A Bifunctional Electrolyte Additive Features Preferential Coordination with Iodine toward Ultralong‐Life Zinc–Iodine Batteries
Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 21 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I2 based on the Lewis acid‐base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non‐dendritic Zn plating, contributing to impressive Coulombic efficiency and long‐term cycling stability. As a result, the Zn‐I2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g−1 (≈100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn‐I2 batteries, marking a critical advancement in the field of energy storage technologies.
The study uses a zinc pyrrolidone carboxylate additive to reduce polyiodide concentration by preferential coordination with I2, following the Lewis acid–base effect. This suppresses the shuttle effect and improves conversion kinetics of iodine species. Furthermore, pyrrolidone carboxylate anions pre‐adsorb zinc anodes, impeding corrosion and promoting non‐dendritic zinc plating/stripping. Consequently, the zinc‐iodine battery demonstrates an ultralong cycling lifespan (>30 000 cycles). |
---|---|
AbstractList | Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I2 based on the Lewis acid‐base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non‐dendritic Zn plating, contributing to impressive Coulombic efficiency and long‐term cycling stability. As a result, the Zn‐I2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g−1 (≈100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn‐I2 batteries, marking a critical advancement in the field of energy storage technologies.
The study uses a zinc pyrrolidone carboxylate additive to reduce polyiodide concentration by preferential coordination with I2, following the Lewis acid–base effect. This suppresses the shuttle effect and improves conversion kinetics of iodine species. Furthermore, pyrrolidone carboxylate anions pre‐adsorb zinc anodes, impeding corrosion and promoting non‐dendritic zinc plating/stripping. Consequently, the zinc‐iodine battery demonstrates an ultralong cycling lifespan (>30 000 cycles). Aqueous zinc–iodine (Zn‐I 2 ) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I 2 based on the Lewis acid‐base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non‐dendritic Zn plating, contributing to impressive Coulombic efficiency and long‐term cycling stability. As a result, the Zn‐I 2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g −1 (≈100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn‐I 2 batteries, marking a critical advancement in the field of energy storage technologies. Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I2 based on the Lewis acid‐base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non‐dendritic Zn plating, contributing to impressive Coulombic efficiency and long‐term cycling stability. As a result, the Zn‐I2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g−1 (≈100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn‐I2 batteries, marking a critical advancement in the field of energy storage technologies. |
Author | Yin, Tianyu Li, Fangbing Yang, Quan‐Hong Yan, Zhijie Liu, Wei Yang, Chunpeng Lu, Jiong Wang, Feifei Liang, Wenbin Liu, Xinyi Chen, Zihui |
Author_xml | – sequence: 1 givenname: Feifei surname: Wang fullname: Wang, Feifei organization: National University of Singapore – sequence: 2 givenname: Wenbin surname: Liang fullname: Liang, Wenbin organization: Haihe Laboratory of Sustainable Chemical Transformations – sequence: 3 givenname: Xinyi surname: Liu fullname: Liu, Xinyi organization: Chinese Academy of Sciences – sequence: 4 givenname: Tianyu surname: Yin fullname: Yin, Tianyu organization: Haihe Laboratory of Sustainable Chemical Transformations – sequence: 5 givenname: Zihui surname: Chen fullname: Chen, Zihui organization: Haihe Laboratory of Sustainable Chemical Transformations – sequence: 6 givenname: Zhijie surname: Yan fullname: Yan, Zhijie organization: Haihe Laboratory of Sustainable Chemical Transformations – sequence: 7 givenname: Fangbing surname: Li fullname: Li, Fangbing organization: Haihe Laboratory of Sustainable Chemical Transformations – sequence: 8 givenname: Wei surname: Liu fullname: Liu, Wei organization: Chinese Academy of Sciences – sequence: 9 givenname: Jiong surname: Lu fullname: Lu, Jiong organization: National University of Singapore – sequence: 10 givenname: Chunpeng surname: Yang fullname: Yang, Chunpeng email: cpyang@tju.edu.cn organization: Haihe Laboratory of Sustainable Chemical Transformations – sequence: 11 givenname: Quan‐Hong orcidid: 0000-0003-2882-3968 surname: Yang fullname: Yang, Quan‐Hong email: qhyangcn@tju.edu.cn organization: Haihe Laboratory of Sustainable Chemical Transformations |
BookMark | eNqFkM1OAjEURhuDiYhsXTdxDd5OCzMsgaCS4M9CNm4mpXNHS4YW2yJhR3wCE9-QJ3EQgomJsZvbm5xzk-87JRVjDRJyzqDJAKJLiWbWjCASAIzBEamyNhONdiKgcvjz6ITUvZ9C-USHAedV8t6lPZ0vjAraGlnQQYEqOFusAtJulumg35BeoQwLh54-OMzRoQm6RPvWukwbuTXpUocXOrTljjTYpXQZHRfBycKa5836Y6RzpE_aqM36c0_1ZAjoNPozcpzLwmN9P2tkfDV47N80RvfXw3531FCcxdCIlYgmkql2gq1WpjIlOpgDTHKMIGZJImRLcYxixhKOcRRPAPO8o5QSyYQDJrxGLnZ3586-LtCHdGoXrgztUw5tITiDFi8psaOUs96XeVOlw3fGMo0uUgbptvB0W3h6KLzUmr-0udMz6VZ_C52dsNQFrv6h0-7g7vbH_QJ2F5ma |
CitedBy_id | crossref_primary_10_1039_D4TA05108D crossref_primary_10_1021_acsami_5c00459 crossref_primary_10_1039_D5EE00075K crossref_primary_10_1002_adma_202411686 crossref_primary_10_1002_smll_202403724 crossref_primary_10_1002_adfm_202420446 crossref_primary_10_1021_acsnano_4c09796 crossref_primary_10_1002_aenm_202406139 crossref_primary_10_1039_D4EE04119D crossref_primary_10_1002_aenm_202404814 crossref_primary_10_1021_acsnano_4c10901 crossref_primary_10_1002_adma_202420005 crossref_primary_10_1002_adma_202416345 crossref_primary_10_1002_adma_202419502 crossref_primary_10_1021_acssuschemeng_4c07186 crossref_primary_10_1002_adfm_202501332 crossref_primary_10_1002_cssc_202400886 crossref_primary_10_1039_D4EE05527F crossref_primary_10_1002_anie_202418069 crossref_primary_10_1093_nsr_nwaf029 crossref_primary_10_1002_ange_202418069 crossref_primary_10_1021_jacs_4c10337 |
Cites_doi | 10.1002/adma.202108856 10.1016/j.ensm.2023.03.032 10.1021/jacs.2c09445 10.1021/acsnano.2c12587 10.1002/aenm.202300606 10.1002/anie.202311032 10.1021/acs.nanolett.2c03433 10.1016/j.ensm.2022.10.017 10.1002/aenm.202202937 10.1039/D3EE03297C 10.1021/jacs.1c12764 10.1021/jacs.2c00551 10.1016/j.joule.2023.06.007 10.1002/ange.202200598 10.1002/adma.202203835 10.1038/s41467-023-39825-3 10.1126/sciadv.aba4098 10.1038/s41563-018-0063-z 10.1002/anie.202218872 10.1039/D3EE01453C 10.1002/anie.202304454 10.1038/s41467-022-32955-0 10.1002/adma.202203104 10.1021/acsnano.2c02996 10.1016/j.esci.2022.04.003 10.1002/adma.202300195 10.1016/j.ensm.2022.06.005 10.1126/sciadv.abn5097 10.1038/s41467-023-37565-y 10.1038/s41560-020-0655-0 10.1016/j.ensm.2022.12.019 10.1038/s41893-021-00800-9 10.1002/aenm.202302187 10.1038/s41560-020-0674-x 10.1002/anie.202310143 10.1002/adfm.202211917 10.1016/j.ensm.2023.102774 10.1038/s41467-023-39877-5 10.1038/s41893-023-01092-x 10.1002/ange.202303292 10.1021/acs.nanolett.2c02514 10.1002/aenm.202203542 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202400110 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202400110 AENM202400110 |
Genre | article |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China funderid: 22379108; 52202279; 51932005 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGYGG AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3170-7c42ba1c68e55dcdc49ef00bfe2071884a5c3e271183e727b0eff9ccc48b30e83 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:12:52 EDT 2025 Tue Jul 01 01:43:56 EDT 2025 Thu Apr 24 22:54:07 EDT 2025 Wed Jun 11 08:25:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3170-7c42ba1c68e55dcdc49ef00bfe2071884a5c3e271183e727b0eff9ccc48b30e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2882-3968 |
PQID | 3064431053 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_3064431053 crossref_citationtrail_10_1002_aenm_202400110 crossref_primary_10_1002_aenm_202400110 wiley_primary_10_1002_aenm_202400110_AENM202400110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 5, 2024 |
PublicationDateYYYYMMDD | 2024-06-05 |
PublicationDate_xml | – month: 06 year: 2024 text: June 5, 2024 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023 2023 2022 2022 2022 2022; 62 62 144 13 34 33 2023 2023; 7 13 2023 2023 2023 2023 2023 2023; 23 13 35 62 55 17 2023 2022 2023 2024; 16 34 135 17 2022 2023 2023; 144 14 13 2020 2018 2021 2020 2022 2022 2020; 5 17 5 5 8 134 6 2022 2022 2023 2023 2022 2022; 12 34 14 54 50 2 2022 2022 2023 2023 2023 2023 2022 2023; 144 22 6 62 58 14 16 59 e_1_2_7_1_6 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_1_5 e_1_2_7_3_3 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_1_4 e_1_2_7_2_3 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_1_3 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_5_6 e_1_2_7_6_5 e_1_2_7_7_4 e_1_2_7_8_3 e_1_2_7_5_5 e_1_2_7_6_4 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_5_4 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_1_7 e_1_2_7_5_3 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_1_1 e_1_2_7_6_8 e_1_2_7_8_6 e_1_2_7_6_7 e_1_2_7_7_6 e_1_2_7_8_5 e_1_2_7_6_6 e_1_2_7_7_5 e_1_2_7_8_4 |
References_xml | – volume: 23 13 35 62 55 17 start-page: 1135 538 3948 year: 2023 2023 2023 2023 2023 2023 publication-title: Nano Lett. Adv. Energy Mater. Adv. Mater. Angew. Chem., Int. Ed. Energy Storage Mater. ACS Nano. – volume: 144 22 6 62 58 14 16 59 start-page: 7160 7535 806 215 4211 9667 year: 2022 2022 2023 2023 2023 2023 2022 2023 publication-title: J. Am. Chem. Soc. Nano Lett. Nat. Sustain. Angew. Chem., Int. Ed. Energy Storage Mater. Nat. Commun. ACS Nano. Energy Storage Mater. – volume: 62 62 144 13 34 33 start-page: 5348 year: 2023 2023 2022 2022 2022 2022 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Nat. Commun. Adv. Mater. Adv. Funct. Mater. – volume: 5 17 5 5 8 134 6 start-page: 743 543 205 646 year: 2020 2018 2021 2020 2022 2022 2020 publication-title: Nat. Energy. Nat. Mater. Nat. Sustain. Nat. Energy. Sci. Adv. Angew. Chem., Int. Ed. Sci. Adv. – volume: 12 34 14 54 50 2 start-page: 4203 75 641 509 year: 2022 2022 2023 2023 2022 2022 publication-title: Adv. Energy Mater. Adv. Mater. Nat. Commun. Energy Storage Mater. Energy Storage Mater. eScience. – volume: 16 34 135 17 start-page: 4630 323 year: 2023 2022 2023 2024 publication-title: Energy Environ. Sci. Adv. Mater. Angew. Chem., Int. Ed. Energy Environ. Sci. – volume: 144 14 13 start-page: 1856 year: 2022 2023 2023 publication-title: J. Am. Chem. Soc. Nat. Commun. Adv. Energy Mater. – volume: 7 13 start-page: 1415 year: 2023 2023 publication-title: Joule. Adv. Energy Mater. – ident: e_1_2_7_3_2 doi: 10.1002/adma.202108856 – ident: e_1_2_7_6_5 doi: 10.1016/j.ensm.2023.03.032 – ident: e_1_2_7_2_1 doi: 10.1021/jacs.2c09445 – ident: e_1_2_7_5_6 doi: 10.1021/acsnano.2c12587 – ident: e_1_2_7_4_2 doi: 10.1002/aenm.202300606 – ident: e_1_2_7_6_4 doi: 10.1002/anie.202311032 – ident: e_1_2_7_5_1 doi: 10.1021/acs.nanolett.2c03433 – ident: e_1_2_7_7_4 doi: 10.1016/j.ensm.2022.10.017 – ident: e_1_2_7_7_1 doi: 10.1002/aenm.202202937 – ident: e_1_2_7_3_4 doi: 10.1039/D3EE03297C – ident: e_1_2_7_6_1 doi: 10.1021/jacs.1c12764 – ident: e_1_2_7_8_3 doi: 10.1021/jacs.2c00551 – ident: e_1_2_7_4_1 doi: 10.1016/j.joule.2023.06.007 – ident: e_1_2_7_1_6 doi: 10.1002/ange.202200598 – ident: e_1_2_7_7_2 doi: 10.1002/adma.202203835 – ident: e_1_2_7_7_3 doi: 10.1038/s41467-023-39825-3 – ident: e_1_2_7_1_7 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_7_1_2 doi: 10.1038/s41563-018-0063-z – ident: e_1_2_7_8_1 doi: 10.1002/anie.202218872 – ident: e_1_2_7_3_1 doi: 10.1039/D3EE01453C – ident: e_1_2_7_5_4 doi: 10.1002/anie.202304454 – ident: e_1_2_7_8_4 doi: 10.1038/s41467-022-32955-0 – ident: e_1_2_7_8_5 doi: 10.1002/adma.202203104 – ident: e_1_2_7_6_7 doi: 10.1021/acsnano.2c02996 – ident: e_1_2_7_7_6 doi: 10.1016/j.esci.2022.04.003 – ident: e_1_2_7_5_3 doi: 10.1002/adma.202300195 – ident: e_1_2_7_7_5 doi: 10.1016/j.ensm.2022.06.005 – ident: e_1_2_7_1_5 doi: 10.1126/sciadv.abn5097 – ident: e_1_2_7_2_2 doi: 10.1038/s41467-023-37565-y – ident: e_1_2_7_1_4 doi: 10.1038/s41560-020-0655-0 – ident: e_1_2_7_5_5 doi: 10.1016/j.ensm.2022.12.019 – ident: e_1_2_7_1_3 doi: 10.1038/s41893-021-00800-9 – ident: e_1_2_7_2_3 doi: 10.1002/aenm.202302187 – ident: e_1_2_7_1_1 doi: 10.1038/s41560-020-0674-x – ident: e_1_2_7_8_2 doi: 10.1002/anie.202310143 – ident: e_1_2_7_8_6 doi: 10.1002/adfm.202211917 – ident: e_1_2_7_6_8 doi: 10.1016/j.ensm.2023.102774 – ident: e_1_2_7_6_6 doi: 10.1038/s41467-023-39877-5 – ident: e_1_2_7_6_3 doi: 10.1038/s41893-023-01092-x – ident: e_1_2_7_3_3 doi: 10.1002/ange.202303292 – ident: e_1_2_7_6_2 doi: 10.1021/acs.nanolett.2c02514 – ident: e_1_2_7_5_2 doi: 10.1002/aenm.202203542 |
SSID | ssj0000491033 |
Score | 2.6238098 |
Snippet | Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental... Aqueous zinc–iodine (Zn‐I 2 ) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anions competitive coordination Coordination Corrosion effects Corrosion tests Cycles electrolyte additive Energy storage Iodine Lewis acid polyiodide Recyclability shuttle effect Zinc Zn‐I2 battery |
Title | A Bifunctional Electrolyte Additive Features Preferential Coordination with Iodine toward Ultralong‐Life Zinc–Iodine Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202400110 https://www.proquest.com/docview/3064431053 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7gUOiF9RWJAPSByqQBrHbXIM0NWCtnuhFYVLFDu2ZKnKriA5lNOKJ0DiwPvtkzCOf-rCIhYuUTuy3SbzZTwz-maM0NOcZBnh0zoSMo4jMHg0yuMKLhBu1WALwR7qfMf8ZHK0TN-u6Gow-BGwlrqWPedfLq0r-R-tggz0qqtk_0GzflEQwGfQL1xBw3C9ko6L0UulNyabz5uZI23Wm1YftFwbVpD28TqIqTXZoq_ta1WfL4CgU5lMoMnFvjmttcPZ9jTa0XKtMyCaruvIEMdKitFHBXdvJcTOMB06HRfRNbR11AJhagvBLzYPZJvAN0bmUMC6ytOClBW_Fw1TW7aQ6rRwpZqNH_rBND9YwIxNF-YukrTnWNHA3IJzEE0ym-EUocw0cfI2Og2waEqqf7P9ppdsJRrdYEBTY8eWMLvTZPuXzc9TEk375qTU80s__xraTyD-AAO6X7yeH7_z6TsIrMYx6cs33D24lqBx8mL3T-y6PNs4JoyGendmcQvdtHEILgyobqOBaO6gG0F3yrvoa4FDeOEAXtjBCzt44RBeOIQX1vDCBizYwAt7eF2cf9PAwhpYF-ff7SgPqXtoeThbvDqK7JEdESf6CKMpTxNWjfkkE5TWvOZpro0AkyIBXzbL0opyIpIphLVEgOvMYiFlzjlPM0ZikZH7aK85bcQDhHPGiKykGEsCXm5KGa1YTSqe1VRSWeVDFLmnWnLbz14fq7IuL1flED3z489MJ5c_jjxwSirt2_651JE6ONuwZw1R0ivuL6uUxexk7r89vPKvP0LXt6_KAdprP3XiMTi-LXtiQfgTQ22usA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bifunctional+Electrolyte+Additive+Features+Preferential+Coordination+with+Iodine+toward+Ultralong%E2%80%90Life+Zinc%E2%80%93Iodine+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Feifei&rft.au=Liang%2C+Wenbin&rft.au=Liu%2C+Xinyi&rft.au=Yin%2C+Tianyu&rft.date=2024-06-05&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=21&rft_id=info:doi/10.1002%2Faenm.202400110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202400110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |