Novel Natural Polymer‐Based Hydrogel Patches with Janus Asymmetric‐Adhesion for Emergency Hemostasis and Wound Healing
An asymmetrical wound dressing functions akin to human skin by serving as a protective barrier between a wound and its immediate environment. However, significant challenges persist concerning the robust adhesion and asymmetrical adhesion properties of hydrogels, particularly when applied in emergen...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 36 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An asymmetrical wound dressing functions akin to human skin by serving as a protective barrier between a wound and its immediate environment. However, significant challenges persist concerning the robust adhesion and asymmetrical adhesion properties of hydrogels, particularly when applied in emergency hemostasis and wound healing contexts. Herein, the study has successfully synthesized hydrogel patches with Janus asymmetric‐adhesion, denoted as HGO‐C, exclusively comprised of natural polymers. This achievement is realized through the assembly of adhesive hydrogel (HGO) and non‐adhesive hydrogel (CGC), thereby amalgamating their distinct functionalities. The non‐adhesive hydrogel component served as a physical shield and safeguarding the wound against contamination, while the adhesive hydrogel, when in contacted with the wound surface, firmly adhered to it, swiftly arresting bleeding and facilitating wound healing. Cytocompatibility tests, hemolysis tests, antibacterial assays, and coagulation assays demonstrated excellent biocompatibility, antibacterial, and hemostatic properties of HGO‐C. Finally, the in vivo experiments, including a liver hemorrhage assay and a wound healing assay, unequivocally showed the rapid hemostatic and enhanced wound healing capabilities of HGO‐C. Consequently, these distinctive hydrogel patches, derived from natural polymers and characterized by their asymmetric adhesion properties, may have great potential for real‐life usage in clinical patients.
HGO‐C hydrogel patches are successfully synthesized with Janus asymmetric adhesion by merging the adhesive and non‐adhesive hydrogel technologies. Tests have proven HGO‐C hydrogel patches exceptional biocompatibility and hemostatic abilities, with in vivo studies showcasing their remarkable speed in stopping bleeding and promoting wound healing. These natural polymer‐based hydrogel patches hold immense potential for clinical use. |
---|---|
AbstractList | An asymmetrical wound dressing functions akin to human skin by serving as a protective barrier between a wound and its immediate environment. However, significant challenges persist concerning the robust adhesion and asymmetrical adhesion properties of hydrogels, particularly when applied in emergency hemostasis and wound healing contexts. Herein, the study has successfully synthesized hydrogel patches with Janus asymmetric‐adhesion, denoted as HGO‐C, exclusively comprised of natural polymers. This achievement is realized through the assembly of adhesive hydrogel (HGO) and non‐adhesive hydrogel (CGC), thereby amalgamating their distinct functionalities. The non‐adhesive hydrogel component served as a physical shield and safeguarding the wound against contamination, while the adhesive hydrogel, when in contacted with the wound surface, firmly adhered to it, swiftly arresting bleeding and facilitating wound healing. Cytocompatibility tests, hemolysis tests, antibacterial assays, and coagulation assays demonstrated excellent biocompatibility, antibacterial, and hemostatic properties of HGO‐C. Finally, the in vivo experiments, including a liver hemorrhage assay and a wound healing assay, unequivocally showed the rapid hemostatic and enhanced wound healing capabilities of HGO‐C. Consequently, these distinctive hydrogel patches, derived from natural polymers and characterized by their asymmetric adhesion properties, may have great potential for real‐life usage in clinical patients. An asymmetrical wound dressing functions akin to human skin by serving as a protective barrier between a wound and its immediate environment. However, significant challenges persist concerning the robust adhesion and asymmetrical adhesion properties of hydrogels, particularly when applied in emergency hemostasis and wound healing contexts. Herein, the study has successfully synthesized hydrogel patches with Janus asymmetric‐adhesion, denoted as HGO‐C, exclusively comprised of natural polymers. This achievement is realized through the assembly of adhesive hydrogel (HGO) and non‐adhesive hydrogel (CGC), thereby amalgamating their distinct functionalities. The non‐adhesive hydrogel component served as a physical shield and safeguarding the wound against contamination, while the adhesive hydrogel, when in contacted with the wound surface, firmly adhered to it, swiftly arresting bleeding and facilitating wound healing. Cytocompatibility tests, hemolysis tests, antibacterial assays, and coagulation assays demonstrated excellent biocompatibility, antibacterial, and hemostatic properties of HGO‐C. Finally, the in vivo experiments, including a liver hemorrhage assay and a wound healing assay, unequivocally showed the rapid hemostatic and enhanced wound healing capabilities of HGO‐C. Consequently, these distinctive hydrogel patches, derived from natural polymers and characterized by their asymmetric adhesion properties, may have great potential for real‐life usage in clinical patients. HGO‐C hydrogel patches are successfully synthesized with Janus asymmetric adhesion by merging the adhesive and non‐adhesive hydrogel technologies. Tests have proven HGO‐C hydrogel patches exceptional biocompatibility and hemostatic abilities, with in vivo studies showcasing their remarkable speed in stopping bleeding and promoting wound healing. These natural polymer‐based hydrogel patches hold immense potential for clinical use. |
Author | Zhang, Li‐Ming Zhou, Junyi Zheng, Xue Lu, Bin Wang, Hanzhang Lai, Jieying Huang, Runsheng Sun, Lanfang |
Author_xml | – sequence: 1 givenname: Lanfang surname: Sun fullname: Sun, Lanfang organization: Sun Yat‐sen University – sequence: 2 givenname: Junyi surname: Zhou fullname: Zhou, Junyi organization: Sun Yat‐sen University – sequence: 3 givenname: Jieying surname: Lai fullname: Lai, Jieying organization: Sun Yat‐sen University – sequence: 4 givenname: Xue surname: Zheng fullname: Zheng, Xue organization: Sun Yat‐sen University – sequence: 5 givenname: Hanzhang surname: Wang fullname: Wang, Hanzhang organization: Sun Yat‐sen University – sequence: 6 givenname: Bin surname: Lu fullname: Lu, Bin organization: Sun Yat‐sen University – sequence: 7 givenname: Runsheng surname: Huang fullname: Huang, Runsheng organization: Sun Yat‐sen University – sequence: 8 givenname: Li‐Ming orcidid: 0000-0003-1497-1556 surname: Zhang fullname: Zhang, Li‐Ming email: ceszhlm@mail.sysu.edu.cn organization: Sun Yat‐sen University |
BookMark | eNqFkMtKAzEUhoMoaNWt64DrqclkLu2yXuootbpQdDec5lIjM5OaZJRx5SP4jD6JKZUKgrjJCZzvO4fz99BmYxqJ0AElfUpIfARC1f2YxAmhhJENtEMzmkWMxIPN9Z8-bKOec0-E0DxnyQ56m5oXWeEp-NZChW9M1dXSfr5_HIOTAhedsGYegBvw_FE6_Kr9I76EpnV45Lq6lt5qHvCRCF1tGqyMxWdhxFw2vMOFrI3z4LTD0Ah8b9rwFhIq3cz30JaCysn977qL7sZntydFNLk-vzgZTSLOaE6iQapUztKMiyxhnM2SVKREpbOZYgmjgzTLZioZcKZCAZBU5jkRGQxzkQsGkLJddLiau7DmuZXOl0-mtU1YWTJKhkMaZ5QFKllR3BrnrFQl1x58OMlb0FVJSblMuVymXK5TDlr_l7awugbb_S0MV8KrrmT3D12OTsdXP-4XiZGVhw |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_159081 crossref_primary_10_1039_D4TB02357A crossref_primary_10_1002_advs_202408657 crossref_primary_10_3390_polym16243516 crossref_primary_10_1002_adhm_202403679 crossref_primary_10_1016_j_cej_2024_156197 crossref_primary_10_1002_macp_202400163 crossref_primary_10_1016_j_jcis_2024_12_202 crossref_primary_10_1002_adfm_202413542 crossref_primary_10_1002_adhm_202404283 crossref_primary_10_1016_j_biomaterials_2024_122936 crossref_primary_10_1016_j_ijbiomac_2024_138786 crossref_primary_10_1021_acssuschemeng_4c02961 crossref_primary_10_1002_smll_202403350 crossref_primary_10_1016_j_ijbiomac_2024_138716 crossref_primary_10_1016_j_ijbiomac_2025_140811 crossref_primary_10_3390_polym16131937 crossref_primary_10_1002_smll_202411265 crossref_primary_10_1002_adhm_202500734 crossref_primary_10_1002_adfm_202501016 crossref_primary_10_1002_adfm_202411816 crossref_primary_10_1021_acs_biomac_4c01715 |
Cites_doi | 10.1016/j.ijbiomac.2021.05.203 10.1016/j.cej.2022.136494 10.1016/j.actbio.2023.01.045 10.1002/adfm.202102583 10.1016/j.ijbiomac.2011.01.012 10.1097/BRS.0000000000004561 10.1016/j.ijbiomac.2021.12.157 10.1002/adma.202300394 10.1038/s41467-021-23117-9 10.1016/j.ijbiomac.2023.129006 10.1038/d41586-023-03211-2 10.1021/acsami.0c22484 10.1016/j.compositesb.2023.110672 10.1080/15583724.2017.1315433 10.1016/j.foodchem.2023.135966 10.1002/app.53632 10.1002/adfm.201901693 10.1002/admi.202101131 10.1002/adfm.202110066 10.1155/2019/8217602 10.3390/gels9020138 10.1038/s41467-023-41610-1 10.1002/smll.202207610 10.1016/j.ijbiomac.2022.11.309 10.1016/j.bioorg.2021.105470 10.1016/j.bioactmat.2022.05.010 10.1002/adfm.202009189 10.1016/j.carbpol.2023.120573 10.1002/adma.202103593 10.1016/j.bioactmat.2022.07.013 10.1016/j.bioactmat.2021.11.038 10.1016/j.cej.2019.02.014 10.1002/adfm.202305154 10.1126/sciadv.adh8313 10.1016/j.foodhyd.2022.108384 10.1016/j.jcis.2023.01.081 10.1038/s41586-023-06725-x 10.1002/adfm.201500034 10.1002/adma.202001628 10.1038/s41586-019-1710-5 10.1016/j.cej.2023.141362 10.1016/j.cej.2023.142888 10.1021/acsbiomaterials.1c00741 10.1016/j.eurpolymj.2022.111119 10.1002/adfm.202005689 10.1126/science.abi9702 10.1016/j.bmt.2022.11.003 10.1002/adma.202205326 10.1002/adhm.202300669 10.1016/j.ijbiomac.2020.12.056 10.1016/j.carbpol.2019.04.004 10.1002/adfm.202001820 10.1016/j.ijbiomac.2020.05.099 10.1039/D3MA00032J 10.1016/j.mimet.2019.03.009 10.1038/s41578-019-0171-7 10.1163/092050611X611675 10.1002/adfm.201500420 10.1016/j.carbpol.2023.120854 10.1021/acsami.3c17539 10.1002/adhm.202301370 10.1038/s41570-021-00323-z 10.1038/s41596-023-00878-9 10.1039/C6SM02089E 10.1038/nature07039 10.1016/j.ijbiomac.2023.123158 10.1021/acsapm.1c00240 10.1039/C9CS00285E 10.1021/acs.chemrev.0c00798 10.1016/j.biomaterials.2019.03.016 10.1002/adma.202208622 10.1021/acsami.2c14157 10.1016/j.nantod.2020.101049 10.1002/adma.202212302 10.1016/j.carbpol.2023.120819 10.1038/s41467-022-35437-5 10.1016/j.carbpol.2022.120512 10.1002/adma.201300951 10.1021/acsnano.2c05069 10.1016/j.cej.2022.139368 10.1002/smll.202303591 10.3390/molecules26133999 10.1002/adma.202108992 10.1016/j.carbpol.2020.116364 10.1093/burnst/tkad040 10.1002/pol.20220734 10.1016/j.bioactmat.2022.11.019 10.1007/s10853-020-05382-z 10.1126/science.adi7401 10.1021/acsami.1c22887 10.1002/adma.202008395 10.1126/sciadv.aba0588 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202401030 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202401030 ADFM202401030 |
Genre | article |
GrantInformation_xml | – fundername: Guangzhou Basic and Applied Research Foundation funderid: 2021A1515010898 – fundername: Guangdong Provincial Science and Technology Projects funderid: 2020B1111170009 – fundername: National Natural Science Foundation of China funderid: 2087411651273216 – fundername: Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3170-85ff7356cd643c3b45d50f5bbf34318566bf48c3fbf4aae1e770d6a97d7d3aa53 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 22:39:32 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 00:31:00 EDT 2025 Wed Jan 22 17:14:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3170-85ff7356cd643c3b45d50f5bbf34318566bf48c3fbf4aae1e770d6a97d7d3aa53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1497-1556 |
PQID | 3109912613 |
PQPubID | 2045204 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3109912613 crossref_citationtrail_10_1002_adfm_202401030 crossref_primary_10_1002_adfm_202401030 wiley_primary_10_1002_adfm_202401030_ADFM202401030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 2019 2021; 26 2023; 35 2013; 25 2023; 33 2021; 168 2023; 4 2023; 382 2023; 140 2020; 241 2023; 465 2023; 9 2020; 160 2023; 623 2023; 227 2023; 2 2019; 205 2021; 121 2023; 305 2019; 365 2021; 36 2020; 6 2020; 5 2023; 24 2021; 32 2023; 25 2021; 31 2021; 33 2023; 452 2022; 34 2019; 159 2020; 49 2023; 457 2023; 137 2023; 257 2023; 418 2012; 23 2022; 168 2022; 201 2022; 444 2021; 8 2021; 5 2023; 14 2023; 11 2021; 3 2023; 12 2023; 18 2023; 19 2021; 184 2020; 32 2024; 16 2022; 118 2023; 61 2021; 13 2015; 25 2021; 56 2021; 12 2023; 230 2020; 30 2024; 259 2023; 48 2017; 13 2017; 57 2022; 13 2023; 313 2019; 575 2022; 14 2023; 159 2023; 312 2023; 637 2011; 48 2019; 216 2021; 374 2008; 453 2022; 16 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 61 start-page: 1389 year: 2023 publication-title: J. Polym. Sci. – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 7790 year: 2024 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 384 year: 2023 publication-title: Spine – volume: 227 start-page: 1221 year: 2023 publication-title: Int. J. Biol. Macromol. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 637 start-page: 20 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 14 start-page: 52 year: 2022 publication-title: Bioact Mater – volume: 257 year: 2023 publication-title: Composites, Part B – volume: 418 year: 2023 publication-title: Food Chem. – volume: 9 start-page: 138 year: 2023 publication-title: Gels – volume: 259 year: 2024 publication-title: Int. J. Biol. Macromol. – volume: 205 start-page: 23 year: 2019 publication-title: Biomaterials – volume: 49 start-page: 433 year: 2020 publication-title: Chem. Soc. Rev. – volume: 18 start-page: 3322 year: 2023 publication-title: Nat. Protoc. – volume: 453 start-page: 314 year: 2008 publication-title: Nature – volume: 2019 start-page: 1 year: 2019 publication-title: Biomed Res. Int. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 9 year: 2023 publication-title: Gels – volume: 11 year: 2023 publication-title: Int. J. Burns Trauma – volume: 374 start-page: 206 year: 2021 publication-title: Science – volume: 26 start-page: 3999 year: 2021 publication-title: Molecules – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 3613 year: 2021 publication-title: Nat. Commun. – volume: 201 start-page: 104 year: 2022 publication-title: Int. J. Biol. Macromol. – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 13 year: 2022 publication-title: Nat. Commun. – volume: 137 year: 2023 publication-title: Food Hydrocolloids – volume: 9 start-page: 2048 year: 2023 publication-title: ACS Biomater. Sci. Eng. – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 140 year: 2023 publication-title: J. Appl. Polym. Sci. – volume: 452 year: 2023 publication-title: Chem. Eng. J. – volume: 19 year: 2023 publication-title: Small – volume: 623 start-page: 792 year: 2023 publication-title: Nature – volume: 57 start-page: 594 year: 2017 publication-title: Polym. Rev. – volume: 3 start-page: 2678 year: 2021 publication-title: ACS Appl. Polym. Mater. – volume: 25 start-page: 2402 year: 2015 publication-title: Adv. Funct. Mater. – volume: 36 year: 2021 publication-title: Nano Today – volume: 365 start-page: 10 year: 2019 publication-title: Chem. Eng. J. – volume: 48 start-page: 474 year: 2011 publication-title: Int. J. Biol. Macromol. – volume: 12 year: 2023 publication-title: Adv. Healthcare Mater. – volume: 16 year: 2022 publication-title: ACS Nano – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 444 year: 2022 publication-title: Chem. Eng. J. – volume: 160 start-page: 18 year: 2020 publication-title: Int. J. Biol. Macromol. – volume: 5 start-page: 773 year: 2021 publication-title: Nat Rev Chem – volume: 14 start-page: 6063 year: 2023 publication-title: Nat. Commun. – volume: 25 start-page: 615 year: 2023 publication-title: Bioact Mater – volume: 623 start-page: 37 year: 2023 publication-title: Nature – volume: 465 year: 2023 publication-title: Chem. Eng. J. – volume: 159 start-page: 200 year: 2019 publication-title: J Microbiol Methods – volume: 118 year: 2022 publication-title: Bioorg. Chem. – volume: 25 start-page: 2980 year: 2015 publication-title: Adv. Funct. Mater. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 216 start-page: 45 year: 2019 publication-title: Carbohydr. Polym. – volume: 575 start-page: 169 year: 2019 publication-title: Nature – volume: 4 start-page: 1989 year: 2023 publication-title: Mater. Adv. – volume: 312 year: 2023 publication-title: Carbohydr. Polym. – volume: 8 year: 2021 publication-title: Adv. Mater. Interfaces – volume: 159 start-page: 95 year: 2023 publication-title: Acta Biomater. – volume: 313 year: 2023 publication-title: Carbohydr. Polym. – volume: 168 start-page: 233 year: 2021 publication-title: Int. J. Biol. Macromol. – volume: 5 start-page: 310 year: 2020 publication-title: Nat. Rev. Mater. – volume: 23 start-page: 2119 year: 2012 publication-title: J. Biomater. Sci., Polym. Ed. – volume: 168 year: 2022 publication-title: Eur. Polym. J. – volume: 241 year: 2020 publication-title: Carbohydr. Polym. – volume: 230 year: 2023 publication-title: Int. J. Biol. Macromol. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 24 start-page: 197 year: 2023 publication-title: Bioact Mater – volume: 2 start-page: 58 year: 2023 publication-title: Biomed. Technol. – volume: 184 start-page: 282 year: 2021 publication-title: Int. J. Biol. Macromol. – volume: 14 start-page: 4579 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 32 year: 2021 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 5568 year: 2013 publication-title: Adv. Mater. – volume: 13 start-page: 345 year: 2017 publication-title: Soft Matter – volume: 19 start-page: 703 year: 2023 publication-title: Bioact Mater – volume: 382 start-page: 829 year: 2023 publication-title: Science – volume: 457 year: 2023 publication-title: Chem. Eng. J. – volume: 56 start-page: 2725 year: 2021 publication-title: J. Mater. Sci. – volume: 305 year: 2023 publication-title: Carbohydr. Polym. – ident: e_1_2_9_23_1 doi: 10.1016/j.ijbiomac.2021.05.203 – ident: e_1_2_9_66_1 doi: 10.1016/j.cej.2022.136494 – ident: e_1_2_9_65_1 doi: 10.1016/j.actbio.2023.01.045 – ident: e_1_2_9_78_1 doi: 10.1002/adfm.202102583 – ident: e_1_2_9_56_1 doi: 10.1016/j.ijbiomac.2011.01.012 – ident: e_1_2_9_10_1 doi: 10.1097/BRS.0000000000004561 – ident: e_1_2_9_32_1 doi: 10.1016/j.ijbiomac.2021.12.157 – ident: e_1_2_9_26_1 doi: 10.1002/adma.202300394 – ident: e_1_2_9_79_1 doi: 10.1038/s41467-021-23117-9 – ident: e_1_2_9_46_1 doi: 10.1016/j.ijbiomac.2023.129006 – ident: e_1_2_9_42_1 doi: 10.1038/d41586-023-03211-2 – ident: e_1_2_9_59_1 doi: 10.1021/acsami.0c22484 – ident: e_1_2_9_73_1 doi: 10.1016/j.compositesb.2023.110672 – ident: e_1_2_9_41_1 doi: 10.1080/15583724.2017.1315433 – ident: e_1_2_9_54_1 doi: 10.1016/j.foodchem.2023.135966 – ident: e_1_2_9_37_1 doi: 10.1002/app.53632 – ident: e_1_2_9_89_1 doi: 10.1002/adfm.201901693 – ident: e_1_2_9_63_1 doi: 10.1002/admi.202101131 – ident: e_1_2_9_77_1 doi: 10.1002/adfm.202110066 – ident: e_1_2_9_11_1 doi: 10.1155/2019/8217602 – ident: e_1_2_9_44_1 doi: 10.3390/gels9020138 – ident: e_1_2_9_19_1 doi: 10.1038/s41467-023-41610-1 – ident: e_1_2_9_70_1 doi: 10.1002/smll.202207610 – ident: e_1_2_9_47_1 doi: 10.1016/j.ijbiomac.2022.11.309 – ident: e_1_2_9_90_1 doi: 10.1016/j.bioorg.2021.105470 – ident: e_1_2_9_33_1 doi: 10.1016/j.bioactmat.2022.05.010 – ident: e_1_2_9_80_1 doi: 10.1002/adfm.202009189 – ident: e_1_2_9_83_1 doi: 10.1016/j.carbpol.2023.120573 – ident: e_1_2_9_6_1 doi: 10.1002/adma.202103593 – ident: e_1_2_9_38_1 doi: 10.1016/j.bioactmat.2022.07.013 – ident: e_1_2_9_85_1 doi: 10.1016/j.bioactmat.2021.11.038 – ident: e_1_2_9_28_1 doi: 10.1016/j.cej.2019.02.014 – ident: e_1_2_9_53_1 doi: 10.1002/adfm.202305154 – ident: e_1_2_9_45_1 doi: 10.1126/sciadv.adh8313 – ident: e_1_2_9_62_1 doi: 10.1016/j.foodhyd.2022.108384 – ident: e_1_2_9_86_1 doi: 10.1016/j.jcis.2023.01.081 – ident: e_1_2_9_4_1 doi: 10.1038/s41586-023-06725-x – ident: e_1_2_9_9_1 doi: 10.1002/adfm.201500034 – ident: e_1_2_9_21_1 doi: 10.1002/adma.202001628 – ident: e_1_2_9_31_1 doi: 10.1038/s41586-019-1710-5 – ident: e_1_2_9_68_1 doi: 10.1016/j.cej.2023.141362 – ident: e_1_2_9_82_1 doi: 10.1016/j.cej.2023.142888 – ident: e_1_2_9_69_1 doi: 10.1021/acsbiomaterials.1c00741 – ident: e_1_2_9_22_1 doi: 10.1016/j.eurpolymj.2022.111119 – ident: e_1_2_9_27_1 doi: 10.1002/adfm.202005689 – ident: e_1_2_9_17_1 doi: 10.1126/science.abi9702 – ident: e_1_2_9_72_1 doi: 10.3390/gels9020138 – ident: e_1_2_9_30_1 doi: 10.1016/j.bmt.2022.11.003 – ident: e_1_2_9_71_1 doi: 10.1002/adma.202205326 – ident: e_1_2_9_84_1 doi: 10.1002/adhm.202300669 – ident: e_1_2_9_55_1 doi: 10.1016/j.ijbiomac.2020.12.056 – ident: e_1_2_9_57_1 doi: 10.1016/j.carbpol.2019.04.004 – ident: e_1_2_9_91_1 doi: 10.1002/adfm.202001820 – ident: e_1_2_9_93_1 doi: 10.1016/j.ijbiomac.2020.05.099 – ident: e_1_2_9_81_1 doi: 10.1039/D3MA00032J – ident: e_1_2_9_48_1 doi: 10.1016/j.mimet.2019.03.009 – ident: e_1_2_9_7_1 doi: 10.1038/s41578-019-0171-7 – ident: e_1_2_9_50_1 doi: 10.1163/092050611X611675 – ident: e_1_2_9_60_1 doi: 10.1002/adfm.201500420 – ident: e_1_2_9_40_1 doi: 10.1016/j.carbpol.2023.120854 – ident: e_1_2_9_87_1 doi: 10.1021/acsami.3c17539 – ident: e_1_2_9_92_1 doi: 10.1002/adhm.202301370 – ident: e_1_2_9_14_1 doi: 10.1038/s41570-021-00323-z – ident: e_1_2_9_15_1 doi: 10.1038/s41596-023-00878-9 – ident: e_1_2_9_39_1 doi: 10.1039/C6SM02089E – ident: e_1_2_9_5_1 doi: 10.1038/nature07039 – ident: e_1_2_9_58_1 doi: 10.1016/j.ijbiomac.2023.123158 – ident: e_1_2_9_88_1 doi: 10.1021/acsapm.1c00240 – ident: e_1_2_9_20_1 doi: 10.1039/C9CS00285E – ident: e_1_2_9_13_1 doi: 10.1021/acs.chemrev.0c00798 – ident: e_1_2_9_49_1 doi: 10.1016/j.biomaterials.2019.03.016 – ident: e_1_2_9_8_1 doi: 10.1002/adma.202208622 – ident: e_1_2_9_76_1 doi: 10.1021/acsami.2c14157 – ident: e_1_2_9_12_1 doi: 10.1016/j.nantod.2020.101049 – ident: e_1_2_9_64_1 doi: 10.1002/adma.202212302 – ident: e_1_2_9_36_1 doi: 10.1016/j.carbpol.2023.120819 – ident: e_1_2_9_29_1 doi: 10.1038/s41467-022-35437-5 – ident: e_1_2_9_1_1 doi: 10.1016/j.carbpol.2022.120512 – ident: e_1_2_9_34_1 doi: 10.1002/adma.201300951 – ident: e_1_2_9_51_1 doi: 10.1021/acsnano.2c05069 – ident: e_1_2_9_52_1 doi: 10.1016/j.cej.2022.139368 – ident: e_1_2_9_74_1 doi: 10.1002/smll.202303591 – ident: e_1_2_9_75_1 doi: 10.3390/molecules26133999 – ident: e_1_2_9_24_1 doi: 10.1002/adma.202108992 – ident: e_1_2_9_43_1 doi: 10.1016/j.carbpol.2020.116364 – ident: e_1_2_9_16_1 doi: 10.1093/burnst/tkad040 – ident: e_1_2_9_35_1 doi: 10.1002/pol.20220734 – ident: e_1_2_9_2_1 doi: 10.1016/j.bioactmat.2022.11.019 – ident: e_1_2_9_67_1 doi: 10.1007/s10853-020-05382-z – ident: e_1_2_9_18_1 doi: 10.1126/science.adi7401 – ident: e_1_2_9_61_1 doi: 10.1021/acsami.1c22887 – ident: e_1_2_9_25_1 doi: 10.1002/adma.202008395 – ident: e_1_2_9_3_1 doi: 10.1126/sciadv.aba0588 |
SSID | ssj0017734 |
Score | 2.6109915 |
Snippet | An asymmetrical wound dressing functions akin to human skin by serving as a protective barrier between a wound and its immediate environment. However,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Adhesion Adhesives Antiinfectives and antibacterials Assaying Asymmetry Biocompatibility Coagulation Hemorrhage hemostasis Hemostatics Hydrogels In vivo methods and tests Janus asymmetric‐adhesion Natural polymers natural polymers‐based hydrogel patches Wound healing |
Title | Novel Natural Polymer‐Based Hydrogel Patches with Janus Asymmetric‐Adhesion for Emergency Hemostasis and Wound Healing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202401030 https://www.proquest.com/docview/3109912613 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6h9gIH3ojQUu0BiZPbrPcVH03bKKpIVAEVuVmz3l1UkdgoTiqlJ34Cv7G_pDt27KZICAlOtuVZP3ZnPJ93Z74h5J0QwFzwDJE2iYuEdWhzLImkS7z1zMaJxRXd8USNLsTZVE63svgbfohuwg0to_5eo4GDqY7uSEPBeswkDx4JK2WFjzAGbCEq-tTxRzGtm2VlxTDAi01b1sZ-fHS_-X2vdAc1twFr7XGGTwi0z9oEmnw_XC3NYX79G43j_7zMU_J4A0dp2ujPM_LAFc_Joy2SwhfkelJeuRmdQM3QQc_L2XruFjc_f30IDtDS0douym9B4BxQASqKM7v0DIpVRdNqPZ9jya48iKc2nA1aQANMpqdt1icduXkZEGp1WVEoLP2KZZ4oJkeFm78kF8PTL8ejaFOxIco5VrAZSO81lyq3Aejk3AhpZd9LYzwXmKatlPFikHMfNgCOOa37VkGirbYcQPJXZKcoC_eaUK9jDrGPGXArHKiBFN71wauBEcox2SNRO2JZvqEzx6oas6whYo4z7NOs69Meed_J_2iIPP4oud8qQLYx6CpDAtWEhd9N3iNxPZJ_uUqWngzH3dGbf2m0Rx7ifhPRtk92louVexsg0NIckN30ZPzx80Gt7rfVIwIm |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5V7QE4UJ4iUGAPIE5us-_4wCGQRu4jUYVakZtZe3dR1cRGcQJKT_wE_gp_hZ_AL2HHr7ZICAmpB06W7fFzZ3Zmd2e-D6EXnGtivWcIVBLagBsLNkfCQNjQGUcMDQ2s6I7GMjrh-xMxWUPfm1qYCh-inXADyyj7azBwmJDeuUAN1cZBKbl3SUCVVedVHtjVFz9qK17vDXwTv6R0uHv8NgpqYoEgZUC00hPOKSZkarw_TlnChRFdJ5LEMQ7VxFImjvdS5vxGa0usUl0jdaiMMkxrIIrwvf4G0IgDXP_gXYtYRZSqFrIlgZQyMmlwIrt05-r7XvWDF8Ht5RC59HHDTfSj-TtVasvZ9nKRbKfnvwFH_le_7w66XUfcuF-ZyF20ZrN76NYlHMb76Hycf7ZTPNYlCAk-yqermZ3__PrtjffxBkcrM88_eoEjDTpeYJi8xvs6Wxa4X6xmM2AlS7143_izXtGxHwng3aawFUd2lvsgvDgtsM4Mfg9MVhjqv_zDH6CTa_n4h2g9yzP7CGGnKNPUUaKZ4VbLnuDOdrWTvYRLS0QHBY2KxGmN2A7EIdO4wpqmMbRh3LZhB71q5T9VWCV_lNxqNC6u-6wiBozYkPgRNesgWqrOX-4S9wfDUbv3-F8ueo5uRMejw_hwb3zwBN2E41UC3xZaX8yX9qmP-BbJs9LGMPpw3Vr5C274X5E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VRUJwgPKnBgrsAcTJrfc_PnAIpFHa0ihCVORm1t5dhEjsKk5A6YlH6KP0VfoKPAk7_muLhJCQeuBk2R7_7szO7O7M9yH0gnNNrPcMgUoiG3BjweZIFAgbOeOIoZGBFd3DkRwe8f2JmKyhs6YWpsKHaCfcwDLK_hoM_Ni4nQvQUG0cVJJ7jwRMWXVa5YFdffeDtuL1Xt-38EtKB7sf3g6DmlcgSBnwrHSFc4oJmRrvjlOWcGFE6ESSOMahmFjKxPFuypzfaG2JVSo0UkfKKMO0Bp4I3-nf4DKMgCyi_74FrCJKVevYkkBGGZk0MJEh3bn6vlfd4EVsezlCLl3c4C46b35OldnydXu5SLbTk99wI_-nv7eB7tTxNu5VBnIPrdnsPrp9CYXxAToZ5d_sFI90CUGCx_l0NbPznz9O33gPb_BwZeb5Zy8w1qDhBYapa7yvs2WBe8VqNgNOstSL94w_69Uc-3EA3m3KWvHQznIfghdfCqwzgz8CjxWG6i__8Ifo6Fo-_hFaz_LMbiLsFGWaOko0M9xq2RXc2VA72U24tER0UNBoSJzWeO1AGzKNK6RpGkMbxm0bdtCrVv64Qir5o-RWo3Bx3WMVMSDERsSPp1kH0VJz_nKXuNcfHLZ7j__loufo5rg_iN_tjQ6eoFtwuMre20Lri_nSPvXh3iJ5VloYRp-uWyl_AdqmXkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Natural+Polymer%E2%80%90Based+Hydrogel+Patches+with+Janus+Asymmetric%E2%80%90Adhesion+for+Emergency+Hemostasis+and+Wound+Healing&rft.jtitle=Advanced+functional+materials&rft.au=Sun%2C+Lanfang&rft.au=Zhou%2C+Junyi&rft.au=Lai%2C+Jieying&rft.au=Zheng%2C+Xue&rft.date=2024-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=36&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202401030&rft.externalDBID=10.1002%252Fadfm.202401030&rft.externalDocID=ADFM202401030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |