A Bifunctional Electrolyte Additive Features Preferential Coordination with Iodine toward Ultralong‐Life Zinc–Iodine Batteries

Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 21
Main Authors Wang, Feifei, Liang, Wenbin, Liu, Xinyi, Yin, Tianyu, Chen, Zihui, Yan, Zhijie, Li, Fangbing, Liu, Wei, Lu, Jiong, Yang, Chunpeng, Yang, Quan‐Hong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I2 based on the Lewis acid‐base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non‐dendritic Zn plating, contributing to impressive Coulombic efficiency and long‐term cycling stability. As a result, the Zn‐I2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g−1 (≈100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn‐I2 batteries, marking a critical advancement in the field of energy storage technologies. The study uses a zinc pyrrolidone carboxylate additive to reduce polyiodide concentration by preferential coordination with I2, following the Lewis acid–base effect. This suppresses the shuttle effect and improves conversion kinetics of iodine species. Furthermore, pyrrolidone carboxylate anions pre‐adsorb zinc anodes, impeding corrosion and promoting non‐dendritic zinc plating/stripping. Consequently, the zinc‐iodine battery demonstrates an ultralong cycling lifespan (>30 000 cycles).
AbstractList Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I2 based on the Lewis acid‐base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non‐dendritic Zn plating, contributing to impressive Coulombic efficiency and long‐term cycling stability. As a result, the Zn‐I2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g−1 (≈100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn‐I2 batteries, marking a critical advancement in the field of energy storage technologies. The study uses a zinc pyrrolidone carboxylate additive to reduce polyiodide concentration by preferential coordination with I2, following the Lewis acid–base effect. This suppresses the shuttle effect and improves conversion kinetics of iodine species. Furthermore, pyrrolidone carboxylate anions pre‐adsorb zinc anodes, impeding corrosion and promoting non‐dendritic zinc plating/stripping. Consequently, the zinc‐iodine battery demonstrates an ultralong cycling lifespan (>30 000 cycles).
Aqueous zinc–iodine (Zn‐I 2 ) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I 2 based on the Lewis acid‐base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non‐dendritic Zn plating, contributing to impressive Coulombic efficiency and long‐term cycling stability. As a result, the Zn‐I 2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g −1 (≈100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn‐I 2 batteries, marking a critical advancement in the field of energy storage technologies.
Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental friendliness, and recyclability. Its practical application is hindered by challenges including polyiodide “shuttle effect” in the cathode and anode corrosion. In this study, a zinc pyrrolidone carboxylate bifunctional additive is introduced to simultaneously tackle the issues of the polyiodide and Zn anode. It is revealed that the pyrrolidone carboxylate anions decrease the polyiodide concentration by preferential coordination between the pyrrolidone carboxylate anions and I2 based on the Lewis acid‐base effect, suppressing the shuttle effect and therefore improving the conversion kinetics for the iodine redox process. Meanwhile, the pyrrolidone carboxylate anions adsorbed on the Zn anode inhibit Zn corrosion and promote non‐dendritic Zn plating, contributing to impressive Coulombic efficiency and long‐term cycling stability. As a result, the Zn‐I2 full battery with the bifunctional zinc pyrrolidone carboxylate additive realizes a high specific capacity of 211 mAh g−1 (≈100% iodine utilization rate), and an ultralong cycling life of >30 000 cycles with 87% capacity retention. These findings highlight the significant potential of zinc pyrrolidone carboxylate as a transformative additive for aqueous Zn‐I2 batteries, marking a critical advancement in the field of energy storage technologies.
Author Yin, Tianyu
Li, Fangbing
Yang, Quan‐Hong
Yan, Zhijie
Liu, Wei
Yang, Chunpeng
Lu, Jiong
Wang, Feifei
Liang, Wenbin
Liu, Xinyi
Chen, Zihui
Author_xml – sequence: 1
  givenname: Feifei
  surname: Wang
  fullname: Wang, Feifei
  organization: National University of Singapore
– sequence: 2
  givenname: Wenbin
  surname: Liang
  fullname: Liang, Wenbin
  organization: Haihe Laboratory of Sustainable Chemical Transformations
– sequence: 3
  givenname: Xinyi
  surname: Liu
  fullname: Liu, Xinyi
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Tianyu
  surname: Yin
  fullname: Yin, Tianyu
  organization: Haihe Laboratory of Sustainable Chemical Transformations
– sequence: 5
  givenname: Zihui
  surname: Chen
  fullname: Chen, Zihui
  organization: Haihe Laboratory of Sustainable Chemical Transformations
– sequence: 6
  givenname: Zhijie
  surname: Yan
  fullname: Yan, Zhijie
  organization: Haihe Laboratory of Sustainable Chemical Transformations
– sequence: 7
  givenname: Fangbing
  surname: Li
  fullname: Li, Fangbing
  organization: Haihe Laboratory of Sustainable Chemical Transformations
– sequence: 8
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Jiong
  surname: Lu
  fullname: Lu, Jiong
  organization: National University of Singapore
– sequence: 10
  givenname: Chunpeng
  surname: Yang
  fullname: Yang, Chunpeng
  email: cpyang@tju.edu.cn
  organization: Haihe Laboratory of Sustainable Chemical Transformations
– sequence: 11
  givenname: Quan‐Hong
  orcidid: 0000-0003-2882-3968
  surname: Yang
  fullname: Yang, Quan‐Hong
  email: qhyangcn@tju.edu.cn
  organization: Haihe Laboratory of Sustainable Chemical Transformations
BookMark eNqFkM1OAjEURhuDiYhsXTdxDd5OCzMsgaCS4M9CNm4mpXNHS4YW2yJhR3wCE9-QJ3EQgomJsZvbm5xzk-87JRVjDRJyzqDJAKJLiWbWjCASAIzBEamyNhONdiKgcvjz6ITUvZ9C-USHAedV8t6lPZ0vjAraGlnQQYEqOFusAtJulumg35BeoQwLh54-OMzRoQm6RPvWukwbuTXpUocXOrTljjTYpXQZHRfBycKa5836Y6RzpE_aqM36c0_1ZAjoNPozcpzLwmN9P2tkfDV47N80RvfXw3531FCcxdCIlYgmkql2gq1WpjIlOpgDTHKMIGZJImRLcYxixhKOcRRPAPO8o5QSyYQDJrxGLnZ3586-LtCHdGoXrgztUw5tITiDFi8psaOUs96XeVOlw3fGMo0uUgbptvB0W3h6KLzUmr-0udMz6VZ_C52dsNQFrv6h0-7g7vbH_QJ2F5ma
CitedBy_id crossref_primary_10_1039_D4TA05108D
crossref_primary_10_1021_acsami_5c00459
crossref_primary_10_1039_D5EE00075K
crossref_primary_10_1002_adma_202411686
crossref_primary_10_1002_smll_202403724
crossref_primary_10_1002_adfm_202420446
crossref_primary_10_1021_acsnano_4c09796
crossref_primary_10_1002_aenm_202406139
crossref_primary_10_1039_D4EE04119D
crossref_primary_10_1002_aenm_202404814
crossref_primary_10_1021_acsnano_4c10901
crossref_primary_10_1002_adma_202420005
crossref_primary_10_1002_adma_202416345
crossref_primary_10_1002_adma_202419502
crossref_primary_10_1021_acssuschemeng_4c07186
crossref_primary_10_1002_adfm_202501332
crossref_primary_10_1002_cssc_202400886
crossref_primary_10_1039_D4EE05527F
crossref_primary_10_1002_anie_202418069
crossref_primary_10_1093_nsr_nwaf029
crossref_primary_10_1002_ange_202418069
crossref_primary_10_1021_jacs_4c10337
Cites_doi 10.1002/adma.202108856
10.1016/j.ensm.2023.03.032
10.1021/jacs.2c09445
10.1021/acsnano.2c12587
10.1002/aenm.202300606
10.1002/anie.202311032
10.1021/acs.nanolett.2c03433
10.1016/j.ensm.2022.10.017
10.1002/aenm.202202937
10.1039/D3EE03297C
10.1021/jacs.1c12764
10.1021/jacs.2c00551
10.1016/j.joule.2023.06.007
10.1002/ange.202200598
10.1002/adma.202203835
10.1038/s41467-023-39825-3
10.1126/sciadv.aba4098
10.1038/s41563-018-0063-z
10.1002/anie.202218872
10.1039/D3EE01453C
10.1002/anie.202304454
10.1038/s41467-022-32955-0
10.1002/adma.202203104
10.1021/acsnano.2c02996
10.1016/j.esci.2022.04.003
10.1002/adma.202300195
10.1016/j.ensm.2022.06.005
10.1126/sciadv.abn5097
10.1038/s41467-023-37565-y
10.1038/s41560-020-0655-0
10.1016/j.ensm.2022.12.019
10.1038/s41893-021-00800-9
10.1002/aenm.202302187
10.1038/s41560-020-0674-x
10.1002/anie.202310143
10.1002/adfm.202211917
10.1016/j.ensm.2023.102774
10.1038/s41467-023-39877-5
10.1038/s41893-023-01092-x
10.1002/ange.202303292
10.1021/acs.nanolett.2c02514
10.1002/aenm.202203542
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202400110
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202400110
AENM202400110
Genre article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
– fundername: National Natural Science Foundation of China
  funderid: 22379108; 52202279; 51932005
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3170-7c42ba1c68e55dcdc49ef00bfe2071884a5c3e271183e727b0eff9ccc48b30e83
ISSN 1614-6832
IngestDate Fri Jul 25 12:12:52 EDT 2025
Tue Jul 01 01:43:56 EDT 2025
Thu Apr 24 22:54:07 EDT 2025
Wed Jun 11 08:25:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3170-7c42ba1c68e55dcdc49ef00bfe2071884a5c3e271183e727b0eff9ccc48b30e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2882-3968
PQID 3064431053
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_3064431053
crossref_citationtrail_10_1002_aenm_202400110
crossref_primary_10_1002_aenm_202400110
wiley_primary_10_1002_aenm_202400110_AENM202400110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 5, 2024
PublicationDateYYYYMMDD 2024-06-05
PublicationDate_xml – month: 06
  year: 2024
  text: June 5, 2024
  day: 05
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023 2023 2022 2022 2022 2022; 62 62 144 13 34 33
2023 2023; 7 13
2023 2023 2023 2023 2023 2023; 23 13 35 62 55 17
2023 2022 2023 2024; 16 34 135 17
2022 2023 2023; 144 14 13
2020 2018 2021 2020 2022 2022 2020; 5 17 5 5 8 134 6
2022 2022 2023 2023 2022 2022; 12 34 14 54 50 2
2022 2022 2023 2023 2023 2023 2022 2023; 144 22 6 62 58 14 16 59
e_1_2_7_1_6
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_1_5
e_1_2_7_3_3
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_1_4
e_1_2_7_2_3
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_1_3
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_5_6
e_1_2_7_6_5
e_1_2_7_7_4
e_1_2_7_8_3
e_1_2_7_5_5
e_1_2_7_6_4
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_5_4
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_1_7
e_1_2_7_5_3
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_1_1
e_1_2_7_6_8
e_1_2_7_8_6
e_1_2_7_6_7
e_1_2_7_7_6
e_1_2_7_8_5
e_1_2_7_6_6
e_1_2_7_7_5
e_1_2_7_8_4
References_xml – volume: 23 13 35 62 55 17
  start-page: 1135 538 3948
  year: 2023 2023 2023 2023 2023 2023
  publication-title: Nano Lett. Adv. Energy Mater. Adv. Mater. Angew. Chem., Int. Ed. Energy Storage Mater. ACS Nano.
– volume: 144 22 6 62 58 14 16 59
  start-page: 7160 7535 806 215 4211 9667
  year: 2022 2022 2023 2023 2023 2023 2022 2023
  publication-title: J. Am. Chem. Soc. Nano Lett. Nat. Sustain. Angew. Chem., Int. Ed. Energy Storage Mater. Nat. Commun. ACS Nano. Energy Storage Mater.
– volume: 62 62 144 13 34 33
  start-page: 5348
  year: 2023 2023 2022 2022 2022 2022
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. Nat. Commun. Adv. Mater. Adv. Funct. Mater.
– volume: 5 17 5 5 8 134 6
  start-page: 743 543 205 646
  year: 2020 2018 2021 2020 2022 2022 2020
  publication-title: Nat. Energy. Nat. Mater. Nat. Sustain. Nat. Energy. Sci. Adv. Angew. Chem., Int. Ed. Sci. Adv.
– volume: 12 34 14 54 50 2
  start-page: 4203 75 641 509
  year: 2022 2022 2023 2023 2022 2022
  publication-title: Adv. Energy Mater. Adv. Mater. Nat. Commun. Energy Storage Mater. Energy Storage Mater. eScience.
– volume: 16 34 135 17
  start-page: 4630 323
  year: 2023 2022 2023 2024
  publication-title: Energy Environ. Sci. Adv. Mater. Angew. Chem., Int. Ed. Energy Environ. Sci.
– volume: 144 14 13
  start-page: 1856
  year: 2022 2023 2023
  publication-title: J. Am. Chem. Soc. Nat. Commun. Adv. Energy Mater.
– volume: 7 13
  start-page: 1415
  year: 2023 2023
  publication-title: Joule. Adv. Energy Mater.
– ident: e_1_2_7_3_2
  doi: 10.1002/adma.202108856
– ident: e_1_2_7_6_5
  doi: 10.1016/j.ensm.2023.03.032
– ident: e_1_2_7_2_1
  doi: 10.1021/jacs.2c09445
– ident: e_1_2_7_5_6
  doi: 10.1021/acsnano.2c12587
– ident: e_1_2_7_4_2
  doi: 10.1002/aenm.202300606
– ident: e_1_2_7_6_4
  doi: 10.1002/anie.202311032
– ident: e_1_2_7_5_1
  doi: 10.1021/acs.nanolett.2c03433
– ident: e_1_2_7_7_4
  doi: 10.1016/j.ensm.2022.10.017
– ident: e_1_2_7_7_1
  doi: 10.1002/aenm.202202937
– ident: e_1_2_7_3_4
  doi: 10.1039/D3EE03297C
– ident: e_1_2_7_6_1
  doi: 10.1021/jacs.1c12764
– ident: e_1_2_7_8_3
  doi: 10.1021/jacs.2c00551
– ident: e_1_2_7_4_1
  doi: 10.1016/j.joule.2023.06.007
– ident: e_1_2_7_1_6
  doi: 10.1002/ange.202200598
– ident: e_1_2_7_7_2
  doi: 10.1002/adma.202203835
– ident: e_1_2_7_7_3
  doi: 10.1038/s41467-023-39825-3
– ident: e_1_2_7_1_7
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_7_1_2
  doi: 10.1038/s41563-018-0063-z
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.202218872
– ident: e_1_2_7_3_1
  doi: 10.1039/D3EE01453C
– ident: e_1_2_7_5_4
  doi: 10.1002/anie.202304454
– ident: e_1_2_7_8_4
  doi: 10.1038/s41467-022-32955-0
– ident: e_1_2_7_8_5
  doi: 10.1002/adma.202203104
– ident: e_1_2_7_6_7
  doi: 10.1021/acsnano.2c02996
– ident: e_1_2_7_7_6
  doi: 10.1016/j.esci.2022.04.003
– ident: e_1_2_7_5_3
  doi: 10.1002/adma.202300195
– ident: e_1_2_7_7_5
  doi: 10.1016/j.ensm.2022.06.005
– ident: e_1_2_7_1_5
  doi: 10.1126/sciadv.abn5097
– ident: e_1_2_7_2_2
  doi: 10.1038/s41467-023-37565-y
– ident: e_1_2_7_1_4
  doi: 10.1038/s41560-020-0655-0
– ident: e_1_2_7_5_5
  doi: 10.1016/j.ensm.2022.12.019
– ident: e_1_2_7_1_3
  doi: 10.1038/s41893-021-00800-9
– ident: e_1_2_7_2_3
  doi: 10.1002/aenm.202302187
– ident: e_1_2_7_1_1
  doi: 10.1038/s41560-020-0674-x
– ident: e_1_2_7_8_2
  doi: 10.1002/anie.202310143
– ident: e_1_2_7_8_6
  doi: 10.1002/adfm.202211917
– ident: e_1_2_7_6_8
  doi: 10.1016/j.ensm.2023.102774
– ident: e_1_2_7_6_6
  doi: 10.1038/s41467-023-39877-5
– ident: e_1_2_7_6_3
  doi: 10.1038/s41893-023-01092-x
– ident: e_1_2_7_3_3
  doi: 10.1002/ange.202303292
– ident: e_1_2_7_6_2
  doi: 10.1021/acs.nanolett.2c02514
– ident: e_1_2_7_5_2
  doi: 10.1002/aenm.202203542
SSID ssj0000491033
Score 2.6238098
Snippet Aqueous zinc–iodine (Zn‐I2) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental...
Aqueous zinc–iodine (Zn‐I 2 ) battery is one of the most promising candidates for large‐scale energy storage due to its cost‐effectiveness, environmental...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anions
competitive coordination
Coordination
Corrosion effects
Corrosion tests
Cycles
electrolyte additive
Energy storage
Iodine
Lewis acid
polyiodide
Recyclability
shuttle effect
Zinc
Zn‐I2 battery
Title A Bifunctional Electrolyte Additive Features Preferential Coordination with Iodine toward Ultralong‐Life Zinc–Iodine Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202400110
https://www.proquest.com/docview/3064431053
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbK7gUOiF9RWJAPSByqQBrHbXIM0NWCtnuhFYVLFDu2ZKnKriA5lNOKJ0DiwPvtkzCOf-rCIhYuUTuy3SbzZTwz-maM0NOcZBnh0zoSMo4jMHg0yuMKLhBu1WALwR7qfMf8ZHK0TN-u6Gow-BGwlrqWPedfLq0r-R-tggz0qqtk_0GzflEQwGfQL1xBw3C9ko6L0UulNyabz5uZI23Wm1YftFwbVpD28TqIqTXZoq_ta1WfL4CgU5lMoMnFvjmttcPZ9jTa0XKtMyCaruvIEMdKitFHBXdvJcTOMB06HRfRNbR11AJhagvBLzYPZJvAN0bmUMC6ytOClBW_Fw1TW7aQ6rRwpZqNH_rBND9YwIxNF-YukrTnWNHA3IJzEE0ym-EUocw0cfI2Og2waEqqf7P9ppdsJRrdYEBTY8eWMLvTZPuXzc9TEk375qTU80s__xraTyD-AAO6X7yeH7_z6TsIrMYx6cs33D24lqBx8mL3T-y6PNs4JoyGendmcQvdtHEILgyobqOBaO6gG0F3yrvoa4FDeOEAXtjBCzt44RBeOIQX1vDCBizYwAt7eF2cf9PAwhpYF-ff7SgPqXtoeThbvDqK7JEdESf6CKMpTxNWjfkkE5TWvOZpro0AkyIBXzbL0opyIpIphLVEgOvMYiFlzjlPM0ZikZH7aK85bcQDhHPGiKykGEsCXm5KGa1YTSqe1VRSWeVDFLmnWnLbz14fq7IuL1flED3z489MJ5c_jjxwSirt2_651JE6ONuwZw1R0ivuL6uUxexk7r89vPKvP0LXt6_KAdprP3XiMTi-LXtiQfgTQ22usA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bifunctional+Electrolyte+Additive+Features+Preferential+Coordination+with+Iodine+toward+Ultralong%E2%80%90Life+Zinc%E2%80%93Iodine+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Wang%2C+Feifei&rft.au=Liang%2C+Wenbin&rft.au=Liu%2C+Xinyi&rft.au=Yin%2C+Tianyu&rft.date=2024-06-05&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=21&rft_id=info:doi/10.1002%2Faenm.202400110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_202400110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon