Phosphorus and Oxygen Dual‐Doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for High‐Performance Potassium‐Ion Hybrid Capacitors

Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroato...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 31
Main Authors Zhao, Shuoqing, Yan, Kang, Liang, Jiayu, Yuan, Qinghong, Zhang, Jinqiang, Sun, Bing, Munroe, Paul, Wang, Guoxiu
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroatom doping strategy, herein, the synthesis of phosphorus/oxygen dual‐doped porous carbon spheres is reported, which possess expanded interlayer distances, abundant redox active sites, and oxygen‐rich defects. The as‐developed battery‐type anode material shows high discharge capacity (401 mAh g−1 at 0.1 A g−1), outstanding rate capability, and ultralong cycling stability (89.8% after 10 000 cycles). In situ Raman spectroscopy and density functional theory calculations further confirm that the formation of PC and PO/POH bonds not only improves structural stability, but also contributes to a rapid surface‐controlled potassium adsorption process. As a proof of concept, a potassium‐ion hybrid capacitor is assembled by a dual‐doped porous carbon sphere anode and an activated carbon cathode. It shows superior electrochemical performance, which opens a new avenue to innovative potassium‐based energy storage technology. Phosphorus/oxygen dual‐doped porous carbon spheres with expanded interlayer distances and abundant active sites are synthesized through a chemical vapor deposition process. The obtained anode materials show exceptional potassium storage capability and outstanding structural stability, which suggests their huge potential as anodes for high‐performance potassium‐ion hybrid capacitors.
AbstractList Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroatom doping strategy, herein, the synthesis of phosphorus/oxygen dual‐doped porous carbon spheres is reported, which possess expanded interlayer distances, abundant redox active sites, and oxygen‐rich defects. The as‐developed battery‐type anode material shows high discharge capacity (401 mAh g−1 at 0.1 A g−1), outstanding rate capability, and ultralong cycling stability (89.8% after 10 000 cycles). In situ Raman spectroscopy and density functional theory calculations further confirm that the formation of PC and PO/POH bonds not only improves structural stability, but also contributes to a rapid surface‐controlled potassium adsorption process. As a proof of concept, a potassium‐ion hybrid capacitor is assembled by a dual‐doped porous carbon sphere anode and an activated carbon cathode. It shows superior electrochemical performance, which opens a new avenue to innovative potassium‐based energy storage technology.
Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroatom doping strategy, herein, the synthesis of phosphorus/oxygen dual‐doped porous carbon spheres is reported, which possess expanded interlayer distances, abundant redox active sites, and oxygen‐rich defects. The as‐developed battery‐type anode material shows high discharge capacity (401 mAh g −1 at 0.1 A g −1 ), outstanding rate capability, and ultralong cycling stability (89.8% after 10 000 cycles). In situ Raman spectroscopy and density functional theory calculations further confirm that the formation of PC and PO/POH bonds not only improves structural stability, but also contributes to a rapid surface‐controlled potassium adsorption process. As a proof of concept, a potassium‐ion hybrid capacitor is assembled by a dual‐doped porous carbon sphere anode and an activated carbon cathode. It shows superior electrochemical performance, which opens a new avenue to innovative potassium‐based energy storage technology.
Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish reaction kinetics and inevitable volume expansion degrade their electrochemical performance. Through rational nanostructure design and a heteroatom doping strategy, herein, the synthesis of phosphorus/oxygen dual‐doped porous carbon spheres is reported, which possess expanded interlayer distances, abundant redox active sites, and oxygen‐rich defects. The as‐developed battery‐type anode material shows high discharge capacity (401 mAh g−1 at 0.1 A g−1), outstanding rate capability, and ultralong cycling stability (89.8% after 10 000 cycles). In situ Raman spectroscopy and density functional theory calculations further confirm that the formation of PC and PO/POH bonds not only improves structural stability, but also contributes to a rapid surface‐controlled potassium adsorption process. As a proof of concept, a potassium‐ion hybrid capacitor is assembled by a dual‐doped porous carbon sphere anode and an activated carbon cathode. It shows superior electrochemical performance, which opens a new avenue to innovative potassium‐based energy storage technology. Phosphorus/oxygen dual‐doped porous carbon spheres with expanded interlayer distances and abundant active sites are synthesized through a chemical vapor deposition process. The obtained anode materials show exceptional potassium storage capability and outstanding structural stability, which suggests their huge potential as anodes for high‐performance potassium‐ion hybrid capacitors.
Author Yuan, Qinghong
Zhao, Shuoqing
Yan, Kang
Munroe, Paul
Wang, Guoxiu
Liang, Jiayu
Sun, Bing
Zhang, Jinqiang
Author_xml – sequence: 1
  givenname: Shuoqing
  surname: Zhao
  fullname: Zhao, Shuoqing
  organization: University of Technology Sydney
– sequence: 2
  givenname: Kang
  surname: Yan
  fullname: Yan, Kang
  organization: University of Technology Sydney
– sequence: 3
  givenname: Jiayu
  surname: Liang
  fullname: Liang, Jiayu
  organization: East China Normal University
– sequence: 4
  givenname: Qinghong
  surname: Yuan
  fullname: Yuan, Qinghong
  organization: The University of Queensland
– sequence: 5
  givenname: Jinqiang
  surname: Zhang
  fullname: Zhang, Jinqiang
  organization: University of Technology Sydney
– sequence: 6
  givenname: Bing
  surname: Sun
  fullname: Sun, Bing
  email: bing.sun@uts.edu.au
  organization: University of Technology Sydney
– sequence: 7
  givenname: Paul
  surname: Munroe
  fullname: Munroe, Paul
  organization: The University of New South Wales
– sequence: 8
  givenname: Guoxiu
  orcidid: 0000-0003-4295-8578
  surname: Wang
  fullname: Wang, Guoxiu
  email: guoxiu.wang@uts.edu.au
  organization: University of Technology Sydney
BookMark eNqFkc1qGzEUhUVIoPnptmtB1nb0Mx7NLI2dxKEJMWkL3Q13pDsZBVuaSDM43vUR-hB9sj5JZVxSKISsJN17vnOvOCfk0HmHhHzibMwZExdgmvVYMMGZYDk7IMc85_lIMlEcvt759w_kJMYnxrhSMjsmv5atj13rwxApOEPvX7aP6Oh8gNXvHz_nvkNDlz741J5BqL2jX7oWA0a6sX1LL10LTifNA4LubWp_tg57q5NbpFPnDdI76DFYWEXa-EAX9rFNzksM6bXewcm_hxjtsE71m2Sx2NbBmjSvA217H-IZOWoSjx__nqfk29Xl19lidHt_fTOb3o605IqNQHIO0tRYZo2RUEMtWVaIQoOuGy0zzHNQukFoykxKxsqSITdCK1UbJaSQp-R879sF_zxg7KsnPwSXRlZiMlFFofikSKpsr9LBxxiwqdKWsPt8H8CuKs6qXR7VLo_qNY-Ejf_DumDXELZvA-Ue2NgVbt9RV9P51d0_9g-RM6Yq
CitedBy_id crossref_primary_10_1002_aenm_202401183
crossref_primary_10_1016_j_cej_2023_147848
crossref_primary_10_1016_j_carbon_2023_118318
crossref_primary_10_1016_S1872_5805_23_60710_3
crossref_primary_10_1002_smll_202300467
crossref_primary_10_1016_j_colsurfa_2025_136485
crossref_primary_10_1016_j_electacta_2022_140931
crossref_primary_10_1016_j_jcis_2024_01_021
crossref_primary_10_1002_adfm_202304753
crossref_primary_10_1016_j_cej_2022_138579
crossref_primary_10_1007_s40820_023_01113_6
crossref_primary_10_1002_admt_202200205
crossref_primary_10_1016_j_jechem_2023_03_041
crossref_primary_10_1016_j_carbon_2024_119656
crossref_primary_10_2139_ssrn_4065574
crossref_primary_10_1016_j_jallcom_2022_164979
crossref_primary_10_1016_j_joule_2024_03_006
crossref_primary_10_1016_j_carbon_2022_11_014
crossref_primary_10_1016_j_jcis_2021_12_121
crossref_primary_10_1021_acsnano_4c06200
crossref_primary_10_1002_advs_202203895
crossref_primary_10_1016_j_apsusc_2024_159771
crossref_primary_10_1016_j_xcrp_2023_101736
crossref_primary_10_1016_j_cej_2022_134821
crossref_primary_10_1002_aenm_202103226
crossref_primary_10_1002_ange_202301396
crossref_primary_10_1016_j_carbon_2022_03_022
crossref_primary_10_1016_j_cej_2024_148877
crossref_primary_10_1002_smll_202304406
crossref_primary_10_1016_j_jcis_2022_04_022
crossref_primary_10_1016_j_jpowsour_2022_231043
crossref_primary_10_1016_j_est_2024_113143
crossref_primary_10_1016_j_electacta_2022_140956
crossref_primary_10_1039_D1NR06665J
crossref_primary_10_1021_acssuschemeng_3c02068
crossref_primary_10_1002_adfm_202208966
crossref_primary_10_1002_anie_202217514
crossref_primary_10_1007_s44246_024_00101_8
crossref_primary_10_1002_adfm_202314890
crossref_primary_10_1002_smll_202208228
crossref_primary_10_1016_j_compositesb_2022_110379
crossref_primary_10_1016_j_jcis_2023_06_038
crossref_primary_10_20517_energymater_2024_228
crossref_primary_10_1002_advs_202200683
crossref_primary_10_1016_j_electacta_2023_143310
crossref_primary_10_1002_adfm_202410010
crossref_primary_10_1039_D4EE00438H
crossref_primary_10_1021_acs_analchem_2c04387
crossref_primary_10_1007_s41918_024_00227_8
crossref_primary_10_1039_D2EE03970B
crossref_primary_10_1016_j_cej_2022_134965
crossref_primary_10_2139_ssrn_4135017
crossref_primary_10_1016_j_ensm_2023_102942
crossref_primary_10_1002_anie_202424516
crossref_primary_10_1007_s40843_022_2419_4
crossref_primary_10_1016_j_carbon_2024_119200
crossref_primary_10_1016_j_carbon_2023_118291
crossref_primary_10_1002_smll_202304060
crossref_primary_10_1002_smll_202302160
crossref_primary_10_1002_adma_202410132
crossref_primary_10_1016_j_colsurfa_2023_131552
crossref_primary_10_1021_acssuschemeng_1c05374
crossref_primary_10_1002_ange_202424516
crossref_primary_10_1039_D2QM00443G
crossref_primary_10_1007_s40843_024_3041_3
crossref_primary_10_1002_celc_202200639
crossref_primary_10_1016_j_apsusc_2023_158491
crossref_primary_10_1016_j_cej_2022_137561
crossref_primary_10_1016_j_ensm_2023_01_038
crossref_primary_10_1007_s11581_025_06110_w
crossref_primary_10_1039_D3QI00056G
crossref_primary_10_1016_j_nanoen_2023_108913
crossref_primary_10_1021_acsaem_1c02211
crossref_primary_10_1016_j_gee_2022_05_007
crossref_primary_10_1002_smll_202106513
crossref_primary_10_1002_anie_202301396
crossref_primary_10_1002_smll_202301750
crossref_primary_10_1002_adfm_202109969
crossref_primary_10_1016_j_nanoen_2022_108065
crossref_primary_10_1039_D2TA02095E
crossref_primary_10_1016_j_cej_2024_149835
crossref_primary_10_1016_j_jallcom_2022_166679
crossref_primary_10_1021_acsanm_2c02918
crossref_primary_10_1002_advs_202205234
crossref_primary_10_1002_advs_202206605
crossref_primary_10_1016_j_est_2024_110984
crossref_primary_10_1002_ange_202217514
crossref_primary_10_1016_j_cej_2021_134321
crossref_primary_10_1016_j_cej_2025_159927
crossref_primary_10_1016_j_nanoen_2021_106903
crossref_primary_10_1039_D2EE00833E
crossref_primary_10_1002_aenm_202101928
crossref_primary_10_1039_D2TA01431A
crossref_primary_10_1039_D4EE05288A
crossref_primary_10_1016_j_apsusc_2023_158875
crossref_primary_10_1016_j_carbon_2022_03_064
crossref_primary_10_1016_j_electacta_2023_142491
crossref_primary_10_1039_D4TA02060J
crossref_primary_10_1039_D4CC05233A
crossref_primary_10_1039_D2RA08135K
crossref_primary_10_1021_acsaem_2c02965
crossref_primary_10_3389_fchem_2022_1002540
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1002_adfm_202206501
crossref_primary_10_1002_er_8500
crossref_primary_10_2139_ssrn_4074366
crossref_primary_10_1002_batt_202300224
crossref_primary_10_1016_j_apsusc_2023_157711
crossref_primary_10_1063_5_0086874
crossref_primary_10_1021_acs_jpcc_1c05283
crossref_primary_10_1002_smtd_202100896
crossref_primary_10_1016_j_jallcom_2022_165285
crossref_primary_10_1016_j_susmat_2022_e00480
crossref_primary_10_1016_j_est_2024_111574
crossref_primary_10_1016_j_cej_2024_154559
crossref_primary_10_1016_j_cej_2021_133539
crossref_primary_10_1016_j_cej_2023_145155
Cites_doi 10.1038/s41467-018-04190-z
10.1002/aenm.201802386
10.1002/aenm.201803757
10.1021/acsaem.9b01428
10.1002/adfm.201906126
10.1002/aenm.201900343
10.1002/aenm.201701648
10.1021/acs.chemrev.9b00463
10.1039/D0EE00477D
10.1002/aenm.201803894
10.1021/jacs.6b12598
10.1021/acsenergylett.9b01675
10.1002/aenm.201901533
10.1016/j.cej.2020.124161
10.1039/D0EE01638A
10.1002/smll.201906131
10.1002/adma.201900429
10.1021/acsnano.0c06690
10.1002/anie.201904258
10.1002/aenm.201602911
10.1002/advs.201600243
10.1002/adfm.201903496
10.1002/adfm.201802938
10.1016/j.nanoen.2020.104838
10.1039/C1EE02426D
10.1021/acsami.0c13766
10.1002/adma.202000505
10.1002/anie.201908607
10.1002/adma.201801812
10.1021/acs.chemrev.8b00422
10.1021/jacs.7b07027
10.1021/cr020731c
10.1002/aenm.201702384
10.1002/anie.201909202
10.1002/aenm.201901676
10.1021/jacs.8b02178
10.1002/adfm.201801989
10.1002/adfm.202004247
10.1007/s40820-021-00625-3
10.1021/acs.nanolett.9b01127
10.1002/anie.201912287
10.1002/adfm.202005663
10.1021/acsami.0c21883
10.1021/acsami.8b11243
10.1021/acsami.7b15314
10.1016/j.joule.2018.04.022
10.1002/adma.201802510
10.1002/aenm.201501874
10.1002/aenm.201800171
10.1002/adma.201700104
10.1002/aenm.201902672
10.1038/nenergy.2017.125
10.1021/ja3091438
10.1002/adfm.201802684
10.1039/C8EE02836B
10.1016/j.carbon.2021.02.094
10.1002/adma.201800804
10.1002/anie.201803511
10.1021/cm901452z
10.1016/j.ensm.2020.10.013
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202102060
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202102060
ADFM202102060
Genre article
GrantInformation_xml – fundername: ARC Discovery Early Career Researcher Award
  funderid: DE180100036
– fundername: Australian Research Council
  funderid: DP200101249; DP210101389
– fundername: ARC Research Hub for Integrated Energy Storage Solutions
  funderid: IH180100020
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3170-a311a3dbe94fd3abab304828cacbfc34e66a7cfeaf943300990e1d2c77bd72323
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 02:28:13 EDT 2025
Tue Jul 01 04:12:31 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Wed Jan 22 16:28:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-a311a3dbe94fd3abab304828cacbfc34e66a7cfeaf943300990e1d2c77bd72323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4295-8578
PQID 2557887158
PQPubID 2045204
PageCount 12
ParticipantIDs proquest_journals_2557887158
crossref_citationtrail_10_1002_adfm_202102060
crossref_primary_10_1002_adfm_202102060
wiley_primary_10_1002_adfm_202102060_ADFM202102060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2018; 28
2019; 9
2019; 4
2017; 2
2004; 104
2018; 140
2017; 4
2019; 31
2019; 2
2019; 12
2019; 58
2020; 16
2019; 19
2020; 14
2020; 13
2020; 387
2020; 12
2020; 32
2017; 139
2010; 22
2021; 13
2016; 6
2018; 9
2018; 8
2018; 2
2021; 34
2021; 178
2020; 30
2020; 73
2018; 118
2013; 135
2019; 29
2018; 30
2018; 10
2012; 5
2018; 57
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 5604
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 6358
  year: 2020
  publication-title: Chem. Rev.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 2431
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 140
  start-page: 7127
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 8540
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 34
  start-page: 475
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 387
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 22
  start-page: 587
  year: 2010
  publication-title: Chem. Mater.
– volume: 9
  start-page: 1720
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 104
  start-page: 4271
  year: 2004
  publication-title: Chem. Rev.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 73
  year: 2020
  publication-title: Nano Energy
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 19
  start-page: 4965
  year: 2019
  publication-title: Nano Lett.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 118
  year: 2018
  publication-title: Chem. Rev.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 178
  start-page: 1
  year: 2021
  publication-title: Carbon
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 2
  start-page: 7942
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2675
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 13
  start-page: 4583
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 615
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1534
  year: 2018
  publication-title: Joule
– volume: 13
  start-page: 95
  year: 2021
  publication-title: Nano‐Micro Lett.
– volume: 139
  start-page: 2164
  year: 2017
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_8_28_1
  doi: 10.1038/s41467-018-04190-z
– ident: e_1_2_8_30_1
  doi: 10.1002/aenm.201802386
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.201803757
– ident: e_1_2_8_49_1
  doi: 10.1021/acsaem.9b01428
– ident: e_1_2_8_32_1
  doi: 10.1002/adfm.201906126
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.201900343
– ident: e_1_2_8_48_1
  doi: 10.1002/aenm.201701648
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.chemrev.9b00463
– ident: e_1_2_8_50_1
  doi: 10.1039/D0EE00477D
– ident: e_1_2_8_42_1
  doi: 10.1002/aenm.201803894
– ident: e_1_2_8_10_1
  doi: 10.1021/jacs.6b12598
– ident: e_1_2_8_52_1
  doi: 10.1021/acsenergylett.9b01675
– ident: e_1_2_8_29_1
  doi: 10.1002/aenm.201901533
– ident: e_1_2_8_59_1
  doi: 10.1016/j.cej.2020.124161
– ident: e_1_2_8_37_1
  doi: 10.1039/D0EE01638A
– ident: e_1_2_8_14_1
  doi: 10.1002/smll.201906131
– ident: e_1_2_8_24_1
  doi: 10.1002/adma.201900429
– ident: e_1_2_8_33_1
  doi: 10.1021/acsnano.0c06690
– ident: e_1_2_8_15_1
  doi: 10.1002/anie.201904258
– ident: e_1_2_8_12_1
  doi: 10.1002/aenm.201602911
– ident: e_1_2_8_36_1
  doi: 10.1002/advs.201600243
– ident: e_1_2_8_45_1
  doi: 10.1002/adfm.201903496
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.201802938
– ident: e_1_2_8_57_1
  doi: 10.1016/j.nanoen.2020.104838
– ident: e_1_2_8_23_1
  doi: 10.1039/C1EE02426D
– ident: e_1_2_8_58_1
  doi: 10.1021/acsami.0c13766
– ident: e_1_2_8_46_1
  doi: 10.1002/adma.202000505
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.201908607
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201801812
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.chemrev.8b00422
– ident: e_1_2_8_27_1
  doi: 10.1021/jacs.7b07027
– ident: e_1_2_8_5_1
  doi: 10.1021/cr020731c
– ident: e_1_2_8_11_1
  doi: 10.1002/aenm.201702384
– ident: e_1_2_8_38_1
  doi: 10.1002/anie.201909202
– ident: e_1_2_8_34_1
  doi: 10.1002/aenm.201901676
– ident: e_1_2_8_26_1
  doi: 10.1021/jacs.8b02178
– ident: e_1_2_8_18_1
  doi: 10.1002/adfm.201801989
– ident: e_1_2_8_54_1
  doi: 10.1002/adfm.202004247
– ident: e_1_2_8_60_1
  doi: 10.1007/s40820-021-00625-3
– ident: e_1_2_8_43_1
  doi: 10.1021/acs.nanolett.9b01127
– ident: e_1_2_8_47_1
  doi: 10.1002/anie.201912287
– ident: e_1_2_8_53_1
  doi: 10.1002/adfm.202005663
– ident: e_1_2_8_56_1
  doi: 10.1021/acsami.0c21883
– ident: e_1_2_8_35_1
  doi: 10.1021/acsami.8b11243
– ident: e_1_2_8_7_1
  doi: 10.1021/acsami.7b15314
– ident: e_1_2_8_16_1
  doi: 10.1016/j.joule.2018.04.022
– ident: e_1_2_8_40_1
  doi: 10.1002/adma.201802510
– ident: e_1_2_8_21_1
  doi: 10.1002/aenm.201501874
– ident: e_1_2_8_31_1
  doi: 10.1002/aenm.201800171
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.201700104
– ident: e_1_2_8_44_1
  doi: 10.1002/aenm.201902672
– ident: e_1_2_8_2_1
  doi: 10.1038/nenergy.2017.125
– ident: e_1_2_8_1_1
  doi: 10.1021/ja3091438
– ident: e_1_2_8_39_1
  doi: 10.1002/adfm.201802684
– ident: e_1_2_8_17_1
  doi: 10.1039/C8EE02836B
– ident: e_1_2_8_51_1
  doi: 10.1016/j.carbon.2021.02.094
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201800804
– ident: e_1_2_8_41_1
  doi: 10.1002/anie.201803511
– ident: e_1_2_8_4_1
  doi: 10.1021/cm901452z
– ident: e_1_2_8_55_1
  doi: 10.1016/j.ensm.2020.10.013
SSID ssj0017734
Score 2.6362674
Snippet Hard carbons with low cost and high specific capacity hold great potential as anode materials for potassium‐based energy storage. However, their sluggish...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Activated carbon
anode materials
Anodes
Capacitors
Carbon
chemical vapor deposition
Control stability
Density functional theory
Electrochemical analysis
Electrode materials
Energy storage
Interlayers
Materials science
Oxygen
Phosphorus
porous microspheres
Potassium
potassium‐ion hybrid capacitors
Raman spectroscopy
Reaction kinetics
Structural stability
Title Phosphorus and Oxygen Dual‐Doped Porous Carbon Spheres with Enhanced Reaction Kinetics as Anode Materials for High‐Performance Potassium‐Ion Hybrid Capacitors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202102060
https://www.proquest.com/docview/2557887158
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQucABWn7EQql8QOKUNo6zcXJcdbvaAgurlkp7i8Z_2qolWW0SiXLqI_AQPBlPgifezW6REBLc8mNPEtsTf2PPfEPIG-inAP0kDWRqbRCnTAVSSxnELNTWzRiZkLijO_mYjC_id7P-bCuK3_NDdAtuqBnt_xoVHGR1tCENBW0xkhxNljBBox0dthAVnXX8UUwIv62cMHTwYrM1a2MYHd2tfndW2kDNbcDazjijxwTW7-odTa4Om1oeqm-_0Tj-z8fskkcrOEoHfvzskXumeEIebpEUPiU_pvOyWszLZVNRKDT99PXGDTo6bOD65-33Ybkwmk7LZeluH8NSlgU9R6oCU1Fc46Unxbx1MqBnxsdQ0PdONpJDU6jooCi1oROovSJQB6Epup44ydNNSIOTXzuQf9l8cddPnYjxDQaauec5i_8S8wU9Ixejk8_H42CV2yFQHHPdAGcMuJYmi63mIEFy9y-JUgVKWsVjkyQglDVgs5hzxLGhYTpSQkgtHArkz8lOURbmBaFhqiKVhFoCk7G1mRRCpbFxwDWDxOGVHgnWfZurFfE55t-4zj1lc5Rj6-dd6_fI2678wlN-_LHk_nqo5CvVr3Jno6GHJuunPRK1ff4XKflgOJp0Zy__pdIr8gCPvWPiPtmpl4157cBSLQ_I_cFw8uH8oFWMX9PuEuc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQOQAH_hELBXxA4pQ2jrNxclx1u9rSblmVVuot8q-2oiSrTSJRTjwCD8GT8STMxJtsi4SQ4BjHniS2J_7GnvmGkLdymEo5TNJApc4Fccp0oIxSQcxC42DFyITCE93ZcTI9i9-fDztvQoyF8fwQ_YYbakb7v0YFxw3p3Q1rqDQOQ8nRZgkTsNpvY1pvpM8fn_QMUkwIf7CcMHTxYucdb2MY7d5sf3Nd2oDN65C1XXMmD4jq3ta7mnzaaWq1o7_-RuT4X5_zkNxfI1I68lPoEblli8fk3jWewifkx3xRVstFuWoqKgtDP3y5gnlHx428_Pnt-7hcWkPn5aqE23typcqCfkS2AltR3Oal-8Wi9TOgJ9aHUdBDkI380FRWdFSUxtKZrL0uUEDRFL1PQPJ8E9UA8mvA-RfNZyg_ABHTK4w1g-eB0X-BKYOekrPJ_uneNFindwg0x3Q3kjMmuVE2i53hUknF4XcSpVpq5TSPbZJIoZ2VLos5RygbWmYiLYQyAoAgf0a2irKwzwkNUx3pJDRKMhU7lykhdBpbwK6ZTACyDEjQDW6u19znmILjMveszVGOvZ_3vT8g7_r6S8_68cea291cydfaX-VgpqGTJhumAxK1g_4XKfloPJn1Vy_-pdEbcmd6OjvKjw6OD1-Su1ju_RS3yVa9auwrwE61et1qxy9CzhVv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtNAEF6hVkJw4B-RUmAPSJzcem3HP8eobpRSUqJCpdys2T-lothRbEttT32EPgRPxpMwYydOioSQ4Oj17tje3fF-szvzDWPvoR8D9MPYkbG1ThAL5UgtpRMIV1tcMZJI0onu-CQcnQUfp_3pRhR_yw_RbbiRZjT_a1Lwubb7a9JQ0JYiyclkcUM02reD0E0oeUN62hFIiShqz5VDQR5eYrqibXS9_bvt7y5La6y5iVibJWf4mMHqZVtPk297dSX31PVvPI7_8zVP2KMlHuWDdgI9ZfdM_ow93GApfM5-TGZFOZ8Vi7rkkGv--fIKZx1Pa7j4eXObFnOj-aRYFHj7ABayyPkX4iowJadNXn6YzxovA35q2iAKfoyyiR2aQ8kHeaENH0PVagJHDM3J9wQlT9YxDSi_QpR_Xn_H8iMUMbqiSDN8Hpr855Qw6AU7Gx5-PRg5y-QOjvIp2Q34QoCvpUkCq32QIH38mXixAiWt8gMThhApa8Amge8TkHWN0J6KIqkjhIH-S7aVF7l5xbgbK0-FrpYgZGBtIqNIxYFB5JpAiIClx5zV2GZqyXxOCTguspaz2cuo97Ou93vsQ1d_3nJ-_LHm7mqqZEvdLzM00shFU_TjHvOaMf-LlGyQDsfd1c6_NHrH7k_SYfbp6OT4NXtAxa2T4i7bqha1eYPAqZJvG934BfnUFB4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphorus+and+Oxygen+Dual%E2%80%90Doped+Porous+Carbon+Spheres+with+Enhanced+Reaction+Kinetics+as+Anode+Materials+for+High%E2%80%90Performance+Potassium%E2%80%90Ion+Hybrid+Capacitors&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Shuoqing&rft.au=Kang%2C+Yan&rft.au=Liang%2C+Jiayu&rft.au=Yuan%2C+Qinghong&rft.date=2021-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=31&rft_id=info:doi/10.1002%2Fadfm.202102060&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon