Phosphorus and Oxygen Dual‐Doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for High‐Performance Potassium‐Ion Hybrid Capacitors
Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroato...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 31 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroatom doping strategy, herein, the synthesis of phosphorus/oxygen dual‐doped porous carbon spheres is reported, which possess expanded interlayer distances, abundant redox active sites, and oxygen‐rich defects. The as‐developed battery‐type anode material shows high discharge capacity (401 mAh g−1 at 0.1 A g−1), outstanding rate capability, and ultralong cycling stability (89.8% after 10 000 cycles). In situ Raman spectroscopy and density functional theory calculations further confirm that the formation of PC and PO/POH bonds not only improves structural stability, but also contributes to a rapid surface‐controlled potassium adsorption process. As a proof of concept, a potassium‐ion hybrid capacitor is assembled by a dual‐doped porous carbon sphere anode and an activated carbon cathode. It shows superior electrochemical performance, which opens a new avenue to innovative potassium‐based energy storage technology.
Phosphorus/oxygen dual‐doped porous carbon spheres with expanded interlayer distances and abundant active sites are synthesized through a chemical vapor deposition process. The obtained anode materials show exceptional potassium storage capability and outstanding structural stability, which suggests their huge potential as anodes for high‐performance potassium‐ion hybrid capacitors. |
---|---|
AbstractList | Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroatom doping strategy, herein, the synthesis of phosphorus/oxygen dual‐doped porous carbon spheres is reported, which possess expanded interlayer distances, abundant redox active sites, and oxygen‐rich defects. The as‐developed battery‐type anode material shows high discharge capacity (401 mAh g−1 at 0.1 A g−1), outstanding rate capability, and ultralong cycling stability (89.8% after 10 000 cycles). In situ Raman spectroscopy and density functional theory calculations further confirm that the formation of PC and PO/POH bonds not only improves structural stability, but also contributes to a rapid surface‐controlled potassium adsorption process. As a proof of concept, a potassium‐ion hybrid capacitor is assembled by a dual‐doped porous carbon sphere anode and an activated carbon cathode. It shows superior electrochemical performance, which opens a new avenue to innovative potassium‐based energy storage technology. Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroatom doping strategy, herein, the synthesis of phosphorus/oxygen dual‐doped porous carbon spheres is reported, which possess expanded interlayer distances, abundant redox active sites, and oxygen‐rich defects. The as‐developed battery‐type anode material shows high discharge capacity (401 mAh g −1 at 0.1 A g −1 ), outstanding rate capability, and ultralong cycling stability (89.8% after 10 000 cycles). In situ Raman spectroscopy and density functional theory calculations further confirm that the formation of PC and PO/POH bonds not only improves structural stability, but also contributes to a rapid surface‐controlled potassium adsorption process. As a proof of concept, a potassium‐ion hybrid capacitor is assembled by a dual‐doped porous carbon sphere anode and an activated carbon cathode. It shows superior electrochemical performance, which opens a new avenue to innovative potassium‐based energy storage technology. Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroatom doping strategy, herein, the synthesis of phosphorus/oxygen dual‐doped porous carbon spheres is reported, which possess expanded interlayer distances, abundant redox active sites, and oxygen‐rich defects. The as‐developed battery‐type anode material shows high discharge capacity (401 mAh g−1 at 0.1 A g−1), outstanding rate capability, and ultralong cycling stability (89.8% after 10 000 cycles). In situ Raman spectroscopy and density functional theory calculations further confirm that the formation of PC and PO/POH bonds not only improves structural stability, but also contributes to a rapid surface‐controlled potassium adsorption process. As a proof of concept, a potassium‐ion hybrid capacitor is assembled by a dual‐doped porous carbon sphere anode and an activated carbon cathode. It shows superior electrochemical performance, which opens a new avenue to innovative potassium‐based energy storage technology. Phosphorus/oxygen dual‐doped porous carbon spheres with expanded interlayer distances and abundant active sites are synthesized through a chemical vapor deposition process. The obtained anode materials show exceptional potassium storage capability and outstanding structural stability, which suggests their huge potential as anodes for high‐performance potassium‐ion hybrid capacitors. |
Author | Yuan, Qinghong Zhao, Shuoqing Yan, Kang Munroe, Paul Wang, Guoxiu Liang, Jiayu Sun, Bing Zhang, Jinqiang |
Author_xml | – sequence: 1 givenname: Shuoqing surname: Zhao fullname: Zhao, Shuoqing organization: University of Technology Sydney – sequence: 2 givenname: Kang surname: Yan fullname: Yan, Kang organization: University of Technology Sydney – sequence: 3 givenname: Jiayu surname: Liang fullname: Liang, Jiayu organization: East China Normal University – sequence: 4 givenname: Qinghong surname: Yuan fullname: Yuan, Qinghong organization: The University of Queensland – sequence: 5 givenname: Jinqiang surname: Zhang fullname: Zhang, Jinqiang organization: University of Technology Sydney – sequence: 6 givenname: Bing surname: Sun fullname: Sun, Bing email: bing.sun@uts.edu.au organization: University of Technology Sydney – sequence: 7 givenname: Paul surname: Munroe fullname: Munroe, Paul organization: The University of New South Wales – sequence: 8 givenname: Guoxiu orcidid: 0000-0003-4295-8578 surname: Wang fullname: Wang, Guoxiu email: guoxiu.wang@uts.edu.au organization: University of Technology Sydney |
BookMark | eNqFkc1qGzEUhUVIoPnptmtB1nb0Mx7NLI2dxKEJMWkL3Q13pDsZBVuaSDM43vUR-hB9sj5JZVxSKISsJN17vnOvOCfk0HmHhHzibMwZExdgmvVYMMGZYDk7IMc85_lIMlEcvt759w_kJMYnxrhSMjsmv5atj13rwxApOEPvX7aP6Oh8gNXvHz_nvkNDlz741J5BqL2jX7oWA0a6sX1LL10LTifNA4LubWp_tg57q5NbpFPnDdI76DFYWEXa-EAX9rFNzksM6bXewcm_hxjtsE71m2Sx2NbBmjSvA217H-IZOWoSjx__nqfk29Xl19lidHt_fTOb3o605IqNQHIO0tRYZo2RUEMtWVaIQoOuGy0zzHNQukFoykxKxsqSITdCK1UbJaSQp-R879sF_zxg7KsnPwSXRlZiMlFFofikSKpsr9LBxxiwqdKWsPt8H8CuKs6qXR7VLo_qNY-Ejf_DumDXELZvA-Ue2NgVbt9RV9P51d0_9g-RM6Yq |
CitedBy_id | crossref_primary_10_1002_aenm_202401183 crossref_primary_10_1016_j_cej_2023_147848 crossref_primary_10_1016_j_carbon_2023_118318 crossref_primary_10_1016_S1872_5805_23_60710_3 crossref_primary_10_1002_smll_202300467 crossref_primary_10_1016_j_colsurfa_2025_136485 crossref_primary_10_1016_j_electacta_2022_140931 crossref_primary_10_1016_j_jcis_2024_01_021 crossref_primary_10_1002_adfm_202304753 crossref_primary_10_1016_j_cej_2022_138579 crossref_primary_10_1007_s40820_023_01113_6 crossref_primary_10_1002_admt_202200205 crossref_primary_10_1016_j_jechem_2023_03_041 crossref_primary_10_1016_j_carbon_2024_119656 crossref_primary_10_2139_ssrn_4065574 crossref_primary_10_1016_j_jallcom_2022_164979 crossref_primary_10_1016_j_joule_2024_03_006 crossref_primary_10_1016_j_carbon_2022_11_014 crossref_primary_10_1016_j_jcis_2021_12_121 crossref_primary_10_1021_acsnano_4c06200 crossref_primary_10_1002_advs_202203895 crossref_primary_10_1016_j_apsusc_2024_159771 crossref_primary_10_1016_j_xcrp_2023_101736 crossref_primary_10_1016_j_cej_2022_134821 crossref_primary_10_1002_aenm_202103226 crossref_primary_10_1002_ange_202301396 crossref_primary_10_1016_j_carbon_2022_03_022 crossref_primary_10_1016_j_cej_2024_148877 crossref_primary_10_1002_smll_202304406 crossref_primary_10_1016_j_jcis_2022_04_022 crossref_primary_10_1016_j_jpowsour_2022_231043 crossref_primary_10_1016_j_est_2024_113143 crossref_primary_10_1016_j_electacta_2022_140956 crossref_primary_10_1039_D1NR06665J crossref_primary_10_1021_acssuschemeng_3c02068 crossref_primary_10_1002_adfm_202208966 crossref_primary_10_1002_anie_202217514 crossref_primary_10_1007_s44246_024_00101_8 crossref_primary_10_1002_adfm_202314890 crossref_primary_10_1002_smll_202208228 crossref_primary_10_1016_j_compositesb_2022_110379 crossref_primary_10_1016_j_jcis_2023_06_038 crossref_primary_10_20517_energymater_2024_228 crossref_primary_10_1002_advs_202200683 crossref_primary_10_1016_j_electacta_2023_143310 crossref_primary_10_1002_adfm_202410010 crossref_primary_10_1039_D4EE00438H crossref_primary_10_1021_acs_analchem_2c04387 crossref_primary_10_1007_s41918_024_00227_8 crossref_primary_10_1039_D2EE03970B crossref_primary_10_1016_j_cej_2022_134965 crossref_primary_10_2139_ssrn_4135017 crossref_primary_10_1016_j_ensm_2023_102942 crossref_primary_10_1002_anie_202424516 crossref_primary_10_1007_s40843_022_2419_4 crossref_primary_10_1016_j_carbon_2024_119200 crossref_primary_10_1016_j_carbon_2023_118291 crossref_primary_10_1002_smll_202304060 crossref_primary_10_1002_smll_202302160 crossref_primary_10_1002_adma_202410132 crossref_primary_10_1016_j_colsurfa_2023_131552 crossref_primary_10_1021_acssuschemeng_1c05374 crossref_primary_10_1002_ange_202424516 crossref_primary_10_1039_D2QM00443G crossref_primary_10_1007_s40843_024_3041_3 crossref_primary_10_1002_celc_202200639 crossref_primary_10_1016_j_apsusc_2023_158491 crossref_primary_10_1016_j_cej_2022_137561 crossref_primary_10_1016_j_ensm_2023_01_038 crossref_primary_10_1007_s11581_025_06110_w crossref_primary_10_1039_D3QI00056G crossref_primary_10_1016_j_nanoen_2023_108913 crossref_primary_10_1021_acsaem_1c02211 crossref_primary_10_1016_j_gee_2022_05_007 crossref_primary_10_1002_smll_202106513 crossref_primary_10_1002_anie_202301396 crossref_primary_10_1002_smll_202301750 crossref_primary_10_1002_adfm_202109969 crossref_primary_10_1016_j_nanoen_2022_108065 crossref_primary_10_1039_D2TA02095E crossref_primary_10_1016_j_cej_2024_149835 crossref_primary_10_1016_j_jallcom_2022_166679 crossref_primary_10_1021_acsanm_2c02918 crossref_primary_10_1002_advs_202205234 crossref_primary_10_1002_advs_202206605 crossref_primary_10_1016_j_est_2024_110984 crossref_primary_10_1002_ange_202217514 crossref_primary_10_1016_j_cej_2021_134321 crossref_primary_10_1016_j_cej_2025_159927 crossref_primary_10_1016_j_nanoen_2021_106903 crossref_primary_10_1039_D2EE00833E crossref_primary_10_1002_aenm_202101928 crossref_primary_10_1039_D2TA01431A crossref_primary_10_1039_D4EE05288A crossref_primary_10_1016_j_apsusc_2023_158875 crossref_primary_10_1016_j_carbon_2022_03_064 crossref_primary_10_1016_j_electacta_2023_142491 crossref_primary_10_1039_D4TA02060J crossref_primary_10_1039_D4CC05233A crossref_primary_10_1039_D2RA08135K crossref_primary_10_1021_acsaem_2c02965 crossref_primary_10_3389_fchem_2022_1002540 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1002_adfm_202206501 crossref_primary_10_1002_er_8500 crossref_primary_10_2139_ssrn_4074366 crossref_primary_10_1002_batt_202300224 crossref_primary_10_1016_j_apsusc_2023_157711 crossref_primary_10_1063_5_0086874 crossref_primary_10_1021_acs_jpcc_1c05283 crossref_primary_10_1002_smtd_202100896 crossref_primary_10_1016_j_jallcom_2022_165285 crossref_primary_10_1016_j_susmat_2022_e00480 crossref_primary_10_1016_j_est_2024_111574 crossref_primary_10_1016_j_cej_2024_154559 crossref_primary_10_1016_j_cej_2021_133539 crossref_primary_10_1016_j_cej_2023_145155 |
Cites_doi | 10.1038/s41467-018-04190-z 10.1002/aenm.201802386 10.1002/aenm.201803757 10.1021/acsaem.9b01428 10.1002/adfm.201906126 10.1002/aenm.201900343 10.1002/aenm.201701648 10.1021/acs.chemrev.9b00463 10.1039/D0EE00477D 10.1002/aenm.201803894 10.1021/jacs.6b12598 10.1021/acsenergylett.9b01675 10.1002/aenm.201901533 10.1016/j.cej.2020.124161 10.1039/D0EE01638A 10.1002/smll.201906131 10.1002/adma.201900429 10.1021/acsnano.0c06690 10.1002/anie.201904258 10.1002/aenm.201602911 10.1002/advs.201600243 10.1002/adfm.201903496 10.1002/adfm.201802938 10.1016/j.nanoen.2020.104838 10.1039/C1EE02426D 10.1021/acsami.0c13766 10.1002/adma.202000505 10.1002/anie.201908607 10.1002/adma.201801812 10.1021/acs.chemrev.8b00422 10.1021/jacs.7b07027 10.1021/cr020731c 10.1002/aenm.201702384 10.1002/anie.201909202 10.1002/aenm.201901676 10.1021/jacs.8b02178 10.1002/adfm.201801989 10.1002/adfm.202004247 10.1007/s40820-021-00625-3 10.1021/acs.nanolett.9b01127 10.1002/anie.201912287 10.1002/adfm.202005663 10.1021/acsami.0c21883 10.1021/acsami.8b11243 10.1021/acsami.7b15314 10.1016/j.joule.2018.04.022 10.1002/adma.201802510 10.1002/aenm.201501874 10.1002/aenm.201800171 10.1002/adma.201700104 10.1002/aenm.201902672 10.1038/nenergy.2017.125 10.1021/ja3091438 10.1002/adfm.201802684 10.1039/C8EE02836B 10.1016/j.carbon.2021.02.094 10.1002/adma.201800804 10.1002/anie.201803511 10.1021/cm901452z 10.1016/j.ensm.2020.10.013 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202102060 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202102060 ADFM202102060 |
Genre | article |
GrantInformation_xml | – fundername: ARC Discovery Early Career Researcher Award funderid: DE180100036 – fundername: Australian Research Council funderid: DP200101249; DP210101389 – fundername: ARC Research Hub for Integrated Energy Storage Solutions funderid: IH180100020 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3170-a311a3dbe94fd3abab304828cacbfc34e66a7cfeaf943300990e1d2c77bd72323 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 02:28:13 EDT 2025 Tue Jul 01 04:12:31 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Wed Jan 22 16:28:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3170-a311a3dbe94fd3abab304828cacbfc34e66a7cfeaf943300990e1d2c77bd72323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4295-8578 |
PQID | 2557887158 |
PQPubID | 2045204 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2557887158 crossref_citationtrail_10_1002_adfm_202102060 crossref_primary_10_1002_adfm_202102060 wiley_primary_10_1002_adfm_202102060_ADFM202102060 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2018; 28 2019; 9 2019; 4 2017; 2 2004; 104 2018; 140 2017; 4 2019; 31 2019; 2 2019; 12 2019; 58 2020; 16 2019; 19 2020; 14 2020; 13 2020; 387 2020; 12 2020; 32 2017; 139 2010; 22 2021; 13 2016; 6 2018; 9 2018; 8 2018; 2 2021; 34 2021; 178 2020; 30 2020; 73 2018; 118 2013; 135 2019; 29 2018; 30 2018; 10 2012; 5 2018; 57 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 5604 year: 2012 publication-title: Energy Environ. Sci. – volume: 12 start-page: 6358 year: 2020 publication-title: Chem. Rev. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 2431 year: 2020 publication-title: Energy Environ. Sci. – volume: 140 start-page: 7127 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 8540 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 34 start-page: 475 year: 2021 publication-title: Energy Storage Mater. – volume: 387 year: 2020 publication-title: Chem. Eng. J. – volume: 22 start-page: 587 year: 2010 publication-title: Chem. Mater. – volume: 9 start-page: 1720 year: 2018 publication-title: Nat. Commun. – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 104 start-page: 4271 year: 2004 publication-title: Chem. Rev. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 73 year: 2020 publication-title: Nano Energy – volume: 135 start-page: 1167 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 19 start-page: 4965 year: 2019 publication-title: Nano Lett. – volume: 16 year: 2020 publication-title: Small – volume: 118 year: 2018 publication-title: Chem. Rev. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 178 start-page: 1 year: 2021 publication-title: Carbon – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 7942 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 4 start-page: 2675 year: 2019 publication-title: ACS Energy Lett. – volume: 13 start-page: 4583 year: 2020 publication-title: Energy Environ. Sci. – volume: 12 start-page: 615 year: 2019 publication-title: Energy Environ. Sci. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1534 year: 2018 publication-title: Joule – volume: 13 start-page: 95 year: 2021 publication-title: Nano‐Micro Lett. – volume: 139 start-page: 2164 year: 2017 publication-title: J. Am. Chem. Soc. – ident: e_1_2_8_28_1 doi: 10.1038/s41467-018-04190-z – ident: e_1_2_8_30_1 doi: 10.1002/aenm.201802386 – ident: e_1_2_8_13_1 doi: 10.1002/aenm.201803757 – ident: e_1_2_8_49_1 doi: 10.1021/acsaem.9b01428 – ident: e_1_2_8_32_1 doi: 10.1002/adfm.201906126 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.201900343 – ident: e_1_2_8_48_1 doi: 10.1002/aenm.201701648 – ident: e_1_2_8_8_1 doi: 10.1021/acs.chemrev.9b00463 – ident: e_1_2_8_50_1 doi: 10.1039/D0EE00477D – ident: e_1_2_8_42_1 doi: 10.1002/aenm.201803894 – ident: e_1_2_8_10_1 doi: 10.1021/jacs.6b12598 – ident: e_1_2_8_52_1 doi: 10.1021/acsenergylett.9b01675 – ident: e_1_2_8_29_1 doi: 10.1002/aenm.201901533 – ident: e_1_2_8_59_1 doi: 10.1016/j.cej.2020.124161 – ident: e_1_2_8_37_1 doi: 10.1039/D0EE01638A – ident: e_1_2_8_14_1 doi: 10.1002/smll.201906131 – ident: e_1_2_8_24_1 doi: 10.1002/adma.201900429 – ident: e_1_2_8_33_1 doi: 10.1021/acsnano.0c06690 – ident: e_1_2_8_15_1 doi: 10.1002/anie.201904258 – ident: e_1_2_8_12_1 doi: 10.1002/aenm.201602911 – ident: e_1_2_8_36_1 doi: 10.1002/advs.201600243 – ident: e_1_2_8_45_1 doi: 10.1002/adfm.201903496 – ident: e_1_2_8_9_1 doi: 10.1002/adfm.201802938 – ident: e_1_2_8_57_1 doi: 10.1016/j.nanoen.2020.104838 – ident: e_1_2_8_23_1 doi: 10.1039/C1EE02426D – ident: e_1_2_8_58_1 doi: 10.1021/acsami.0c13766 – ident: e_1_2_8_46_1 doi: 10.1002/adma.202000505 – ident: e_1_2_8_22_1 doi: 10.1002/anie.201908607 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201801812 – ident: e_1_2_8_3_1 doi: 10.1021/acs.chemrev.8b00422 – ident: e_1_2_8_27_1 doi: 10.1021/jacs.7b07027 – ident: e_1_2_8_5_1 doi: 10.1021/cr020731c – ident: e_1_2_8_11_1 doi: 10.1002/aenm.201702384 – ident: e_1_2_8_38_1 doi: 10.1002/anie.201909202 – ident: e_1_2_8_34_1 doi: 10.1002/aenm.201901676 – ident: e_1_2_8_26_1 doi: 10.1021/jacs.8b02178 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.201801989 – ident: e_1_2_8_54_1 doi: 10.1002/adfm.202004247 – ident: e_1_2_8_60_1 doi: 10.1007/s40820-021-00625-3 – ident: e_1_2_8_43_1 doi: 10.1021/acs.nanolett.9b01127 – ident: e_1_2_8_47_1 doi: 10.1002/anie.201912287 – ident: e_1_2_8_53_1 doi: 10.1002/adfm.202005663 – ident: e_1_2_8_56_1 doi: 10.1021/acsami.0c21883 – ident: e_1_2_8_35_1 doi: 10.1021/acsami.8b11243 – ident: e_1_2_8_7_1 doi: 10.1021/acsami.7b15314 – ident: e_1_2_8_16_1 doi: 10.1016/j.joule.2018.04.022 – ident: e_1_2_8_40_1 doi: 10.1002/adma.201802510 – ident: e_1_2_8_21_1 doi: 10.1002/aenm.201501874 – ident: e_1_2_8_31_1 doi: 10.1002/aenm.201800171 – ident: e_1_2_8_19_1 doi: 10.1002/adma.201700104 – ident: e_1_2_8_44_1 doi: 10.1002/aenm.201902672 – ident: e_1_2_8_2_1 doi: 10.1038/nenergy.2017.125 – ident: e_1_2_8_1_1 doi: 10.1021/ja3091438 – ident: e_1_2_8_39_1 doi: 10.1002/adfm.201802684 – ident: e_1_2_8_17_1 doi: 10.1039/C8EE02836B – ident: e_1_2_8_51_1 doi: 10.1016/j.carbon.2021.02.094 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201800804 – ident: e_1_2_8_41_1 doi: 10.1002/anie.201803511 – ident: e_1_2_8_4_1 doi: 10.1021/cm901452z – ident: e_1_2_8_55_1 doi: 10.1016/j.ensm.2020.10.013 |
SSID | ssj0017734 |
Score | 2.6362674 |
Snippet | Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Activated carbon anode materials Anodes Capacitors Carbon chemical vapor deposition Control stability Density functional theory Electrochemical analysis Electrode materials Energy storage Interlayers Materials science Oxygen Phosphorus porous microspheres Potassium potassium‐ion hybrid capacitors Raman spectroscopy Reaction kinetics Structural stability |
Title | Phosphorus and Oxygen Dual‐Doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for High‐Performance Potassium‐Ion Hybrid Capacitors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102060 https://www.proquest.com/docview/2557887158 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQucABWn7EQql8QOKUNo6zcXJcdbvaAgurlkp7i8Z_2qolWW0SiXLqI_AQPBlPgifezW6REBLc8mNPEtsTf2PPfEPIG-inAP0kDWRqbRCnTAVSSxnELNTWzRiZkLijO_mYjC_id7P-bCuK3_NDdAtuqBnt_xoVHGR1tCENBW0xkhxNljBBox0dthAVnXX8UUwIv62cMHTwYrM1a2MYHd2tfndW2kDNbcDazjijxwTW7-odTa4Om1oeqm-_0Tj-z8fskkcrOEoHfvzskXumeEIebpEUPiU_pvOyWszLZVNRKDT99PXGDTo6bOD65-33Ybkwmk7LZeluH8NSlgU9R6oCU1Fc46Unxbx1MqBnxsdQ0PdONpJDU6jooCi1oROovSJQB6Epup44ydNNSIOTXzuQf9l8cddPnYjxDQaauec5i_8S8wU9Ixejk8_H42CV2yFQHHPdAGcMuJYmi63mIEFy9y-JUgVKWsVjkyQglDVgs5hzxLGhYTpSQkgtHArkz8lOURbmBaFhqiKVhFoCk7G1mRRCpbFxwDWDxOGVHgnWfZurFfE55t-4zj1lc5Rj6-dd6_fI2678wlN-_LHk_nqo5CvVr3Jno6GHJuunPRK1ff4XKflgOJp0Zy__pdIr8gCPvWPiPtmpl4157cBSLQ_I_cFw8uH8oFWMX9PuEuc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOQAH_hELBXxA4pQ2jrNxclx1u9rSblmVVuot8q-2oiSrTSJRTjwCD8GT8STMxJtsi4SQ4BjHniS2J_7GnvmGkLdymEo5TNJApc4Fccp0oIxSQcxC42DFyITCE93ZcTI9i9-fDztvQoyF8fwQ_YYbakb7v0YFxw3p3Q1rqDQOQ8nRZgkTsNpvY1pvpM8fn_QMUkwIf7CcMHTxYucdb2MY7d5sf3Nd2oDN65C1XXMmD4jq3ta7mnzaaWq1o7_-RuT4X5_zkNxfI1I68lPoEblli8fk3jWewifkx3xRVstFuWoqKgtDP3y5gnlHx428_Pnt-7hcWkPn5aqE23typcqCfkS2AltR3Oal-8Wi9TOgJ9aHUdBDkI380FRWdFSUxtKZrL0uUEDRFL1PQPJ8E9UA8mvA-RfNZyg_ABHTK4w1g-eB0X-BKYOekrPJ_uneNFindwg0x3Q3kjMmuVE2i53hUknF4XcSpVpq5TSPbZJIoZ2VLos5RygbWmYiLYQyAoAgf0a2irKwzwkNUx3pJDRKMhU7lykhdBpbwK6ZTACyDEjQDW6u19znmILjMveszVGOvZ_3vT8g7_r6S8_68cea291cydfaX-VgpqGTJhumAxK1g_4XKfloPJn1Vy_-pdEbcmd6OjvKjw6OD1-Su1ju_RS3yVa9auwrwE61et1qxy9CzhVv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hVkJw4B-RUmAPSJzcem3HP8eobpRSUqJCpdys2T-lothRbEttT32EPgRPxpMwYydOioSQ4Oj17tje3fF-szvzDWPvoR8D9MPYkbG1ThAL5UgtpRMIV1tcMZJI0onu-CQcnQUfp_3pRhR_yw_RbbiRZjT_a1Lwubb7a9JQ0JYiyclkcUM02reD0E0oeUN62hFIiShqz5VDQR5eYrqibXS9_bvt7y5La6y5iVibJWf4mMHqZVtPk297dSX31PVvPI7_8zVP2KMlHuWDdgI9ZfdM_ow93GApfM5-TGZFOZ8Vi7rkkGv--fIKZx1Pa7j4eXObFnOj-aRYFHj7ABayyPkX4iowJadNXn6YzxovA35q2iAKfoyyiR2aQ8kHeaENH0PVagJHDM3J9wQlT9YxDSi_QpR_Xn_H8iMUMbqiSDN8Hpr855Qw6AU7Gx5-PRg5y-QOjvIp2Q34QoCvpUkCq32QIH38mXixAiWt8gMThhApa8Amge8TkHWN0J6KIqkjhIH-S7aVF7l5xbgbK0-FrpYgZGBtIqNIxYFB5JpAiIClx5zV2GZqyXxOCTguspaz2cuo97Ou93vsQ1d_3nJ-_LHm7mqqZEvdLzM00shFU_TjHvOaMf-LlGyQDsfd1c6_NHrH7k_SYfbp6OT4NXtAxa2T4i7bqha1eYPAqZJvG934BfnUFB4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorus+and+Oxygen+Dual%E2%80%90Doped+Porous+Carbon+Spheres+with+Enhanced+Reaction+Kinetics+as+Anode+Materials+for+High%E2%80%90Performance+Potassium%E2%80%90Ion+Hybrid+Capacitors&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Shuoqing&rft.au=Kang%2C+Yan&rft.au=Liang%2C+Jiayu&rft.au=Yuan%2C+Qinghong&rft.date=2021-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=31&rft_id=info:doi/10.1002%2Fadfm.202102060&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |