4019 year: 2020 publication-title: ACS Catal. – volume: 56 start-page: 5867 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 381 year: 2018 publication-title: Nat. Commun. – volume: 39 start-page: 390 year: 2018 publication-title: Chinese J. Catal. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – ident: e_1_2_7_37_1 doi: 10.3389/fchem.2020.00412 – ident: e_1_2_7_152_1 doi: 10.1016/j.nanoen.2017.11.049 – ident: e_1_2_7_108_1 doi: 10.1016/j.electacta.2019.01.052 – ident: e_1_2_7_185_1 doi: 10.1002/adfm.201905992 – ident: e_1_2_7_19_1 doi: 10.1002/anie.201406455 – ident: e_1_2_7_159_1 doi: 10.1039/D0DT04397D – ident: e_1_2_7_181_1 doi: 10.1002/aenm.201601275 – ident: e_1_2_7_134_1 doi: 10.1002/adma.201801430 – ident: e_1_2_7_13_1 doi: 10.1126/sciadv.aat5778 – ident: e_1_2_7_180_1 doi: 10.1021/acscatal.9b00928 – ident: e_1_2_7_154_1 doi: 10.1016/j.apcatb.2019.05.009 – ident: e_1_2_7_89_1 doi: 10.1002/aenm.201902104 – ident: e_1_2_7_93_1 doi: 10.1002/aenm.201703189 – ident: e_1_2_7_115_1 doi: 10.1021/acs.inorgchem.9b00868 – ident: e_1_2_7_175_1 doi: 10.1016/j.chempr.2018.02.006 – ident: e_1_2_7_149_1 doi: 10.1007/BF01020219 – ident: e_1_2_7_76_1 doi: 10.1002/anie.201701477 – ident: e_1_2_7_147_1 doi: 10.1039/C8CS00671G – ident: e_1_2_7_163_1 doi: 10.1021/acsnano.7b01409 – ident: e_1_2_7_111_1 doi: 10.1002/adma.201902509 – ident: e_1_2_7_17_1 doi: 10.1021/acs.accounts.8b00010 – ident: e_1_2_7_11_1 doi: 10.1126/science.aaf5039 – ident: e_1_2_7_127_1 doi: 10.1002/adma.201701820 – ident: e_1_2_7_47_1 doi: 10.1006/jcat.1999.2464 – ident: e_1_2_7_142_1 doi: 10.1002/aenm.201602547 – ident: e_1_2_7_74_1 doi: 10.1002/anie.201402822 – ident: e_1_2_7_27_1 doi: 10.1002/adma.201602270 – ident: e_1_2_7_167_1 doi: 10.1021/acsami.8b06272 – ident: e_1_2_7_123_1 doi: 10.1016/j.jcis.2021.09.096 – ident: e_1_2_7_52_1 doi: 10.1016/j.mattod.2015.10.006 – ident: e_1_2_7_85_1 doi: 10.1002/aenm.201502585 – ident: e_1_2_7_110_1 doi: 10.1002/anie.201914245 – ident: e_1_2_7_170_1 doi: 10.1021/acsenergylett.8b01338 – ident: e_1_2_7_132_1 doi: 10.1021/acscatal.0c00340 – ident: e_1_2_7_151_1 doi: 10.1002/aenm.201602148 – ident: e_1_2_7_184_1 doi: 10.1021/acsnano.0c04309 – ident: e_1_2_7_31_1 doi: 10.1021/jacs.6b00332 – ident: e_1_2_7_137_1 doi: 10.1016/j.chempr.2017.09.003 – ident: e_1_2_7_48_1 doi: 10.1039/C8CY00304A – ident: e_1_2_7_158_1 doi: 10.1002/aenm.201700107 – ident: e_1_2_7_71_1 doi: 10.1021/acsami.8b09941 – ident: e_1_2_7_98_1 doi: 10.1002/adfm.201901783 – ident: e_1_2_7_10_1 doi: 10.1016/j.rser.2014.11.093 – ident: e_1_2_7_82_1 doi: 10.1002/anie.201808929 – ident: e_1_2_7_55_1 doi: 10.1021/jacs.7b07117 – ident: e_1_2_7_67_1 doi: 10.1021/jacs.8b04546 – ident: e_1_2_7_90_1 doi: 10.1126/science.aaf1525 – ident: e_1_2_7_116_1 doi: 10.1002/adma.201808167 – ident: e_1_2_7_62_1 doi: 10.1021/cr030027b – ident: e_1_2_7_92_1 doi: 10.1002/aenm.201703341 – ident: e_1_2_7_133_1 doi: 10.1039/C8MH00664D – ident: e_1_2_7_34_1 doi: 10.1016/j.chempr.2018.03.012 – ident: e_1_2_7_138_1 doi: 10.1016/j.apcatb.2018.12.036 – ident: e_1_2_7_53_1 doi: 10.1039/C6EE03265F – ident: e_1_2_7_118_1 doi: 10.1002/anie.201905281 – ident: e_1_2_7_164_1 doi: 10.1016/j.nanoen.2019.103880 – ident: e_1_2_7_14_1 doi: 10.1039/C4CP04838E – ident: e_1_2_7_20_1 doi: 10.1021/cs3003098 – ident: e_1_2_7_43_1 doi: 10.1002/aenm.201803358 – ident: e_1_2_7_61_1 doi: 10.1021/acs.jpcc.8b04622 – ident: e_1_2_7_29_1 doi: 10.1039/b716441f – ident: e_1_2_7_146_1 doi: 10.1038/s41929-019-0364-x – ident: e_1_2_7_161_1 doi: 10.1002/advs.201800949 – ident: e_1_2_7_69_1 doi: 10.1021/ja5127165 – ident: e_1_2_7_5_1 doi: 10.1016/j.ijhydene.2016.05.044 – ident: e_1_2_7_54_1 doi: 10.1016/j.jcat.2019.04.016 – ident: e_1_2_7_153_1 doi: 10.1021/ja4027715 – ident: e_1_2_7_8_1 doi: 10.1039/C4CS00448E – ident: e_1_2_7_59_1 doi: 10.1126/science.aau4414 – ident: e_1_2_7_60_1 doi: 10.1039/C8TC04087G – ident: e_1_2_7_130_1 doi: 10.1002/adma.201807898 – ident: e_1_2_7_144_1 doi: 10.1002/anie.201612635 – ident: e_1_2_7_178_1 doi: 10.1002/anie.202213318 – ident: e_1_2_7_3_1 doi: 10.1002/cctc.201801248 – ident: e_1_2_7_26_1 doi: 10.1021/jp506946b – ident: e_1_2_7_182_1 doi: 10.1021/acsaem.0c02579 – ident: e_1_2_7_78_1 doi: 10.1039/C7CC07259G – ident: e_1_2_7_162_1 doi: 10.1002/adma.201604437 – ident: e_1_2_7_189_1 doi: 10.1039/D0TA05102K – ident: e_1_2_7_106_1 doi: 10.1002/adma.201905025 – ident: e_1_2_7_46_1 doi: 10.1016/j.jpowsour.2017.09.006 – ident: e_1_2_7_109_1 doi: 10.1038/nchem.931 – ident: e_1_2_7_119_1 doi: 10.1021/jacs.8b09805 – ident: e_1_2_7_173_1 doi: 10.1016/j.cej.2021.132955 – ident: e_1_2_7_121_1 doi: 10.1002/adma.202000607 – ident: e_1_2_7_126_1 doi: 10.1002/adma.201705442 – ident: e_1_2_7_64_1 doi: 10.1021/acscatal.7b03429 – ident: e_1_2_7_171_1 doi: 10.1016/j.nanoen.2020.105644 – ident: e_1_2_7_186_1 doi: 10.1002/adfm.201702300 – ident: e_1_2_7_4_1 doi: 10.1016/j.ijhydene.2016.11.125 – ident: e_1_2_7_32_1 doi: 10.1038/nchem.2886 – ident: e_1_2_7_39_1 doi: 10.1016/j.jenvman.2019.110011 – ident: e_1_2_7_117_1 doi: 10.1021/acscatal.8b03489 – ident: e_1_2_7_135_1 doi: 10.1002/adfm.201801397 – ident: e_1_2_7_150_1 doi: 10.1016/j.ijhydene.2014.02.114 – ident: e_1_2_7_120_1 doi: 10.1002/adma.201803151 – ident: e_1_2_7_122_1 doi: 10.1002/anie.202016199 – ident: e_1_2_7_99_1 doi: 10.1002/adma.201705538 – ident: e_1_2_7_36_1 doi: 10.1016/j.microc.2020.105910 – ident: e_1_2_7_157_1 doi: 10.1002/adfm.201705094 – ident: e_1_2_7_2_1 doi: 10.1016/j.rser.2016.05.077 – ident: e_1_2_7_58_1 doi: 10.1039/C7EE03457A – ident: e_1_2_7_131_1 doi: 10.1016/j.nanoen.2020.105619 – ident: e_1_2_7_183_1 doi: 10.1039/C4TA04758C – ident: e_1_2_7_15_1 doi: 10.1039/C8CS00671G – ident: e_1_2_7_187_1 doi: 10.1021/acs.jpcc.0c04360 – ident: e_1_2_7_9_1 doi: 10.1016/S1872-2067(17)62949-8 – ident: e_1_2_7_165_1 doi: 10.1002/cnma.201900613 – ident: e_1_2_7_41_1 doi: 10.1039/D0EE03697H – ident: e_1_2_7_176_1 doi: 10.1002/adma.202006042 – ident: e_1_2_7_114_1 doi: 10.1021/jacs.1c01525 – ident: e_1_2_7_88_1 doi: 10.1021/acsami.7b01096 – ident: e_1_2_7_42_1 doi: 10.1002/aenm.201702774 – ident: e_1_2_7_169_1 doi: 10.1038/s41467-020-15391-w – ident: e_1_2_7_100_1 doi: 10.1002/smll.201700610 – ident: e_1_2_7_79_1 doi: 10.1016/j.nanoen.2016.07.032 – ident: e_1_2_7_30_1 doi: 10.1016/j.coelec.2018.04.006 – ident: e_1_2_7_66_1 doi: 10.1016/j.mtnano.2018.11.005 – ident: e_1_2_7_139_1 doi: 10.1016/j.jechem.2021.09.016 – ident: e_1_2_7_166_1 doi: 10.1021/acsami.0c01303 – ident: e_1_2_7_168_1 doi: 10.1002/aenm.201901945 – ident: e_1_2_7_22_1 doi: 10.1021/acs.accounts.7b00187 – ident: e_1_2_7_91_1 doi: 10.1038/s41467-018-05341-y – ident: e_1_2_7_102_1 doi: 10.1039/C7EE02052J – ident: e_1_2_7_50_1 doi: 10.1007/s12274-010-0018-4 – ident: e_1_2_7_140_1 doi: 10.1039/C2CS35244C – ident: e_1_2_7_81_1 doi: 10.1021/acssuschemeng.0c06969 – ident: e_1_2_7_190_1 doi: 10.1021/acsestengg.2c00012 – ident: e_1_2_7_141_1 doi: 10.1016/j.nanoen.2019.02.020 – ident: e_1_2_7_160_1 doi: 10.1016/j.ijhydene.2021.03.046 – ident: e_1_2_7_56_1 doi: 10.1016/S1872-2067(18)63130-4 – ident: e_1_2_7_125_1 doi: 10.1038/s41467-017-02429-9 – ident: e_1_2_7_28_1 doi: 10.1039/a805753b – ident: e_1_2_7_83_1 doi: 10.1002/admi.201500454 – ident: e_1_2_7_143_1 doi: 10.1002/adfm.201702324 – ident: e_1_2_7_33_1 doi: 10.1002/9781119941798 – ident: e_1_2_7_86_1 doi: 10.1021/acs.nanolett.9b03168 – ident: e_1_2_7_101_1 doi: 10.1021/acsnano.6b04252 – ident: e_1_2_7_177_1 doi: 10.1002/anie.202205946 – ident: e_1_2_7_96_1 doi: 10.1038/s41560-019-0355-9 – ident: e_1_2_7_172_1 doi: 10.1039/D1TA04455A – ident: e_1_2_7_128_1 doi: 10.1038/s41929-019-0325-4 – ident: e_1_2_7_107_1 doi: 10.1002/aenm.202003755 – ident: e_1_2_7_155_1 doi: 10.1002/adfm.201802463 – ident: e_1_2_7_65_1 doi: 10.1002/anie.201608601 – ident: e_1_2_7_112_1 doi: 10.1002/adma.201802912 – ident: e_1_2_7_75_1 doi: 10.1038/ncomms11981 – ident: e_1_2_7_188_1 doi: 10.1021/acsami.9b16937 – ident: e_1_2_7_25_1 doi: 10.1021/ja405351s – ident: e_1_2_7_35_1 doi: 10.1016/j.joule.2019.03.014 – ident: e_1_2_7_84_1 doi: 10.1149/1945-7111/ab6b10 – ident: e_1_2_7_7_1 doi: 10.1038/nmat4777 – ident: e_1_2_7_73_1 doi: 10.1002/anie.201908092 – ident: e_1_2_7_24_1 doi: 10.1007/s12274-014-0591-z – ident: e_1_2_7_103_1 doi: 10.1039/C9CS00607A – ident: e_1_2_7_23_1 doi: 10.1039/C6TA08075H – ident: e_1_2_7_145_1 doi: 10.1016/j.electacta.2020.136716 – ident: e_1_2_7_45_1 doi: 10.1039/C4CS00302K – ident: e_1_2_7_21_1 doi: 10.1021/jz2016507 – ident: e_1_2_7_97_1 doi: 10.1002/aenm.201800980 – ident: e_1_2_7_44_1 doi: 10.1038/nature11115 – ident: e_1_2_7_95_1 doi: 10.1002/adma.201901139 – ident: e_1_2_7_16_1 doi: 10.1088/1361-6528/aa8f6f – ident: e_1_2_7_63_1 doi: 10.1021/acscatal.9b05445 – ident: e_1_2_7_179_1 doi: 10.1021/jacs.1c06349 – ident: e_1_2_7_105_1 doi: 10.1021/acs.chemmater.7b04534 – ident: e_1_2_7_18_1 doi: 10.1016/j.cattod.2015.08.014 – ident: e_1_2_7_174_1 doi: 10.1002/anie.202112880 – ident: e_1_2_7_70_1 doi: 10.1039/c2ee23475k – ident: e_1_2_7_94_1 doi: 10.1021/acscatal.8b03702 – ident: e_1_2_7_136_1 doi: 10.1021/jacs.8b09402 – ident: e_1_2_7_51_1 doi: 10.1016/j.chemgeo.2016.08.026 – ident: e_1_2_7_148_1 doi: 10.1002/anie.201912785 – ident: e_1_2_7_57_1 doi: 10.1021/acs.chemmater.6b02796 – ident: e_1_2_7_77_1 doi: 10.1002/smtd.201800344 – ident: e_1_2_7_87_1 doi: 10.1016/j.nanoen.2018.12.094 – ident: e_1_2_7_113_1 doi: 10.1021/acsenergylett.8b00888 – ident: e_1_2_7_124_1 doi: 10.1039/C8TA02492H – ident: e_1_2_7_40_1 doi: 10.1039/D0CY02339F – ident: e_1_2_7_1_1 doi: 10.1039/c0ee00731e – ident: e_1_2_7_6_1 doi: 10.1038/s41467-018-07790-x – ident: e_1_2_7_49_1 doi: 10.1016/j.apcatb.2017.05.081 – ident: e_1_2_7_72_1 doi: 10.1021/acs.chemmater.9b02011 – ident: e_1_2_7_156_1 doi: 10.1002/advs.201700226 – ident: e_1_2_7_68_1 doi: 10.1126/science.aad4998 – ident: e_1_2_7_104_1 doi: 10.1126/sciadv.aav6262 – ident: e_1_2_7_129_1 doi: 10.1002/anie.201909939 – ident: e_1_2_7_80_1 doi: 10.1021/acs.energyfuels.1c02810 – ident: e_1_2_7_12_1 doi: 10.1073/pnas.1519212112 – volume: 32 start-page: e00145 year: 2021 ident: e_1_2_7_38_1 publication-title: Trends Anal. Chem. doi: 10.1016/j.teac.2021.e00145 |
SSID | ssj0017734 |
Score | 2.6693466 |
SecondaryResourceType | review_article |
Snippet | The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ammonia bimetallic compounds Bimetals electrocatalysis Electrocatalysts Energy consumption Energy of dissociation Free energy Heat of formation Materials science Optimization oxygen evolution reaction Oxygen evolution reactions synthetic methodology |
Title | Bimetallic‐Based Electrocatalysts for Oxygen Evolution Reaction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202212160 https://www.proquest.com/docview/2781106730 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MXvTg24gi2YOJp4Vt91E4gkCIEU1QEm6b7SshIhoXjHjyJ_gb_SV2trsLmBgTPW62bXY708437cw3CJ3VqCt9rKitHaCa7XmC2REBIOcQIWuBqsnkTLd3HXQH3uXQHy5l8Rt-iPzADVZGsl_DAo9YXF2QhkZCQSY50XsvDsBph4AtQEX9nD8KU2qulQMMAV54mLE2OqS62n3VKi2g5jJgTSxOZxtF2beaQJP7ymzKKvztG43jf35mB22lcNRqGP3ZRWtysoc2l0gK91GjOXqQGqKPR_zz_aOprZ6w2qZ4TnL2M4-nsaWhr3XzOtfaaLVfUm22-tJkTRygQad9d9G108ILNnehEI10uRYa1ts4l3VPMt_1hPCVYp72b5Q28V4AngcFcUrMfEc4girlUF7nKpDYPUSFyeNEHiErioTrM6Ztoh7JV7p7JCgmHNe5ZIzQIrKziQ95ykoOxTHGoeFTJiFMTZhPTRGd5-2fDB_Hjy1LmRzDdF3GIYHEWqjNo1-TRCC_jBI2Wp1e_nT8l04naANq1JvAtRIqTJ9n8lQjmSkro_VGq3d1W0609gsKlOyT |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xcGA58NpFPArkANpTIHYebg8cCm1VHgUJgdRbNn5JCCiItkA58RP4K_wVfgK_hHGcBFgJrYTEgWMSx3I8npnPzsw3ACtl5quQaObiBqjsBoHkbkINkPOoVOVIl1V6ptvaj5rHwU47bA_BY54LY_khigM3oxmpvTYKbg6k119ZQxOpTSo5ReNLIi-Lq9xVgxvctXU3tmso4lVKG_WjraabFRZwhW8KrShf4KAImimhKoHioR9IGWrNA8TvGl1YEBlkzcxwFeGhJz3JtPaYqAgdKeJjvz9gxJQRN3T9tcOCsYowZn9kR8SElJF2zhPp0fX3433vB1_B7VuInPq4xgQ85bNjQ1tO1_o9vibu_iGO_FbTNwnjGeJ2qlZFpmBIdaZh7A0P4y-obp6cK9yFnJ2I5_uHTXTs0qnb-kDp8dag2-s6iO6dg9sBKpxTv84U1jlUNjHkNxx_yTfMwHDnoqNmwUkS6Yeco9vHnkKNryeSESpIRSjOKZsDN5d0LDLidVP_4yy2lNE0NqKIC1HMwZ-i_aWlHPmwZSlfOHFmeroxNbnDpvwQPqbpCvhPL3G11mgVV_OfeWkZRptHrb14b3t_dwF-4n3fxumVYLh31VeLCNx6fClVFQf-fvXiegE-DEqa |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB6FIFX0QGkBEaDFB1BPBu_6Z5MDh4QkgvLTCoGUm_H-SRFpiEhoCScegUfpq_AKPAmzXttAJYSExIGj7fVqvbMz8-165huA1SrzVUg0c3EDVHWDQHI3oQbIeVSqaqSrKj3T3T-Ito-DH52wU4J_eS6M5YcoDtyMZqT22ij4QOqNB9LQRGqTSU7R9pLIy8Iqd9X4L27ahps7TZTwGqXt1tHWtpvVFXCFb-qsKF_gmAhaKaFqgeKhH0gZas0DhO8aPVgQGWDNzGgV4aEnPcm09pioCR0p4mO_EzAZRF7NFItoHhaEVYQx-x87IiaijHRymkiPbjwd71M3-IBtHyPk1MW1P8FtPjk2suV0_WLE18XVf7yR72n2ZmA6w9tO3SrIZyip_hf4-IiFcRbqje5vhXuQXlfcXd800K1Lp2WrA6WHW-PhaOggtnd-Xo5R3ZzWn0xdnUNl00Lm4PhNvmEeyv2zvloAJ0mkH3KOTh97CjW-nkhGqCA1oTinrAJuLuhYZLTrpvpHL7aE0TQ2oogLUVTge9F-YAlHnm25nK-bODM8w5iazGFTfAgf03QBvNBLXG-294urxde8tAIffjXb8d7Owe4STOFt3wbpLUN5dH6hviJqG_FvqaI4cPLWa-se9k9JSQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic%E2%80%90Based+Electrocatalysts+for+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+functional+materials&rft.au=Jiang%2C+Jun&rft.au=Zhou%2C+Xiao%E2%80%90Li&rft.au=Lv%2C+Hua%E2%80%90Gang&rft.au=Yu%2C+Han%E2%80%90Qing&rft.date=2023-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.202212160&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202212160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |