Enabling Internal Electric Fields to Enhance Energy and Environmental Catalysis
Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental remediation. Constructing internal electric fields has been highlighted as a rising star to help facilitate various catalytic processes, with the merits...
Saved in:
Published in | Advanced energy materials Vol. 13; no. 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental remediation. Constructing internal electric fields has been highlighted as a rising star to help facilitate various catalytic processes, with the merits of promoting charge transfer/separation, optimizing redox potential and creating effective active/adsorption sites. Internal electric fields are usually formed by the polarization of uneven charge distributions between different constituent layers, which widely exist in piezoelectrics, polar surface terminations, and heterostructure materials. Herein, a groundbreaking and interdisciplinary overview of the latest advances in the construction of internal electric fields to improve photo(electro)catalytic and electrocatalytic activity is provided. This critical review begins with an encyclopedic summary of the classification, advantages, and synthesis strategies of internal electric fields. Subsequently, the identification methods are thoroughly discussed based on the characterization techniques, experiments, and theoretical calculations, which can provide profound guidance for the in‐depth study of internal electric fields. To elaborate the theory–structure–activity relationships for internal electric fields, the corresponding reaction mechanisms, modification strategies, and catalytic performance are jointly discussed, along with a discussion of their practical energy and environmental applications. Finally, an insightful analysis of the challenges and future prospects for internal electric field‐based catalysts are discussed.
This review provides a clear understanding of the classification, advantages, creation, and identification of internal electric fields and the dramatic improvements in energy and environmental catalysis that result. |
---|---|
AbstractList | Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental remediation. Constructing internal electric fields has been highlighted as a rising star to help facilitate various catalytic processes, with the merits of promoting charge transfer/separation, optimizing redox potential and creating effective active/adsorption sites. Internal electric fields are usually formed by the polarization of uneven charge distributions between different constituent layers, which widely exist in piezoelectrics, polar surface terminations, and heterostructure materials. Herein, a groundbreaking and interdisciplinary overview of the latest advances in the construction of internal electric fields to improve photo(electro)catalytic and electrocatalytic activity is provided. This critical review begins with an encyclopedic summary of the classification, advantages, and synthesis strategies of internal electric fields. Subsequently, the identification methods are thoroughly discussed based on the characterization techniques, experiments, and theoretical calculations, which can provide profound guidance for the in‐depth study of internal electric fields. To elaborate the theory–structure–activity relationships for internal electric fields, the corresponding reaction mechanisms, modification strategies, and catalytic performance are jointly discussed, along with a discussion of their practical energy and environmental applications. Finally, an insightful analysis of the challenges and future prospects for internal electric field‐based catalysts are discussed. Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental remediation. Constructing internal electric fields has been highlighted as a rising star to help facilitate various catalytic processes, with the merits of promoting charge transfer/separation, optimizing redox potential and creating effective active/adsorption sites. Internal electric fields are usually formed by the polarization of uneven charge distributions between different constituent layers, which widely exist in piezoelectrics, polar surface terminations, and heterostructure materials. Herein, a groundbreaking and interdisciplinary overview of the latest advances in the construction of internal electric fields to improve photo(electro)catalytic and electrocatalytic activity is provided. This critical review begins with an encyclopedic summary of the classification, advantages, and synthesis strategies of internal electric fields. Subsequently, the identification methods are thoroughly discussed based on the characterization techniques, experiments, and theoretical calculations, which can provide profound guidance for the in‐depth study of internal electric fields. To elaborate the theory–structure–activity relationships for internal electric fields, the corresponding reaction mechanisms, modification strategies, and catalytic performance are jointly discussed, along with a discussion of their practical energy and environmental applications. Finally, an insightful analysis of the challenges and future prospects for internal electric field‐based catalysts are discussed. This review provides a clear understanding of the classification, advantages, creation, and identification of internal electric fields and the dramatic improvements in energy and environmental catalysis that result. |
Author | Yuan, Zhong‐Yong Chen, Lei Ren, Jin‐Tao |
Author_xml | – sequence: 1 givenname: Lei surname: Chen fullname: Chen, Lei organization: Nankai University – sequence: 2 givenname: Jin‐Tao surname: Ren fullname: Ren, Jin‐Tao organization: Nankai University – sequence: 3 givenname: Zhong‐Yong orcidid: 0000-0002-3790-8181 surname: Yuan fullname: Yuan, Zhong‐Yong email: zyyuan@nankai.edu.cn organization: Nankai University |
BookMark | eNqFkMFLwzAUxoNMcM5dPRc8d6ZJmrTHMTodTHfRc0iTdGZ06Uwypf-9KZMJgvgO732H7_f4-K7ByHZWA3CbwVkGIboX2u5nCCIEMUPwAowzmpGUFgSOzhqjKzD1fgfjkDKDGI_BprKibo3dJisbtLOiTapWy-CMTJZGt8onoUsq-yas1PFqt-0TYVWUH8Z1dq9tiMxCxN1742_AZSNar6ffdwJel9XL4jFdbx5Wi_k6lThjMBV5rkpBFcKsZlDVpCYIYcTyppC4rGO4vGgUzDVqaiwJpYxhKaBWZVM0TFE8AXenvwfXvR-1D3zXHYf4niNWMELzkqLoIieXdJ33TjdcmiCC6WxwwrQ8g3xojw_t8XN7EZv9wg7O7IXr_wbKE_BpWt3_4-bz6vnph_0CJEODuA |
CitedBy_id | crossref_primary_10_1002_smll_202307252 crossref_primary_10_1016_j_cej_2024_151703 crossref_primary_10_1016_j_cej_2024_148899 crossref_primary_10_1002_ange_202422779 crossref_primary_10_1016_j_ces_2024_120133 crossref_primary_10_1039_D3GC03466F crossref_primary_10_1039_D3CS00557G crossref_primary_10_1007_s43939_024_00112_7 crossref_primary_10_1002_adfm_202408213 crossref_primary_10_1016_j_jcis_2024_07_212 crossref_primary_10_1039_D4SC05065G crossref_primary_10_1016_j_jcis_2024_05_033 crossref_primary_10_1038_s41467_023_43689_y crossref_primary_10_1002_smll_202407495 crossref_primary_10_1016_j_jcis_2023_06_130 crossref_primary_10_1039_D4TA02531H crossref_primary_10_1002_smll_202310808 crossref_primary_10_1016_j_cej_2024_155862 crossref_primary_10_1016_j_jcat_2024_115746 crossref_primary_10_1021_acscatal_4c01961 crossref_primary_10_1021_acs_langmuir_3c02591 crossref_primary_10_1002_aenm_202405320 crossref_primary_10_1039_D4SC07740G crossref_primary_10_1021_acsami_4c00035 crossref_primary_10_1007_s11244_025_02062_7 crossref_primary_10_1039_D3TA05125K crossref_primary_10_1002_smll_202401053 crossref_primary_10_1016_j_mtcomm_2023_107306 crossref_primary_10_1002_advs_202304063 crossref_primary_10_1039_D4DT00081A crossref_primary_10_26599_NRE_2024_9120132 crossref_primary_10_1021_acsnano_4c14424 crossref_primary_10_1002_aenm_202301643 crossref_primary_10_1002_smll_202308032 crossref_primary_10_1016_j_jechem_2023_02_029 crossref_primary_10_1002_adsu_202300496 crossref_primary_10_1016_j_apsusc_2023_157594 crossref_primary_10_1016_j_ijhydene_2023_05_048 crossref_primary_10_1039_D3TC01102J crossref_primary_10_1039_D3EE02467A crossref_primary_10_1002_adfm_202409396 crossref_primary_10_3390_pr12091799 crossref_primary_10_1002_cey2_663 crossref_primary_10_3390_catal15020117 crossref_primary_10_1002_adfm_202303637 crossref_primary_10_1002_smll_202309805 crossref_primary_10_1039_D3NJ03007E crossref_primary_10_1039_D3QI00885A crossref_primary_10_1016_j_apsusc_2023_157445 crossref_primary_10_1002_cssc_202401929 crossref_primary_10_1039_D4EE02365J crossref_primary_10_1002_adsu_202500159 crossref_primary_10_1016_j_ccr_2024_215901 crossref_primary_10_1039_D4NR04415K crossref_primary_10_1016_j_eng_2024_11_009 crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1002_adfm_202418211 crossref_primary_10_1002_adma_202405060 crossref_primary_10_1007_s11356_024_34987_z crossref_primary_10_1039_D4DT00697F crossref_primary_10_1016_j_apcatb_2024_124366 crossref_primary_10_1002_adma_202412965 crossref_primary_10_1039_D4TA05453A crossref_primary_10_1039_D4CS01322K crossref_primary_10_1016_j_ccr_2024_215691 crossref_primary_10_1016_j_colsurfa_2023_132198 crossref_primary_10_1016_j_jcis_2024_03_008 crossref_primary_10_1021_acs_inorgchem_3c03079 crossref_primary_10_1021_acscatal_4c08035 crossref_primary_10_1016_j_jcis_2023_07_086 crossref_primary_10_1016_j_seppur_2023_124209 crossref_primary_10_1002_aenm_202302008 crossref_primary_10_1002_ente_202401074 crossref_primary_10_1016_j_seppur_2024_130927 crossref_primary_10_1016_j_est_2024_111965 crossref_primary_10_1002_aenm_202402930 crossref_primary_10_1039_D4CS00517A crossref_primary_10_1002_adfm_202421847 crossref_primary_10_1007_s10853_024_09842_8 crossref_primary_10_3390_su162210137 crossref_primary_10_1021_acsanm_4c06070 crossref_primary_10_1080_08327823_2024_2378667 crossref_primary_10_1021_acsami_3c17345 crossref_primary_10_1016_j_cej_2024_151219 crossref_primary_10_1002_anie_202422779 crossref_primary_10_1002_smll_202306692 crossref_primary_10_1002_smtd_202401067 crossref_primary_10_1002_adfm_202422787 crossref_primary_10_1021_acs_jpcc_4c08479 crossref_primary_10_1016_j_ccr_2024_215870 crossref_primary_10_1002_idm2_12087 crossref_primary_10_1002_smll_202407510 crossref_primary_10_1016_j_ijbiomac_2024_135486 crossref_primary_10_1016_j_checat_2023_100792 crossref_primary_10_1039_D4CS00574K crossref_primary_10_1016_j_fuel_2024_131674 crossref_primary_10_1021_acscatal_4c07600 crossref_primary_10_1016_j_apcatb_2023_123300 |
Cites_doi | 10.1016/j.nanoen.2020.105671 10.1021/acsami.1c00570 10.1016/j.apcatb.2022.121786 10.1002/anie.202100726 10.1016/j.jclepro.2022.130375 10.1002/adfm.202111999 10.1002/anie.202107858 10.1007/s40843-021-2017-y 10.1002/anie.202009518 10.1016/j.jece.2021.107123 10.1002/anie.202109785 10.1002/adma.202005256 10.1016/j.apcatb.2021.120933 10.1002/aenm.201800210 10.1016/j.apcatb.2022.121834 10.1021/acs.jpclett.5b01598 10.1002/aenm.202200298 10.1016/j.apcatb.2021.120892 10.1021/acscatal.1c00739 10.1016/j.jhazmat.2020.123470 10.1016/S1872-2067(19)63431-5 10.1016/j.nanoen.2020.104645 10.1002/anie.202116699 10.1016/j.nanoen.2021.106841 10.1002/adma.202200723 10.1016/j.mattod.2019.06.009 10.1002/aenm.202200629 10.1016/j.mattod.2022.06.009 10.1016/j.cclet.2022.03.106 10.1016/j.jmat.2020.03.004 10.1002/pssa.201026251 10.1002/adma.201908350 10.1016/j.joule.2019.12.019 10.1016/j.jechem.2022.08.019 10.1021/acs.jpcc.9b02784 10.1021/acssuschemeng.9b03217 10.1016/j.apcatb.2021.120160 10.1016/j.scitotenv.2021.150924 10.1016/j.ultramic.2018.08.013 10.1039/D1TA01144H 10.1002/cssc.202000670 10.1016/j.nanoen.2018.05.053 10.1016/j.cej.2022.135132 10.1002/adma.202002875 10.1021/acsami.1c11233 10.1002/smll.202101725 10.1016/j.apcatb.2021.120979 10.1016/j.apcatb.2021.119990 10.1016/j.apcatb.2021.120980 10.1002/ange.202110429 10.1002/anie.202106310 10.1002/adma.202100317 10.1002/adma.202200172 10.1021/acsami.9b11253 10.1002/adma.201906513 10.1002/advs.202103314 10.1002/adma.202105067 10.1039/C8EE02081G 10.1002/anie.202116057 10.1002/anie.201901361 10.1016/j.nanoen.2022.107566 10.1021/nl504630j 10.1002/adma.202200563 10.1002/smll.202105376 10.1021/acsami.1c12063 10.1002/advs.202201339 10.1016/j.jcis.2021.06.049 10.1016/j.carbon.2021.10.027 10.1016/j.jcis.2021.08.041 10.1016/j.apcatb.2021.120379 10.1007/s11705-021-2102-6 10.1016/j.jhazmat.2020.124436 10.1039/C7CS00387K 10.1021/cr0681086 10.1016/j.apcatb.2021.121044 10.1016/j.nanoen.2020.104990 10.1021/acsnano.6b01842 10.1039/D1TA01255J 10.1039/C3NR03998F 10.3390/nano12173026 10.1021/acs.accounts.1c00727 10.1002/adfm.202106156 10.1093/nsr/nwz198 10.1002/adma.202106308 10.1021/acsami.9b06264 10.1016/j.jhazmat.2021.126263 10.1016/j.nanoen.2019.04.037 10.1016/j.cej.2019.123918 10.1002/adfm.201904256 10.1016/j.cap.2016.12.012 10.1016/j.nanoen.2021.106867 10.1038/s41467-020-15993-4 10.1039/D2QI00715K 10.1016/j.jclepro.2022.132527 10.1002/adfm.201807279 10.1021/acs.nanolett.1c00897 10.1039/D2QI00064D 10.1016/j.nanoen.2021.106852 10.1039/D2SC01715F 10.1039/C8TA04165B 10.1016/j.apcatb.2022.121153 10.1021/acsami.2c02205 10.1039/C9CY01918A 10.1016/j.apcatb.2020.119291 10.1039/D1GC03768D 10.1039/c3cs60067j 10.1016/j.chempr.2020.06.010 10.1016/j.apcatb.2022.121585 10.1016/j.apcatb.2022.121388 10.1002/anie.202200872 10.1002/adma.201802106 10.1002/smll.202105682 10.1016/j.cej.2021.129447 10.1016/j.apcatb.2021.120792 10.1002/adma.202101026 10.1039/C9CS00607A 10.1016/j.apcatb.2022.121229 10.1002/adma.202100855 10.1021/acsaem.2c01917 10.1021/acs.nanolett.0c03468 10.1007/s40843-020-1361-3 10.1002/adma.202202508 10.1002/adfm.202000556 10.1016/j.apcatb.2021.120749 10.1039/C8CS00583D 10.1016/j.apcatb.2022.121426 10.1016/j.apcatb.2022.121279 10.1016/j.apcatb.2021.120763 10.1002/aenm.201901634 10.1016/j.apcatb.2021.120824 10.1016/j.mssp.2020.105351 10.1016/j.cej.2021.132456 10.1002/smll.202105544 10.1021/acsami.9b15317 10.1016/j.cej.2021.132297 10.1039/D0TA09759D 10.1002/adma.202202929 10.1002/anie.201905281 10.1016/j.cej.2022.134580 10.1002/aenm.202000214 10.1038/s41467-020-18350-7 10.1038/ncomms2401 10.1002/cctc.201800666 10.3390/catal12020215 10.1039/D1CS01182K 10.1016/j.electacta.2021.138766 10.1016/j.cej.2022.137789 10.1039/D2EE01797K 10.1016/j.inoche.2021.108822 10.1016/j.apcatb.2021.120213 10.1016/j.apcatb.2018.11.011 10.1021/acscatal.8b04068 10.1039/D1TA08646D 10.1007/s12274-022-4451-y 10.1016/j.apcatb.2022.121162 10.1016/j.cej.2022.135652 10.1016/j.apcatb.2019.118417 10.1016/j.ijhydene.2021.08.123 10.1016/j.apcatb.2021.120058 10.1002/adfm.202203252 10.1002/anie.201811709 10.1016/j.nanoen.2019.02.025 10.1021/acs.nanolett.2c00047 10.1016/j.nanoen.2021.106317 10.1016/j.ccr.2022.214596 10.1002/adma.201601694 10.1002/aenm.202200253 10.1016/j.cej.2020.124164 10.1002/adma.202203615 10.1039/D2TA00632D 10.1021/acsnano.5b07678 10.1016/j.jiec.2018.12.034 10.1016/j.mattod.2017.08.027 10.1002/anie.202203519 10.1016/j.apcatb.2019.118352 10.1016/j.jcis.2022.06.010 10.1021/acssuschemeng.8b01480 10.1002/smll.202100367 10.1016/j.nanoen.2015.02.029 10.1016/j.apcatb.2021.120394 10.1039/C7TA10934B 10.1002/anie.202101058 10.1002/cssc.202000416 10.1016/j.cej.2021.132588 10.1016/j.cej.2021.132963 10.1021/acsanm.0c00039 10.1039/D1TA01725J 10.1002/anie.202204880 10.1039/D1EE02105B 10.1021/cr3000626 10.1039/D1TA09892F 10.1016/j.apcatb.2022.121546 10.1002/advs.201801702 10.1021/acsnano.1c04774 10.1002/advs.202200959 10.1002/aenm.201903252 10.1038/s41467-022-29825-0 10.1016/j.jcis.2020.12.112 10.1016/j.apcatb.2021.120762 10.1002/anie.202107731 10.1016/j.cis.2021.102540 10.1002/smll.202201137 10.1016/j.cej.2020.125229 10.1016/j.apcatb.2020.119452 10.1016/j.apcatb.2022.121788 10.1002/smll.202200832 10.1002/aenm.201803951 10.1016/j.cej.2021.133670 |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202203720 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202203720 AENM202203720 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21875118; 22111530112; 22179065 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3170-a55d9a6d237b70db4b4223275f8c39b91058fd05e2fb3c466773ca0ed9f8f7d63 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:17:02 EDT 2025 Thu Apr 24 23:01:29 EDT 2025 Tue Jul 01 01:43:48 EDT 2025 Wed Jan 22 16:14:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3170-a55d9a6d237b70db4b4223275f8c39b91058fd05e2fb3c466773ca0ed9f8f7d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3790-8181 |
PQID | 2787465962 |
PQPubID | 886389 |
PageCount | 40 |
ParticipantIDs | proquest_journals_2787465962 crossref_citationtrail_10_1002_aenm_202203720 crossref_primary_10_1002_aenm_202203720 wiley_primary_10_1002_aenm_202203720_AENM202203720 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2022; 450 2013; 4 2022 2019 2021; 13 72 11 2017 2021; 29 33 2021; 288 2019; 11 2019; 12 2021; 602 2008; 108 2022; 24 2021; 280 2020; 13 2020; 11 2020; 10 2022; 22 2022; 335 2018; 6 2018; 8 2022; 34 2021; 390 2019; 29 2018; 30 2022; 32 2022; 606 2022 2022; 10 18 2021; 81 2021; 46 2019; 9 2019; 6 2020; 41 2022; 93 2021 2022; 33 55 2016; 10 2022 2022; 9 9 2020; 387 2020; 389 2020; 268 2020; 32 2021; 418 2022; 101 2022; 186 2012; 112 2018; 195 2020; 30 2020; 396 2022; 5 2019; 48 2022; 9 2019 2022 2020; 7 65 263 2022; 12 2022; 14 2022; 15 2022; 10 2021; 132 2022; 625 2021; 60 2018; 10 2022; 467 2022; 18 2022; 134 2021 2022; 31 300 2021; 408 2021; 21 2020; 63 2021; 402 2019; 59 2017; 46 2019; 58 2019 2019 2018; 123 9 6 2021; 121 2019; 243 2020 2015; 278 13 2020; 7 2020; 6 2022; 363 2020; 4 2011; 208 2019; 60 2020; 3 2022 2022; 34 58 2021; 33 2022 2022; 10 61 2020; 49 2022 2021; 75 15 2022; 806 2014; 6 2021 2022; 589 9 2021; 9 2022; 430 2021; 8 2017; 20 2015; 15 2015; 6 2021; 89 2022; 51 2013; 42 2022; 317 2022; 438 2022; 318 2022; 315 2022; 437 2021 2019; 21 58 2022; 313 2022; 312 2022; 433 2021; 14 2021; 13 2021; 15 2021 2022; 60 61 2021 2022; 9 13 2021; 11 2020; 75 2022 2022; 61 2022 2022; 303 307 2017; 17 2020; 71 2021; 17 2021; 292 2021; 293 2021; 296 2018; 50 2022; 308 2022; 429 2021; 297 2022; 309 2022; 307 2022; 304 2022; 305 2022; 302 2022; 303 2021; 290 2022; 300 2022; 301 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_158_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_112_2 e_1_2_10_173_2 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_6_2 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_51_1 e_1_2_10_147_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_101_2 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_101_1 e_1_2_10_185_1 e_1_2_10_41_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_52_1 e_1_2_10_75_1 e_1_2_10_15_2 e_1_2_10_75_2 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_38_1 e_1_2_10_75_3 e_1_2_10_98_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_148_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_4_2 e_1_2_10_76_2 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_99_3 e_1_2_10_99_2 e_1_2_10_175_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_80_2 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_187_1 e_1_2_10_164_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_176_2 e_1_2_10_130_1 e_1_2_10_92_1 e_1_2_10_17_2 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_31_1 e_1_2_10_188_1 e_1_2_10_81_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_180_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_89_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_2_2 e_1_2_10_116_1 e_1_2_10_55_1 e_1_2_10_78_1 e_1_2_10_154_1 e_1_2_10_32_1 e_1_2_10_120_2 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_189_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_67_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_94_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_171_1 e_1_2_10_8_1 e_1_2_10_35_2 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_8_2 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_160_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_108_1 Ding J. (e_1_2_10_8_3) 2021; 11 e_1_2_10_157_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_73_2 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_62_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_184_1 e_1_2_10_47_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 13 72 11 start-page: 5432 18 18 year: 2022 2019 2021 publication-title: Chem. Sci. J. Ind. Eng. Chem. Adv. Energy Mater. – volume: 9 start-page: 4320 year: 2022 publication-title: Inorg. Chem. Front. – volume: 34 58 start-page: 100 year: 2022 2022 publication-title: Adv. Mater. Mater. Today – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 18 year: 2022 publication-title: Small – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 9 start-page: 1678 year: 2021 publication-title: J. Mater. Chem. A – volume: 10 18 year: 2022 2022 publication-title: J. Mater. Chem. A Small – volume: 60 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 5 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 89 year: 2021 publication-title: Nano Energy – volume: 589 9 start-page: 25 1964 year: 2021 2022 publication-title: J. Colloid Interface Sci. Inorg. Chem. Front. – volume: 59 start-page: 33 year: 2019 publication-title: Nano Energy – volume: 418 year: 2021 publication-title: Chem. Eng. J. – volume: 24 start-page: 713 year: 2022 publication-title: Green Chem. – volume: 280 year: 2021 publication-title: Appl. Catal., B – volume: 308 year: 2022 publication-title: Appl. Catal., B – volume: 292 year: 2021 publication-title: Appl. Catal., B – volume: 81 year: 2021 publication-title: Nano Energy – volume: 9 start-page: 345 year: 2019 publication-title: ACS Catal. – volume: 31 300 year: 2021 2022 publication-title: Adv. Funct. Mater. Appl. Catal., B – volume: 296 year: 2021 publication-title: Appl. Catal., B – volume: 408 year: 2021 publication-title: J. Hazard. Mater. – volume: 312 year: 2022 publication-title: Appl. Catal., B – volume: 71 year: 2020 publication-title: Nano Energy – volume: 63 start-page: 2314 year: 2020 publication-title: Sci. China Mater. – volume: 389 year: 2020 publication-title: Chem. Eng. J. – volume: 12 start-page: 3026 year: 2022 publication-title: Nanomaterials – year: 2022 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 48 start-page: 1194 year: 2019 publication-title: Chem. Soc. Rev. – volume: 6 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 10 start-page: 8546 year: 2022 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1063 year: 2020 publication-title: ACS Appl. Nano Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 49 start-page: 2196 year: 2020 publication-title: Chem. Soc. Rev. – volume: 304 year: 2022 publication-title: Appl. Catal., B – volume: 305 year: 2022 publication-title: Appl. Catal., B – volume: 33 55 start-page: 1278 year: 2021 2022 publication-title: Adv. Mater. Acc. Chem. Res. – volume: 363 year: 2022 publication-title: J. Cleaner Prod. – volume: 300 year: 2022 publication-title: Appl. Catal., B – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 15 start-page: 8502 year: 2022 publication-title: Nano Res. – volume: 301 year: 2022 publication-title: Appl. Catal., B – volume: 11 start-page: 4613 year: 2020 publication-title: Nat. Commun. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 10 61 year: 2022 2022 publication-title: J. Environ. Chem. Eng. Angew. Chem., Int. Ed. – volume: 278 13 start-page: 414 year: 2020 2015 publication-title: Appl. Catal., B Nano Energy – volume: 438 year: 2022 publication-title: Chem. Eng. J. – volume: 60 start-page: 9546 year: 2021 publication-title: Angew. Chem., Int. Ed. – volume: 60 61 year: 2021 2022 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 303 307 year: 2022 2022 publication-title: Appl. Catal., B Appl. Catal., B – volume: 93 year: 2022 publication-title: Nano Energy – volume: 10 start-page: 1023 year: 2020 publication-title: Catal. Sci. Technol. – volume: 402 year: 2021 publication-title: J. Hazard. Mater. – volume: 112 start-page: 5520 year: 2012 publication-title: Chem. Rev. – volume: 429 year: 2022 publication-title: Chem. Eng. J. – volume: 307 year: 2022 publication-title: Appl. Catal., B – volume: 317 year: 2022 publication-title: Appl. Catal., B – volume: 13 start-page: 3061 year: 2020 publication-title: ChemSusChem – volume: 309 year: 2022 publication-title: Appl. Catal., B – volume: 101 year: 2022 publication-title: Nano Energy – volume: 315 year: 2022 publication-title: Appl. Catal., B – volume: 17 year: 2021 publication-title: Small – volume: 10 start-page: 3397 year: 2018 publication-title: ChemCatChem – volume: 61 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 313 year: 2022 publication-title: Appl. Catal., B – volume: 606 start-page: 544 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 186 start-page: 406 year: 2022 publication-title: Carbon – volume: 450 year: 2022 publication-title: Chem. Eng. J. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 418 year: 2021 publication-title: J. Hazard. Mater. – volume: 46 year: 2021 publication-title: Int. J. Hydrogen Energy – volume: 108 start-page: 367 year: 2008 publication-title: Chem. Rev. – volume: 288 year: 2021 publication-title: Appl. Catal., B – volume: 7 start-page: 652 year: 2020 publication-title: Natl. Sci. Rev. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 46 start-page: 7757 year: 2017 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 3410 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 268 year: 2020 publication-title: Appl. Catal., B – volume: 467 year: 2022 publication-title: Coord. Chem. Rev. – volume: 195 start-page: 25 year: 2018 publication-title: Ultramicroscopy – volume: 15 start-page: 4167 year: 2022 publication-title: Energy Environ. Sci. – volume: 297 year: 2021 publication-title: Adv. Colloid Interface Sci. – volume: 11 start-page: 2129 year: 2020 publication-title: Nat. Commun. – volume: 134 year: 2022 publication-title: Angew. Chem., Int. Ed. – volume: 437 year: 2022 publication-title: Chem. Eng. J. – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 9 start-page: 9837 year: 2021 publication-title: J. Mater. Chem. A – volume: 243 start-page: 556 year: 2019 publication-title: Appl. Catal., B – volume: 14 start-page: 5228 year: 2021 publication-title: Energy Environ. Sci. – volume: 6 start-page: 256 year: 2020 publication-title: J. Materiomics – volume: 387 year: 2020 publication-title: Chem. Eng. J. – volume: 20 start-page: 501 year: 2017 publication-title: Mater. Today – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 21 start-page: 5060 year: 2021 publication-title: Nano Lett. – volume: 75 year: 2020 publication-title: Nano Energy – volume: 625 start-page: 83 year: 2022 publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 6995 year: 2021 publication-title: ACS Catal. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 41 start-page: 534 year: 2020 publication-title: Chin. J. Catal. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 21 58 start-page: 182 7526 year: 2021 2019 publication-title: Nano Lett. Angew. Chem., Int. Ed. – volume: 32 start-page: 222 year: 2020 publication-title: Mater. Today – volume: 51 start-page: 3561 year: 2022 publication-title: Chem. Soc. Rev. – volume: 10 start-page: 2636 year: 2016 publication-title: ACS Nano – volume: 290 year: 2021 publication-title: Appl. Catal., B – volume: 42 start-page: 6593 year: 2013 publication-title: Chem. Soc. Rev. – volume: 318 year: 2022 publication-title: Appl. Catal., B – volume: 806 year: 2022 publication-title: Sci. Total Environ. – volume: 208 start-page: 777 year: 2011 publication-title: Phys. Status Solidi A – volume: 4 start-page: 1432 year: 2013 publication-title: Nat. Commun. – volume: 10 start-page: 4895 year: 2016 publication-title: ACS Nano – volume: 303 year: 2022 publication-title: Appl. Catal., B – volume: 9 9 year: 2022 2022 publication-title: Adv. Sci. Adv. Sci. – volume: 302 year: 2022 publication-title: Appl. Catal., B – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 75 15 start-page: 66 1408 year: 2022 2021 publication-title: J. Energy Chem. Front. Chem. Sci. Eng. – volume: 10 start-page: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 433 year: 2022 publication-title: Chem. Eng. J. – volume: 29 33 year: 2017 2021 publication-title: Adv. Mater. Adv. Mater. – volume: 22 start-page: 4276 year: 2022 publication-title: Nano Lett. – volume: 50 start-page: 383 year: 2018 publication-title: Nano Energy – volume: 12 start-page: 215 year: 2022 publication-title: Catalysts – volume: 6 start-page: 1543 year: 2020 publication-title: Chem – volume: 15 year: 2021 publication-title: ACS Nano – volume: 132 year: 2021 publication-title: Inorg. Chem. Commun. – volume: 293 year: 2021 publication-title: Appl. Catal., B – volume: 15 start-page: 2372 year: 2015 publication-title: Nano Lett. – volume: 297 year: 2021 publication-title: Appl. Catal., B – volume: 17 start-page: 661 year: 2017 publication-title: Curr. Appl. Phys. – volume: 390 year: 2021 publication-title: Electrochim. Acta – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 123 9 6 start-page: 5774 year: 2019 2019 2018 publication-title: J. Phys. Chem. C Adv. Energy Mater. J. Mater. Chem. A – volume: 13 start-page: 3357 year: 2020 publication-title: ChemSusChem – volume: 335 year: 2022 publication-title: J. Cleaner Prod. – volume: 60 start-page: 827 year: 2019 publication-title: Nano Energy – volume: 6 start-page: 24 year: 2014 publication-title: Nanoscale – volume: 430 year: 2022 publication-title: Chem. Eng. J. – volume: 121 year: 2021 publication-title: Mater. Sci. Semicond. Process. – volume: 4 start-page: 301 year: 2020 publication-title: Joule – volume: 602 start-page: 553 year: 2021 publication-title: J. Colloid Interface Sci. – year: 2022 publication-title: Chin. Chem. Lett. – volume: 12 start-page: 410 year: 2019 publication-title: Energy Environ. Sci. – volume: 9 13 start-page: 2230 year: 2021 2022 publication-title: J. Mater. Chem. A Nat. Commun. – volume: 7 65 263 start-page: 2433 year: 2019 2022 2020 publication-title: ACS Sustainable Chem. Eng. Sci. China Mater. Appl. Catal., B – ident: e_1_2_10_61_1 doi: 10.1016/j.nanoen.2020.105671 – ident: e_1_2_10_166_1 doi: 10.1021/acsami.1c00570 – ident: e_1_2_10_188_1 doi: 10.1016/j.apcatb.2022.121786 – ident: e_1_2_10_10_1 doi: 10.1002/anie.202100726 – ident: e_1_2_10_139_1 doi: 10.1016/j.jclepro.2022.130375 – ident: e_1_2_10_56_1 doi: 10.1002/adfm.202111999 – ident: e_1_2_10_171_1 doi: 10.1002/anie.202107858 – ident: e_1_2_10_75_2 doi: 10.1007/s40843-021-2017-y – ident: e_1_2_10_2_1 doi: 10.1002/anie.202009518 – ident: e_1_2_10_120_1 doi: 10.1016/j.jece.2021.107123 – ident: e_1_2_10_59_1 doi: 10.1002/anie.202109785 – ident: e_1_2_10_6_1 doi: 10.1002/adma.202005256 – ident: e_1_2_10_80_1 doi: 10.1016/j.apcatb.2021.120933 – ident: e_1_2_10_27_1 doi: 10.1002/aenm.201800210 – ident: e_1_2_10_170_1 doi: 10.1016/j.apcatb.2022.121834 – ident: e_1_2_10_67_1 doi: 10.1021/acs.jpclett.5b01598 – ident: e_1_2_10_136_1 doi: 10.1002/aenm.202200298 – ident: e_1_2_10_106_1 doi: 10.1016/j.apcatb.2021.120892 – ident: e_1_2_10_111_1 doi: 10.1021/acscatal.1c00739 – ident: e_1_2_10_140_1 doi: 10.1016/j.jhazmat.2020.123470 – ident: e_1_2_10_19_1 doi: 10.1016/S1872-2067(19)63431-5 – ident: e_1_2_10_125_1 doi: 10.1016/j.nanoen.2020.104645 – ident: e_1_2_10_3_1 doi: 10.1002/anie.202116699 – ident: e_1_2_10_77_1 doi: 10.1016/j.nanoen.2021.106841 – ident: e_1_2_10_101_1 doi: 10.1002/adma.202200723 – ident: e_1_2_10_121_1 doi: 10.1016/j.mattod.2019.06.009 – ident: e_1_2_10_152_1 doi: 10.1002/aenm.202200629 – ident: e_1_2_10_101_2 doi: 10.1016/j.mattod.2022.06.009 – ident: e_1_2_10_148_1 doi: 10.1016/j.cclet.2022.03.106 – ident: e_1_2_10_40_1 doi: 10.1016/j.jmat.2020.03.004 – ident: e_1_2_10_94_1 doi: 10.1002/pssa.201026251 – ident: e_1_2_10_32_1 doi: 10.1002/adma.201908350 – ident: e_1_2_10_28_1 doi: 10.1016/j.joule.2019.12.019 – ident: e_1_2_10_176_1 doi: 10.1016/j.jechem.2022.08.019 – ident: e_1_2_10_99_1 doi: 10.1021/acs.jpcc.9b02784 – ident: e_1_2_10_75_1 doi: 10.1021/acssuschemeng.9b03217 – ident: e_1_2_10_175_1 doi: 10.1016/j.apcatb.2021.120160 – volume: 11 start-page: 18 year: 2021 ident: e_1_2_10_8_3 publication-title: Adv. Energy Mater. – ident: e_1_2_10_7_1 doi: 10.1016/j.scitotenv.2021.150924 – ident: e_1_2_10_90_1 doi: 10.1016/j.ultramic.2018.08.013 – ident: e_1_2_10_4_1 doi: 10.1039/D1TA01144H – ident: e_1_2_10_124_1 doi: 10.1002/cssc.202000670 – ident: e_1_2_10_24_1 doi: 10.1016/j.nanoen.2018.05.053 – ident: e_1_2_10_150_1 doi: 10.1016/j.cej.2022.135132 – ident: e_1_2_10_128_1 doi: 10.1002/adma.202002875 – ident: e_1_2_10_115_1 doi: 10.1021/acsami.1c11233 – ident: e_1_2_10_172_1 doi: 10.1002/smll.202101725 – ident: e_1_2_10_116_1 doi: 10.1016/j.apcatb.2021.120979 – ident: e_1_2_10_117_1 doi: 10.1016/j.apcatb.2021.119990 – ident: e_1_2_10_156_1 doi: 10.1016/j.apcatb.2021.120980 – ident: e_1_2_10_33_1 doi: 10.1002/ange.202110429 – ident: e_1_2_10_123_1 doi: 10.1002/anie.202106310 – ident: e_1_2_10_48_1 doi: 10.1002/adma.202100317 – ident: e_1_2_10_11_1 doi: 10.1002/adma.202200172 – ident: e_1_2_10_182_1 doi: 10.1021/acsami.9b11253 – ident: e_1_2_10_9_1 doi: 10.1002/adma.201906513 – ident: e_1_2_10_70_1 doi: 10.1002/advs.202103314 – ident: e_1_2_10_60_1 doi: 10.1002/adma.202105067 – ident: e_1_2_10_91_1 doi: 10.1039/C8EE02081G – ident: e_1_2_10_86_1 doi: 10.1002/anie.202116057 – ident: e_1_2_10_22_1 doi: 10.1002/anie.201901361 – ident: e_1_2_10_186_1 doi: 10.1016/j.nanoen.2022.107566 – ident: e_1_2_10_68_1 doi: 10.1021/nl504630j – ident: e_1_2_10_104_1 doi: 10.1002/adma.202200563 – ident: e_1_2_10_142_1 doi: 10.1002/smll.202105376 – ident: e_1_2_10_114_1 doi: 10.1021/acsami.1c12063 – ident: e_1_2_10_73_2 doi: 10.1002/advs.202201339 – ident: e_1_2_10_41_1 doi: 10.1016/j.jcis.2021.06.049 – ident: e_1_2_10_43_1 doi: 10.1016/j.carbon.2021.10.027 – ident: e_1_2_10_113_1 doi: 10.1016/j.jcis.2021.08.041 – ident: e_1_2_10_126_1 doi: 10.1016/j.apcatb.2021.120379 – ident: e_1_2_10_176_2 doi: 10.1007/s11705-021-2102-6 – ident: e_1_2_10_105_1 doi: 10.1016/j.jhazmat.2020.124436 – ident: e_1_2_10_165_1 doi: 10.1039/C7CS00387K – ident: e_1_2_10_21_1 doi: 10.1021/cr0681086 – ident: e_1_2_10_82_1 doi: 10.1016/j.apcatb.2021.121044 – ident: e_1_2_10_181_1 doi: 10.1016/j.nanoen.2020.104990 – ident: e_1_2_10_23_1 doi: 10.1021/acsnano.6b01842 – ident: e_1_2_10_189_1 doi: 10.1039/D1TA01255J – ident: e_1_2_10_16_1 doi: 10.1039/C3NR03998F – ident: e_1_2_10_31_1 doi: 10.3390/nano12173026 – ident: e_1_2_10_6_2 doi: 10.1021/acs.accounts.1c00727 – ident: e_1_2_10_76_1 doi: 10.1002/adfm.202106156 – ident: e_1_2_10_88_1 doi: 10.1093/nsr/nwz198 – ident: e_1_2_10_18_1 doi: 10.1002/adma.202106308 – ident: e_1_2_10_95_1 doi: 10.1021/acsami.9b06264 – ident: e_1_2_10_133_1 doi: 10.1016/j.jhazmat.2021.126263 – ident: e_1_2_10_155_1 doi: 10.1016/j.nanoen.2019.04.037 – ident: e_1_2_10_54_1 doi: 10.1016/j.cej.2019.123918 – ident: e_1_2_10_144_1 doi: 10.1002/adfm.201904256 – ident: e_1_2_10_96_1 doi: 10.1016/j.cap.2016.12.012 – ident: e_1_2_10_36_1 doi: 10.1016/j.nanoen.2021.106867 – ident: e_1_2_10_57_1 doi: 10.1038/s41467-020-15993-4 – ident: e_1_2_10_147_1 doi: 10.1039/D2QI00715K – ident: e_1_2_10_127_1 doi: 10.1016/j.jclepro.2022.132527 – ident: e_1_2_10_157_1 doi: 10.1002/adfm.201807279 – ident: e_1_2_10_143_1 doi: 10.1021/acs.nanolett.1c00897 – ident: e_1_2_10_112_2 doi: 10.1039/D2QI00064D – ident: e_1_2_10_132_1 doi: 10.1016/j.nanoen.2021.106852 – ident: e_1_2_10_8_1 doi: 10.1039/D2SC01715F – ident: e_1_2_10_69_1 doi: 10.1039/C8TA04165B – ident: e_1_2_10_129_1 doi: 10.1016/j.apcatb.2022.121153 – ident: e_1_2_10_162_1 doi: 10.1021/acsami.2c02205 – ident: e_1_2_10_169_1 doi: 10.1039/C9CY01918A – ident: e_1_2_10_35_1 doi: 10.1016/j.apcatb.2020.119291 – ident: e_1_2_10_110_1 doi: 10.1039/D1GC03768D – ident: e_1_2_10_42_1 doi: 10.1039/c3cs60067j – ident: e_1_2_10_49_1 doi: 10.1016/j.chempr.2020.06.010 – ident: e_1_2_10_65_1 doi: 10.1016/j.apcatb.2022.121585 – ident: e_1_2_10_118_1 doi: 10.1016/j.apcatb.2022.121388 – ident: e_1_2_10_81_1 doi: 10.1002/anie.202200872 – ident: e_1_2_10_5_1 doi: 10.1002/adma.201802106 – ident: e_1_2_10_178_1 doi: 10.1002/smll.202105682 – ident: e_1_2_10_180_1 doi: 10.1016/j.cej.2021.129447 – ident: e_1_2_10_55_1 doi: 10.1016/j.apcatb.2021.120792 – ident: e_1_2_10_85_1 doi: 10.1002/adma.202101026 – ident: e_1_2_10_63_1 doi: 10.1039/C9CS00607A – ident: e_1_2_10_87_1 doi: 10.1016/j.apcatb.2022.121229 – ident: e_1_2_10_17_2 doi: 10.1002/adma.202100855 – ident: e_1_2_10_151_1 doi: 10.1021/acsaem.2c01917 – ident: e_1_2_10_15_1 doi: 10.1021/acs.nanolett.0c03468 – ident: e_1_2_10_179_1 doi: 10.1007/s40843-020-1361-3 – ident: e_1_2_10_34_1 doi: 10.1002/adma.202202508 – ident: e_1_2_10_14_1 doi: 10.1002/adfm.202000556 – ident: e_1_2_10_83_1 doi: 10.1016/j.apcatb.2021.120749 – ident: e_1_2_10_38_1 doi: 10.1039/C8CS00583D – ident: e_1_2_10_108_1 doi: 10.1016/j.apcatb.2022.121426 – ident: e_1_2_10_167_1 doi: 10.1016/j.apcatb.2022.121279 – ident: e_1_2_10_76_2 doi: 10.1016/j.apcatb.2021.120763 – ident: e_1_2_10_52_1 doi: 10.1002/aenm.201901634 – ident: e_1_2_10_78_1 doi: 10.1016/j.apcatb.2021.120824 – ident: e_1_2_10_158_1 doi: 10.1016/j.mssp.2020.105351 – ident: e_1_2_10_141_1 doi: 10.1016/j.cej.2021.132456 – ident: e_1_2_10_173_2 doi: 10.1002/smll.202105544 – ident: e_1_2_10_29_1 doi: 10.1021/acsami.9b15317 – ident: e_1_2_10_154_1 doi: 10.1016/j.cej.2021.132297 – ident: e_1_2_10_109_1 doi: 10.1039/D0TA09759D – ident: e_1_2_10_51_1 doi: 10.1002/adma.202202929 – ident: e_1_2_10_58_1 doi: 10.1002/anie.201905281 – ident: e_1_2_10_138_1 doi: 10.1016/j.cej.2022.134580 – ident: e_1_2_10_26_1 doi: 10.1002/aenm.202000214 – ident: e_1_2_10_89_1 doi: 10.1038/s41467-020-18350-7 – ident: e_1_2_10_102_1 doi: 10.1038/ncomms2401 – ident: e_1_2_10_119_1 doi: 10.1002/cctc.201800666 – ident: e_1_2_10_159_1 doi: 10.3390/catal12020215 – ident: e_1_2_10_1_1 doi: 10.1039/D1CS01182K – ident: e_1_2_10_177_1 doi: 10.1016/j.electacta.2021.138766 – ident: e_1_2_10_187_1 doi: 10.1016/j.cej.2022.137789 – ident: e_1_2_10_46_1 doi: 10.1039/D2EE01797K – ident: e_1_2_10_184_1 doi: 10.1016/j.inoche.2021.108822 – ident: e_1_2_10_100_1 doi: 10.1016/j.apcatb.2021.120213 – ident: e_1_2_10_79_1 doi: 10.1016/j.apcatb.2018.11.011 – ident: e_1_2_10_53_1 doi: 10.1021/acscatal.8b04068 – ident: e_1_2_10_45_1 doi: 10.1039/D1TA08646D – ident: e_1_2_10_164_1 doi: 10.1007/s12274-022-4451-y – ident: e_1_2_10_80_2 doi: 10.1016/j.apcatb.2022.121162 – ident: e_1_2_10_107_1 doi: 10.1016/j.cej.2022.135652 – ident: e_1_2_10_64_1 doi: 10.1016/j.apcatb.2019.118417 – ident: e_1_2_10_163_1 doi: 10.1016/j.ijhydene.2021.08.123 – ident: e_1_2_10_72_1 doi: 10.1016/j.apcatb.2021.120058 – ident: e_1_2_10_92_1 doi: 10.1002/adfm.202203252 – ident: e_1_2_10_15_2 doi: 10.1002/anie.201811709 – ident: e_1_2_10_160_1 doi: 10.1016/j.nanoen.2019.02.025 – ident: e_1_2_10_39_1 doi: 10.1021/acs.nanolett.2c00047 – ident: e_1_2_10_97_1 doi: 10.1016/j.nanoen.2021.106317 – ident: e_1_2_10_50_1 doi: 10.1016/j.ccr.2022.214596 – ident: e_1_2_10_17_1 doi: 10.1002/adma.201601694 – ident: e_1_2_10_122_1 doi: 10.1002/aenm.202200253 – ident: e_1_2_10_84_1 doi: 10.1016/j.cej.2020.124164 – ident: e_1_2_10_12_1 doi: 10.1002/adma.202203615 – ident: e_1_2_10_149_1 doi: 10.1039/D2TA00632D – ident: e_1_2_10_30_1 doi: 10.1021/acsnano.5b07678 – ident: e_1_2_10_8_2 doi: 10.1016/j.jiec.2018.12.034 – ident: e_1_2_10_37_1 doi: 10.1016/j.mattod.2017.08.027 – ident: e_1_2_10_120_2 doi: 10.1002/anie.202203519 – ident: e_1_2_10_75_3 doi: 10.1016/j.apcatb.2019.118352 – ident: e_1_2_10_131_1 doi: 10.1016/j.jcis.2022.06.010 – ident: e_1_2_10_66_1 doi: 10.1021/acssuschemeng.8b01480 – ident: e_1_2_10_153_1 doi: 10.1002/smll.202100367 – ident: e_1_2_10_35_2 doi: 10.1016/j.nanoen.2015.02.029 – ident: e_1_2_10_145_1 doi: 10.1016/j.apcatb.2021.120394 – ident: e_1_2_10_99_3 doi: 10.1039/C7TA10934B – ident: e_1_2_10_161_1 doi: 10.1002/anie.202101058 – ident: e_1_2_10_168_1 doi: 10.1002/cssc.202000416 – ident: e_1_2_10_130_1 doi: 10.1016/j.cej.2021.132588 – ident: e_1_2_10_137_1 doi: 10.1016/j.cej.2021.132963 – ident: e_1_2_10_25_1 doi: 10.1021/acsanm.0c00039 – ident: e_1_2_10_62_1 doi: 10.1039/D1TA01725J – ident: e_1_2_10_2_2 doi: 10.1002/anie.202204880 – ident: e_1_2_10_13_1 doi: 10.1039/D1EE02105B – ident: e_1_2_10_20_1 doi: 10.1021/cr3000626 – ident: e_1_2_10_173_1 doi: 10.1039/D1TA09892F – ident: e_1_2_10_103_1 doi: 10.1016/j.apcatb.2022.121546 – ident: e_1_2_10_47_1 doi: 10.1002/advs.201801702 – ident: e_1_2_10_185_1 doi: 10.1021/acsnano.1c04774 – ident: e_1_2_10_73_1 doi: 10.1002/advs.202200959 – ident: e_1_2_10_93_1 doi: 10.1002/aenm.201903252 – ident: e_1_2_10_4_2 doi: 10.1038/s41467-022-29825-0 – ident: e_1_2_10_112_1 doi: 10.1016/j.jcis.2020.12.112 – ident: e_1_2_10_98_1 doi: 10.1016/j.apcatb.2021.120762 – ident: e_1_2_10_174_1 doi: 10.1002/anie.202107731 – ident: e_1_2_10_71_1 doi: 10.1016/j.cis.2021.102540 – ident: e_1_2_10_183_1 doi: 10.1002/smll.202201137 – ident: e_1_2_10_135_1 doi: 10.1016/j.cej.2020.125229 – ident: e_1_2_10_134_1 doi: 10.1016/j.apcatb.2020.119452 – ident: e_1_2_10_44_1 doi: 10.1016/j.apcatb.2022.121788 – ident: e_1_2_10_74_1 doi: 10.1002/smll.202200832 – ident: e_1_2_10_99_2 doi: 10.1002/aenm.201803951 – ident: e_1_2_10_146_1 doi: 10.1016/j.cej.2021.133670 |
SSID | ssj0000491033 |
Score | 2.6822264 |
SecondaryResourceType | review_article |
Snippet | Recent years have witnessed an upsurge of interest in exploiting advanced photo‐/electrocatalysts for efficient energy conversion and environmental... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | built‐in electric fields Catalysis Charge distribution Charge transfer Electric fields Electrocatalysts electrode engineering Energy conversion energy conversion reactions Heterostructures Identification methods internal electric fields photo(electro)catalysis Reaction mechanisms |
Title | Enabling Internal Electric Fields to Enhance Energy and Environmental Catalysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202203720 https://www.proquest.com/docview/2787465962 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYdmEHxKdWGMgHpB2qQGo7dnKsINOE1nJYJxUukR07WiWUImgv_PU8xx9JUREdl6i17LTx-8V-7_m930PoLdOCaCNFkqqCJKwxKpGc8STnWucToajpXAOzOb-6ZZ-W2bLPPemySzbqXf1rb17J_0gV2kCuNkv2HpKNN4UG-AzyhStIGK4Hybi0iU_uyN9xOY_LrqrNqh5f2si0jr2hbO-6tIDSZflZR3nZZ7dZ34H14FhikqGiOg2xAcYNA8XWPVEfD-AWrGuzioc2PtFj1cYQioVcx3Vl63ytX-9sFHDo8GXtt07veSC0D73yiyVs7QnPvX_SDNscBVNcYekQSZO9K7djgpWmtfQAhKS2ek6_R4Vz-T-2rhhQ6MiXSWXHV3H8ETohYD3A8ncy_Ti7vonONzCLJintki_CMwRCz5S83_0TuwpLb4UMbZlOGVk8Ro-8FYGnDhJP0APTPkWnA27JZ-hzAAcO4MABHNiBA2_W2IMDO3BgAAfeAQeO4HiObi_LxYerxFfPSGpqqwnJLNOF5JpQoUSqFVMMVEEisiavaaFgArK80WlmSKNozTgXgtYyNbpo8kZoTl-g43bdmjOEdSZFaiz1X56zSVHAGwx2RCGpAH3RMDlCSZiiqvbU8rbCybdqv1xG6CL2_-5IVf7a8zzMeOVfvJ8VgU2GcVs2aoRIJ4V_3KWalvNZ_Pby4F9_hR72uD9Hx5sfW_MadNCNeuMR9Rv-A38f |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+Internal+Electric+Fields+to+Enhance+Energy+and+Environmental+Catalysis&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Lei&rft.au=Ren%2C+Jin%E2%80%90Tao&rft.au=Yuan%2C+Zhong%E2%80%90Yong&rft.date=2023-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=11&rft_id=info:doi/10.1002%2Faenm.202203720&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202203720 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |