Enabling Internal Electric Fields to Enhance Energy and Environmental Catalysis

Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental remediation. Constructing internal electric fields has been highlighted as a rising star to help facilitate various catalytic processes, with the merits...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 13; no. 11
Main Authors Chen, Lei, Ren, Jin‐Tao, Yuan, Zhong‐Yong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental remediation. Constructing internal electric fields has been highlighted as a rising star to help facilitate various catalytic processes, with the merits of promoting charge transfer/separation, optimizing redox potential and creating effective active/adsorption sites. Internal electric fields are usually formed by the polarization of uneven charge distributions between different constituent layers, which widely exist in piezoelectrics, polar surface terminations, and heterostructure materials. Herein, a groundbreaking and interdisciplinary overview of the latest advances in the construction of internal electric fields to improve photo(electro)catalytic and electrocatalytic activity is provided. This critical review begins with an encyclopedic summary of the classification, advantages, and synthesis strategies of internal electric fields. Subsequently, the identification methods are thoroughly discussed based on the characterization techniques, experiments, and theoretical calculations, which can provide profound guidance for the in‐depth study of internal electric fields. To elaborate the theory–structure–activity relationships for internal electric fields, the corresponding reaction mechanisms, modification strategies, and catalytic performance are jointly discussed, along with a discussion of their practical energy and environmental applications. Finally, an insightful analysis of the challenges and future prospects for internal electric field‐based catalysts are discussed. This review provides a clear understanding of the classification, advantages, creation, and identification of internal electric fields and the dramatic improvements in energy and environmental catalysis that result.
AbstractList Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental remediation. Constructing internal electric fields has been highlighted as a rising star to help facilitate various catalytic processes, with the merits of promoting charge transfer/separation, optimizing redox potential and creating effective active/adsorption sites. Internal electric fields are usually formed by the polarization of uneven charge distributions between different constituent layers, which widely exist in piezoelectrics, polar surface terminations, and heterostructure materials. Herein, a groundbreaking and interdisciplinary overview of the latest advances in the construction of internal electric fields to improve photo(electro)catalytic and electrocatalytic activity is provided. This critical review begins with an encyclopedic summary of the classification, advantages, and synthesis strategies of internal electric fields. Subsequently, the identification methods are thoroughly discussed based on the characterization techniques, experiments, and theoretical calculations, which can provide profound guidance for the in‐depth study of internal electric fields. To elaborate the theory–structure–activity relationships for internal electric fields, the corresponding reaction mechanisms, modification strategies, and catalytic performance are jointly discussed, along with a discussion of their practical energy and environmental applications. Finally, an insightful analysis of the challenges and future prospects for internal electric field‐based catalysts are discussed.
Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental remediation. Constructing internal electric fields has been highlighted as a rising star to help facilitate various catalytic processes, with the merits of promoting charge transfer/separation, optimizing redox potential and creating effective active/adsorption sites. Internal electric fields are usually formed by the polarization of uneven charge distributions between different constituent layers, which widely exist in piezoelectrics, polar surface terminations, and heterostructure materials. Herein, a groundbreaking and interdisciplinary overview of the latest advances in the construction of internal electric fields to improve photo(electro)catalytic and electrocatalytic activity is provided. This critical review begins with an encyclopedic summary of the classification, advantages, and synthesis strategies of internal electric fields. Subsequently, the identification methods are thoroughly discussed based on the characterization techniques, experiments, and theoretical calculations, which can provide profound guidance for the in‐depth study of internal electric fields. To elaborate the theory–structure–activity relationships for internal electric fields, the corresponding reaction mechanisms, modification strategies, and catalytic performance are jointly discussed, along with a discussion of their practical energy and environmental applications. Finally, an insightful analysis of the challenges and future prospects for internal electric field‐based catalysts are discussed. This review provides a clear understanding of the classification, advantages, creation, and identification of internal electric fields and the dramatic improvements in energy and environmental catalysis that result.
Author Yuan, Zhong‐Yong
Chen, Lei
Ren, Jin‐Tao
Author_xml – sequence: 1
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
  organization: Nankai University
– sequence: 2
  givenname: Jin‐Tao
  surname: Ren
  fullname: Ren, Jin‐Tao
  organization: Nankai University
– sequence: 3
  givenname: Zhong‐Yong
  orcidid: 0000-0002-3790-8181
  surname: Yuan
  fullname: Yuan, Zhong‐Yong
  email: zyyuan@nankai.edu.cn
  organization: Nankai University
BookMark eNqFkMFLwzAUxoNMcM5dPRc8d6ZJmrTHMTodTHfRc0iTdGZ06Uwypf-9KZMJgvgO732H7_f4-K7ByHZWA3CbwVkGIboX2u5nCCIEMUPwAowzmpGUFgSOzhqjKzD1fgfjkDKDGI_BprKibo3dJisbtLOiTapWy-CMTJZGt8onoUsq-yas1PFqt-0TYVWUH8Z1dq9tiMxCxN1742_AZSNar6ffdwJel9XL4jFdbx5Wi_k6lThjMBV5rkpBFcKsZlDVpCYIYcTyppC4rGO4vGgUzDVqaiwJpYxhKaBWZVM0TFE8AXenvwfXvR-1D3zXHYf4niNWMELzkqLoIieXdJ33TjdcmiCC6WxwwrQ8g3xojw_t8XN7EZv9wg7O7IXr_wbKE_BpWt3_4-bz6vnph_0CJEODuA
CitedBy_id crossref_primary_10_1002_smll_202307252
crossref_primary_10_1016_j_cej_2024_151703
crossref_primary_10_1016_j_cej_2024_148899
crossref_primary_10_1002_ange_202422779
crossref_primary_10_1016_j_ces_2024_120133
crossref_primary_10_1039_D3GC03466F
crossref_primary_10_1039_D3CS00557G
crossref_primary_10_1007_s43939_024_00112_7
crossref_primary_10_1002_adfm_202408213
crossref_primary_10_1016_j_jcis_2024_07_212
crossref_primary_10_1039_D4SC05065G
crossref_primary_10_1016_j_jcis_2024_05_033
crossref_primary_10_1038_s41467_023_43689_y
crossref_primary_10_1002_smll_202407495
crossref_primary_10_1016_j_jcis_2023_06_130
crossref_primary_10_1039_D4TA02531H
crossref_primary_10_1002_smll_202310808
crossref_primary_10_1016_j_cej_2024_155862
crossref_primary_10_1016_j_jcat_2024_115746
crossref_primary_10_1021_acscatal_4c01961
crossref_primary_10_1021_acs_langmuir_3c02591
crossref_primary_10_1002_aenm_202405320
crossref_primary_10_1039_D4SC07740G
crossref_primary_10_1021_acsami_4c00035
crossref_primary_10_1007_s11244_025_02062_7
crossref_primary_10_1039_D3TA05125K
crossref_primary_10_1002_smll_202401053
crossref_primary_10_1016_j_mtcomm_2023_107306
crossref_primary_10_1002_advs_202304063
crossref_primary_10_1039_D4DT00081A
crossref_primary_10_26599_NRE_2024_9120132
crossref_primary_10_1021_acsnano_4c14424
crossref_primary_10_1002_aenm_202301643
crossref_primary_10_1002_smll_202308032
crossref_primary_10_1016_j_jechem_2023_02_029
crossref_primary_10_1002_adsu_202300496
crossref_primary_10_1016_j_apsusc_2023_157594
crossref_primary_10_1016_j_ijhydene_2023_05_048
crossref_primary_10_1039_D3TC01102J
crossref_primary_10_1039_D3EE02467A
crossref_primary_10_1002_adfm_202409396
crossref_primary_10_3390_pr12091799
crossref_primary_10_1002_cey2_663
crossref_primary_10_3390_catal15020117
crossref_primary_10_1002_adfm_202303637
crossref_primary_10_1002_smll_202309805
crossref_primary_10_1039_D3NJ03007E
crossref_primary_10_1039_D3QI00885A
crossref_primary_10_1016_j_apsusc_2023_157445
crossref_primary_10_1002_cssc_202401929
crossref_primary_10_1039_D4EE02365J
crossref_primary_10_1002_adsu_202500159
crossref_primary_10_1016_j_ccr_2024_215901
crossref_primary_10_1039_D4NR04415K
crossref_primary_10_1016_j_eng_2024_11_009
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1002_adfm_202418211
crossref_primary_10_1002_adma_202405060
crossref_primary_10_1007_s11356_024_34987_z
crossref_primary_10_1039_D4DT00697F
crossref_primary_10_1016_j_apcatb_2024_124366
crossref_primary_10_1002_adma_202412965
crossref_primary_10_1039_D4TA05453A
crossref_primary_10_1039_D4CS01322K
crossref_primary_10_1016_j_ccr_2024_215691
crossref_primary_10_1016_j_colsurfa_2023_132198
crossref_primary_10_1016_j_jcis_2024_03_008
crossref_primary_10_1021_acs_inorgchem_3c03079
crossref_primary_10_1021_acscatal_4c08035
crossref_primary_10_1016_j_jcis_2023_07_086
crossref_primary_10_1016_j_seppur_2023_124209
crossref_primary_10_1002_aenm_202302008
crossref_primary_10_1002_ente_202401074
crossref_primary_10_1016_j_seppur_2024_130927
crossref_primary_10_1016_j_est_2024_111965
crossref_primary_10_1002_aenm_202402930
crossref_primary_10_1039_D4CS00517A
crossref_primary_10_1002_adfm_202421847
crossref_primary_10_1007_s10853_024_09842_8
crossref_primary_10_3390_su162210137
crossref_primary_10_1021_acsanm_4c06070
crossref_primary_10_1080_08327823_2024_2378667
crossref_primary_10_1021_acsami_3c17345
crossref_primary_10_1016_j_cej_2024_151219
crossref_primary_10_1002_anie_202422779
crossref_primary_10_1002_smll_202306692
crossref_primary_10_1002_smtd_202401067
crossref_primary_10_1002_adfm_202422787
crossref_primary_10_1021_acs_jpcc_4c08479
crossref_primary_10_1016_j_ccr_2024_215870
crossref_primary_10_1002_idm2_12087
crossref_primary_10_1002_smll_202407510
crossref_primary_10_1016_j_ijbiomac_2024_135486
crossref_primary_10_1016_j_checat_2023_100792
crossref_primary_10_1039_D4CS00574K
crossref_primary_10_1016_j_fuel_2024_131674
crossref_primary_10_1021_acscatal_4c07600
crossref_primary_10_1016_j_apcatb_2023_123300
Cites_doi 10.1016/j.nanoen.2020.105671
10.1021/acsami.1c00570
10.1016/j.apcatb.2022.121786
10.1002/anie.202100726
10.1016/j.jclepro.2022.130375
10.1002/adfm.202111999
10.1002/anie.202107858
10.1007/s40843-021-2017-y
10.1002/anie.202009518
10.1016/j.jece.2021.107123
10.1002/anie.202109785
10.1002/adma.202005256
10.1016/j.apcatb.2021.120933
10.1002/aenm.201800210
10.1016/j.apcatb.2022.121834
10.1021/acs.jpclett.5b01598
10.1002/aenm.202200298
10.1016/j.apcatb.2021.120892
10.1021/acscatal.1c00739
10.1016/j.jhazmat.2020.123470
10.1016/S1872-2067(19)63431-5
10.1016/j.nanoen.2020.104645
10.1002/anie.202116699
10.1016/j.nanoen.2021.106841
10.1002/adma.202200723
10.1016/j.mattod.2019.06.009
10.1002/aenm.202200629
10.1016/j.mattod.2022.06.009
10.1016/j.cclet.2022.03.106
10.1016/j.jmat.2020.03.004
10.1002/pssa.201026251
10.1002/adma.201908350
10.1016/j.joule.2019.12.019
10.1016/j.jechem.2022.08.019
10.1021/acs.jpcc.9b02784
10.1021/acssuschemeng.9b03217
10.1016/j.apcatb.2021.120160
10.1016/j.scitotenv.2021.150924
10.1016/j.ultramic.2018.08.013
10.1039/D1TA01144H
10.1002/cssc.202000670
10.1016/j.nanoen.2018.05.053
10.1016/j.cej.2022.135132
10.1002/adma.202002875
10.1021/acsami.1c11233
10.1002/smll.202101725
10.1016/j.apcatb.2021.120979
10.1016/j.apcatb.2021.119990
10.1016/j.apcatb.2021.120980
10.1002/ange.202110429
10.1002/anie.202106310
10.1002/adma.202100317
10.1002/adma.202200172
10.1021/acsami.9b11253
10.1002/adma.201906513
10.1002/advs.202103314
10.1002/adma.202105067
10.1039/C8EE02081G
10.1002/anie.202116057
10.1002/anie.201901361
10.1016/j.nanoen.2022.107566
10.1021/nl504630j
10.1002/adma.202200563
10.1002/smll.202105376
10.1021/acsami.1c12063
10.1002/advs.202201339
10.1016/j.jcis.2021.06.049
10.1016/j.carbon.2021.10.027
10.1016/j.jcis.2021.08.041
10.1016/j.apcatb.2021.120379
10.1007/s11705-021-2102-6
10.1016/j.jhazmat.2020.124436
10.1039/C7CS00387K
10.1021/cr0681086
10.1016/j.apcatb.2021.121044
10.1016/j.nanoen.2020.104990
10.1021/acsnano.6b01842
10.1039/D1TA01255J
10.1039/C3NR03998F
10.3390/nano12173026
10.1021/acs.accounts.1c00727
10.1002/adfm.202106156
10.1093/nsr/nwz198
10.1002/adma.202106308
10.1021/acsami.9b06264
10.1016/j.jhazmat.2021.126263
10.1016/j.nanoen.2019.04.037
10.1016/j.cej.2019.123918
10.1002/adfm.201904256
10.1016/j.cap.2016.12.012
10.1016/j.nanoen.2021.106867
10.1038/s41467-020-15993-4
10.1039/D2QI00715K
10.1016/j.jclepro.2022.132527
10.1002/adfm.201807279
10.1021/acs.nanolett.1c00897
10.1039/D2QI00064D
10.1016/j.nanoen.2021.106852
10.1039/D2SC01715F
10.1039/C8TA04165B
10.1016/j.apcatb.2022.121153
10.1021/acsami.2c02205
10.1039/C9CY01918A
10.1016/j.apcatb.2020.119291
10.1039/D1GC03768D
10.1039/c3cs60067j
10.1016/j.chempr.2020.06.010
10.1016/j.apcatb.2022.121585
10.1016/j.apcatb.2022.121388
10.1002/anie.202200872
10.1002/adma.201802106
10.1002/smll.202105682
10.1016/j.cej.2021.129447
10.1016/j.apcatb.2021.120792
10.1002/adma.202101026
10.1039/C9CS00607A
10.1016/j.apcatb.2022.121229
10.1002/adma.202100855
10.1021/acsaem.2c01917
10.1021/acs.nanolett.0c03468
10.1007/s40843-020-1361-3
10.1002/adma.202202508
10.1002/adfm.202000556
10.1016/j.apcatb.2021.120749
10.1039/C8CS00583D
10.1016/j.apcatb.2022.121426
10.1016/j.apcatb.2022.121279
10.1016/j.apcatb.2021.120763
10.1002/aenm.201901634
10.1016/j.apcatb.2021.120824
10.1016/j.mssp.2020.105351
10.1016/j.cej.2021.132456
10.1002/smll.202105544
10.1021/acsami.9b15317
10.1016/j.cej.2021.132297
10.1039/D0TA09759D
10.1002/adma.202202929
10.1002/anie.201905281
10.1016/j.cej.2022.134580
10.1002/aenm.202000214
10.1038/s41467-020-18350-7
10.1038/ncomms2401
10.1002/cctc.201800666
10.3390/catal12020215
10.1039/D1CS01182K
10.1016/j.electacta.2021.138766
10.1016/j.cej.2022.137789
10.1039/D2EE01797K
10.1016/j.inoche.2021.108822
10.1016/j.apcatb.2021.120213
10.1016/j.apcatb.2018.11.011
10.1021/acscatal.8b04068
10.1039/D1TA08646D
10.1007/s12274-022-4451-y
10.1016/j.apcatb.2022.121162
10.1016/j.cej.2022.135652
10.1016/j.apcatb.2019.118417
10.1016/j.ijhydene.2021.08.123
10.1016/j.apcatb.2021.120058
10.1002/adfm.202203252
10.1002/anie.201811709
10.1016/j.nanoen.2019.02.025
10.1021/acs.nanolett.2c00047
10.1016/j.nanoen.2021.106317
10.1016/j.ccr.2022.214596
10.1002/adma.201601694
10.1002/aenm.202200253
10.1016/j.cej.2020.124164
10.1002/adma.202203615
10.1039/D2TA00632D
10.1021/acsnano.5b07678
10.1016/j.jiec.2018.12.034
10.1016/j.mattod.2017.08.027
10.1002/anie.202203519
10.1016/j.apcatb.2019.118352
10.1016/j.jcis.2022.06.010
10.1021/acssuschemeng.8b01480
10.1002/smll.202100367
10.1016/j.nanoen.2015.02.029
10.1016/j.apcatb.2021.120394
10.1039/C7TA10934B
10.1002/anie.202101058
10.1002/cssc.202000416
10.1016/j.cej.2021.132588
10.1016/j.cej.2021.132963
10.1021/acsanm.0c00039
10.1039/D1TA01725J
10.1002/anie.202204880
10.1039/D1EE02105B
10.1021/cr3000626
10.1039/D1TA09892F
10.1016/j.apcatb.2022.121546
10.1002/advs.201801702
10.1021/acsnano.1c04774
10.1002/advs.202200959
10.1002/aenm.201903252
10.1038/s41467-022-29825-0
10.1016/j.jcis.2020.12.112
10.1016/j.apcatb.2021.120762
10.1002/anie.202107731
10.1016/j.cis.2021.102540
10.1002/smll.202201137
10.1016/j.cej.2020.125229
10.1016/j.apcatb.2020.119452
10.1016/j.apcatb.2022.121788
10.1002/smll.202200832
10.1002/aenm.201803951
10.1016/j.cej.2021.133670
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202203720
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202203720
AENM202203720
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21875118; 22111530112; 22179065
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3170-a55d9a6d237b70db4b4223275f8c39b91058fd05e2fb3c466773ca0ed9f8f7d63
ISSN 1614-6832
IngestDate Fri Jul 25 12:17:02 EDT 2025
Thu Apr 24 23:01:29 EDT 2025
Tue Jul 01 01:43:48 EDT 2025
Wed Jan 22 16:14:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3170-a55d9a6d237b70db4b4223275f8c39b91058fd05e2fb3c466773ca0ed9f8f7d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3790-8181
PQID 2787465962
PQPubID 886389
PageCount 40
ParticipantIDs proquest_journals_2787465962
crossref_citationtrail_10_1002_aenm_202203720
crossref_primary_10_1002_aenm_202203720
wiley_primary_10_1002_aenm_202203720_AENM202203720
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 450
2013; 4
2022 2019 2021; 13 72 11
2017 2021; 29 33
2021; 288
2019; 11
2019; 12
2021; 602
2008; 108
2022; 24
2021; 280
2020; 13
2020; 11
2020; 10
2022; 22
2022; 335
2018; 6
2018; 8
2022; 34
2021; 390
2019; 29
2018; 30
2022; 32
2022; 606
2022 2022; 10 18
2021; 81
2021; 46
2019; 9
2019; 6
2020; 41
2022; 93
2021 2022; 33 55
2016; 10
2022 2022; 9 9
2020; 387
2020; 389
2020; 268
2020; 32
2021; 418
2022; 101
2022; 186
2012; 112
2018; 195
2020; 30
2020; 396
2022; 5
2019; 48
2022; 9
2019 2022 2020; 7 65 263
2022; 12
2022; 14
2022; 15
2022; 10
2021; 132
2022; 625
2021; 60
2018; 10
2022; 467
2022; 18
2022; 134
2021 2022; 31 300
2021; 408
2021; 21
2020; 63
2021; 402
2019; 59
2017; 46
2019; 58
2019 2019 2018; 123 9 6
2021; 121
2019; 243
2020 2015; 278 13
2020; 7
2020; 6
2022; 363
2020; 4
2011; 208
2019; 60
2020; 3
2022 2022; 34 58
2021; 33
2022 2022; 10 61
2020; 49
2022 2021; 75 15
2022; 806
2014; 6
2021 2022; 589 9
2021; 9
2022; 430
2021; 8
2017; 20
2015; 15
2015; 6
2021; 89
2022; 51
2013; 42
2022; 317
2022; 438
2022; 318
2022; 315
2022; 437
2021 2019; 21 58
2022; 313
2022; 312
2022; 433
2021; 14
2021; 13
2021; 15
2021 2022; 60 61
2021 2022; 9 13
2021; 11
2020; 75
2022
2022; 61
2022 2022; 303 307
2017; 17
2020; 71
2021; 17
2021; 292
2021; 293
2021; 296
2018; 50
2022; 308
2022; 429
2021; 297
2022; 309
2022; 307
2022; 304
2022; 305
2022; 302
2022; 303
2021; 290
2022; 300
2022; 301
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_158_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_112_2
e_1_2_10_173_2
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_6_2
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_51_1
e_1_2_10_147_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_101_2
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_101_1
e_1_2_10_185_1
e_1_2_10_41_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_52_1
e_1_2_10_75_1
e_1_2_10_15_2
e_1_2_10_75_2
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_38_1
e_1_2_10_75_3
e_1_2_10_98_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_148_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_4_2
e_1_2_10_76_2
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_99_3
e_1_2_10_99_2
e_1_2_10_175_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_80_2
e_1_2_10_126_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_187_1
e_1_2_10_164_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_176_2
e_1_2_10_130_1
e_1_2_10_92_1
e_1_2_10_17_2
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_31_1
e_1_2_10_188_1
e_1_2_10_81_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_180_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_89_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_2_2
e_1_2_10_116_1
e_1_2_10_55_1
e_1_2_10_78_1
e_1_2_10_154_1
e_1_2_10_32_1
e_1_2_10_120_2
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_189_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_67_1
e_1_2_10_143_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_94_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_171_1
e_1_2_10_8_1
e_1_2_10_35_2
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_58_1
e_1_2_10_8_2
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_160_1
e_1_2_10_122_1
e_1_2_10_24_1
e_1_2_10_108_1
Ding J. (e_1_2_10_8_3) 2021; 11
e_1_2_10_157_1
e_1_2_10_1_1
e_1_2_10_73_1
e_1_2_10_73_2
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_62_1
e_1_2_10_161_1
e_1_2_10_85_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_184_1
e_1_2_10_47_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 13 72 11
  start-page: 5432 18 18
  year: 2022 2019 2021
  publication-title: Chem. Sci. J. Ind. Eng. Chem. Adv. Energy Mater.
– volume: 9
  start-page: 4320
  year: 2022
  publication-title: Inorg. Chem. Front.
– volume: 34 58
  start-page: 100
  year: 2022 2022
  publication-title: Adv. Mater. Mater. Today
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 18
  year: 2022
  publication-title: Small
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 1678
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 10 18
  year: 2022 2022
  publication-title: J. Mater. Chem. A Small
– volume: 60
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 589 9
  start-page: 25 1964
  year: 2021 2022
  publication-title: J. Colloid Interface Sci. Inorg. Chem. Front.
– volume: 59
  start-page: 33
  year: 2019
  publication-title: Nano Energy
– volume: 418
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 24
  start-page: 713
  year: 2022
  publication-title: Green Chem.
– volume: 280
  year: 2021
  publication-title: Appl. Catal., B
– volume: 308
  year: 2022
  publication-title: Appl. Catal., B
– volume: 292
  year: 2021
  publication-title: Appl. Catal., B
– volume: 81
  year: 2021
  publication-title: Nano Energy
– volume: 9
  start-page: 345
  year: 2019
  publication-title: ACS Catal.
– volume: 31 300
  year: 2021 2022
  publication-title: Adv. Funct. Mater. Appl. Catal., B
– volume: 296
  year: 2021
  publication-title: Appl. Catal., B
– volume: 408
  year: 2021
  publication-title: J. Hazard. Mater.
– volume: 312
  year: 2022
  publication-title: Appl. Catal., B
– volume: 71
  year: 2020
  publication-title: Nano Energy
– volume: 63
  start-page: 2314
  year: 2020
  publication-title: Sci. China Mater.
– volume: 389
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 3026
  year: 2022
  publication-title: Nanomaterials
– year: 2022
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 48
  start-page: 1194
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 6
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 10
  start-page: 8546
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1063
  year: 2020
  publication-title: ACS Appl. Nano Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 49
  start-page: 2196
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 304
  year: 2022
  publication-title: Appl. Catal., B
– volume: 305
  year: 2022
  publication-title: Appl. Catal., B
– volume: 33 55
  start-page: 1278
  year: 2021 2022
  publication-title: Adv. Mater. Acc. Chem. Res.
– volume: 363
  year: 2022
  publication-title: J. Cleaner Prod.
– volume: 300
  year: 2022
  publication-title: Appl. Catal., B
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 8502
  year: 2022
  publication-title: Nano Res.
– volume: 301
  year: 2022
  publication-title: Appl. Catal., B
– volume: 11
  start-page: 4613
  year: 2020
  publication-title: Nat. Commun.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 10 61
  year: 2022 2022
  publication-title: J. Environ. Chem. Eng. Angew. Chem., Int. Ed.
– volume: 278 13
  start-page: 414
  year: 2020 2015
  publication-title: Appl. Catal., B Nano Energy
– volume: 438
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 60
  start-page: 9546
  year: 2021
  publication-title: Angew. Chem., Int. Ed.
– volume: 60 61
  year: 2021 2022
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 303 307
  year: 2022 2022
  publication-title: Appl. Catal., B Appl. Catal., B
– volume: 93
  year: 2022
  publication-title: Nano Energy
– volume: 10
  start-page: 1023
  year: 2020
  publication-title: Catal. Sci. Technol.
– volume: 402
  year: 2021
  publication-title: J. Hazard. Mater.
– volume: 112
  start-page: 5520
  year: 2012
  publication-title: Chem. Rev.
– volume: 429
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 307
  year: 2022
  publication-title: Appl. Catal., B
– volume: 317
  year: 2022
  publication-title: Appl. Catal., B
– volume: 13
  start-page: 3061
  year: 2020
  publication-title: ChemSusChem
– volume: 309
  year: 2022
  publication-title: Appl. Catal., B
– volume: 101
  year: 2022
  publication-title: Nano Energy
– volume: 315
  year: 2022
  publication-title: Appl. Catal., B
– volume: 17
  year: 2021
  publication-title: Small
– volume: 10
  start-page: 3397
  year: 2018
  publication-title: ChemCatChem
– volume: 61
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 313
  year: 2022
  publication-title: Appl. Catal., B
– volume: 606
  start-page: 544
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 186
  start-page: 406
  year: 2022
  publication-title: Carbon
– volume: 450
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 418
  year: 2021
  publication-title: J. Hazard. Mater.
– volume: 46
  year: 2021
  publication-title: Int. J. Hydrogen Energy
– volume: 108
  start-page: 367
  year: 2008
  publication-title: Chem. Rev.
– volume: 288
  year: 2021
  publication-title: Appl. Catal., B
– volume: 7
  start-page: 652
  year: 2020
  publication-title: Natl. Sci. Rev.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 46
  start-page: 7757
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 3410
  year: 2015
  publication-title: J. Phys. Chem. Lett.
– volume: 268
  year: 2020
  publication-title: Appl. Catal., B
– volume: 467
  year: 2022
  publication-title: Coord. Chem. Rev.
– volume: 195
  start-page: 25
  year: 2018
  publication-title: Ultramicroscopy
– volume: 15
  start-page: 4167
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 297
  year: 2021
  publication-title: Adv. Colloid Interface Sci.
– volume: 11
  start-page: 2129
  year: 2020
  publication-title: Nat. Commun.
– volume: 134
  year: 2022
  publication-title: Angew. Chem., Int. Ed.
– volume: 437
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 9837
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 243
  start-page: 556
  year: 2019
  publication-title: Appl. Catal., B
– volume: 14
  start-page: 5228
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 256
  year: 2020
  publication-title: J. Materiomics
– volume: 387
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 501
  year: 2017
  publication-title: Mater. Today
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 21
  start-page: 5060
  year: 2021
  publication-title: Nano Lett.
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 625
  start-page: 83
  year: 2022
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 6995
  year: 2021
  publication-title: ACS Catal.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 41
  start-page: 534
  year: 2020
  publication-title: Chin. J. Catal.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 21 58
  start-page: 182 7526
  year: 2021 2019
  publication-title: Nano Lett. Angew. Chem., Int. Ed.
– volume: 32
  start-page: 222
  year: 2020
  publication-title: Mater. Today
– volume: 51
  start-page: 3561
  year: 2022
  publication-title: Chem. Soc. Rev.
– volume: 10
  start-page: 2636
  year: 2016
  publication-title: ACS Nano
– volume: 290
  year: 2021
  publication-title: Appl. Catal., B
– volume: 42
  start-page: 6593
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 318
  year: 2022
  publication-title: Appl. Catal., B
– volume: 806
  year: 2022
  publication-title: Sci. Total Environ.
– volume: 208
  start-page: 777
  year: 2011
  publication-title: Phys. Status Solidi A
– volume: 4
  start-page: 1432
  year: 2013
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4895
  year: 2016
  publication-title: ACS Nano
– volume: 303
  year: 2022
  publication-title: Appl. Catal., B
– volume: 9 9
  year: 2022 2022
  publication-title: Adv. Sci. Adv. Sci.
– volume: 302
  year: 2022
  publication-title: Appl. Catal., B
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 75 15
  start-page: 66 1408
  year: 2022 2021
  publication-title: J. Energy Chem. Front. Chem. Sci. Eng.
– volume: 10
  start-page: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 433
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 29 33
  year: 2017 2021
  publication-title: Adv. Mater. Adv. Mater.
– volume: 22
  start-page: 4276
  year: 2022
  publication-title: Nano Lett.
– volume: 50
  start-page: 383
  year: 2018
  publication-title: Nano Energy
– volume: 12
  start-page: 215
  year: 2022
  publication-title: Catalysts
– volume: 6
  start-page: 1543
  year: 2020
  publication-title: Chem
– volume: 15
  year: 2021
  publication-title: ACS Nano
– volume: 132
  year: 2021
  publication-title: Inorg. Chem. Commun.
– volume: 293
  year: 2021
  publication-title: Appl. Catal., B
– volume: 15
  start-page: 2372
  year: 2015
  publication-title: Nano Lett.
– volume: 297
  year: 2021
  publication-title: Appl. Catal., B
– volume: 17
  start-page: 661
  year: 2017
  publication-title: Curr. Appl. Phys.
– volume: 390
  year: 2021
  publication-title: Electrochim. Acta
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 123 9 6
  start-page: 5774
  year: 2019 2019 2018
  publication-title: J. Phys. Chem. C Adv. Energy Mater. J. Mater. Chem. A
– volume: 13
  start-page: 3357
  year: 2020
  publication-title: ChemSusChem
– volume: 335
  year: 2022
  publication-title: J. Cleaner Prod.
– volume: 60
  start-page: 827
  year: 2019
  publication-title: Nano Energy
– volume: 6
  start-page: 24
  year: 2014
  publication-title: Nanoscale
– volume: 430
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 121
  year: 2021
  publication-title: Mater. Sci. Semicond. Process.
– volume: 4
  start-page: 301
  year: 2020
  publication-title: Joule
– volume: 602
  start-page: 553
  year: 2021
  publication-title: J. Colloid Interface Sci.
– year: 2022
  publication-title: Chin. Chem. Lett.
– volume: 12
  start-page: 410
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 9 13
  start-page: 2230
  year: 2021 2022
  publication-title: J. Mater. Chem. A Nat. Commun.
– volume: 7 65 263
  start-page: 2433
  year: 2019 2022 2020
  publication-title: ACS Sustainable Chem. Eng. Sci. China Mater. Appl. Catal., B
– ident: e_1_2_10_61_1
  doi: 10.1016/j.nanoen.2020.105671
– ident: e_1_2_10_166_1
  doi: 10.1021/acsami.1c00570
– ident: e_1_2_10_188_1
  doi: 10.1016/j.apcatb.2022.121786
– ident: e_1_2_10_10_1
  doi: 10.1002/anie.202100726
– ident: e_1_2_10_139_1
  doi: 10.1016/j.jclepro.2022.130375
– ident: e_1_2_10_56_1
  doi: 10.1002/adfm.202111999
– ident: e_1_2_10_171_1
  doi: 10.1002/anie.202107858
– ident: e_1_2_10_75_2
  doi: 10.1007/s40843-021-2017-y
– ident: e_1_2_10_2_1
  doi: 10.1002/anie.202009518
– ident: e_1_2_10_120_1
  doi: 10.1016/j.jece.2021.107123
– ident: e_1_2_10_59_1
  doi: 10.1002/anie.202109785
– ident: e_1_2_10_6_1
  doi: 10.1002/adma.202005256
– ident: e_1_2_10_80_1
  doi: 10.1016/j.apcatb.2021.120933
– ident: e_1_2_10_27_1
  doi: 10.1002/aenm.201800210
– ident: e_1_2_10_170_1
  doi: 10.1016/j.apcatb.2022.121834
– ident: e_1_2_10_67_1
  doi: 10.1021/acs.jpclett.5b01598
– ident: e_1_2_10_136_1
  doi: 10.1002/aenm.202200298
– ident: e_1_2_10_106_1
  doi: 10.1016/j.apcatb.2021.120892
– ident: e_1_2_10_111_1
  doi: 10.1021/acscatal.1c00739
– ident: e_1_2_10_140_1
  doi: 10.1016/j.jhazmat.2020.123470
– ident: e_1_2_10_19_1
  doi: 10.1016/S1872-2067(19)63431-5
– ident: e_1_2_10_125_1
  doi: 10.1016/j.nanoen.2020.104645
– ident: e_1_2_10_3_1
  doi: 10.1002/anie.202116699
– ident: e_1_2_10_77_1
  doi: 10.1016/j.nanoen.2021.106841
– ident: e_1_2_10_101_1
  doi: 10.1002/adma.202200723
– ident: e_1_2_10_121_1
  doi: 10.1016/j.mattod.2019.06.009
– ident: e_1_2_10_152_1
  doi: 10.1002/aenm.202200629
– ident: e_1_2_10_101_2
  doi: 10.1016/j.mattod.2022.06.009
– ident: e_1_2_10_148_1
  doi: 10.1016/j.cclet.2022.03.106
– ident: e_1_2_10_40_1
  doi: 10.1016/j.jmat.2020.03.004
– ident: e_1_2_10_94_1
  doi: 10.1002/pssa.201026251
– ident: e_1_2_10_32_1
  doi: 10.1002/adma.201908350
– ident: e_1_2_10_28_1
  doi: 10.1016/j.joule.2019.12.019
– ident: e_1_2_10_176_1
  doi: 10.1016/j.jechem.2022.08.019
– ident: e_1_2_10_99_1
  doi: 10.1021/acs.jpcc.9b02784
– ident: e_1_2_10_75_1
  doi: 10.1021/acssuschemeng.9b03217
– ident: e_1_2_10_175_1
  doi: 10.1016/j.apcatb.2021.120160
– volume: 11
  start-page: 18
  year: 2021
  ident: e_1_2_10_8_3
  publication-title: Adv. Energy Mater.
– ident: e_1_2_10_7_1
  doi: 10.1016/j.scitotenv.2021.150924
– ident: e_1_2_10_90_1
  doi: 10.1016/j.ultramic.2018.08.013
– ident: e_1_2_10_4_1
  doi: 10.1039/D1TA01144H
– ident: e_1_2_10_124_1
  doi: 10.1002/cssc.202000670
– ident: e_1_2_10_24_1
  doi: 10.1016/j.nanoen.2018.05.053
– ident: e_1_2_10_150_1
  doi: 10.1016/j.cej.2022.135132
– ident: e_1_2_10_128_1
  doi: 10.1002/adma.202002875
– ident: e_1_2_10_115_1
  doi: 10.1021/acsami.1c11233
– ident: e_1_2_10_172_1
  doi: 10.1002/smll.202101725
– ident: e_1_2_10_116_1
  doi: 10.1016/j.apcatb.2021.120979
– ident: e_1_2_10_117_1
  doi: 10.1016/j.apcatb.2021.119990
– ident: e_1_2_10_156_1
  doi: 10.1016/j.apcatb.2021.120980
– ident: e_1_2_10_33_1
  doi: 10.1002/ange.202110429
– ident: e_1_2_10_123_1
  doi: 10.1002/anie.202106310
– ident: e_1_2_10_48_1
  doi: 10.1002/adma.202100317
– ident: e_1_2_10_11_1
  doi: 10.1002/adma.202200172
– ident: e_1_2_10_182_1
  doi: 10.1021/acsami.9b11253
– ident: e_1_2_10_9_1
  doi: 10.1002/adma.201906513
– ident: e_1_2_10_70_1
  doi: 10.1002/advs.202103314
– ident: e_1_2_10_60_1
  doi: 10.1002/adma.202105067
– ident: e_1_2_10_91_1
  doi: 10.1039/C8EE02081G
– ident: e_1_2_10_86_1
  doi: 10.1002/anie.202116057
– ident: e_1_2_10_22_1
  doi: 10.1002/anie.201901361
– ident: e_1_2_10_186_1
  doi: 10.1016/j.nanoen.2022.107566
– ident: e_1_2_10_68_1
  doi: 10.1021/nl504630j
– ident: e_1_2_10_104_1
  doi: 10.1002/adma.202200563
– ident: e_1_2_10_142_1
  doi: 10.1002/smll.202105376
– ident: e_1_2_10_114_1
  doi: 10.1021/acsami.1c12063
– ident: e_1_2_10_73_2
  doi: 10.1002/advs.202201339
– ident: e_1_2_10_41_1
  doi: 10.1016/j.jcis.2021.06.049
– ident: e_1_2_10_43_1
  doi: 10.1016/j.carbon.2021.10.027
– ident: e_1_2_10_113_1
  doi: 10.1016/j.jcis.2021.08.041
– ident: e_1_2_10_126_1
  doi: 10.1016/j.apcatb.2021.120379
– ident: e_1_2_10_176_2
  doi: 10.1007/s11705-021-2102-6
– ident: e_1_2_10_105_1
  doi: 10.1016/j.jhazmat.2020.124436
– ident: e_1_2_10_165_1
  doi: 10.1039/C7CS00387K
– ident: e_1_2_10_21_1
  doi: 10.1021/cr0681086
– ident: e_1_2_10_82_1
  doi: 10.1016/j.apcatb.2021.121044
– ident: e_1_2_10_181_1
  doi: 10.1016/j.nanoen.2020.104990
– ident: e_1_2_10_23_1
  doi: 10.1021/acsnano.6b01842
– ident: e_1_2_10_189_1
  doi: 10.1039/D1TA01255J
– ident: e_1_2_10_16_1
  doi: 10.1039/C3NR03998F
– ident: e_1_2_10_31_1
  doi: 10.3390/nano12173026
– ident: e_1_2_10_6_2
  doi: 10.1021/acs.accounts.1c00727
– ident: e_1_2_10_76_1
  doi: 10.1002/adfm.202106156
– ident: e_1_2_10_88_1
  doi: 10.1093/nsr/nwz198
– ident: e_1_2_10_18_1
  doi: 10.1002/adma.202106308
– ident: e_1_2_10_95_1
  doi: 10.1021/acsami.9b06264
– ident: e_1_2_10_133_1
  doi: 10.1016/j.jhazmat.2021.126263
– ident: e_1_2_10_155_1
  doi: 10.1016/j.nanoen.2019.04.037
– ident: e_1_2_10_54_1
  doi: 10.1016/j.cej.2019.123918
– ident: e_1_2_10_144_1
  doi: 10.1002/adfm.201904256
– ident: e_1_2_10_96_1
  doi: 10.1016/j.cap.2016.12.012
– ident: e_1_2_10_36_1
  doi: 10.1016/j.nanoen.2021.106867
– ident: e_1_2_10_57_1
  doi: 10.1038/s41467-020-15993-4
– ident: e_1_2_10_147_1
  doi: 10.1039/D2QI00715K
– ident: e_1_2_10_127_1
  doi: 10.1016/j.jclepro.2022.132527
– ident: e_1_2_10_157_1
  doi: 10.1002/adfm.201807279
– ident: e_1_2_10_143_1
  doi: 10.1021/acs.nanolett.1c00897
– ident: e_1_2_10_112_2
  doi: 10.1039/D2QI00064D
– ident: e_1_2_10_132_1
  doi: 10.1016/j.nanoen.2021.106852
– ident: e_1_2_10_8_1
  doi: 10.1039/D2SC01715F
– ident: e_1_2_10_69_1
  doi: 10.1039/C8TA04165B
– ident: e_1_2_10_129_1
  doi: 10.1016/j.apcatb.2022.121153
– ident: e_1_2_10_162_1
  doi: 10.1021/acsami.2c02205
– ident: e_1_2_10_169_1
  doi: 10.1039/C9CY01918A
– ident: e_1_2_10_35_1
  doi: 10.1016/j.apcatb.2020.119291
– ident: e_1_2_10_110_1
  doi: 10.1039/D1GC03768D
– ident: e_1_2_10_42_1
  doi: 10.1039/c3cs60067j
– ident: e_1_2_10_49_1
  doi: 10.1016/j.chempr.2020.06.010
– ident: e_1_2_10_65_1
  doi: 10.1016/j.apcatb.2022.121585
– ident: e_1_2_10_118_1
  doi: 10.1016/j.apcatb.2022.121388
– ident: e_1_2_10_81_1
  doi: 10.1002/anie.202200872
– ident: e_1_2_10_5_1
  doi: 10.1002/adma.201802106
– ident: e_1_2_10_178_1
  doi: 10.1002/smll.202105682
– ident: e_1_2_10_180_1
  doi: 10.1016/j.cej.2021.129447
– ident: e_1_2_10_55_1
  doi: 10.1016/j.apcatb.2021.120792
– ident: e_1_2_10_85_1
  doi: 10.1002/adma.202101026
– ident: e_1_2_10_63_1
  doi: 10.1039/C9CS00607A
– ident: e_1_2_10_87_1
  doi: 10.1016/j.apcatb.2022.121229
– ident: e_1_2_10_17_2
  doi: 10.1002/adma.202100855
– ident: e_1_2_10_151_1
  doi: 10.1021/acsaem.2c01917
– ident: e_1_2_10_15_1
  doi: 10.1021/acs.nanolett.0c03468
– ident: e_1_2_10_179_1
  doi: 10.1007/s40843-020-1361-3
– ident: e_1_2_10_34_1
  doi: 10.1002/adma.202202508
– ident: e_1_2_10_14_1
  doi: 10.1002/adfm.202000556
– ident: e_1_2_10_83_1
  doi: 10.1016/j.apcatb.2021.120749
– ident: e_1_2_10_38_1
  doi: 10.1039/C8CS00583D
– ident: e_1_2_10_108_1
  doi: 10.1016/j.apcatb.2022.121426
– ident: e_1_2_10_167_1
  doi: 10.1016/j.apcatb.2022.121279
– ident: e_1_2_10_76_2
  doi: 10.1016/j.apcatb.2021.120763
– ident: e_1_2_10_52_1
  doi: 10.1002/aenm.201901634
– ident: e_1_2_10_78_1
  doi: 10.1016/j.apcatb.2021.120824
– ident: e_1_2_10_158_1
  doi: 10.1016/j.mssp.2020.105351
– ident: e_1_2_10_141_1
  doi: 10.1016/j.cej.2021.132456
– ident: e_1_2_10_173_2
  doi: 10.1002/smll.202105544
– ident: e_1_2_10_29_1
  doi: 10.1021/acsami.9b15317
– ident: e_1_2_10_154_1
  doi: 10.1016/j.cej.2021.132297
– ident: e_1_2_10_109_1
  doi: 10.1039/D0TA09759D
– ident: e_1_2_10_51_1
  doi: 10.1002/adma.202202929
– ident: e_1_2_10_58_1
  doi: 10.1002/anie.201905281
– ident: e_1_2_10_138_1
  doi: 10.1016/j.cej.2022.134580
– ident: e_1_2_10_26_1
  doi: 10.1002/aenm.202000214
– ident: e_1_2_10_89_1
  doi: 10.1038/s41467-020-18350-7
– ident: e_1_2_10_102_1
  doi: 10.1038/ncomms2401
– ident: e_1_2_10_119_1
  doi: 10.1002/cctc.201800666
– ident: e_1_2_10_159_1
  doi: 10.3390/catal12020215
– ident: e_1_2_10_1_1
  doi: 10.1039/D1CS01182K
– ident: e_1_2_10_177_1
  doi: 10.1016/j.electacta.2021.138766
– ident: e_1_2_10_187_1
  doi: 10.1016/j.cej.2022.137789
– ident: e_1_2_10_46_1
  doi: 10.1039/D2EE01797K
– ident: e_1_2_10_184_1
  doi: 10.1016/j.inoche.2021.108822
– ident: e_1_2_10_100_1
  doi: 10.1016/j.apcatb.2021.120213
– ident: e_1_2_10_79_1
  doi: 10.1016/j.apcatb.2018.11.011
– ident: e_1_2_10_53_1
  doi: 10.1021/acscatal.8b04068
– ident: e_1_2_10_45_1
  doi: 10.1039/D1TA08646D
– ident: e_1_2_10_164_1
  doi: 10.1007/s12274-022-4451-y
– ident: e_1_2_10_80_2
  doi: 10.1016/j.apcatb.2022.121162
– ident: e_1_2_10_107_1
  doi: 10.1016/j.cej.2022.135652
– ident: e_1_2_10_64_1
  doi: 10.1016/j.apcatb.2019.118417
– ident: e_1_2_10_163_1
  doi: 10.1016/j.ijhydene.2021.08.123
– ident: e_1_2_10_72_1
  doi: 10.1016/j.apcatb.2021.120058
– ident: e_1_2_10_92_1
  doi: 10.1002/adfm.202203252
– ident: e_1_2_10_15_2
  doi: 10.1002/anie.201811709
– ident: e_1_2_10_160_1
  doi: 10.1016/j.nanoen.2019.02.025
– ident: e_1_2_10_39_1
  doi: 10.1021/acs.nanolett.2c00047
– ident: e_1_2_10_97_1
  doi: 10.1016/j.nanoen.2021.106317
– ident: e_1_2_10_50_1
  doi: 10.1016/j.ccr.2022.214596
– ident: e_1_2_10_17_1
  doi: 10.1002/adma.201601694
– ident: e_1_2_10_122_1
  doi: 10.1002/aenm.202200253
– ident: e_1_2_10_84_1
  doi: 10.1016/j.cej.2020.124164
– ident: e_1_2_10_12_1
  doi: 10.1002/adma.202203615
– ident: e_1_2_10_149_1
  doi: 10.1039/D2TA00632D
– ident: e_1_2_10_30_1
  doi: 10.1021/acsnano.5b07678
– ident: e_1_2_10_8_2
  doi: 10.1016/j.jiec.2018.12.034
– ident: e_1_2_10_37_1
  doi: 10.1016/j.mattod.2017.08.027
– ident: e_1_2_10_120_2
  doi: 10.1002/anie.202203519
– ident: e_1_2_10_75_3
  doi: 10.1016/j.apcatb.2019.118352
– ident: e_1_2_10_131_1
  doi: 10.1016/j.jcis.2022.06.010
– ident: e_1_2_10_66_1
  doi: 10.1021/acssuschemeng.8b01480
– ident: e_1_2_10_153_1
  doi: 10.1002/smll.202100367
– ident: e_1_2_10_35_2
  doi: 10.1016/j.nanoen.2015.02.029
– ident: e_1_2_10_145_1
  doi: 10.1016/j.apcatb.2021.120394
– ident: e_1_2_10_99_3
  doi: 10.1039/C7TA10934B
– ident: e_1_2_10_161_1
  doi: 10.1002/anie.202101058
– ident: e_1_2_10_168_1
  doi: 10.1002/cssc.202000416
– ident: e_1_2_10_130_1
  doi: 10.1016/j.cej.2021.132588
– ident: e_1_2_10_137_1
  doi: 10.1016/j.cej.2021.132963
– ident: e_1_2_10_25_1
  doi: 10.1021/acsanm.0c00039
– ident: e_1_2_10_62_1
  doi: 10.1039/D1TA01725J
– ident: e_1_2_10_2_2
  doi: 10.1002/anie.202204880
– ident: e_1_2_10_13_1
  doi: 10.1039/D1EE02105B
– ident: e_1_2_10_20_1
  doi: 10.1021/cr3000626
– ident: e_1_2_10_173_1
  doi: 10.1039/D1TA09892F
– ident: e_1_2_10_103_1
  doi: 10.1016/j.apcatb.2022.121546
– ident: e_1_2_10_47_1
  doi: 10.1002/advs.201801702
– ident: e_1_2_10_185_1
  doi: 10.1021/acsnano.1c04774
– ident: e_1_2_10_73_1
  doi: 10.1002/advs.202200959
– ident: e_1_2_10_93_1
  doi: 10.1002/aenm.201903252
– ident: e_1_2_10_4_2
  doi: 10.1038/s41467-022-29825-0
– ident: e_1_2_10_112_1
  doi: 10.1016/j.jcis.2020.12.112
– ident: e_1_2_10_98_1
  doi: 10.1016/j.apcatb.2021.120762
– ident: e_1_2_10_174_1
  doi: 10.1002/anie.202107731
– ident: e_1_2_10_71_1
  doi: 10.1016/j.cis.2021.102540
– ident: e_1_2_10_183_1
  doi: 10.1002/smll.202201137
– ident: e_1_2_10_135_1
  doi: 10.1016/j.cej.2020.125229
– ident: e_1_2_10_134_1
  doi: 10.1016/j.apcatb.2020.119452
– ident: e_1_2_10_44_1
  doi: 10.1016/j.apcatb.2022.121788
– ident: e_1_2_10_74_1
  doi: 10.1002/smll.202200832
– ident: e_1_2_10_99_2
  doi: 10.1002/aenm.201803951
– ident: e_1_2_10_146_1
  doi: 10.1016/j.cej.2021.133670
SSID ssj0000491033
Score 2.6822264
SecondaryResourceType review_article
Snippet Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms built‐in electric fields
Catalysis
Charge distribution
Charge transfer
Electric fields
Electrocatalysts
electrode engineering
Energy conversion
energy conversion reactions
Heterostructures
Identification methods
internal electric fields
photo(electro)catalysis
Reaction mechanisms
Title Enabling Internal Electric Fields to Enhance Energy and Environmental Catalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203720
https://www.proquest.com/docview/2787465962
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYdmEHxKdWGMgHpB2qQGo7dnKsINOE1nJYJxUukR07WiWUImgv_PU8xx9JUREdl6i17LTx-8V-7_m930PoLdOCaCNFkqqCJKwxKpGc8STnWucToajpXAOzOb-6ZZ-W2bLPPemySzbqXf1rb17J_0gV2kCuNkv2HpKNN4UG-AzyhStIGK4Hybi0iU_uyN9xOY_LrqrNqh5f2si0jr2hbO-6tIDSZflZR3nZZ7dZ34H14FhikqGiOg2xAcYNA8XWPVEfD-AWrGuzioc2PtFj1cYQioVcx3Vl63ytX-9sFHDo8GXtt07veSC0D73yiyVs7QnPvX_SDNscBVNcYekQSZO9K7djgpWmtfQAhKS2ek6_R4Vz-T-2rhhQ6MiXSWXHV3H8ETohYD3A8ncy_Ti7vonONzCLJintki_CMwRCz5S83_0TuwpLb4UMbZlOGVk8Ro-8FYGnDhJP0APTPkWnA27JZ-hzAAcO4MABHNiBA2_W2IMDO3BgAAfeAQeO4HiObi_LxYerxFfPSGpqqwnJLNOF5JpQoUSqFVMMVEEisiavaaFgArK80WlmSKNozTgXgtYyNbpo8kZoTl-g43bdmjOEdSZFaiz1X56zSVHAGwx2RCGpAH3RMDlCSZiiqvbU8rbCybdqv1xG6CL2_-5IVf7a8zzMeOVfvJ8VgU2GcVs2aoRIJ4V_3KWalvNZ_Pby4F9_hR72uD9Hx5sfW_MadNCNeuMR9Rv-A38f
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Internal+Electric+Fields+to+Enhance+Energy+and+Environmental+Catalysis&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Lei&rft.au=Ren%2C+Jin%E2%80%90Tao&rft.au=Yuan%2C+Zhong%E2%80%90Yong&rft.date=2023-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=11&rft_id=info:doi/10.1002%2Faenm.202203720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202203720
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon