Healable, Recyclable, and High‐Stretchable Polydimethylsiloxane Elastomer Based on Synergistic Effects of Multiple Supramolecular Interactions

Polydimethylsiloxane (PDMS) is one of the preferred materials for researchers to design smart flexible sensors or devices due to its excellent chain flexibility as well as the unique features of transparency, nontoxicity, and biocompatibility. To fulfill the requirement of the service safety and lon...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular materials and engineering Vol. 307; no. 10
Main Authors Liu, Wei‐Xiu, Liu, Dan, Xiao, Yi, Zou, Mei, Shi, Ling‐Yin, Yang, Ke‐Ke, Wang, Yu‐Zhong
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polydimethylsiloxane (PDMS) is one of the preferred materials for researchers to design smart flexible sensors or devices due to its excellent chain flexibility as well as the unique features of transparency, nontoxicity, and biocompatibility. To fulfill the requirement of the service safety and long‐term application, the development of healable PDMS‐based substrates is booming. However, it is still a big challenge to develop PDMS elastomers with good healing performance, high strength, high stretchability, and high toughness simultaneously. Herein, a healable, recyclable, and highly stretchable PDMS‐based elastomer is prepared by incorporating different supramolecular interactions including π–π stacking and hydrogen bonding into the matrix. This elastomer is fabricated via a one‐pot polycondensation reaction among bis(3‐aminopropyl)‐terminated PDMS , functional monomer pyrene diol and 1,6‐diisocyanatohexane. The mechanical properties and self‐healing properties can be easily tuned by varying the density of π–π stacking to hydrogen bonding. The resultant elastomer exhibits very high strength and high stretchability with a fracture strength of 7.46 MPa and fracture strain of 2174%, and it achieves nearly complete self‐healing (96%) at 110 °C for 1 h. A healable and recyclable polydimethylsiloxane elastomer with high strength, high stretchability, and high toughness is developed by integrating strong π–π stacking interaction and hierarchical hydrogen bonding derived from urea groups and urethane groups.
AbstractList Abstract Polydimethylsiloxane (PDMS) is one of the preferred materials for researchers to design smart flexible sensors or devices due to its excellent chain flexibility as well as the unique features of transparency, nontoxicity, and biocompatibility. To fulfill the requirement of the service safety and long‐term application, the development of healable PDMS‐based substrates is booming. However, it is still a big challenge to develop PDMS elastomers with good healing performance, high strength, high stretchability, and high toughness simultaneously. Herein, a healable, recyclable, and highly stretchable PDMS‐based elastomer is prepared by incorporating different supramolecular interactions including π – π  stacking and hydrogen bonding into the matrix. This elastomer is fabricated via a one‐pot polycondensation reaction among bis(3‐aminopropyl)‐terminated PDMS , functional monomer pyrene diol and 1,6‐diisocyanatohexane. The mechanical properties and self‐healing properties can be easily tuned by varying the density of π – π stacking to hydrogen bonding. The resultant elastomer exhibits very high strength and high stretchability with a fracture strength of 7.46 MPa and fracture strain of 2174%, and it achieves nearly complete self‐healing (96%) at 110 °C for 1 h.
Polydimethylsiloxane (PDMS) is one of the preferred materials for researchers to design smart flexible sensors or devices due to its excellent chain flexibility as well as the unique features of transparency, nontoxicity, and biocompatibility. To fulfill the requirement of the service safety and long‐term application, the development of healable PDMS‐based substrates is booming. However, it is still a big challenge to develop PDMS elastomers with good healing performance, high strength, high stretchability, and high toughness simultaneously. Herein, a healable, recyclable, and highly stretchable PDMS‐based elastomer is prepared by incorporating different supramolecular interactions including π–π stacking and hydrogen bonding into the matrix. This elastomer is fabricated via a one‐pot polycondensation reaction among bis(3‐aminopropyl)‐terminated PDMS , functional monomer pyrene diol and 1,6‐diisocyanatohexane. The mechanical properties and self‐healing properties can be easily tuned by varying the density of π–π stacking to hydrogen bonding. The resultant elastomer exhibits very high strength and high stretchability with a fracture strength of 7.46 MPa and fracture strain of 2174%, and it achieves nearly complete self‐healing (96%) at 110 °C for 1 h. A healable and recyclable polydimethylsiloxane elastomer with high strength, high stretchability, and high toughness is developed by integrating strong π–π stacking interaction and hierarchical hydrogen bonding derived from urea groups and urethane groups.
Polydimethylsiloxane (PDMS) is one of the preferred materials for researchers to design smart flexible sensors or devices due to its excellent chain flexibility as well as the unique features of transparency, nontoxicity, and biocompatibility. To fulfill the requirement of the service safety and long‐term application, the development of healable PDMS‐based substrates is booming. However, it is still a big challenge to develop PDMS elastomers with good healing performance, high strength, high stretchability, and high toughness simultaneously. Herein, a healable, recyclable, and highly stretchable PDMS‐based elastomer is prepared by incorporating different supramolecular interactions including π–π stacking and hydrogen bonding into the matrix. This elastomer is fabricated via a one‐pot polycondensation reaction among bis(3‐aminopropyl)‐terminated PDMS , functional monomer pyrene diol and 1,6‐diisocyanatohexane. The mechanical properties and self‐healing properties can be easily tuned by varying the density of π–π stacking to hydrogen bonding. The resultant elastomer exhibits very high strength and high stretchability with a fracture strength of 7.46 MPa and fracture strain of 2174%, and it achieves nearly complete self‐healing (96%) at 110 °C for 1 h.
Author Yang, Ke‐Ke
Shi, Ling‐Yin
Liu, Wei‐Xiu
Zou, Mei
Wang, Yu‐Zhong
Liu, Dan
Xiao, Yi
Author_xml – sequence: 1
  givenname: Wei‐Xiu
  surname: Liu
  fullname: Liu, Wei‐Xiu
  organization: Sichuan University
– sequence: 2
  givenname: Dan
  surname: Liu
  fullname: Liu, Dan
  organization: Sichuan University
– sequence: 3
  givenname: Yi
  surname: Xiao
  fullname: Xiao, Yi
  organization: Sichuan University
– sequence: 4
  givenname: Mei
  surname: Zou
  fullname: Zou, Mei
  organization: Sichuan University
– sequence: 5
  givenname: Ling‐Yin
  surname: Shi
  fullname: Shi, Ling‐Yin
  organization: Sichuan University
– sequence: 6
  givenname: Ke‐Ke
  orcidid: 0000-0002-7019-6059
  surname: Yang
  fullname: Yang, Ke‐Ke
  email: kkyangscu@126.com
  organization: Sichuan University
– sequence: 7
  givenname: Yu‐Zhong
  surname: Wang
  fullname: Wang, Yu‐Zhong
  organization: Sichuan University
BookMark eNqFkMtOwzAQRS1UJMpjy9oSW1L8SIizLKhQJCoQhXXkOhPqyrGL7Qiy4xP4Rr6ElCJYspqr0bkz0tlHA-ssIHRMyYgSws4a2cCIEcYI4ZTsoCFNeZEwkqWD7yySPC3YHtoPYUUIzUXBh-hjCtLIhYFT_ACqUz9Z2gpP9fPy8_1jHj1Etdzs8b0zXaUbiMvOBG3cm7SAJ0aG6Brw-EIGqLCzeN5Z8M86RK3wpK5BxYBdjWetiXrd35m3ay8bZ0C1Rnp8YyN4qaJ2Nhyi3VqaAEc_8wA9XU0eL6fJ7d31zeX4NlGc5iQRTOWLnFIhizonuaxTxioOFeVAZU0qAecqzTIioBJcZUVV9Az0XkQmF1wofoBOtnfX3r20EGK5cq23_cuS5UwwnqU066nRllLeheChLtdeN9J3JSXlxnq5sV7-Wu8Lxbbwqg10_9DlbDyb_HW_AHCNi_Y
CitedBy_id crossref_primary_10_1016_j_polymdegradstab_2023_110518
crossref_primary_10_3390_polym16040487
crossref_primary_10_1016_j_porgcoat_2023_107981
crossref_primary_10_3390_biomimetics8030286
crossref_primary_10_1016_j_cej_2024_149854
crossref_primary_10_1016_j_compscitech_2023_110049
crossref_primary_10_1021_acssuschemeng_3c06481
crossref_primary_10_1021_acsapm_2c01746
Cites_doi 10.1021/acs.chemmater.7b01151
10.1038/s41467-019-09130-z
10.1002/adma.201602251
10.1038/nchem.2492
10.1021/acsnano.0c04158
10.1002/adma.201602332
10.1002/admt.201900346
10.1002/admt.202000327
10.1002/adfm.201808247
10.1016/j.polymer.2020.122228
10.1038/s41565-018-0244-6
10.1007/s10118-020-2472-0
10.1016/j.polymer.2021.124357
10.1002/admt.201800398
10.1021/acsami.7b18394
10.1007/s10118-022-2674-8
10.1002/marc.201700110
10.1002/anie.201805206
10.1021/acsami.8b20303
10.1021/acs.inorgchem.7b03260
10.1016/j.jcis.2020.03.125
10.1016/j.porgcoat.2021.106213
10.1002/anie.201402813
10.1002/admt.202100262
10.1021/acsnano.8b02479
10.1016/j.jcis.2020.02.107
10.1002/marc.202100519
10.1002/marc.201600428
10.1002/anie.201704217
10.1002/adma.201706846
10.1021/acs.chemmater.9b02136
10.1039/C5TB02036K
10.1038/s41467-020-15949-8
10.1007/s10118-020-2494-7
10.1021/acs.chemmater.1c00707
10.1002/admt.201600117
10.1002/admt.201800628
10.1002/adma.201705918
10.1007/s11431-019-1479-1
10.1115/1.2798038
10.1039/b900859d
10.1021/acsami.0c08213
10.1002/adfm.201907139
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/mame.202200310
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1439-2054
EndPage n/a
ExternalDocumentID 10_1002_mame_202200310
MAME202200310
Genre article
GrantInformation_xml – fundername: Science and Technology Planning Project of Sichuan Province
  funderid: 2022YFSY0017
– fundername: Institutional Research Fund from Sichuan University
  funderid: 2020SCUNL205
– fundername: 111 Project
  funderid: B20001
– fundername: Fundamental Research Funds for the Central Universities
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AVUZU
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HCIFZ
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KB.
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PDBOC
PTHSS
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c3170-82c7b7118a9f707af422d3ed13e1af0d8e6c45508ed83c59d97afe31085ab38c3
IEDL.DBID DR2
ISSN 1438-7492
IngestDate Fri Sep 13 10:15:40 EDT 2024
Thu Sep 12 16:47:43 EDT 2024
Sat Aug 24 00:53:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-82c7b7118a9f707af422d3ed13e1af0d8e6c45508ed83c59d97afe31085ab38c3
ORCID 0000-0002-7019-6059
PQID 2728235415
PQPubID 1016395
PageCount 10
ParticipantIDs proquest_journals_2728235415
crossref_primary_10_1002_mame_202200310
wiley_primary_10_1002_mame_202200310_MAME202200310
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular materials and engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 6
2019; 4
2021; 42
2019; 31
2020; 63
2019; 11
2019; 10
2020; 38
1999; 121
2020; 14
2020; 12
2017; 29
2020; 11
2016; 37
2016; 4
2020; 5
2020; 190
2016; 1
2021; 33
2020; 570
2020; 30
2022; 40
2017; 38
2021; 237
2021; 39
2017; 56
2009; 143
2019; 29
2018; 30
2020; 573
2021; 154
2018; 12
2016; 28
2018; 10
2016; 8
2018; 13
2018; 57
2014; 53
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 37
  start-page: 1667
  year: 2016
  publication-title: Macromol. Rapid Commun.
– volume: 190
  year: 2020
  publication-title: Polymer
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 2037
  year: 2020
  publication-title: Nat. Commun.
– volume: 28
  start-page: 9881
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 38
  start-page: 1221
  year: 2020
  publication-title: Chin. J. Polym. Sci.
– volume: 56
  start-page: 8795
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 121
  start-page: 28
  year: 1999
  publication-title: J. Biomech. Eng.
– volume: 31
  start-page: 7951
  year: 2019
  publication-title: Chem. Mater.
– volume: 14
  start-page: 9066
  year: 2020
  publication-title: ACS Nano
– volume: 40
  start-page: 384
  year: 2022
  publication-title: Chin. J. Polym. Sci.
– volume: 57
  start-page: 3232
  year: 2018
  publication-title: Inorg. Chem.
– volume: 63
  start-page: 740
  year: 2020
  publication-title: Sci. Chin. Technol. Sci.
– volume: 143
  start-page: 251
  year: 2009
  publication-title: Faraday Discuss.
– volume: 154
  year: 2021
  publication-title: Prog. Org. Coat.
– volume: 5
  year: 2020
  publication-title: Adv. Mater. Technol.
– volume: 13
  start-page: 1057
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 53
  start-page: 8870
  year: 2014
  publication-title: Angew. Chem., Int. Ed
– volume: 570
  start-page: 1
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 6
  year: 2021
  publication-title: Adv. Mater. Technol.
– volume: 42
  year: 2021
  publication-title: Macromol. Rapid Commun.
– volume: 573
  start-page: 105
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 11
  start-page: 7387
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 33
  start-page: 3712
  year: 2021
  publication-title: Chem. Mater.
– volume: 8
  start-page: 618
  year: 2016
  publication-title: Nat. Chem.
– volume: 4
  start-page: 982
  year: 2016
  publication-title: J. Mater. Chem. B
– volume: 12
  start-page: 6147
  year: 2018
  publication-title: ACS Nano
– volume: 1
  year: 2016
  publication-title: Adv. Mater. Technol.
– volume: 237
  year: 2021
  publication-title: Polymer
– volume: 39
  start-page: 154
  year: 2021
  publication-title: Chin. J. Polym. Sci.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 29
  start-page: 4493
  year: 2017
  publication-title: Chem. Mater.
– volume: 28
  start-page: 8277
  year: 2016
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1164
  year: 2019
  publication-title: Nat. Commun.
– ident: e_1_2_8_41_1
  doi: 10.1021/acs.chemmater.7b01151
– ident: e_1_2_8_33_1
  doi: 10.1038/s41467-019-09130-z
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201602251
– ident: e_1_2_8_12_1
  doi: 10.1038/nchem.2492
– ident: e_1_2_8_9_1
  doi: 10.1021/acsnano.0c04158
– ident: e_1_2_8_27_1
  doi: 10.1002/adma.201602332
– ident: e_1_2_8_5_1
  doi: 10.1002/admt.201900346
– ident: e_1_2_8_29_1
  doi: 10.1002/admt.202000327
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.201808247
– ident: e_1_2_8_39_1
  doi: 10.1016/j.polymer.2020.122228
– ident: e_1_2_8_10_1
  doi: 10.1038/s41565-018-0244-6
– ident: e_1_2_8_7_1
  doi: 10.1007/s10118-020-2472-0
– ident: e_1_2_8_38_1
  doi: 10.1016/j.polymer.2021.124357
– ident: e_1_2_8_18_1
  doi: 10.1002/admt.201800398
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.7b18394
– ident: e_1_2_8_23_1
  doi: 10.1007/s10118-022-2674-8
– ident: e_1_2_8_30_1
  doi: 10.1002/marc.201700110
– ident: e_1_2_8_35_1
  doi: 10.1002/anie.201805206
– ident: e_1_2_8_20_1
  doi: 10.1021/acsami.8b20303
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.inorgchem.7b03260
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jcis.2020.03.125
– ident: e_1_2_8_4_1
  doi: 10.1016/j.porgcoat.2021.106213
– ident: e_1_2_8_40_1
  doi: 10.1002/anie.201402813
– ident: e_1_2_8_3_1
  doi: 10.1002/admt.202100262
– ident: e_1_2_8_21_1
  doi: 10.1021/acsnano.8b02479
– ident: e_1_2_8_31_1
  doi: 10.1016/j.jcis.2020.02.107
– ident: e_1_2_8_42_1
  doi: 10.1002/marc.202100519
– ident: e_1_2_8_25_1
  doi: 10.1002/marc.201600428
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.201704217
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201706846
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.chemmater.9b02136
– ident: e_1_2_8_14_1
  doi: 10.1039/C5TB02036K
– ident: e_1_2_8_19_1
  doi: 10.1038/s41467-020-15949-8
– ident: e_1_2_8_43_1
  doi: 10.1007/s10118-020-2494-7
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.chemmater.1c00707
– ident: e_1_2_8_17_1
  doi: 10.1002/admt.201600117
– ident: e_1_2_8_6_1
  doi: 10.1002/admt.201800628
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201705918
– ident: e_1_2_8_36_1
  doi: 10.1007/s11431-019-1479-1
– ident: e_1_2_8_15_1
  doi: 10.1115/1.2798038
– ident: e_1_2_8_26_1
  doi: 10.1039/b900859d
– ident: e_1_2_8_24_1
  doi: 10.1021/acsami.0c08213
– ident: e_1_2_8_34_1
  doi: 10.1002/adfm.201907139
SSID ssj0017893
Score 2.4475386
Snippet Polydimethylsiloxane (PDMS) is one of the preferred materials for researchers to design smart flexible sensors or devices due to its excellent chain...
Abstract Polydimethylsiloxane (PDMS) is one of the preferred materials for researchers to design smart flexible sensors or devices due to its excellent chain...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Biocompatibility
Bonding strength
Elastomers
Flexible components
Fracture strength
Healing
High strength
high toughness
highly stretchable materials
Hydrogen bonding
Mechanical properties
Polycondensation reactions
Polydimethylsiloxane
self‐healing materials
Smart sensors
Stacking
Stretchability
Substrates
Synergistic effect
Title Healable, Recyclable, and High‐Stretchable Polydimethylsiloxane Elastomer Based on Synergistic Effects of Multiple Supramolecular Interactions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.202200310
https://www.proquest.com/docview/2728235415/abstract/
Volume 307
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMeD-KI-eBenU_Ig-GJdm7RL-jjHhggT8QK-ldwKw60d6wbOJz_CPqOfxJxe5vRF0JeSlqa0uTT_JOf8DkJnsFUTS1c7jNuDL4EBqRR3VGi4Nh63mgK8kXu3zesn_-Y5eF7y4i_4EIsFN-gZ-f8aOriQWeMLGjoUQ8BcEpLTLe1PGGh6oIruF_woj_Gcugshvh3mh6SiNrqk8T3791HpS2ouC9Z8xOluIVG9a2Fo8nI5nchL9fYD4_ifj9lGm6Ucxa2i_eygFZPsorV2FQVuF20sAQv30By8lsDZ6gJbvTlTZVokGoPByMf7HHa5bUOA6_guHcx0H2JUzwZZf5C-isTgjpXrk3RoxvjKDqAapwl-mIEDYk6MxgVNOcNpjHulrSN-mI7GYljF8cX5Imbhj5Hto6du57F97ZQxHRxFIcYNJ4pJZmc1IoyZy0TsE6Kp0R41nohdzU1TgaM1N5pTFYQ6tPcYCj4SQlKu6AFaTdLEHCJstY6UHg2YkqFPRSBdExCjlRYsbFpZW0PnVZ1GowLdERWQZhJBeUeL8q6helXlUdmFs4gwOxulgRU4NUTyuvvlKVGv1esszo7-kukYrUO6MBaso9XJeGpOrOiZyNO8YX8CNbD8bQ
link.rule.ids 315,786,790,1382,27957,27958,46329,46753,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6x5cByQMDuikIBH5C4EJHaSe0cCyoqjyAk6ApxifyKVKlNUFskeuMn9DfyS_DkUeC00l6ixEp8yGQynz3zfQNwhKmaVPnG48IdAoUakFoLT0dWGNsWDlMgGzm-7fQHwdVjWFcTIhem1IdYbrihZxT_a3Rw3JA-_VQNHcsx6lxSWshb_oBVF_tC0YDV7t_B02CZSuCiUN7FNt8eDyJaKzf69PT7DN8j0yfc_Apai6hzsQkbFVwk3dK-W7Bis21YO6-7tG3D-hdBwV-wQFYRkqFOiMODc12dy8wQLOh4f1tgFtoZCsfJXT6amyH2kJ6PpsNR_iozS3oOTs_ysZ2QMxfgDMkzcj9HgmCh6ExKteMpyVMSV7WI5P7leSLHdZ9dUmwylnyJ6W8YXPQezvte1XPB0wx70AiqueJu1SGjlPtcpgGlhlnTZrYtU98I29FIhBbWCKbDyETuHsuQwyAVE5r9gUaWZ3YHiMMiSrVZyLWKAiZD5duQWqON5FHHwc4mHNfvO3kupTWSUkSZJmiZZGmZJrRqcySVi00Tyt1qkYUOgDSBFib6xyxJ3I17y6vd_3noENb6D_FNcnN5e70HP3G8LOxrQWM2ebH7DqDM1EH1CX4A3Xfgiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB61RKJwQC1QNTQte6jEBQtn186ujyFNRIEgJAiKuFj7soSU2FESJHLjJ_Ab-SXd8SOPU6VeLHtl72Fnx_vtznzfAPzCUE2ifONx4S6BQg1IrYWnIyuMbQqHKZCN3L9pXQyCy2E4XGPxF_oQywM39Iz8f40OPjHJ2Uo0dCzHKHNJaa5u-RFqDmoEbl7X2g-Dx8EyksBFLryLVb49HkS0Em706dlmD5sL0wptrmPWfNHpfYa9Ei2SdmHeL_DBpvvwqVMVaduH3TU9wQN4Q1IRcqFOiYODC13ey9QQzOd4f33DILSzE7aT22y0ME9YQnoxmj2NsheZWtJ1aHqeje2UnLv1zZAsJXcL5Afmgs6kEDuekSwh_TIVkdw9T6ZyXJXZJfkZY0GXmB3CoNe971x4ZckFTzMsQSOo5oq7TYeMEu5zmQSUGmZNk9mmTHwjbEsjD1pYI5gOIxO5dyxDCoNUTGj2FbbSLLXfgDgoolSThVyrKGAyVL4NqTXaSB61HOqsw0k13vGkUNaICw1lGqNl4qVl6tCozBGXHjaLKXebRRY6_FEHmpvoH73E_Xa_u3w6-p-PjmH79ncvvv5zc_UddrC5SOtrwNZ8-mx_OHgyVz_LGfgXkvTftA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Healable%2C+Recyclable%2C+and+High%E2%80%90Stretchable+Polydimethylsiloxane+Elastomer+Based+on+Synergistic+Effects+of+Multiple+Supramolecular+Interactions&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Liu%2C+Wei%E2%80%90Xiu&rft.au=Liu%2C+Dan&rft.au=Xiao%2C+Yi&rft.au=Zou%2C+Mei&rft.date=2022-10-01&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=307&rft.issue=10&rft_id=info:doi/10.1002%2Fmame.202200310&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mame_202200310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon