Bimetallic‐Based Electrocatalysts for Oxygen Evolution Reaction

The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel, synthetic ammonia, etc. However, the sluggish kinetics of the OER result in a high overpotential and limit the widespread application of OER‐based...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 10
Main Authors Jiang, Jun, Zhou, Xiao‐Li, Lv, Hua‐Gang, Yu, Han‐Qing, Yu, Yan
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel, synthetic ammonia, etc. However, the sluggish kinetics of the OER result in a high overpotential and limit the widespread application of OER‐based technologies. Recent studies have shown that bimetallic‐based materials with the synergism of different metal components to regulate the adsorption and dissociation energy of intermediates are promising OER electrocatalyst candidates with a lower cost and energy consumption. In the past two decades, tremendous efforts have been devoted to developing OER applications of bimetallic‐based materials with a focus on compositions, phase, structure, etc., to highlight the synergism of different metal components. However, there is a lack of critical thinking and organized analysis of OER applications with bimetallic‐based materials. This review critically discusses the challenges of developing bimetallic‐based OER materials, summarizes the current optimization strategies to enhance both activity and stability, and highlights the state‐of‐the‐art electrocatalysts for OER. The relationship between the componential/structural features of bimetallic‐based materials and their electrocatalytic properties is presented to form comprehensive electronic and geometric modifications based on thorough analysis of the reported works and discuss future efforts to realize sustainable bimetallic‐based OER applications. The impressive progress in the rational design of bimetals and bimetallic compounds toward oxygen evolution reaction (OER) is summarized. Based on the main advantages and challenges for the bimetallic‐based OER electrocatalysts, the optimization strategies are presented to modify the electronic structure and geometric construction to highlight the synergism characteristics, including compositional regulation, elemental doping, coordination adjustment, interfacial structure establishment, morphology control, and support interaction for achieving efficient OER performance.
AbstractList The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel, synthetic ammonia, etc. However, the sluggish kinetics of the OER result in a high overpotential and limit the widespread application of OER‐based technologies. Recent studies have shown that bimetallic‐based materials with the synergism of different metal components to regulate the adsorption and dissociation energy of intermediates are promising OER electrocatalyst candidates with a lower cost and energy consumption. In the past two decades, tremendous efforts have been devoted to developing OER applications of bimetallic‐based materials with a focus on compositions, phase, structure, etc., to highlight the synergism of different metal components. However, there is a lack of critical thinking and organized analysis of OER applications with bimetallic‐based materials. This review critically discusses the challenges of developing bimetallic‐based OER materials, summarizes the current optimization strategies to enhance both activity and stability, and highlights the state‐of‐the‐art electrocatalysts for OER. The relationship between the componential/structural features of bimetallic‐based materials and their electrocatalytic properties is presented to form comprehensive electronic and geometric modifications based on thorough analysis of the reported works and discuss future efforts to realize sustainable bimetallic‐based OER applications.
The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel, synthetic ammonia, etc. However, the sluggish kinetics of the OER result in a high overpotential and limit the widespread application of OER‐based technologies. Recent studies have shown that bimetallic‐based materials with the synergism of different metal components to regulate the adsorption and dissociation energy of intermediates are promising OER electrocatalyst candidates with a lower cost and energy consumption. In the past two decades, tremendous efforts have been devoted to developing OER applications of bimetallic‐based materials with a focus on compositions, phase, structure, etc., to highlight the synergism of different metal components. However, there is a lack of critical thinking and organized analysis of OER applications with bimetallic‐based materials. This review critically discusses the challenges of developing bimetallic‐based OER materials, summarizes the current optimization strategies to enhance both activity and stability, and highlights the state‐of‐the‐art electrocatalysts for OER. The relationship between the componential/structural features of bimetallic‐based materials and their electrocatalytic properties is presented to form comprehensive electronic and geometric modifications based on thorough analysis of the reported works and discuss future efforts to realize sustainable bimetallic‐based OER applications. The impressive progress in the rational design of bimetals and bimetallic compounds toward oxygen evolution reaction (OER) is summarized. Based on the main advantages and challenges for the bimetallic‐based OER electrocatalysts, the optimization strategies are presented to modify the electronic structure and geometric construction to highlight the synergism characteristics, including compositional regulation, elemental doping, coordination adjustment, interfacial structure establishment, morphology control, and support interaction for achieving efficient OER performance.
Author Yu, Yan
Lv, Hua‐Gang
Jiang, Jun
Zhou, Xiao‐Li
Yu, Han‐Qing
Author_xml – sequence: 1
  givenname: Jun
  surname: Jiang
  fullname: Jiang, Jun
  organization: Central South University
– sequence: 2
  givenname: Xiao‐Li
  surname: Zhou
  fullname: Zhou, Xiao‐Li
  organization: Nanjing University of Science and Technology
– sequence: 3
  givenname: Hua‐Gang
  surname: Lv
  fullname: Lv, Hua‐Gang
  organization: Central South University
– sequence: 4
  givenname: Han‐Qing
  surname: Yu
  fullname: Yu, Han‐Qing
  email: hqyu@ustc.edu.cn
  organization: University of Science & Technology of China
– sequence: 5
  givenname: Yan
  orcidid: 0000-0002-3685-7773
  surname: Yu
  fullname: Yu, Yan
  email: yanyumse@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNqFkEFLw0AQhRepYFu9eg54Tt3ZbLLpsa2tChVBFLyFze6spKTZupuqufkT_I3-EhMqFQTxNI_hfTOPNyC9ylZIyCnQEVDKzqU26xGjjAGDhB6QPiSQhBFlaW-v4fGIDLxfUQpCRLxPJtNijbUsy0J9vn9MpUcdzEtUtbNKtvvG1z4w1gW3b80TVsH8xZbburBVcIdSdeKYHBpZejz5nkPysJjfz67C5e3l9WyyDFUEgoYYKa5zwBwUjjnmccS1jo3JecxTk0LKk4jGiWAaU4Q8pppqYQwVaqxMghANydnu7sbZ5y36OlvZravalxkTKQBNRERbF9-5lLPeOzSZKmrZ5aydLMoMaNaVlXVlZfuyWmz0C9u4Yi1d8zcw3gGvRYnNP-5scrG4-WG_AL3vgCk
CitedBy_id crossref_primary_10_1002_smll_202311356
crossref_primary_10_1002_adfm_202316544
crossref_primary_10_1016_j_apsusc_2023_158332
crossref_primary_10_1039_D3CP02849F
crossref_primary_10_1016_j_cej_2023_147723
crossref_primary_10_1021_acsami_4c13769
crossref_primary_10_1002_adfm_202413474
crossref_primary_10_1007_s12678_024_00924_4
crossref_primary_10_1039_D4TA04113E
crossref_primary_10_1039_D2TA09676E
crossref_primary_10_1002_advs_202415065
crossref_primary_10_1016_j_foodchem_2025_144021
crossref_primary_10_1002_cctc_202301332
crossref_primary_10_1002_smll_202310380
crossref_primary_10_1016_j_est_2023_109224
crossref_primary_10_1002_adfm_202405384
crossref_primary_10_1039_D5NR00346F
crossref_primary_10_1021_acssuschemeng_3c04505
crossref_primary_10_26599_NRE_2024_9120151
crossref_primary_10_1016_j_diamond_2025_111961
crossref_primary_10_1007_s12598_024_02718_5
crossref_primary_10_3390_molecules29030657
crossref_primary_10_3390_molecules29163966
crossref_primary_10_1016_j_cej_2024_148787
crossref_primary_10_1002_adfm_202503692
crossref_primary_10_1002_adfm_202315080
crossref_primary_10_1016_j_apsusc_2025_162743
crossref_primary_10_1073_pnas_2306835120
crossref_primary_10_1038_s41598_024_74031_1
crossref_primary_10_1002_smll_202410739
crossref_primary_10_1002_smll_202405567
crossref_primary_10_1016_j_jssc_2023_124213
crossref_primary_10_1016_j_fuel_2024_132509
crossref_primary_10_1021_acs_inorgchem_3c03115
crossref_primary_10_1080_10643389_2024_2379028
crossref_primary_10_1016_j_cej_2024_154211
crossref_primary_10_3866_PKU_WHXB202305021
crossref_primary_10_1016_j_jcat_2024_115540
crossref_primary_10_1016_j_jallcom_2024_173514
crossref_primary_10_1016_j_jcis_2024_04_079
crossref_primary_10_1016_j_jcis_2024_04_156
crossref_primary_10_3390_nano13182515
crossref_primary_10_1039_D4SU00538D
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1021_acsanm_3c06102
crossref_primary_10_1039_D4CE00075G
crossref_primary_10_1002_cctc_202401166
crossref_primary_10_1016_j_jpowsour_2025_236782
crossref_primary_10_3390_catal14080477
crossref_primary_10_1103_PhysRevMaterials_8_095801
crossref_primary_10_1021_acsaem_4c00653
crossref_primary_10_1021_acs_jpclett_4c01150
crossref_primary_10_1039_D3MH02090H
crossref_primary_10_1016_j_jallcom_2023_170479
crossref_primary_10_1016_j_jelechem_2023_117897
crossref_primary_10_1039_D4MA00088A
crossref_primary_10_1021_acs_chemmater_4c00701
crossref_primary_10_1039_D4CE00641K
crossref_primary_10_1016_j_mtchem_2024_102328
crossref_primary_10_1016_j_jcis_2023_05_032
crossref_primary_10_1016_j_cej_2024_150602
crossref_primary_10_1016_j_cej_2024_148601
crossref_primary_10_1021_acsami_4c16113
crossref_primary_10_1021_acs_energyfuels_3c03758
crossref_primary_10_1039_D4CE00179F
crossref_primary_10_1016_j_ccr_2025_216465
crossref_primary_10_1002_aenm_202402886
crossref_primary_10_1039_D3CY01630G
crossref_primary_10_1016_j_jcis_2024_08_046
crossref_primary_10_1016_j_jcis_2024_08_167
crossref_primary_10_1016_j_apsusc_2024_160128
crossref_primary_10_1039_D4TA06862A
crossref_primary_10_1039_D3CS01031G
crossref_primary_10_1002_aenm_202401227
crossref_primary_10_1039_D4TA07696F
crossref_primary_10_1016_j_ces_2024_120919
crossref_primary_10_1021_acs_energyfuels_3c05226
crossref_primary_10_1016_j_jelechem_2023_117824
crossref_primary_10_1002_adfm_202414935
crossref_primary_10_1021_acsanm_4c00933
Cites_doi 10.3389/fchem.2020.00412
10.1016/j.nanoen.2017.11.049
10.1016/j.electacta.2019.01.052
10.1002/adfm.201905992
10.1002/anie.201406455
10.1039/D0DT04397D
10.1002/aenm.201601275
10.1002/adma.201801430
10.1126/sciadv.aat5778
10.1021/acscatal.9b00928
10.1016/j.apcatb.2019.05.009
10.1002/aenm.201902104
10.1002/aenm.201703189
10.1021/acs.inorgchem.9b00868
10.1016/j.chempr.2018.02.006
10.1007/BF01020219
10.1002/anie.201701477
10.1039/C8CS00671G
10.1021/acsnano.7b01409
10.1002/adma.201902509
10.1021/acs.accounts.8b00010
10.1126/science.aaf5039
10.1002/adma.201701820
10.1006/jcat.1999.2464
10.1002/aenm.201602547
10.1002/anie.201402822
10.1002/adma.201602270
10.1021/acsami.8b06272
10.1016/j.jcis.2021.09.096
10.1016/j.mattod.2015.10.006
10.1002/aenm.201502585
10.1002/anie.201914245
10.1021/acsenergylett.8b01338
10.1021/acscatal.0c00340
10.1002/aenm.201602148
10.1021/acsnano.0c04309
10.1021/jacs.6b00332
10.1016/j.chempr.2017.09.003
10.1039/C8CY00304A
10.1002/aenm.201700107
10.1021/acsami.8b09941
10.1002/adfm.201901783
10.1016/j.rser.2014.11.093
10.1002/anie.201808929
10.1021/jacs.7b07117
10.1021/jacs.8b04546
10.1126/science.aaf1525
10.1002/adma.201808167
10.1021/cr030027b
10.1002/aenm.201703341
10.1039/C8MH00664D
10.1016/j.chempr.2018.03.012
10.1016/j.apcatb.2018.12.036
10.1039/C6EE03265F
10.1002/anie.201905281
10.1016/j.nanoen.2019.103880
10.1039/C4CP04838E
10.1021/cs3003098
10.1002/aenm.201803358
10.1021/acs.jpcc.8b04622
10.1039/b716441f
10.1038/s41929-019-0364-x
10.1002/advs.201800949
10.1021/ja5127165
10.1016/j.ijhydene.2016.05.044
10.1016/j.jcat.2019.04.016
10.1021/ja4027715
10.1039/C4CS00448E
10.1126/science.aau4414
10.1039/C8TC04087G
10.1002/adma.201807898
10.1002/anie.201612635
10.1002/anie.202213318
10.1002/cctc.201801248
10.1021/jp506946b
10.1021/acsaem.0c02579
10.1039/C7CC07259G
10.1002/adma.201604437
10.1039/D0TA05102K
10.1002/adma.201905025
10.1016/j.jpowsour.2017.09.006
10.1038/nchem.931
10.1021/jacs.8b09805
10.1016/j.cej.2021.132955
10.1002/adma.202000607
10.1002/adma.201705442
10.1021/acscatal.7b03429
10.1016/j.nanoen.2020.105644
10.1002/adfm.201702300
10.1016/j.ijhydene.2016.11.125
10.1038/nchem.2886
10.1016/j.jenvman.2019.110011
10.1021/acscatal.8b03489
10.1002/adfm.201801397
10.1016/j.ijhydene.2014.02.114
10.1002/adma.201803151
10.1002/anie.202016199
10.1002/adma.201705538
10.1016/j.microc.2020.105910
10.1002/adfm.201705094
10.1016/j.rser.2016.05.077
10.1039/C7EE03457A
10.1016/j.nanoen.2020.105619
10.1039/C4TA04758C
10.1021/acs.jpcc.0c04360
10.1016/S1872-2067(17)62949-8
10.1002/cnma.201900613
10.1039/D0EE03697H
10.1002/adma.202006042
10.1021/jacs.1c01525
10.1021/acsami.7b01096
10.1002/aenm.201702774
10.1038/s41467-020-15391-w
10.1002/smll.201700610
10.1016/j.nanoen.2016.07.032
10.1016/j.coelec.2018.04.006
10.1016/j.mtnano.2018.11.005
10.1016/j.jechem.2021.09.016
10.1021/acsami.0c01303
10.1002/aenm.201901945
10.1021/acs.accounts.7b00187
10.1038/s41467-018-05341-y
10.1039/C7EE02052J
10.1007/s12274-010-0018-4
10.1039/C2CS35244C
10.1021/acssuschemeng.0c06969
10.1021/acsestengg.2c00012
10.1016/j.nanoen.2019.02.020
10.1016/j.ijhydene.2021.03.046
10.1016/S1872-2067(18)63130-4
10.1038/s41467-017-02429-9
10.1039/a805753b
10.1002/admi.201500454
10.1002/adfm.201702324
10.1002/9781119941798
10.1021/acs.nanolett.9b03168
10.1021/acsnano.6b04252
10.1002/anie.202205946
10.1038/s41560-019-0355-9
10.1039/D1TA04455A
10.1038/s41929-019-0325-4
10.1002/aenm.202003755
10.1002/adfm.201802463
10.1002/anie.201608601
10.1002/adma.201802912
10.1038/ncomms11981
10.1021/acsami.9b16937
10.1021/ja405351s
10.1016/j.joule.2019.03.014
10.1149/1945-7111/ab6b10
10.1038/nmat4777
10.1002/anie.201908092
10.1007/s12274-014-0591-z
10.1039/C9CS00607A
10.1039/C6TA08075H
10.1016/j.electacta.2020.136716
10.1039/C4CS00302K
10.1021/jz2016507
10.1002/aenm.201800980
10.1038/nature11115
10.1002/adma.201901139
10.1088/1361-6528/aa8f6f
10.1021/acscatal.9b05445
10.1021/jacs.1c06349
10.1021/acs.chemmater.7b04534
10.1016/j.cattod.2015.08.014
10.1002/anie.202112880
10.1039/c2ee23475k
10.1021/acscatal.8b03702
10.1021/jacs.8b09402
10.1016/j.chemgeo.2016.08.026
10.1002/anie.201912785
10.1021/acs.chemmater.6b02796
10.1002/smtd.201800344
10.1016/j.nanoen.2018.12.094
10.1021/acsenergylett.8b00888
10.1039/C8TA02492H
10.1039/D0CY02339F
10.1039/c0ee00731e
10.1038/s41467-018-07790-x
10.1016/j.apcatb.2017.05.081
10.1021/acs.chemmater.9b02011
10.1002/advs.201700226
10.1126/science.aad4998
10.1126/sciadv.aav6262
10.1002/anie.201909939
10.1021/acs.energyfuels.1c02810
10.1073/pnas.1519212112
10.1016/j.teac.2021.e00145
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202212160
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202212160
ADFM202212160
Genre reviewArticle
GrantInformation_xml – fundername: National Synchrotron Radiation Laboratory
  funderid: KY2060000173
– fundername: National Natural Science Foundation of Hunan Province
  funderid: 2021JJ30792
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDA21000000
– fundername: Transformational Technologies for Clean Energy and Demonstration
– fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 51821006; 42177391; 52192684; 51925207; U1910210; 52161145101; 51872277; 22176183
– fundername: Joint Fund of the Yulin University
– fundername: Central South University
– fundername: Dalian National Laboratory for Clean Energy
  funderid: 2021002
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3170-e3c4db1eb1ce94eb534dd5ffb4548f81846305672de8e1b50d0d7ff07c9cf6e13
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:01:53 EDT 2025
Tue Jul 01 00:30:38 EDT 2025
Thu Apr 24 23:01:28 EDT 2025
Wed Jan 22 16:23:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-e3c4db1eb1ce94eb534dd5ffb4548f81846305672de8e1b50d0d7ff07c9cf6e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3685-7773
PQID 2781106730
PQPubID 2045204
PageCount 29
ParticipantIDs proquest_journals_2781106730
crossref_citationtrail_10_1002_adfm_202212160
crossref_primary_10_1002_adfm_202212160
wiley_primary_10_1002_adfm_202212160_ADFM202212160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 608
2012; 486
2019; 11
2008; 37
2019; 19
2020; 14
2021; 163
2020; 167
2020; 12
2020; 11
2020; 10
2018; 43
2016; 262
2018; 6
2018; 9
2018; 39
2018; 8
2018; 3
2018; 5
2018; 4
2015; 137
2019; 29
2018; 30
2010; 3
2021; 81
2021; 46
2019; 9
2018; 28
2019; 4
2019; 3
2019; 6
2019; 5
2016; 19
2019; 31
2019; 2
2016; 10
1999; 184
2016; 441
2020; 32
2021; 143
2011; 4
2021; 50
2011; 3
2017; 139
2016; 4
2017; 50
2016; 6
2016; 7
2016; 3
2020; 30
2015; 112
2019; 48
2017; 56
2014; 39
2022; 2
2016; 28
2018; 11
2021; 60
2018; 10
2016; 27
2018; 362
2017; 42
2018; 122
2017; 7
2017; 3
2017; 4
2019; 57
2019; 59
2019; 58
2020; 59
2019; 245
2020; 124
2022; 66
2017; 355
2017; 9
2020; 8
2021; 35
2020; 6
2021; 32
2021; 33
2019; 63
2015; 44
2015; 43
2020; 259
2020; 49
2016; 352
2017; 366
2014; 53
2014; 118
2021; 9
2022; 430
2015; 17
2004; 104
2021; 4
2018; 140
2015; 3
2012
2017; 28
2017; 27
2013; 42
2019; 300
2017; 29
2015; 8
1998; 22
2017; 217
2021; 14
2012; 2
2012; 3
2021; 11
1991; 21
2022; 61
2017; 16
2017; 11
2017; 10
2017; 13
2016; 64
2013; 135
2020; 354
2018; 51
2016; 138
2018; 54
2012; 5
2019; 254
2019; 374
2018; 57
e_1_2_7_108_1
e_1_2_7_3_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_161_1
e_1_2_7_184_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_142_1
e_1_2_7_165_1
e_1_2_7_188_1
e_1_2_7_146_1
e_1_2_7_169_1
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_180_1
e_1_2_7_52_1
e_1_2_7_98_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_150_1
e_1_2_7_37_1
e_1_2_7_79_1
e_1_2_7_173_1
e_1_2_7_131_1
e_1_2_7_154_1
e_1_2_7_177_1
e_1_2_7_135_1
e_1_2_7_158_1
e_1_2_7_139_1
e_1_2_7_109_1
e_1_2_7_4_1
e_1_2_7_128_1
e_1_2_7_105_1
e_1_2_7_8_1
e_1_2_7_124_1
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
e_1_2_7_120_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
e_1_2_7_185_1
e_1_2_7_48_1
e_1_2_7_162_1
e_1_2_7_143_1
e_1_2_7_189_1
e_1_2_7_29_1
e_1_2_7_166_1
e_1_2_7_147_1
e_1_2_7_117_1
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_181_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_151_1
e_1_2_7_174_1
e_1_2_7_132_1
e_1_2_7_155_1
e_1_2_7_178_1
e_1_2_7_136_1
e_1_2_7_159_1
e_1_2_7_5_1
e_1_2_7_106_1
e_1_2_7_129_1
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_170_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_140_1
e_1_2_7_163_1
e_1_2_7_182_1
e_1_2_7_28_1
e_1_2_7_144_1
e_1_2_7_167_1
e_1_2_7_186_1
e_1_2_7_148_1
e_1_2_7_118_1
e_1_2_7_114_1
Dindar C. K. (e_1_2_7_38_1) 2021; 32
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_171_1
e_1_2_7_58_1
e_1_2_7_152_1
e_1_2_7_39_1
e_1_2_7_175_1
e_1_2_7_133_1
e_1_2_7_156_1
e_1_2_7_179_1
e_1_2_7_137_1
e_1_2_7_6_1
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_126_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_190_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_160_1
e_1_2_7_69_1
e_1_2_7_141_1
e_1_2_7_183_1
e_1_2_7_27_1
e_1_2_7_164_1
e_1_2_7_145_1
e_1_2_7_187_1
e_1_2_7_168_1
e_1_2_7_149_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_172_1
e_1_2_7_130_1
e_1_2_7_153_1
e_1_2_7_176_1
e_1_2_7_134_1
e_1_2_7_157_1
e_1_2_7_138_1
References_xml – volume: 10
  start-page: 742
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 763
  year: 2019
  publication-title: Nat. Catal.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 23
  year: 2015
  publication-title: Nano Res.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 44
  start-page: 5148
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 4423
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 4736
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 217
  start-page: 201
  year: 2017
  publication-title: Appl. Catal. B Environ.
– volume: 42
  start-page: 2601
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 1698
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 2047
  year: 2021
  publication-title: ACS Sustainable Chem. Eng.
– volume: 29
  start-page: 120
  year: 2017
  publication-title: Chem. Mater.
– volume: 44
  start-page: 637
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 574
  year: 2010
  publication-title: Nano Res.
– volume: 54
  start-page: 78
  year: 2018
  publication-title: Chem. Commun.
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 59
  start-page: 146
  year: 2019
  publication-title: Nano Energy
– volume: 3
  start-page: 812
  year: 2017
  publication-title: Chem
– volume: 3
  start-page: 956
  year: 2019
  publication-title: Joule
– volume: 37
  start-page: 1619
  year: 2008
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 329
  year: 2019
  publication-title: Nat. Energy
– volume: 6
  start-page: 154
  year: 2020
  publication-title: ChemNanoMat
– volume: 9
  start-page: 214
  year: 2018
  publication-title: Curr. Opin. Electrochem.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9765
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 32
  year: 2021
  publication-title: Trends Anal. Chem.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 259
  year: 2020
  publication-title: J. Environ. Manag.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 27
  start-page: 526
  year: 2016
  publication-title: Nano Energy
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 7457
  year: 2019
  publication-title: Nano Lett.
– volume: 4
  start-page: 1510
  year: 2018
  publication-title: Chem
– volume: 49
  start-page: 2196
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 64
  start-page: 34
  year: 2016
  publication-title: Renewable Sustainable Energy Rev.
– volume: 300
  start-page: 85
  year: 2019
  publication-title: Electrochim. Acta
– volume: 42
  start-page: 8450
  year: 2017
  publication-title: Int. J. Hydrogen Energy
– volume: 352
  start-page: 1210
  year: 2016
  publication-title: Science
– volume: 143
  start-page: 5201
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 744
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 35
  year: 2021
  publication-title: Energy Fuels
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 184
  start-page: 535
  year: 1999
  publication-title: J. Catal.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 262
  start-page: 170
  year: 2016
  publication-title: Catal. Today
– volume: 63
  year: 2019
  publication-title: Nano Energy
– volume: 9
  start-page: 2885
  year: 2018
  publication-title: Nat. Commun.
– volume: 48
  start-page: 3181
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 2190
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 50
  start-page: 4720
  year: 2021
  publication-title: Dalton Trans.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 56
  start-page: 3897
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 143
  year: 2021
  publication-title: J. Am. Chem. Soc.
– volume: 66
  start-page: 619
  year: 2022
  publication-title: J. Energy Chem.
– volume: 137
  start-page: 2688
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 79
  year: 2011
  publication-title: Nat. Chem.
– volume: 2
  start-page: 2002
  year: 2022
  publication-title: ACS EST Engg.
– volume: 46
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 2
  start-page: 955
  year: 2019
  publication-title: Nat. Catal.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1323
  year: 2021
  publication-title: ACS Appl. Energy Mater.
– volume: 354
  year: 2020
  publication-title: Electrochim. Acta
– volume: 50
  start-page: 2194
  year: 2017
  publication-title: Acc. Chem. Res.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 58
  start-page: 8570
  year: 2019
  publication-title: Inorg. Chem.
– volume: 14
  start-page: 1897
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 39
  start-page: 6967
  year: 2014
  publication-title: Int. J. Hydrogen Energy
– volume: 5
  year: 2019
  publication-title: Sci. Adv.
– volume: 366
  start-page: 33
  year: 2017
  publication-title: J. Power Sources
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 608
  start-page: 599
  year: 2021
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 18
  year: 2019
  publication-title: ChemCatChem
– volume: 10
  start-page: 4411
  year: 2020
  publication-title: ACS Catal.
– volume: 10
  start-page: 149
  year: 2018
  publication-title: Nat. Chem.
– volume: 60
  start-page: 8243
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 124
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 1263
  year: 2018
  publication-title: Chem
– volume: 140
  start-page: 7748
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 5309
  year: 2018
  publication-title: Nat. Commun.
– volume: 22
  start-page: 1179
  year: 1998
  publication-title: New J. Chem.
– volume: 53
  start-page: 7584
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2018
  publication-title: ACS Catal.
– volume: 8
  start-page: 3450
  year: 2018
  publication-title: Catal. Sci. Technol.
– volume: 3
  start-page: 399
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 213
  year: 2016
  publication-title: Mater. Today
– volume: 8
  start-page: 412
  year: 2020
  publication-title: Front. Chem.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 8
  start-page: 2081
  year: 2018
  publication-title: ACS Catal.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 51
  start-page: 910
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 11
  start-page: 1590
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 43
  start-page: 300
  year: 2018
  publication-title: Nano Energy
– volume: 254
  start-page: 292
  year: 2019
  publication-title: Appl. Catal. B Environ.
– volume: 362
  start-page: 560
  year: 2018
  publication-title: Science
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 29
  year: 2017
  publication-title: Chem. Mater.
– volume: 28
  year: 2017
  publication-title: Nanotechnology
– volume: 3
  start-page: 499
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1765
  year: 2012
  publication-title: ACS Catal.
– volume: 43
  start-page: 1151
  year: 2015
  publication-title: Renewable Sustainable Energy Rev.
– volume: 441
  start-page: 204
  year: 2016
  publication-title: Chem. Geol.
– volume: 374
  start-page: 51
  year: 2019
  publication-title: J. Catal.
– volume: 28
  start-page: 9266
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 21
  start-page: 335
  year: 1991
  publication-title: J. Appl. Electrochem.
– volume: 57
  start-page: 644
  year: 2019
  publication-title: Nano Energy
– volume: 10
  start-page: 8738
  year: 2016
  publication-title: ACS Nano
– volume: 6
  start-page: 115
  year: 2019
  publication-title: Mater. Horiz.
– volume: 11
  start-page: 2652
  year: 2021
  publication-title: Catal. Sci. Technol.
– volume: 135
  start-page: 8452
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 5800
  year: 2017
  publication-title: ACS Nano
– volume: 3
  start-page: 2038
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 486
  start-page: 43
  year: 2012
  publication-title: Nature
– volume: 56
  start-page: 5994
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– year: 2012
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 7389
  year: 2019
  publication-title: ACS Catal.
– volume: 16
  start-page: 45
  year: 2017
  publication-title: Nat. Mater.
– volume: 39
  start-page: 1575
  year: 2018
  publication-title: Chinese J. Catal.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 163
  year: 2021
  publication-title: Microchemical J.
– volume: 3
  start-page: 54
  year: 2018
  publication-title: Mater. Today Nano
– volume: 140
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 138
  start-page: 5603
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 4909
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 2003
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 5867
  year: 2019
  publication-title: Chem. Mater.
– volume: 245
  start-page: 1
  year: 2019
  publication-title: Appl. Catal. B Environ.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 42
  start-page: 3956
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 104
  start-page: 3893
  year: 2004
  publication-title: Chem. Rev.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 4019
  year: 2020
  publication-title: ACS Catal.
– volume: 56
  start-page: 5867
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 381
  year: 2018
  publication-title: Nat. Commun.
– volume: 39
  start-page: 390
  year: 2018
  publication-title: Chinese J. Catal.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_37_1
  doi: 10.3389/fchem.2020.00412
– ident: e_1_2_7_152_1
  doi: 10.1016/j.nanoen.2017.11.049
– ident: e_1_2_7_108_1
  doi: 10.1016/j.electacta.2019.01.052
– ident: e_1_2_7_185_1
  doi: 10.1002/adfm.201905992
– ident: e_1_2_7_19_1
  doi: 10.1002/anie.201406455
– ident: e_1_2_7_159_1
  doi: 10.1039/D0DT04397D
– ident: e_1_2_7_181_1
  doi: 10.1002/aenm.201601275
– ident: e_1_2_7_134_1
  doi: 10.1002/adma.201801430
– ident: e_1_2_7_13_1
  doi: 10.1126/sciadv.aat5778
– ident: e_1_2_7_180_1
  doi: 10.1021/acscatal.9b00928
– ident: e_1_2_7_154_1
  doi: 10.1016/j.apcatb.2019.05.009
– ident: e_1_2_7_89_1
  doi: 10.1002/aenm.201902104
– ident: e_1_2_7_93_1
  doi: 10.1002/aenm.201703189
– ident: e_1_2_7_115_1
  doi: 10.1021/acs.inorgchem.9b00868
– ident: e_1_2_7_175_1
  doi: 10.1016/j.chempr.2018.02.006
– ident: e_1_2_7_149_1
  doi: 10.1007/BF01020219
– ident: e_1_2_7_76_1
  doi: 10.1002/anie.201701477
– ident: e_1_2_7_147_1
  doi: 10.1039/C8CS00671G
– ident: e_1_2_7_163_1
  doi: 10.1021/acsnano.7b01409
– ident: e_1_2_7_111_1
  doi: 10.1002/adma.201902509
– ident: e_1_2_7_17_1
  doi: 10.1021/acs.accounts.8b00010
– ident: e_1_2_7_11_1
  doi: 10.1126/science.aaf5039
– ident: e_1_2_7_127_1
  doi: 10.1002/adma.201701820
– ident: e_1_2_7_47_1
  doi: 10.1006/jcat.1999.2464
– ident: e_1_2_7_142_1
  doi: 10.1002/aenm.201602547
– ident: e_1_2_7_74_1
  doi: 10.1002/anie.201402822
– ident: e_1_2_7_27_1
  doi: 10.1002/adma.201602270
– ident: e_1_2_7_167_1
  doi: 10.1021/acsami.8b06272
– ident: e_1_2_7_123_1
  doi: 10.1016/j.jcis.2021.09.096
– ident: e_1_2_7_52_1
  doi: 10.1016/j.mattod.2015.10.006
– ident: e_1_2_7_85_1
  doi: 10.1002/aenm.201502585
– ident: e_1_2_7_110_1
  doi: 10.1002/anie.201914245
– ident: e_1_2_7_170_1
  doi: 10.1021/acsenergylett.8b01338
– ident: e_1_2_7_132_1
  doi: 10.1021/acscatal.0c00340
– ident: e_1_2_7_151_1
  doi: 10.1002/aenm.201602148
– ident: e_1_2_7_184_1
  doi: 10.1021/acsnano.0c04309
– ident: e_1_2_7_31_1
  doi: 10.1021/jacs.6b00332
– ident: e_1_2_7_137_1
  doi: 10.1016/j.chempr.2017.09.003
– ident: e_1_2_7_48_1
  doi: 10.1039/C8CY00304A
– ident: e_1_2_7_158_1
  doi: 10.1002/aenm.201700107
– ident: e_1_2_7_71_1
  doi: 10.1021/acsami.8b09941
– ident: e_1_2_7_98_1
  doi: 10.1002/adfm.201901783
– ident: e_1_2_7_10_1
  doi: 10.1016/j.rser.2014.11.093
– ident: e_1_2_7_82_1
  doi: 10.1002/anie.201808929
– ident: e_1_2_7_55_1
  doi: 10.1021/jacs.7b07117
– ident: e_1_2_7_67_1
  doi: 10.1021/jacs.8b04546
– ident: e_1_2_7_90_1
  doi: 10.1126/science.aaf1525
– ident: e_1_2_7_116_1
  doi: 10.1002/adma.201808167
– ident: e_1_2_7_62_1
  doi: 10.1021/cr030027b
– ident: e_1_2_7_92_1
  doi: 10.1002/aenm.201703341
– ident: e_1_2_7_133_1
  doi: 10.1039/C8MH00664D
– ident: e_1_2_7_34_1
  doi: 10.1016/j.chempr.2018.03.012
– ident: e_1_2_7_138_1
  doi: 10.1016/j.apcatb.2018.12.036
– ident: e_1_2_7_53_1
  doi: 10.1039/C6EE03265F
– ident: e_1_2_7_118_1
  doi: 10.1002/anie.201905281
– ident: e_1_2_7_164_1
  doi: 10.1016/j.nanoen.2019.103880
– ident: e_1_2_7_14_1
  doi: 10.1039/C4CP04838E
– ident: e_1_2_7_20_1
  doi: 10.1021/cs3003098
– ident: e_1_2_7_43_1
  doi: 10.1002/aenm.201803358
– ident: e_1_2_7_61_1
  doi: 10.1021/acs.jpcc.8b04622
– ident: e_1_2_7_29_1
  doi: 10.1039/b716441f
– ident: e_1_2_7_146_1
  doi: 10.1038/s41929-019-0364-x
– ident: e_1_2_7_161_1
  doi: 10.1002/advs.201800949
– ident: e_1_2_7_69_1
  doi: 10.1021/ja5127165
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ijhydene.2016.05.044
– ident: e_1_2_7_54_1
  doi: 10.1016/j.jcat.2019.04.016
– ident: e_1_2_7_153_1
  doi: 10.1021/ja4027715
– ident: e_1_2_7_8_1
  doi: 10.1039/C4CS00448E
– ident: e_1_2_7_59_1
  doi: 10.1126/science.aau4414
– ident: e_1_2_7_60_1
  doi: 10.1039/C8TC04087G
– ident: e_1_2_7_130_1
  doi: 10.1002/adma.201807898
– ident: e_1_2_7_144_1
  doi: 10.1002/anie.201612635
– ident: e_1_2_7_178_1
  doi: 10.1002/anie.202213318
– ident: e_1_2_7_3_1
  doi: 10.1002/cctc.201801248
– ident: e_1_2_7_26_1
  doi: 10.1021/jp506946b
– ident: e_1_2_7_182_1
  doi: 10.1021/acsaem.0c02579
– ident: e_1_2_7_78_1
  doi: 10.1039/C7CC07259G
– ident: e_1_2_7_162_1
  doi: 10.1002/adma.201604437
– ident: e_1_2_7_189_1
  doi: 10.1039/D0TA05102K
– ident: e_1_2_7_106_1
  doi: 10.1002/adma.201905025
– ident: e_1_2_7_46_1
  doi: 10.1016/j.jpowsour.2017.09.006
– ident: e_1_2_7_109_1
  doi: 10.1038/nchem.931
– ident: e_1_2_7_119_1
  doi: 10.1021/jacs.8b09805
– ident: e_1_2_7_173_1
  doi: 10.1016/j.cej.2021.132955
– ident: e_1_2_7_121_1
  doi: 10.1002/adma.202000607
– ident: e_1_2_7_126_1
  doi: 10.1002/adma.201705442
– ident: e_1_2_7_64_1
  doi: 10.1021/acscatal.7b03429
– ident: e_1_2_7_171_1
  doi: 10.1016/j.nanoen.2020.105644
– ident: e_1_2_7_186_1
  doi: 10.1002/adfm.201702300
– ident: e_1_2_7_4_1
  doi: 10.1016/j.ijhydene.2016.11.125
– ident: e_1_2_7_32_1
  doi: 10.1038/nchem.2886
– ident: e_1_2_7_39_1
  doi: 10.1016/j.jenvman.2019.110011
– ident: e_1_2_7_117_1
  doi: 10.1021/acscatal.8b03489
– ident: e_1_2_7_135_1
  doi: 10.1002/adfm.201801397
– ident: e_1_2_7_150_1
  doi: 10.1016/j.ijhydene.2014.02.114
– ident: e_1_2_7_120_1
  doi: 10.1002/adma.201803151
– ident: e_1_2_7_122_1
  doi: 10.1002/anie.202016199
– ident: e_1_2_7_99_1
  doi: 10.1002/adma.201705538
– ident: e_1_2_7_36_1
  doi: 10.1016/j.microc.2020.105910
– ident: e_1_2_7_157_1
  doi: 10.1002/adfm.201705094
– ident: e_1_2_7_2_1
  doi: 10.1016/j.rser.2016.05.077
– ident: e_1_2_7_58_1
  doi: 10.1039/C7EE03457A
– ident: e_1_2_7_131_1
  doi: 10.1016/j.nanoen.2020.105619
– ident: e_1_2_7_183_1
  doi: 10.1039/C4TA04758C
– ident: e_1_2_7_15_1
  doi: 10.1039/C8CS00671G
– ident: e_1_2_7_187_1
  doi: 10.1021/acs.jpcc.0c04360
– ident: e_1_2_7_9_1
  doi: 10.1016/S1872-2067(17)62949-8
– ident: e_1_2_7_165_1
  doi: 10.1002/cnma.201900613
– ident: e_1_2_7_41_1
  doi: 10.1039/D0EE03697H
– ident: e_1_2_7_176_1
  doi: 10.1002/adma.202006042
– ident: e_1_2_7_114_1
  doi: 10.1021/jacs.1c01525
– ident: e_1_2_7_88_1
  doi: 10.1021/acsami.7b01096
– ident: e_1_2_7_42_1
  doi: 10.1002/aenm.201702774
– ident: e_1_2_7_169_1
  doi: 10.1038/s41467-020-15391-w
– ident: e_1_2_7_100_1
  doi: 10.1002/smll.201700610
– ident: e_1_2_7_79_1
  doi: 10.1016/j.nanoen.2016.07.032
– ident: e_1_2_7_30_1
  doi: 10.1016/j.coelec.2018.04.006
– ident: e_1_2_7_66_1
  doi: 10.1016/j.mtnano.2018.11.005
– ident: e_1_2_7_139_1
  doi: 10.1016/j.jechem.2021.09.016
– ident: e_1_2_7_166_1
  doi: 10.1021/acsami.0c01303
– ident: e_1_2_7_168_1
  doi: 10.1002/aenm.201901945
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.accounts.7b00187
– ident: e_1_2_7_91_1
  doi: 10.1038/s41467-018-05341-y
– ident: e_1_2_7_102_1
  doi: 10.1039/C7EE02052J
– ident: e_1_2_7_50_1
  doi: 10.1007/s12274-010-0018-4
– ident: e_1_2_7_140_1
  doi: 10.1039/C2CS35244C
– ident: e_1_2_7_81_1
  doi: 10.1021/acssuschemeng.0c06969
– ident: e_1_2_7_190_1
  doi: 10.1021/acsestengg.2c00012
– ident: e_1_2_7_141_1
  doi: 10.1016/j.nanoen.2019.02.020
– ident: e_1_2_7_160_1
  doi: 10.1016/j.ijhydene.2021.03.046
– ident: e_1_2_7_56_1
  doi: 10.1016/S1872-2067(18)63130-4
– ident: e_1_2_7_125_1
  doi: 10.1038/s41467-017-02429-9
– ident: e_1_2_7_28_1
  doi: 10.1039/a805753b
– ident: e_1_2_7_83_1
  doi: 10.1002/admi.201500454
– ident: e_1_2_7_143_1
  doi: 10.1002/adfm.201702324
– ident: e_1_2_7_33_1
  doi: 10.1002/9781119941798
– ident: e_1_2_7_86_1
  doi: 10.1021/acs.nanolett.9b03168
– ident: e_1_2_7_101_1
  doi: 10.1021/acsnano.6b04252
– ident: e_1_2_7_177_1
  doi: 10.1002/anie.202205946
– ident: e_1_2_7_96_1
  doi: 10.1038/s41560-019-0355-9
– ident: e_1_2_7_172_1
  doi: 10.1039/D1TA04455A
– ident: e_1_2_7_128_1
  doi: 10.1038/s41929-019-0325-4
– ident: e_1_2_7_107_1
  doi: 10.1002/aenm.202003755
– ident: e_1_2_7_155_1
  doi: 10.1002/adfm.201802463
– ident: e_1_2_7_65_1
  doi: 10.1002/anie.201608601
– ident: e_1_2_7_112_1
  doi: 10.1002/adma.201802912
– ident: e_1_2_7_75_1
  doi: 10.1038/ncomms11981
– ident: e_1_2_7_188_1
  doi: 10.1021/acsami.9b16937
– ident: e_1_2_7_25_1
  doi: 10.1021/ja405351s
– ident: e_1_2_7_35_1
  doi: 10.1016/j.joule.2019.03.014
– ident: e_1_2_7_84_1
  doi: 10.1149/1945-7111/ab6b10
– ident: e_1_2_7_7_1
  doi: 10.1038/nmat4777
– ident: e_1_2_7_73_1
  doi: 10.1002/anie.201908092
– ident: e_1_2_7_24_1
  doi: 10.1007/s12274-014-0591-z
– ident: e_1_2_7_103_1
  doi: 10.1039/C9CS00607A
– ident: e_1_2_7_23_1
  doi: 10.1039/C6TA08075H
– ident: e_1_2_7_145_1
  doi: 10.1016/j.electacta.2020.136716
– ident: e_1_2_7_45_1
  doi: 10.1039/C4CS00302K
– ident: e_1_2_7_21_1
  doi: 10.1021/jz2016507
– ident: e_1_2_7_97_1
  doi: 10.1002/aenm.201800980
– ident: e_1_2_7_44_1
  doi: 10.1038/nature11115
– ident: e_1_2_7_95_1
  doi: 10.1002/adma.201901139
– ident: e_1_2_7_16_1
  doi: 10.1088/1361-6528/aa8f6f
– ident: e_1_2_7_63_1
  doi: 10.1021/acscatal.9b05445
– ident: e_1_2_7_179_1
  doi: 10.1021/jacs.1c06349
– ident: e_1_2_7_105_1
  doi: 10.1021/acs.chemmater.7b04534
– ident: e_1_2_7_18_1
  doi: 10.1016/j.cattod.2015.08.014
– ident: e_1_2_7_174_1
  doi: 10.1002/anie.202112880
– ident: e_1_2_7_70_1
  doi: 10.1039/c2ee23475k
– ident: e_1_2_7_94_1
  doi: 10.1021/acscatal.8b03702
– ident: e_1_2_7_136_1
  doi: 10.1021/jacs.8b09402
– ident: e_1_2_7_51_1
  doi: 10.1016/j.chemgeo.2016.08.026
– ident: e_1_2_7_148_1
  doi: 10.1002/anie.201912785
– ident: e_1_2_7_57_1
  doi: 10.1021/acs.chemmater.6b02796
– ident: e_1_2_7_77_1
  doi: 10.1002/smtd.201800344
– ident: e_1_2_7_87_1
  doi: 10.1016/j.nanoen.2018.12.094
– ident: e_1_2_7_113_1
  doi: 10.1021/acsenergylett.8b00888
– ident: e_1_2_7_124_1
  doi: 10.1039/C8TA02492H
– ident: e_1_2_7_40_1
  doi: 10.1039/D0CY02339F
– ident: e_1_2_7_1_1
  doi: 10.1039/c0ee00731e
– ident: e_1_2_7_6_1
  doi: 10.1038/s41467-018-07790-x
– ident: e_1_2_7_49_1
  doi: 10.1016/j.apcatb.2017.05.081
– ident: e_1_2_7_72_1
  doi: 10.1021/acs.chemmater.9b02011
– ident: e_1_2_7_156_1
  doi: 10.1002/advs.201700226
– ident: e_1_2_7_68_1
  doi: 10.1126/science.aad4998
– ident: e_1_2_7_104_1
  doi: 10.1126/sciadv.aav6262
– ident: e_1_2_7_129_1
  doi: 10.1002/anie.201909939
– ident: e_1_2_7_80_1
  doi: 10.1021/acs.energyfuels.1c02810
– ident: e_1_2_7_12_1
  doi: 10.1073/pnas.1519212112
– volume: 32
  start-page: e00145
  year: 2021
  ident: e_1_2_7_38_1
  publication-title: Trends Anal. Chem.
  doi: 10.1016/j.teac.2021.e00145
SSID ssj0017734
Score 2.6693466
SecondaryResourceType review_article
Snippet The electrochemical oxygen evolution reaction (OER) is a core electrode reaction for the renewable production of high‐purity hydrogen, carbon‐based fuel,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ammonia
bimetallic compounds
Bimetals
electrocatalysis
Electrocatalysts
Energy consumption
Energy of dissociation
Free energy
Heat of formation
Materials science
Optimization
oxygen evolution reaction
Oxygen evolution reactions
synthetic methodology
Title Bimetallic‐Based Electrocatalysts for Oxygen Evolution Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202212160
https://www.proquest.com/docview/2781106730
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MXvTg24gi2YOJp4Vt91E4gkCIEU1QEm6b7SshIhoXjHjyJ_gb_SV2trsLmBgTPW62bXY708437cw3CJ3VqCt9rKitHaCa7XmC2REBIOcQIWuBqsnkTLd3HXQH3uXQHy5l8Rt-iPzADVZGsl_DAo9YXF2QhkZCQSY50XsvDsBph4AtQEX9nD8KU2qulQMMAV54mLE2OqS62n3VKi2g5jJgTSxOZxtF2beaQJP7ymzKKvztG43jf35mB22lcNRqGP3ZRWtysoc2l0gK91GjOXqQGqKPR_zz_aOprZ6w2qZ4TnL2M4-nsaWhr3XzOtfaaLVfUm22-tJkTRygQad9d9G108ILNnehEI10uRYa1ts4l3VPMt_1hPCVYp72b5Q28V4AngcFcUrMfEc4girlUF7nKpDYPUSFyeNEHiErioTrM6Ztoh7JV7p7JCgmHNe5ZIzQIrKziQ95ykoOxTHGoeFTJiFMTZhPTRGd5-2fDB_Hjy1LmRzDdF3GIYHEWqjNo1-TRCC_jBI2Wp1e_nT8l04naANq1JvAtRIqTJ9n8lQjmSkro_VGq3d1W0609gsKlOyT
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB6xcGA58NpFPArkANpTIHYebg8cCm1VHgUJgdRbNn5JCCiItkA58RP4K_wVfgK_hHGcBFgJrYTEgWMSx3I8npnPzsw3ACtl5quQaObiBqjsBoHkbkINkPOoVOVIl1V6ptvaj5rHwU47bA_BY54LY_khigM3oxmpvTYKbg6k119ZQxOpTSo5ReNLIi-Lq9xVgxvctXU3tmso4lVKG_WjraabFRZwhW8KrShf4KAImimhKoHioR9IGWrNA8TvGl1YEBlkzcxwFeGhJz3JtPaYqAgdKeJjvz9gxJQRN3T9tcOCsYowZn9kR8SElJF2zhPp0fX3433vB1_B7VuInPq4xgQ85bNjQ1tO1_o9vibu_iGO_FbTNwnjGeJ2qlZFpmBIdaZh7A0P4y-obp6cK9yFnJ2I5_uHTXTs0qnb-kDp8dag2-s6iO6dg9sBKpxTv84U1jlUNjHkNxx_yTfMwHDnoqNmwUkS6Yeco9vHnkKNryeSESpIRSjOKZsDN5d0LDLidVP_4yy2lNE0NqKIC1HMwZ-i_aWlHPmwZSlfOHFmeroxNbnDpvwQPqbpCvhPL3G11mgVV_OfeWkZRptHrb14b3t_dwF-4n3fxumVYLh31VeLCNx6fClVFQf-fvXiegE-DEqa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB6FIFX0QGkBEaDFB1BPBu_6Z5MDh4QkgvLTCoGUm_H-SRFpiEhoCScegUfpq_AKPAmzXttAJYSExIGj7fVqvbMz8-165huA1SrzVUg0c3EDVHWDQHI3oQbIeVSqaqSrKj3T3T-Ito-DH52wU4J_eS6M5YcoDtyMZqT22ij4QOqNB9LQRGqTSU7R9pLIy8Iqd9X4L27ahps7TZTwGqXt1tHWtpvVFXCFb-qsKF_gmAhaKaFqgeKhH0gZas0DhO8aPVgQGWDNzGgV4aEnPcm09pioCR0p4mO_EzAZRF7NFItoHhaEVYQx-x87IiaijHRymkiPbjwd71M3-IBtHyPk1MW1P8FtPjk2suV0_WLE18XVf7yR72n2ZmA6w9tO3SrIZyip_hf4-IiFcRbqje5vhXuQXlfcXd800K1Lp2WrA6WHW-PhaOggtnd-Xo5R3ZzWn0xdnUNl00Lm4PhNvmEeyv2zvloAJ0mkH3KOTh97CjW-nkhGqCA1oTinrAJuLuhYZLTrpvpHL7aE0TQ2oogLUVTge9F-YAlHnm25nK-bODM8w5iazGFTfAgf03QBvNBLXG-294urxde8tAIffjXb8d7Owe4STOFt3wbpLUN5dH6hviJqG_FvqaI4cPLWa-se9k9JSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic%E2%80%90Based+Electrocatalysts+for+Oxygen+Evolution+Reaction&rft.jtitle=Advanced+functional+materials&rft.au=Jiang%2C+Jun&rft.au=Zhou%2C+Xiao%E2%80%90Li&rft.au=Lv%2C+Hua%E2%80%90Gang&rft.au=Yu%2C+Han%E2%80%90Qing&rft.date=2023-03-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.202212160&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202212160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon