Covalent‐Induced Heterostructure of Covalent‐Organic Frameworks and MXene as Advanced Electrodes with Motivated Pseudocapacitance Performance
Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti3C2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐b...
Saved in:
Published in | ChemElectroChem Vol. 9; no. 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
26.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti3C2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐based COFs (AQ‐COF) to fabricate the heterostructures of COFs uniformly dispersed on surface of MXene, based on the covalent interaction between terminal C=O groups of COFs and amino units of MXene. Besides, the morphology and porous structures of COF@MXene heterostructures are optimized by controlling the amounts of MXene nanosheets. Combining the superiority from the two‐dimensional structure with high conductivity of MXene and porous structure with abundant redox‐active groups inherited from AQ‐COF, the COF@MXene‐15 heterostructure electrode delivers large surface area with optimal porous structures, leading to the maximally‐activated C=O units for charge‐storage and capacitance‐controlled electrochemical kinetics. Improved specific capacitance (290 F g−1 at 0.5 A g−1) and rate capability can be achieved for the COF@MXene‐15 heterostructure as the electrode for supercapacitor in Na2SO4 electrolyte. It is the first time to report the heterostructure of COFs and MXene as the electrode for supercapacitor, and this work would promote further application of COFs and related materials for other energy‐storage systems.
COFs combined with MXene: The strategy of anthraquinone‐based covalent organic frameworks (AQ‐COF) in‐situ grown on amino‐modified Ti3C2 MXene nanosheets through covalent interaction is adopted to construct a series of porous COF@MXene heterostructures with improved electrochemical performance as electrodes for high‐performance supercapacitor. |
---|---|
AbstractList | Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti
3
C
2
MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐based COFs (AQ‐COF) to fabricate the heterostructures of COFs uniformly dispersed on surface of MXene, based on the covalent interaction between terminal C=O groups of COFs and amino units of MXene. Besides, the morphology and porous structures of COF@MXene heterostructures are optimized by controlling the amounts of MXene nanosheets. Combining the superiority from the two‐dimensional structure with high conductivity of MXene and porous structure with abundant redox‐active groups inherited from AQ‐COF, the COF@MXene‐15 heterostructure electrode delivers large surface area with optimal porous structures, leading to the maximally‐activated C=O units for charge‐storage and capacitance‐controlled electrochemical kinetics. Improved specific capacitance (290 F g
−1
at 0.5 A g
−1
) and rate capability can be achieved for the COF@MXene‐15 heterostructure as the electrode for supercapacitor in Na
2
SO
4
electrolyte. It is the first time to report the heterostructure of COFs and MXene as the electrode for supercapacitor, and this work would promote further application of COFs and related materials for other energy‐storage systems. Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti3C2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐based COFs (AQ‐COF) to fabricate the heterostructures of COFs uniformly dispersed on surface of MXene, based on the covalent interaction between terminal C=O groups of COFs and amino units of MXene. Besides, the morphology and porous structures of COF@MXene heterostructures are optimized by controlling the amounts of MXene nanosheets. Combining the superiority from the two‐dimensional structure with high conductivity of MXene and porous structure with abundant redox‐active groups inherited from AQ‐COF, the COF@MXene‐15 heterostructure electrode delivers large surface area with optimal porous structures, leading to the maximally‐activated C=O units for charge‐storage and capacitance‐controlled electrochemical kinetics. Improved specific capacitance (290 F g−1 at 0.5 A g−1) and rate capability can be achieved for the COF@MXene‐15 heterostructure as the electrode for supercapacitor in Na2SO4 electrolyte. It is the first time to report the heterostructure of COFs and MXene as the electrode for supercapacitor, and this work would promote further application of COFs and related materials for other energy‐storage systems. COFs combined with MXene: The strategy of anthraquinone‐based covalent organic frameworks (AQ‐COF) in‐situ grown on amino‐modified Ti3C2 MXene nanosheets through covalent interaction is adopted to construct a series of porous COF@MXene heterostructures with improved electrochemical performance as electrodes for high‐performance supercapacitor. Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti3C2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐based COFs (AQ‐COF) to fabricate the heterostructures of COFs uniformly dispersed on surface of MXene, based on the covalent interaction between terminal C=O groups of COFs and amino units of MXene. Besides, the morphology and porous structures of COF@MXene heterostructures are optimized by controlling the amounts of MXene nanosheets. Combining the superiority from the two‐dimensional structure with high conductivity of MXene and porous structure with abundant redox‐active groups inherited from AQ‐COF, the COF@MXene‐15 heterostructure electrode delivers large surface area with optimal porous structures, leading to the maximally‐activated C=O units for charge‐storage and capacitance‐controlled electrochemical kinetics. Improved specific capacitance (290 F g−1 at 0.5 A g−1) and rate capability can be achieved for the COF@MXene‐15 heterostructure as the electrode for supercapacitor in Na2SO4 electrolyte. It is the first time to report the heterostructure of COFs and MXene as the electrode for supercapacitor, and this work would promote further application of COFs and related materials for other energy‐storage systems. |
Author | Geng, Qianhao Wang, Haichao Wu, Yang Lv, Li‐Ping Chen, Shuangqiang Wang, Yong Sun, Weiwei |
Author_xml | – sequence: 1 givenname: Qianhao surname: Geng fullname: Geng, Qianhao organization: Shanghai University – sequence: 2 givenname: Haichao surname: Wang fullname: Wang, Haichao organization: Shanghai University – sequence: 3 givenname: Yang surname: Wu fullname: Wu, Yang organization: Shanghai University – sequence: 4 givenname: Li‐Ping surname: Lv fullname: Lv, Li‐Ping organization: Shanghai University – sequence: 5 givenname: Shuangqiang surname: Chen fullname: Chen, Shuangqiang organization: Shanghai University – sequence: 6 givenname: Weiwei surname: Sun fullname: Sun, Weiwei email: vivisun@shu.edu.cn organization: Shanghai University – sequence: 7 givenname: Yong orcidid: 0000-0003-3489-7672 surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn organization: Shanghai University |
BookMark | eNqFkM9KxDAQh4Mo-PfqOeB510mybbdHKasrrOhBwVtJk4lWu8mapLt48xH0FX0SW1ZUBPGUIfN9M8Nvl2xaZ5GQQwZDBsCPFTZqyIFzADGCDbLDWZ4OgLN080e9TQ5CeAAAxiAR43SHvBVuKRu08f3l9dzqVqGmU4zoXYi-VbH1SJ2hP6hLfydtreipl3NcOf8YqLSaXtyiRSoDPdFLafsxkwZV9E5joKs63tMLF-uljF3nKmCrnZILqerYw_QKvXF-3tf7ZMvIJuDB57tHbk4n18V0MLs8Oy9OZgMlWAaDtKqYqZJRmqk0h-5Pg0m4QGMSSMZjUelqJLgQPJd5lgklMWEKZaK5qFI0KPbI0XruwrunFkMsH1zrbbey5BmkOc9zDh01WlOqSyR4NGV_cqydjV7WTcmg7PMv-_zLr_w7bfhLW_h6Lv3z30K-FlZ1g8__0GUxmRXf7gfVy58y |
CitedBy_id | crossref_primary_10_1039_D4TA08466G crossref_primary_10_1002_inf2_70011 crossref_primary_10_1016_j_chphma_2024_08_002 crossref_primary_10_1002_admt_202201828 crossref_primary_10_1007_s43979_024_00110_x crossref_primary_10_1016_j_cej_2023_141434 crossref_primary_10_1021_acs_cgd_3c00206 crossref_primary_10_1039_D4MH00161C crossref_primary_10_3390_atmos14010181 crossref_primary_10_3390_nano14171388 crossref_primary_10_1021_acs_langmuir_4c03536 crossref_primary_10_3390_nano14010062 crossref_primary_10_1021_acsaem_5c00052 crossref_primary_10_1002_jccs_202400082 crossref_primary_10_1002_bte2_20230033 crossref_primary_10_1002_smll_202410544 crossref_primary_10_3390_ijerph191710710 crossref_primary_10_1039_D3GC03778A crossref_primary_10_1016_j_cej_2025_160631 crossref_primary_10_1002_celc_202300234 |
Cites_doi | 10.1016/j.jpcs.2017.12.039 10.1016/j.cej.2019.122640 10.1016/j.apsusc.2015.11.171 10.1016/j.cej.2019.123373 10.1016/j.matdes.2016.01.026 10.1002/aenm.201803665 10.1021/jacs.8b06460 10.1016/j.ceramint.2016.02.059 10.1002/smtd.202000434 10.1016/j.diamond.2021.108447 10.1039/C7CS00205J 10.1016/j.jpowsour.2014.10.183 10.1016/j.jpowsour.2019.227506 10.1016/j.jpowsour.2019.227616 10.1016/j.cej.2021.130203 10.1039/D0CS00059K 10.1016/j.cclet.2017.10.024 10.1039/C9CS00890J 10.1016/j.cej.2021.129161 10.1021/acsaem.1c00155 10.1016/j.carbon.2020.09.003 10.1021/acs.analchem.9b05372 10.1002/aenm.201904199 10.1002/smll.202006002 10.1016/j.cej.2021.128750 10.1016/j.cej.2019.123890 10.1016/j.est.2021.102618 10.1016/j.cej.2020.126031 10.1039/b925176f 10.1016/j.jallcom.2021.161945 10.1039/c3ta13361c 10.1021/jacs.0c00054 10.1016/j.nanoen.2016.07.020 10.1002/adma.201806931 10.1002/advs.201800750 10.1002/adfm.202101194 10.1039/D0CS00017E 10.1002/adfm.202000842 10.1021/acscentsci.6b00220 10.1021/acsnano.5b00184 10.1002/anie.201711169 10.1038/s41467-020-18427-3 10.1016/j.nanoen.2021.106007 10.1039/D1MH01882E 10.1021/acs.chemmater.5b01623 10.1021/ja409421d 10.1016/j.jcis.2021.06.004 10.1016/j.ensm.2020.11.035 10.1021/acsami.9b17847 10.1039/D1TA04313G 10.1016/j.carbon.2019.07.095 10.1016/j.nanoen.2021.106633 10.1039/C9TA00076C 10.1016/j.cej.2021.129693 10.1016/j.est.2020.101602 10.1002/aenm.201600969 10.1038/s41563-020-0747-z 10.1021/acs.chemrev.9b00466 10.1002/smll.201703419 10.1021/acsnano.0c01056 10.1021/acs.chemrev.0c00170 10.1002/ange.201711169 10.1016/j.jmst.2020.05.002 10.1016/j.est.2020.101652 10.1039/D1TC03856G 10.1021/acsami.9b22081 10.1016/j.ensm.2020.07.001 10.1021/acsami.8b21696 10.1021/acsami.0c16959 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1002/celc.202200340 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2196-0216 |
EndPage | n/a |
ExternalDocumentID | 10_1002_celc_202200340 CELC202200340 |
Genre | article |
GrantInformation_xml | – fundername: Science and Technology Commission of Shanghai funderid: 22010500400 – fundername: Innovation Program of Shanghai Municipal Education Commission funderid: 2019-01-07-00-09-E00021 – fundername: Innovative research team of high-level local universities in Shanghai – fundername: National Natural Science Foundation of China funderid: 52073170 |
GroupedDBID | 0R~ 1OC 24P 33P 8-1 AAESR AAHHS AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BFHJK BMXJE BRXPI DCZOG DPXWK DRFUL DRSTM EBS G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ TUS WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX ABJNI ADMLS CITATION 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-c3170-6bb1fb5467c690c31d0f523eff505883bdb4323329a9773cae51cea5d23b6efe3 |
ISSN | 2196-0216 |
IngestDate | Fri Jul 25 11:55:49 EDT 2025 Tue Jul 01 01:11:12 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 Sat Aug 24 00:54:51 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3170-6bb1fb5467c690c31d0f523eff505883bdb4323329a9773cae51cea5d23b6efe3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3489-7672 |
PQID | 2706929920 |
PQPubID | 2034587 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2706929920 crossref_citationtrail_10_1002_celc_202200340 crossref_primary_10_1002_celc_202200340 wiley_primary_10_1002_celc_202200340_CELC202200340 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 26, 2022 |
PublicationDateYYYYMMDD | 2022-08-26 |
PublicationDate_xml | – month: 08 year: 2022 text: August 26, 2022 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemElectroChem |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2022; 891 2013; 1 2020; 120 2019; 11 2017; 46 2021; 602 2020; 401 2020; 14 2020; 12 2020; 11 2020; 10 2020; 54 2020; 449 2020; 19 2021; 35 2010; 20 2018; 8 2020; 4 2021; 31 2018; 5 2020; 450 2018 2018; 57 130 2021; 39 2021; 116 2020; 92 2020; 49 2016; 42 2021; 85 2019; 154 2021; 9 2019; 7 2019; 9 2021; 4 2018; 140 2019; 31 2021; 420 2017; 28 2020; 142 2021; 423 2020; 384 2020; 381 2022; 91 2016; 94 2020; 32 2015; 9 2016; 361 2021; 417 2016; 6 2015; 27 2016; 2 2020; 31 2020; 30 2021; 412 2021; 17 2022; 9 2018; 115 2015; 275 2020; 392 2021; 171 2013; 135 2022; 2 2016; 27 2018; 14 e_1_2_8_28_1 e_1_2_8_49_2 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 Lu S. Y. (e_1_2_8_17_1) 2018; 8 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 Nan J. X. (e_1_2_8_34_1) 2019; 9 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 49 start-page: 2291 year: 2020 end-page: 2302 publication-title: Chem. Soc. Rev. – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 401 year: 2020 publication-title: Chem. Eng. J. – volume: 20 start-page: 3729 year: 2010 end-page: 3735 publication-title: J. Mater. Chem. – volume: 27 start-page: 5314 year: 2015 end-page: 5323 publication-title: Chem. Mater. – volume: 27 start-page: 377 year: 2016 end-page: 389 publication-title: Nano Energy – volume: 2 start-page: 667 year: 2016 end-page: 673 publication-title: ACS Cent. Sci. – volume: 91 year: 2022 publication-title: Nano Energy – volume: 28 start-page: 2269 year: 2017 end-page: 2273 publication-title: Chin. Chem. Lett. – volume: 14 year: 2018 publication-title: Small – volume: 449 year: 2020 publication-title: J. Power Sources – volume: 85 year: 2021 publication-title: Nano Energy – volume: 602 start-page: 131 year: 2021 end-page: 145 publication-title: J. Colloid Interface Sci. – volume: 46 start-page: 6816 year: 2017 end-page: 6854 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 13120 year: 2013 end-page: 13127 publication-title: J. Mater. Chem. A – volume: 450 year: 2020 publication-title: J. Power Sources. – volume: 57 130 start-page: 7992 8124 year: 2018 2018 end-page: 7996 8128 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 39 year: 2021 publication-title: J. Energy Storage – volume: 35 start-page: 630 year: 2021 end-page: 660 publication-title: Energy Storage Mater. – volume: 142 start-page: 4862 year: 2020 end-page: 4871 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 45805 year: 2019 end-page: 45817 publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 start-page: 4712 year: 2020 publication-title: Nat. Commun. – volume: 49 start-page: 3565 year: 2020 end-page: 3604 publication-title: Chem. Soc. Rev. – volume: 135 start-page: 16821 year: 2013 end-page: 16824 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 7661 year: 2019 end-page: 7665 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 10479 year: 2020 end-page: 10489 publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 54791 year: 2020 end-page: 54797 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 5416 year: 2019 end-page: 5425 publication-title: J. Mater. Chem. A – volume: 140 start-page: 10941 year: 2018 end-page: 10945 publication-title: J. Am. Chem. Soc. – volume: 54 start-page: 144 year: 2020 end-page: 159 publication-title: J. Mater. Sci. Technol. – volume: 417 year: 2021 publication-title: Chem. Eng. J. – volume: 412 year: 2021 publication-title: Chem. Eng. J. – volume: 31 year: 2020 publication-title: J. Energy Storage – volume: 381 year: 2020 publication-title: Chem. Eng. J. – volume: 42 start-page: 8419 year: 2016 end-page: 8424 publication-title: Ceram. Int. – volume: 275 start-page: 399 year: 2015 end-page: 407 publication-title: J. Power Sources – volume: 392 year: 2020 publication-title: Chem. Eng. J. – volume: 49 start-page: 3005 year: 2020 end-page: 3039 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 542 year: 2022 end-page: 548 publication-title: J. Mater. Chem. C – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 92 start-page: 3354 year: 2020 end-page: 3360 publication-title: Anal. Chem. – volume: 154 start-page: 292 year: 2019 end-page: 300 publication-title: Carbon – volume: 17 year: 2021 publication-title: Small – volume: 423 year: 2021 publication-title: Chem. Eng. J. – volume: 9 start-page: 3178 year: 2015 end-page: 3183 publication-title: ACS Nano – volume: 120 start-page: 6738 year: 2020 end-page: 6782 publication-title: Chem. Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 361 start-page: 57 year: 2016 end-page: 62 publication-title: Appl. Surf. Sci. – volume: 120 start-page: 2811 year: 2020 end-page: 2878 publication-title: Chem. Rev. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 384 year: 2020 publication-title: Chem. Eng. J. – volume: 14 start-page: 4916 year: 2020 end-page: 4924 publication-title: ACS Nano – volume: 32 start-page: 448 year: 2020 end-page: 457 publication-title: Energy Storage Mater. – volume: 9 start-page: 16824 year: 2021 end-page: 16833 publication-title: J. Mater. Chem. – volume: 4 year: 2020 publication-title: Small Methods – volume: 19 start-page: 1151 year: 2020 end-page: 1163 publication-title: Nat. Mater. – volume: 4 start-page: 4519 year: 2021 end-page: 4529 publication-title: ACS Appl. Energ. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 116 year: 2021 publication-title: Diamond Relat. Mater. – volume: 9 start-page: 1708 year: 2022 end-page: 1716 publication-title: Mater. Horiz. – volume: 94 start-page: 132 year: 2016 end-page: 138 publication-title: Mater. Des. – volume: 171 start-page: 248 year: 2021 end-page: 256 publication-title: Carbon – volume: 891 year: 2022 publication-title: J. Alloys Compd. – volume: 9 year: 2019 publication-title: Small – volume: 115 start-page: 172 year: 2018 end-page: 179 publication-title: J. Phys. Chem. Solids – volume: 420 year: 2021 publication-title: Chem. Eng. J. – volume: 9 start-page: 1902085 year: 2019 ident: e_1_2_8_34_1 publication-title: Small – ident: e_1_2_8_47_1 doi: 10.1016/j.jpcs.2017.12.039 – ident: e_1_2_8_53_1 doi: 10.1016/j.cej.2019.122640 – ident: e_1_2_8_60_1 doi: 10.1016/j.apsusc.2015.11.171 – ident: e_1_2_8_62_1 doi: 10.1016/j.cej.2019.123373 – ident: e_1_2_8_44_1 doi: 10.1016/j.matdes.2016.01.026 – ident: e_1_2_8_67_1 doi: 10.1002/aenm.201803665 – ident: e_1_2_8_23_1 doi: 10.1021/jacs.8b06460 – ident: e_1_2_8_48_1 doi: 10.1016/j.ceramint.2016.02.059 – ident: e_1_2_8_51_1 doi: 10.1002/smtd.202000434 – ident: e_1_2_8_65_1 doi: 10.1016/j.diamond.2021.108447 – ident: e_1_2_8_22_1 doi: 10.1039/C7CS00205J – ident: e_1_2_8_58_1 doi: 10.1016/j.jpowsour.2014.10.183 – ident: e_1_2_8_7_1 doi: 10.1016/j.jpowsour.2019.227506 – ident: e_1_2_8_55_1 doi: 10.1016/j.jpowsour.2019.227616 – ident: e_1_2_8_66_1 doi: 10.1016/j.cej.2021.130203 – ident: e_1_2_8_6_1 doi: 10.1039/D0CS00059K – ident: e_1_2_8_27_1 doi: 10.1016/j.cclet.2017.10.024 – volume: 8 start-page: 1086931 year: 2018 ident: e_1_2_8_17_1 publication-title: Adv. Energy Mater. – ident: e_1_2_8_21_1 doi: 10.1039/C9CS00890J – ident: e_1_2_8_46_1 doi: 10.1016/j.cej.2021.129161 – ident: e_1_2_8_59_1 doi: 10.1021/acsaem.1c00155 – ident: e_1_2_8_52_1 doi: 10.1016/j.carbon.2020.09.003 – ident: e_1_2_8_69_1 doi: 10.1021/acs.analchem.9b05372 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.201904199 – ident: e_1_2_8_10_1 doi: 10.1002/smll.202006002 – ident: e_1_2_8_63_1 doi: 10.1016/j.cej.2021.128750 – ident: e_1_2_8_61_1 doi: 10.1016/j.cej.2019.123890 – ident: e_1_2_8_24_1 doi: 10.1016/j.est.2021.102618 – ident: e_1_2_8_57_1 doi: 10.1016/j.cej.2020.126031 – ident: e_1_2_8_14_1 doi: 10.1039/b925176f – ident: e_1_2_8_41_1 doi: 10.1016/j.jallcom.2021.161945 – ident: e_1_2_8_18_1 doi: 10.1039/c3ta13361c – ident: e_1_2_8_40_1 doi: 10.1021/jacs.0c00054 – ident: e_1_2_8_8_1 doi: 10.1016/j.nanoen.2016.07.020 – ident: e_1_2_8_16_1 doi: 10.1002/adma.201806931 – ident: e_1_2_8_36_1 doi: 10.1002/advs.201800750 – ident: e_1_2_8_30_1 doi: 10.1002/adfm.202101194 – ident: e_1_2_8_19_1 doi: 10.1039/D0CS00017E – ident: e_1_2_8_33_1 doi: 10.1002/adfm.202000842 – ident: e_1_2_8_26_1 doi: 10.1021/acscentsci.6b00220 – ident: e_1_2_8_29_1 doi: 10.1021/acsnano.5b00184 – ident: e_1_2_8_49_1 doi: 10.1002/anie.201711169 – ident: e_1_2_8_50_1 doi: 10.1038/s41467-020-18427-3 – ident: e_1_2_8_32_1 doi: 10.1016/j.nanoen.2021.106007 – ident: e_1_2_8_39_1 doi: 10.1039/D1MH01882E – ident: e_1_2_8_35_1 doi: 10.1021/acs.chemmater.5b01623 – ident: e_1_2_8_45_1 doi: 10.1021/ja409421d – ident: e_1_2_8_42_1 doi: 10.1016/j.jcis.2021.06.004 – ident: e_1_2_8_54_1 doi: 10.1016/j.ensm.2020.11.035 – ident: e_1_2_8_64_1 doi: 10.1021/acsami.9b17847 – ident: e_1_2_8_25_1 doi: 10.1039/D1TA04313G – ident: e_1_2_8_2_1 doi: 10.1016/j.carbon.2019.07.095 – ident: e_1_2_8_56_1 doi: 10.1016/j.nanoen.2021.106633 – ident: e_1_2_8_38_1 doi: 10.1039/C9TA00076C – ident: e_1_2_8_68_1 doi: 10.1016/j.cej.2021.129693 – ident: e_1_2_8_12_1 doi: 10.1016/j.est.2020.101602 – ident: e_1_2_8_37_1 doi: 10.1002/aenm.201600969 – ident: e_1_2_8_4_1 doi: 10.1038/s41563-020-0747-z – ident: e_1_2_8_1_1 doi: 10.1021/acs.chemrev.9b00466 – ident: e_1_2_8_31_1 doi: 10.1002/smll.201703419 – ident: e_1_2_8_11_1 doi: 10.1021/acsnano.0c01056 – ident: e_1_2_8_9_1 doi: 10.1021/acs.chemrev.0c00170 – ident: e_1_2_8_49_2 doi: 10.1002/ange.201711169 – ident: e_1_2_8_43_1 doi: 10.1016/j.jmst.2020.05.002 – ident: e_1_2_8_5_1 doi: 10.1016/j.est.2020.101652 – ident: e_1_2_8_3_1 doi: 10.1039/D1TC03856G – ident: e_1_2_8_15_1 doi: 10.1021/acsami.9b22081 – ident: e_1_2_8_28_1 doi: 10.1016/j.ensm.2020.07.001 – ident: e_1_2_8_70_1 doi: 10.1021/acsami.8b21696 – ident: e_1_2_8_13_1 doi: 10.1021/acsami.0c16959 |
SSID | ssj0001105386 |
Score | 2.4211657 |
Snippet | Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anthraquinones Capacitance Covalence covalent organic frameworks Electrodes Energy storage heterostructure; Mxene Heterostructures MXenes Nanostructure redox mechanism Storage systems Supercapacitors |
Title | Covalent‐Induced Heterostructure of Covalent‐Organic Frameworks and MXene as Advanced Electrodes with Motivated Pseudocapacitance Performance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202200340 https://www.proquest.com/docview/2706929920 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wCXFb9ilwX5gMQp4NhJSI5V6KpC7VJEK_UW2bEjVlo1K7XlwIkXQIJX5EmYiZ043V1-L1FqWyOl82U843wzQ8hzWanQRKkKWCwZBCjaBDJkWaCiNJaRZjCPycmzs2SyjN6u4tVg8LXHWtpt1cvy8415Jf-jVRgDvWKW7D9othMKA3AP-oUraBiuf6XjvAZpeLrXMhawEQd-0J8gyaW2tWHxCwFyLq6utVmYJbqulp5lqzXPVmD9sPvMqGUHjG2nHG1cJtzMtkSDmfnG7DRshhB3n2-b3IO5z0Pou71YlsCJwduO9GOspXkPGP0oa3-4b4cnEjn9fnjX7BfS7bXIIjrvnmbeZGt96h9iQPzLQJOJ32Cus4T6VFDT2EOwrciXtqmZrfHO-hhNbtwTbI3Z0lxgxUqOZDxbIGq_-PbZu-J0OZ0Wi_FqcYsccIg6-JAcjN7Mph_8oR14oyJN2uKfjL_aF7vv3PiIpR_3NI7L4i45dBEHHVn43CMDs75Pbudto78H5HsLjR9fvjkA0SsAonVFe6scdKiHDgXo0AY6VG5oCx3qoUMROrSDDr0GHdqDzkOyPB0v8kngOnUEpcDORYlSYaVi2HTLJGMwplkVc2GqChzsNBVKq0hwIXgmId4QpTRxWBoZay5UYiojHpHhul6bx4QaASaCp4nRpYokk5lmGdiZNNU6BLH8iATtX1yUrow9dlO5KGwBbl6gSopOJUfkRbf-0hZw-eXKk1ZjhXvJNwV_zRKIIDIO07zR4h-kFPl4mne_jn8v8wm549-GEzIErZqn4ORu1TMHvZ-hOK2F |
linkProvider | EBSCOhost |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kHvQiPrE-9yB4Ct3sJjE5ltBStS0erBQvYR8TEEorRu_-BP2L_hJnmqStBxE8JjvZQ2Zn55th5hvGLnRufAhi44lQCwxQHHjaF4lngjjUgRO4Ts3Jg2HUGwU347CuJqRemJIfYpFwI8uY39dk4JSQbi1ZQy1MiINQUnlVgFH7OkGbuMHW2w-jx9Ey0YIIQs0nPqJxUsGtH9XkjUK2fm7y0zktEecqbp07nu4226oQI2-XKt5hazDdZRtpPahtj32mMzwu6Dy-3j9oEocFx3tU5TIryWHfXoDPcr4iVTZgWt6tK7MKrqeOD8Z48XFd8HZVGMA75ZAcBwWnhC0flNPQcOWugDeHfhBD7qdXEuZ3yxaEfTbqdu7TnldNWvCsoskzkTF-bkK8NC1Gy_jOiRwjVMhzBEhxrIwzgZJKyUQjXlRWQ-hb0KGTykSQgzpgjelsCoeMg0IVyzgCZ02ghU6cSPCcxLFzPm4rm8yrf3FmKxpymoYxyUoCZZmRSrKFSprsciH_XBJw_Cp5UmssqwyxyOSViBABJhKX5VyLf-ySpZ1-ung6-s9H52yjdz_oZ_3r4e0x26T3lIWW0QlroN7hFGHMqzmrDuo3jVPusA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7EgnoRn1itugfBU-hmN4nJscSWqm3pwUrxEvYxAaG0xbR3f4L-RX-Js03Sx0EEj8lO9pCZ2flmmfmGkBuZKhe8UDnMlwwTFAOOdFnkKC_0pWcYrtvm5G4vaA-8x6E_XOviz_khlhdu1jMW57V18KlJ6yvSUA0jS0HIbXWVh0l7xVLloV1XGi-D18HqngUBhFgMfETftPW2blByNzJe39xkMzatAOc6bF3EndYB2S8AI23kGj4kWzA-IrtxOaftmHzFE7QWjB3fH592EIcGQ9u2yGWSc8PO34FOUromlfdfatoqC7MyKseGdod47lGZ0UZRF0Cb-YwcAxm197W0mw9Dw5V-BnODYRAz7reZFab9VQfCCRm0ms9x2ykGLTha2MEzgVJuqnw8MzUmy_jOsBQTVEhTxEdhKJRRnuBC8EgiXBRagu9qkL7hQgWQgjgl2-PJGM4IBYEa5mEARitPMhkZFqGZhKExLm7Lq8Qpf3GiCxZyOwxjlOT8yTyxKkmWKqmS26X8NOff-FWyVmosKfwwS_gdCxAARhyX-UKLf-ySxM1OvHw6_89H12Snf99KOg-9pwuyZ1_bO2ge1Mg2qh0uEcTM1FVhpz8h5-3Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent%E2%80%90Induced+Heterostructure+of+Covalent%E2%80%90Organic+Frameworks+and+MXene+as+Advanced+Electrodes+with+Motivated+Pseudocapacitance+Performance&rft.jtitle=ChemElectroChem&rft.au=Geng%2C+Qianhao&rft.au=Wang%2C+Haichao&rft.au=Wu%2C+Yang&rft.au=Li%E2%80%90Ping+Lv&rft.date=2022-08-26&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=9&rft.issue=16&rft_id=info:doi/10.1002%2Fcelc.202200340&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon |