2D Material Enabled Offset‐Patterning with Atomic Resolution
Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 40 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale.
The selective ability of bilayer graphene—both artificially and naturally produced to protect a substrate from plasma etching for extended periods permits the patterning of various semiconductors by mechanically offsetting two atomically thin masking layers. The produced arrays of the semiconductors exhibit dimensions in the sub‐10 nm scale and their dimensions are independent of the lithographical patterning resolution. |
---|---|
AbstractList | Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale.
The selective ability of bilayer graphene—both artificially and naturally produced to protect a substrate from plasma etching for extended periods permits the patterning of various semiconductors by mechanically offsetting two atomically thin masking layers. The produced arrays of the semiconductors exhibit dimensions in the sub‐10 nm scale and their dimensions are independent of the lithographical patterning resolution. Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale. Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale. |
Author | Hofmann, Mario Chen, Szu‐Hua Yen, Zhi‐Long Hsieh, Ya‐Ping |
Author_xml | – sequence: 1 givenname: Szu‐Hua surname: Chen fullname: Chen, Szu‐Hua organization: National Taiwan University – sequence: 2 givenname: Mario surname: Hofmann fullname: Hofmann, Mario organization: National Taiwan University – sequence: 3 givenname: Zhi‐Long surname: Yen fullname: Yen, Zhi‐Long organization: Academia Sinica – sequence: 4 givenname: Ya‐Ping orcidid: 0000-0002-6065-751X surname: Hsieh fullname: Hsieh, Ya‐Ping email: yphsieh@gate.sinica.edu.tw organization: Academia Sinica |
BookMark | eNqFkE9LAzEQxYNUsK1ePS94bp1ks5vdi1D6R4WWiih4C2l2oinb3ZqkSG9-BD-jn8QtlQqCeJqBeb95vNchraqukJBzCn0KwC5VYVZ9BgyAxwKOSJumNO3FwLLWYadPJ6Tj_RKAChHzNrlio2imAjqrymhcqUWJRTQ3xmP4fP-4U6E5VbZ6jt5seIkGoV5ZHd2jr8tNsHV1So6NKj2efc8ueZyMH4Y3ven8-nY4mPZ0TAX0MqV5qlEXWZKnBk2mIGYMGVAsTMoBMdUKFgWynCcL4MbkCpPMCJ1miVAm7pKL_d-1q1836INc1htXNZaScS5ExhhLGlV_r9Ku9t6hkWtnV8ptJQW560juOpKHjhqA_wK0DWoXLDhly7-xfI-92RK3_5jIwWgy-2G_AO8tfqg |
CitedBy_id | crossref_primary_10_1002_adma_202110024 crossref_primary_10_1002_adma_202008701 crossref_primary_10_1021_acsami_2c07015 crossref_primary_10_1021_acsnano_4c06341 crossref_primary_10_1039_D3TA01573D crossref_primary_10_1002_smll_202311209 crossref_primary_10_1021_acs_nanolett_3c03243 |
Cites_doi | 10.1088/2053-1583/1/1/011002 10.1021/jp507178f 10.1016/j.mattod.2015.10.002 10.1109/2.976918 10.1126/science.1171245 10.1021/acs.chemmater.5b04007 10.1116/1.569581 10.1038/nature00972 10.1088/2053-1583/ab1e0a 10.1021/acs.nanolett.7b00514 10.1021/nn201207c 10.1103/PhysRevB.91.014304 10.1063/1.339766 10.1063/1.4857115 10.1039/C7CS00556C 10.1021/acs.jpcc.5b06469 10.1016/S0003-2670(00)85489-6 10.1021/nl304715p 10.1038/s41598-017-08159-8 10.1016/j.carbon.2020.04.036 10.1002/smll.201001555 10.1021/jp204573z 10.1063/1.332872 10.1007/978-3-319-06617-2 10.1038/nnano.2012.193 10.1021/nl101437p 10.1143/JJAP.38.2964 10.1007/978-94-007-1168-6 10.1021/nl801827v 10.1126/science.1102896 10.21236/ADA418616 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202004370 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202004370 ADFM202004370 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: 108‐2112‐M‐001‐040‐MY3; 107‐2112‐M‐002‐004‐MY3 – fundername: Academia Sinica funderid: AS‐iMATE‐108‐32 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3170-8ac46cecd8596fef8a0322e201edf640ee6ca0bde2945b04ff9ae58f7c6857af3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 08:29:17 EDT 2025 Tue Jul 01 04:12:17 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Wed Jan 22 16:31:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 40 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3170-8ac46cecd8596fef8a0322e201edf640ee6ca0bde2945b04ff9ae58f7c6857af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6065-751X |
PQID | 2447782225 |
PQPubID | 2045204 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2447782225 crossref_primary_10_1002_adfm_202004370 crossref_citationtrail_10_1002_adfm_202004370 wiley_primary_10_1002_adfm_202004370_ADFM202004370 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 1, 2020 2020-10-00 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 1, 2020 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1993; 10310 2014; 118 2011; 115 2010; 10 2017; 7 2016; 19 1983; 153 2011 2020; 165 2002; 35 2013; 103 2002; 418 1978; 15 2004; 306 2011; 5 2018; 47 1999 2014; 1 2020; 7 2015; 28 1987; 62 2017; 17 2013; 13 1999; 38 1984; 55 2018 2009; 9 2016 2015; 119 2015 2015; 91 2014 2012; 7 2009; 324 2010; 6 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 Lyding J. W. (e_1_2_7_6_1) 1993; 10310 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 Rangarajan A. (e_1_2_7_18_1) 2015 |
References_xml | – year: 2011 – volume: 153 start-page: 69 year: 1983 publication-title: Anal. Chim. Acta – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 1 year: 2014 publication-title: 2D Mater. – volume: 418 start-page: 617 year: 2002 publication-title: Nature – volume: 13 start-page: 1555 year: 2013 publication-title: Nano Lett. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 35 start-page: 42 year: 2002 publication-title: Computer – volume: 115 year: 2011 publication-title: J. Phys. Chem. C – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 324 start-page: 1312 year: 2009 publication-title: Science – volume: 5 start-page: 6916 year: 2011 publication-title: ACS Nano – year: 2016 – year: 2018 – volume: 28 start-page: 40 year: 2015 publication-title: Chem. Mater. – volume: 55 start-page: 242 year: 1984 publication-title: J. Appl. Phys. – volume: 119 year: 2015 publication-title: J. Phys. Chem. C – year: 2014 – volume: 7 start-page: 8244 year: 2017 publication-title: Sci. Rep. – volume: 47 start-page: 53 year: 2018 publication-title: Chem. Soc. Rev. – volume: 7 year: 2020 publication-title: 2D Mater. – volume: 10 start-page: 3001 year: 2010 publication-title: Nano Lett. – volume: 103 year: 2013 publication-title: Appl. Phys. Lett. – volume: 10310 start-page: 111 year: 1993 publication-title: Proc. SPIE – volume: 165 start-page: 163 year: 2020 publication-title: Carbon – volume: 9 start-page: 30 year: 2009 publication-title: Nano Lett. – volume: 38 start-page: 2964 year: 1999 publication-title: Jpn. J. Appl. Phys. – volume: 15 start-page: 319 year: 1978 publication-title: J. Vac. Sci. Technol. – volume: 17 start-page: 4562 year: 2017 publication-title: Nano Lett. – volume: 62 start-page: 662 year: 1987 publication-title: J. Appl. Phys. – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 19 start-page: 197 year: 2016 publication-title: Mater. Today – year: 2015 – volume: 6 start-page: 2877 year: 2010 publication-title: Small – year: 1999 – ident: e_1_2_7_14_1 doi: 10.1088/2053-1583/1/1/011002 – ident: e_1_2_7_25_1 doi: 10.1021/jp507178f – ident: e_1_2_7_28_1 doi: 10.1016/j.mattod.2015.10.002 – ident: e_1_2_7_1_1 doi: 10.1109/2.976918 – ident: e_1_2_7_13_1 doi: 10.1126/science.1171245 – ident: e_1_2_7_16_1 doi: 10.1021/acs.chemmater.5b04007 – ident: e_1_2_7_21_1 doi: 10.1116/1.569581 – ident: e_1_2_7_4_1 doi: 10.1038/nature00972 – ident: e_1_2_7_34_1 doi: 10.1088/2053-1583/ab1e0a – ident: e_1_2_7_5_1 doi: 10.1021/acs.nanolett.7b00514 – ident: e_1_2_7_12_1 doi: 10.1021/nn201207c – ident: e_1_2_7_27_1 doi: 10.1103/PhysRevB.91.014304 – ident: e_1_2_7_32_1 doi: 10.1063/1.339766 – volume-title: Degree Thesis year: 2015 ident: e_1_2_7_18_1 – ident: e_1_2_7_30_1 doi: 10.1063/1.4857115 – ident: e_1_2_7_15_1 doi: 10.1039/C7CS00556C – ident: e_1_2_7_22_1 doi: 10.1021/acs.jpcc.5b06469 – ident: e_1_2_7_7_1 – ident: e_1_2_7_26_1 doi: 10.1016/S0003-2670(00)85489-6 – ident: e_1_2_7_8_1 – ident: e_1_2_7_9_1 doi: 10.1021/nl304715p – volume: 10310 start-page: 111 year: 1993 ident: e_1_2_7_6_1 publication-title: Proc. SPIE – ident: e_1_2_7_29_1 doi: 10.1038/s41598-017-08159-8 – ident: e_1_2_7_31_1 doi: 10.1016/j.carbon.2020.04.036 – ident: e_1_2_7_23_1 doi: 10.1002/smll.201001555 – ident: e_1_2_7_24_1 doi: 10.1021/jp204573z – ident: e_1_2_7_20_1 doi: 10.1063/1.332872 – ident: e_1_2_7_35_1 doi: 10.1007/978-3-319-06617-2 – ident: e_1_2_7_11_1 doi: 10.1038/nnano.2012.193 – ident: e_1_2_7_17_1 doi: 10.1021/nl101437p – ident: e_1_2_7_19_1 doi: 10.1143/JJAP.38.2964 – ident: e_1_2_7_3_1 doi: 10.1007/978-94-007-1168-6 – ident: e_1_2_7_33_1 doi: 10.1021/nl801827v – ident: e_1_2_7_10_1 doi: 10.1126/science.1102896 – ident: e_1_2_7_2_1 doi: 10.21236/ADA418616 |
SSID | ssj0017734 |
Score | 2.3730907 |
Snippet | Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 2D material atomic precision Bilayers etch selectivity Graphene high resolution lithography Lithography Materials science Nanoribbons Nanotechnology Offsets Substrates Two dimensional materials |
Title | 2D Material Enabled Offset‐Patterning with Atomic Resolution |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202004370 https://www.proquest.com/docview/2447782225 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA8yL3rwvzidowfBU7c2S5v0IhS3McSqqIPdSpK-XJQprrt48iP4Gf0kJukfN0EEvTWQF9rkvb5fkvd-D6ETol0qyXzm0oDqDYqMmMskF64E7DGplEaxJlE4uQpHY3IxCSYLWfwFP0R94GYsw_6vjYFzMet-kYbyTJlMcmzZecym3QRsGVR0W_NH-ZQW18qhbwK8_EnF2ujh7rL4slf6gpqLgNV6nOEm4tW7FoEmD515Ljry9RuN438-ZgttlHDUiQv92UYrMN1B6wskhbvoDPedhOdWU52BTbXKnGulZpB_vL3fWH5Oc7jimCNdJ85NmrNjbgUKnd5D4-Hg_nzkllUXXNkzVWgYlySUIDMWRKECxbinjV4vnQ-ZCokHEEruiQxwRALhEaUiDgFTVIYsoFz19lFj-jSFA-QoLCMaRECkDwR0Qwv1CAYhPNBSWRO51aynsqQkN5UxHtOCTBmnZl7Sel6a6LTu_1yQcfzYs1UtYloa5SzVSIZaQBQ0Ebar8csoadwfJnXr8C9CR2jNPBfhfy3UyF_mcKxhTC7aaDXuJ5d3bauynyWE66Y |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQGYCBf0ShgAckprSJ6yTOglTRVgWaglArdYsS57yACqLpwsQj8Iw8Cf5J0hYJIcHoyGcl9l38-Xz3HULnVG6pNHWY5bu-PKDwgFmMx4nFgdiMCyFRrEoUDgdeb0Rvxm4RTahyYQw_ROlwU5ah_9fKwJVDujFnDY1ToVLJiabnkaf2VVXWW5-qHkoGKcf3zcWy56gQL2dc8DbapLEsv7wvzcHmImTVe053CyXF25pQk8f6LEvq_O0bkeO_PmcbbeaIFLeMCu2gFZjsoo0FnsI9dEnaOIwzray4o7OtUnwnxBSyz_ePe03RqfwrWHl1cStTmc5YXQwYtd5Ho25neNWz8sILFm-qQjQs5tTjwFPmBp4AwWJb2r1cPQdS4VEbwOOxnaRAAuomNhUiiMFlwucec_1YNA9QZfI8gUOEBeGB7wZAuQMUZEMKNSmBJLFBSqVVZBXTHvGclVwVx3iKDJ8yidS8ROW8VNFF2f_F8HH82LNWrGKU2-U0kmDG15jIrSKil-OXUaJWuxuWraO_CJ2htd4w7Ef968HtMVpXz000YA1VstcZnEhUkyWnWm-_AHmt7i0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yQfTgtzid2oPgqVubpW16EYZbmR-bQxzsFtL05aLM4bqLJ_8E_0b_EpP0Y5sggh5T8kL78l7fL8l7vyB0TlRIJYlL7cAL1AJFhNSmgse2AOxQIaVCsbpQuNf3u0NyM_JGC1X8GT9EueGmPcP8r7WDTxLZmJOG8kTqSnJs2HnUon2V-A7Vdt1-KAmk3CDIzpV9V2d4uaOCttHBjWX55bA0x5qLiNWEnGgL8eJls0yTp_osjevi7RuP43--Zhtt5njUamUGtINWYLyLNhZYCvfQJW5bPZ4aU7U6ptYqse6lnEL6-f4xMASdenfF0nu6VivVdc6WPhbIjHofDaPO41XXzq9dsEVTX0NDuSC-AJFQL_QlSMod5fVq7lxIpE8cAF9wJ04Ah8SLHSJlyMGjMhA-9QIumweoMn4ZwyGyJBZh4IVAhAsEVEMJNQmGOHZASSVVZBdaZyLnJNdXYzyzjE0ZM60XVuqlii7K_pOMjePHnrViElnulVOmoExgEJFXRdjMxi-jsFY76pWto78InaG1QTtid9f922O0rh9nqYA1VElfZ3CiIE0anxqr_QLTNOzl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Material+Enabled+Offset%E2%80%90Patterning+with+Atomic+Resolution&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Szu%E2%80%90Hua&rft.au=Hofmann%2C+Mario&rft.au=Yen%2C+Zhi%E2%80%90Long&rft.au=Hsieh%2C+Ya%E2%80%90Ping&rft.date=2020-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202004370&rft.externalDBID=10.1002%252Fadfm.202004370&rft.externalDocID=ADFM202004370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |