2D Material Enabled Offset‐Patterning with Atomic Resolution

Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 40
Main Authors Chen, Szu‐Hua, Hofmann, Mario, Yen, Zhi‐Long, Hsieh, Ya‐Ping
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale. The selective ability of bilayer graphene—both artificially and naturally produced to protect a substrate from plasma etching for extended periods permits the patterning of various semiconductors by mechanically offsetting two atomically thin masking layers. The produced arrays of the semiconductors exhibit dimensions in the sub‐10 nm scale and their dimensions are independent of the lithographical patterning resolution.
AbstractList Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale. The selective ability of bilayer graphene—both artificially and naturally produced to protect a substrate from plasma etching for extended periods permits the patterning of various semiconductors by mechanically offsetting two atomically thin masking layers. The produced arrays of the semiconductors exhibit dimensions in the sub‐10 nm scale and their dimensions are independent of the lithographical patterning resolution.
Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale.
Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale.
Author Hofmann, Mario
Chen, Szu‐Hua
Yen, Zhi‐Long
Hsieh, Ya‐Ping
Author_xml – sequence: 1
  givenname: Szu‐Hua
  surname: Chen
  fullname: Chen, Szu‐Hua
  organization: National Taiwan University
– sequence: 2
  givenname: Mario
  surname: Hofmann
  fullname: Hofmann, Mario
  organization: National Taiwan University
– sequence: 3
  givenname: Zhi‐Long
  surname: Yen
  fullname: Yen, Zhi‐Long
  organization: Academia Sinica
– sequence: 4
  givenname: Ya‐Ping
  orcidid: 0000-0002-6065-751X
  surname: Hsieh
  fullname: Hsieh, Ya‐Ping
  email: yphsieh@gate.sinica.edu.tw
  organization: Academia Sinica
BookMark eNqFkE9LAzEQxYNUsK1ePS94bp1ks5vdi1D6R4WWiih4C2l2oinb3ZqkSG9-BD-jn8QtlQqCeJqBeb95vNchraqukJBzCn0KwC5VYVZ9BgyAxwKOSJumNO3FwLLWYadPJ6Tj_RKAChHzNrlio2imAjqrymhcqUWJRTQ3xmP4fP-4U6E5VbZ6jt5seIkGoV5ZHd2jr8tNsHV1So6NKj2efc8ueZyMH4Y3ven8-nY4mPZ0TAX0MqV5qlEXWZKnBk2mIGYMGVAsTMoBMdUKFgWynCcL4MbkCpPMCJ1miVAm7pKL_d-1q1836INc1htXNZaScS5ExhhLGlV_r9Ku9t6hkWtnV8ptJQW560juOpKHjhqA_wK0DWoXLDhly7-xfI-92RK3_5jIwWgy-2G_AO8tfqg
CitedBy_id crossref_primary_10_1002_adma_202110024
crossref_primary_10_1002_adma_202008701
crossref_primary_10_1021_acsami_2c07015
crossref_primary_10_1021_acsnano_4c06341
crossref_primary_10_1039_D3TA01573D
crossref_primary_10_1002_smll_202311209
crossref_primary_10_1021_acs_nanolett_3c03243
Cites_doi 10.1088/2053-1583/1/1/011002
10.1021/jp507178f
10.1016/j.mattod.2015.10.002
10.1109/2.976918
10.1126/science.1171245
10.1021/acs.chemmater.5b04007
10.1116/1.569581
10.1038/nature00972
10.1088/2053-1583/ab1e0a
10.1021/acs.nanolett.7b00514
10.1021/nn201207c
10.1103/PhysRevB.91.014304
10.1063/1.339766
10.1063/1.4857115
10.1039/C7CS00556C
10.1021/acs.jpcc.5b06469
10.1016/S0003-2670(00)85489-6
10.1021/nl304715p
10.1038/s41598-017-08159-8
10.1016/j.carbon.2020.04.036
10.1002/smll.201001555
10.1021/jp204573z
10.1063/1.332872
10.1007/978-3-319-06617-2
10.1038/nnano.2012.193
10.1021/nl101437p
10.1143/JJAP.38.2964
10.1007/978-94-007-1168-6
10.1021/nl801827v
10.1126/science.1102896
10.21236/ADA418616
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202004370
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202004370
ADFM202004370
Genre article
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  funderid: 108‐2112‐M‐001‐040‐MY3; 107‐2112‐M‐002‐004‐MY3
– fundername: Academia Sinica
  funderid: AS‐iMATE‐108‐32
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3170-8ac46cecd8596fef8a0322e201edf640ee6ca0bde2945b04ff9ae58f7c6857af3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 08:29:17 EDT 2025
Tue Jul 01 04:12:17 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Jan 22 16:31:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 40
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-8ac46cecd8596fef8a0322e201edf640ee6ca0bde2945b04ff9ae58f7c6857af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6065-751X
PQID 2447782225
PQPubID 2045204
PageCount 6
ParticipantIDs proquest_journals_2447782225
crossref_primary_10_1002_adfm_202004370
crossref_citationtrail_10_1002_adfm_202004370
wiley_primary_10_1002_adfm_202004370_ADFM202004370
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 1, 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 1, 2020
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1993; 10310
2014; 118
2011; 115
2010; 10
2017; 7
2016; 19
1983; 153
2011
2020; 165
2002; 35
2013; 103
2002; 418
1978; 15
2004; 306
2011; 5
2018; 47
1999
2014; 1
2020; 7
2015; 28
1987; 62
2017; 17
2013; 13
1999; 38
1984; 55
2018
2009; 9
2016
2015; 119
2015
2015; 91
2014
2012; 7
2009; 324
2010; 6
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Lyding J. W. (e_1_2_7_6_1) 1993; 10310
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Rangarajan A. (e_1_2_7_18_1) 2015
References_xml – year: 2011
– volume: 153
  start-page: 69
  year: 1983
  publication-title: Anal. Chim. Acta
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 1
  year: 2014
  publication-title: 2D Mater.
– volume: 418
  start-page: 617
  year: 2002
  publication-title: Nature
– volume: 13
  start-page: 1555
  year: 2013
  publication-title: Nano Lett.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 35
  start-page: 42
  year: 2002
  publication-title: Computer
– volume: 115
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 324
  start-page: 1312
  year: 2009
  publication-title: Science
– volume: 5
  start-page: 6916
  year: 2011
  publication-title: ACS Nano
– year: 2016
– year: 2018
– volume: 28
  start-page: 40
  year: 2015
  publication-title: Chem. Mater.
– volume: 55
  start-page: 242
  year: 1984
  publication-title: J. Appl. Phys.
– volume: 119
  year: 2015
  publication-title: J. Phys. Chem. C
– year: 2014
– volume: 7
  start-page: 8244
  year: 2017
  publication-title: Sci. Rep.
– volume: 47
  start-page: 53
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 7
  year: 2020
  publication-title: 2D Mater.
– volume: 10
  start-page: 3001
  year: 2010
  publication-title: Nano Lett.
– volume: 103
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 10310
  start-page: 111
  year: 1993
  publication-title: Proc. SPIE
– volume: 165
  start-page: 163
  year: 2020
  publication-title: Carbon
– volume: 9
  start-page: 30
  year: 2009
  publication-title: Nano Lett.
– volume: 38
  start-page: 2964
  year: 1999
  publication-title: Jpn. J. Appl. Phys.
– volume: 15
  start-page: 319
  year: 1978
  publication-title: J. Vac. Sci. Technol.
– volume: 17
  start-page: 4562
  year: 2017
  publication-title: Nano Lett.
– volume: 62
  start-page: 662
  year: 1987
  publication-title: J. Appl. Phys.
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 197
  year: 2016
  publication-title: Mater. Today
– year: 2015
– volume: 6
  start-page: 2877
  year: 2010
  publication-title: Small
– year: 1999
– ident: e_1_2_7_14_1
  doi: 10.1088/2053-1583/1/1/011002
– ident: e_1_2_7_25_1
  doi: 10.1021/jp507178f
– ident: e_1_2_7_28_1
  doi: 10.1016/j.mattod.2015.10.002
– ident: e_1_2_7_1_1
  doi: 10.1109/2.976918
– ident: e_1_2_7_13_1
  doi: 10.1126/science.1171245
– ident: e_1_2_7_16_1
  doi: 10.1021/acs.chemmater.5b04007
– ident: e_1_2_7_21_1
  doi: 10.1116/1.569581
– ident: e_1_2_7_4_1
  doi: 10.1038/nature00972
– ident: e_1_2_7_34_1
  doi: 10.1088/2053-1583/ab1e0a
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.nanolett.7b00514
– ident: e_1_2_7_12_1
  doi: 10.1021/nn201207c
– ident: e_1_2_7_27_1
  doi: 10.1103/PhysRevB.91.014304
– ident: e_1_2_7_32_1
  doi: 10.1063/1.339766
– volume-title: Degree Thesis
  year: 2015
  ident: e_1_2_7_18_1
– ident: e_1_2_7_30_1
  doi: 10.1063/1.4857115
– ident: e_1_2_7_15_1
  doi: 10.1039/C7CS00556C
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.jpcc.5b06469
– ident: e_1_2_7_7_1
– ident: e_1_2_7_26_1
  doi: 10.1016/S0003-2670(00)85489-6
– ident: e_1_2_7_8_1
– ident: e_1_2_7_9_1
  doi: 10.1021/nl304715p
– volume: 10310
  start-page: 111
  year: 1993
  ident: e_1_2_7_6_1
  publication-title: Proc. SPIE
– ident: e_1_2_7_29_1
  doi: 10.1038/s41598-017-08159-8
– ident: e_1_2_7_31_1
  doi: 10.1016/j.carbon.2020.04.036
– ident: e_1_2_7_23_1
  doi: 10.1002/smll.201001555
– ident: e_1_2_7_24_1
  doi: 10.1021/jp204573z
– ident: e_1_2_7_20_1
  doi: 10.1063/1.332872
– ident: e_1_2_7_35_1
  doi: 10.1007/978-3-319-06617-2
– ident: e_1_2_7_11_1
  doi: 10.1038/nnano.2012.193
– ident: e_1_2_7_17_1
  doi: 10.1021/nl101437p
– ident: e_1_2_7_19_1
  doi: 10.1143/JJAP.38.2964
– ident: e_1_2_7_3_1
  doi: 10.1007/978-94-007-1168-6
– ident: e_1_2_7_33_1
  doi: 10.1021/nl801827v
– ident: e_1_2_7_10_1
  doi: 10.1126/science.1102896
– ident: e_1_2_7_2_1
  doi: 10.21236/ADA418616
SSID ssj0017734
Score 2.3730907
Snippet Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 2D material
atomic precision
Bilayers
etch selectivity
Graphene
high resolution lithography
Lithography
Materials science
Nanoribbons
Nanotechnology
Offsets
Substrates
Two dimensional materials
Title 2D Material Enabled Offset‐Patterning with Atomic Resolution
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202004370
https://www.proquest.com/docview/2447782225
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PS8MwFA8yL3rwvzidowfBU7c2S5v0IhS3McSqqIPdSpK-XJQprrt48iP4Gf0kJukfN0EEvTWQF9rkvb5fkvd-D6ETol0qyXzm0oDqDYqMmMskF64E7DGplEaxJlE4uQpHY3IxCSYLWfwFP0R94GYsw_6vjYFzMet-kYbyTJlMcmzZecym3QRsGVR0W_NH-ZQW18qhbwK8_EnF2ujh7rL4slf6gpqLgNV6nOEm4tW7FoEmD515Ljry9RuN438-ZgttlHDUiQv92UYrMN1B6wskhbvoDPedhOdWU52BTbXKnGulZpB_vL3fWH5Oc7jimCNdJ85NmrNjbgUKnd5D4-Hg_nzkllUXXNkzVWgYlySUIDMWRKECxbinjV4vnQ-ZCokHEEruiQxwRALhEaUiDgFTVIYsoFz19lFj-jSFA-QoLCMaRECkDwR0Qwv1CAYhPNBSWRO51aynsqQkN5UxHtOCTBmnZl7Sel6a6LTu_1yQcfzYs1UtYloa5SzVSIZaQBQ0Ebar8csoadwfJnXr8C9CR2jNPBfhfy3UyF_mcKxhTC7aaDXuJ5d3bauynyWE66Y
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELZQGYCBf0ShgAckprSJ6yTOglTRVgWaglArdYsS57yACqLpwsQj8Iw8Cf5J0hYJIcHoyGcl9l38-Xz3HULnVG6pNHWY5bu-PKDwgFmMx4nFgdiMCyFRrEoUDgdeb0Rvxm4RTahyYQw_ROlwU5ah_9fKwJVDujFnDY1ToVLJiabnkaf2VVXWW5-qHkoGKcf3zcWy56gQL2dc8DbapLEsv7wvzcHmImTVe053CyXF25pQk8f6LEvq_O0bkeO_PmcbbeaIFLeMCu2gFZjsoo0FnsI9dEnaOIwzray4o7OtUnwnxBSyz_ePe03RqfwrWHl1cStTmc5YXQwYtd5Ho25neNWz8sILFm-qQjQs5tTjwFPmBp4AwWJb2r1cPQdS4VEbwOOxnaRAAuomNhUiiMFlwucec_1YNA9QZfI8gUOEBeGB7wZAuQMUZEMKNSmBJLFBSqVVZBXTHvGclVwVx3iKDJ8yidS8ROW8VNFF2f_F8HH82LNWrGKU2-U0kmDG15jIrSKil-OXUaJWuxuWraO_CJ2htd4w7Ef968HtMVpXz000YA1VstcZnEhUkyWnWm-_AHmt7i0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yQfTgtzid2oPgqVubpW16EYZbmR-bQxzsFtL05aLM4bqLJ_8E_0b_EpP0Y5sggh5T8kL78l7fL8l7vyB0TlRIJYlL7cAL1AJFhNSmgse2AOxQIaVCsbpQuNf3u0NyM_JGC1X8GT9EueGmPcP8r7WDTxLZmJOG8kTqSnJs2HnUon2V-A7Vdt1-KAmk3CDIzpV9V2d4uaOCttHBjWX55bA0x5qLiNWEnGgL8eJls0yTp_osjevi7RuP43--Zhtt5njUamUGtINWYLyLNhZYCvfQJW5bPZ4aU7U6ptYqse6lnEL6-f4xMASdenfF0nu6VivVdc6WPhbIjHofDaPO41XXzq9dsEVTX0NDuSC-AJFQL_QlSMod5fVq7lxIpE8cAF9wJ04Ah8SLHSJlyMGjMhA-9QIumweoMn4ZwyGyJBZh4IVAhAsEVEMJNQmGOHZASSVVZBdaZyLnJNdXYzyzjE0ZM60XVuqlii7K_pOMjePHnrViElnulVOmoExgEJFXRdjMxi-jsFY76pWto78InaG1QTtid9f922O0rh9nqYA1VElfZ3CiIE0anxqr_QLTNOzl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+Material+Enabled+Offset%E2%80%90Patterning+with+Atomic+Resolution&rft.jtitle=Advanced+functional+materials&rft.au=Chen%2C+Szu%E2%80%90Hua&rft.au=Hofmann%2C+Mario&rft.au=Yen%2C+Zhi%E2%80%90Long&rft.au=Hsieh%2C+Ya%E2%80%90Ping&rft.date=2020-10-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=40&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202004370&rft.externalDBID=10.1002%252Fadfm.202004370&rft.externalDocID=ADFM202004370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon