Covalent‐Induced Heterostructure of Covalent‐Organic Frameworks and MXene as Advanced Electrodes with Motivated Pseudocapacitance Performance

Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti3C2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐b...

Full description

Saved in:
Bibliographic Details
Published inChemElectroChem Vol. 9; no. 16
Main Authors Geng, Qianhao, Wang, Haichao, Wu, Yang, Lv, Li‐Ping, Chen, Shuangqiang, Sun, Weiwei, Wang, Yong
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 26.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti3C2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐based COFs (AQ‐COF) to fabricate the heterostructures of COFs uniformly dispersed on surface of MXene, based on the covalent interaction between terminal C=O groups of COFs and amino units of MXene. Besides, the morphology and porous structures of COF@MXene heterostructures are optimized by controlling the amounts of MXene nanosheets. Combining the superiority from the two‐dimensional structure with high conductivity of MXene and porous structure with abundant redox‐active groups inherited from AQ‐COF, the COF@MXene‐15 heterostructure electrode delivers large surface area with optimal porous structures, leading to the maximally‐activated C=O units for charge‐storage and capacitance‐controlled electrochemical kinetics. Improved specific capacitance (290 F g−1 at 0.5 A g−1) and rate capability can be achieved for the COF@MXene‐15 heterostructure as the electrode for supercapacitor in Na2SO4 electrolyte. It is the first time to report the heterostructure of COFs and MXene as the electrode for supercapacitor, and this work would promote further application of COFs and related materials for other energy‐storage systems. COFs combined with MXene: The strategy of anthraquinone‐based covalent organic frameworks (AQ‐COF) in‐situ grown on amino‐modified Ti3C2 MXene nanosheets through covalent interaction is adopted to construct a series of porous COF@MXene heterostructures with improved electrochemical performance as electrodes for high‐performance supercapacitor.
AbstractList Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti 3 C 2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐based COFs (AQ‐COF) to fabricate the heterostructures of COFs uniformly dispersed on surface of MXene, based on the covalent interaction between terminal C=O groups of COFs and amino units of MXene. Besides, the morphology and porous structures of COF@MXene heterostructures are optimized by controlling the amounts of MXene nanosheets. Combining the superiority from the two‐dimensional structure with high conductivity of MXene and porous structure with abundant redox‐active groups inherited from AQ‐COF, the COF@MXene‐15 heterostructure electrode delivers large surface area with optimal porous structures, leading to the maximally‐activated C=O units for charge‐storage and capacitance‐controlled electrochemical kinetics. Improved specific capacitance (290 F g −1 at 0.5 A g −1 ) and rate capability can be achieved for the COF@MXene‐15 heterostructure as the electrode for supercapacitor in Na 2 SO 4 electrolyte. It is the first time to report the heterostructure of COFs and MXene as the electrode for supercapacitor, and this work would promote further application of COFs and related materials for other energy‐storage systems.
Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti3C2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐based COFs (AQ‐COF) to fabricate the heterostructures of COFs uniformly dispersed on surface of MXene, based on the covalent interaction between terminal C=O groups of COFs and amino units of MXene. Besides, the morphology and porous structures of COF@MXene heterostructures are optimized by controlling the amounts of MXene nanosheets. Combining the superiority from the two‐dimensional structure with high conductivity of MXene and porous structure with abundant redox‐active groups inherited from AQ‐COF, the COF@MXene‐15 heterostructure electrode delivers large surface area with optimal porous structures, leading to the maximally‐activated C=O units for charge‐storage and capacitance‐controlled electrochemical kinetics. Improved specific capacitance (290 F g−1 at 0.5 A g−1) and rate capability can be achieved for the COF@MXene‐15 heterostructure as the electrode for supercapacitor in Na2SO4 electrolyte. It is the first time to report the heterostructure of COFs and MXene as the electrode for supercapacitor, and this work would promote further application of COFs and related materials for other energy‐storage systems. COFs combined with MXene: The strategy of anthraquinone‐based covalent organic frameworks (AQ‐COF) in‐situ grown on amino‐modified Ti3C2 MXene nanosheets through covalent interaction is adopted to construct a series of porous COF@MXene heterostructures with improved electrochemical performance as electrodes for high‐performance supercapacitor.
Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials for supercapacitor. Here, the as‐prepared amino‐modified Ti3C2 MXene nanosheets are adopted to support the in‐situ growth of anthraquinone‐based COFs (AQ‐COF) to fabricate the heterostructures of COFs uniformly dispersed on surface of MXene, based on the covalent interaction between terminal C=O groups of COFs and amino units of MXene. Besides, the morphology and porous structures of COF@MXene heterostructures are optimized by controlling the amounts of MXene nanosheets. Combining the superiority from the two‐dimensional structure with high conductivity of MXene and porous structure with abundant redox‐active groups inherited from AQ‐COF, the COF@MXene‐15 heterostructure electrode delivers large surface area with optimal porous structures, leading to the maximally‐activated C=O units for charge‐storage and capacitance‐controlled electrochemical kinetics. Improved specific capacitance (290 F g−1 at 0.5 A g−1) and rate capability can be achieved for the COF@MXene‐15 heterostructure as the electrode for supercapacitor in Na2SO4 electrolyte. It is the first time to report the heterostructure of COFs and MXene as the electrode for supercapacitor, and this work would promote further application of COFs and related materials for other energy‐storage systems.
Author Geng, Qianhao
Wang, Haichao
Wu, Yang
Lv, Li‐Ping
Chen, Shuangqiang
Wang, Yong
Sun, Weiwei
Author_xml – sequence: 1
  givenname: Qianhao
  surname: Geng
  fullname: Geng, Qianhao
  organization: Shanghai University
– sequence: 2
  givenname: Haichao
  surname: Wang
  fullname: Wang, Haichao
  organization: Shanghai University
– sequence: 3
  givenname: Yang
  surname: Wu
  fullname: Wu, Yang
  organization: Shanghai University
– sequence: 4
  givenname: Li‐Ping
  surname: Lv
  fullname: Lv, Li‐Ping
  organization: Shanghai University
– sequence: 5
  givenname: Shuangqiang
  surname: Chen
  fullname: Chen, Shuangqiang
  organization: Shanghai University
– sequence: 6
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  email: vivisun@shu.edu.cn
  organization: Shanghai University
– sequence: 7
  givenname: Yong
  orcidid: 0000-0003-3489-7672
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
  organization: Shanghai University
BookMark eNqFkM9KxDAQh4Mo-PfqOeB510mybbdHKasrrOhBwVtJk4lWu8mapLt48xH0FX0SW1ZUBPGUIfN9M8Nvl2xaZ5GQQwZDBsCPFTZqyIFzADGCDbLDWZ4OgLN080e9TQ5CeAAAxiAR43SHvBVuKRu08f3l9dzqVqGmU4zoXYi-VbH1SJ2hP6hLfydtreipl3NcOf8YqLSaXtyiRSoDPdFLafsxkwZV9E5joKs63tMLF-uljF3nKmCrnZILqerYw_QKvXF-3tf7ZMvIJuDB57tHbk4n18V0MLs8Oy9OZgMlWAaDtKqYqZJRmqk0h-5Pg0m4QGMSSMZjUelqJLgQPJd5lgklMWEKZaK5qFI0KPbI0XruwrunFkMsH1zrbbey5BmkOc9zDh01WlOqSyR4NGV_cqydjV7WTcmg7PMv-_zLr_w7bfhLW_h6Lv3z30K-FlZ1g8__0GUxmRXf7gfVy58y
CitedBy_id crossref_primary_10_1039_D4TA08466G
crossref_primary_10_1002_inf2_70011
crossref_primary_10_1016_j_chphma_2024_08_002
crossref_primary_10_1002_admt_202201828
crossref_primary_10_1007_s43979_024_00110_x
crossref_primary_10_1016_j_cej_2023_141434
crossref_primary_10_1021_acs_cgd_3c00206
crossref_primary_10_1039_D4MH00161C
crossref_primary_10_3390_atmos14010181
crossref_primary_10_3390_nano14171388
crossref_primary_10_1021_acs_langmuir_4c03536
crossref_primary_10_3390_nano14010062
crossref_primary_10_1021_acsaem_5c00052
crossref_primary_10_1002_jccs_202400082
crossref_primary_10_1002_bte2_20230033
crossref_primary_10_1002_smll_202410544
crossref_primary_10_3390_ijerph191710710
crossref_primary_10_1039_D3GC03778A
crossref_primary_10_1016_j_cej_2025_160631
crossref_primary_10_1002_celc_202300234
Cites_doi 10.1016/j.jpcs.2017.12.039
10.1016/j.cej.2019.122640
10.1016/j.apsusc.2015.11.171
10.1016/j.cej.2019.123373
10.1016/j.matdes.2016.01.026
10.1002/aenm.201803665
10.1021/jacs.8b06460
10.1016/j.ceramint.2016.02.059
10.1002/smtd.202000434
10.1016/j.diamond.2021.108447
10.1039/C7CS00205J
10.1016/j.jpowsour.2014.10.183
10.1016/j.jpowsour.2019.227506
10.1016/j.jpowsour.2019.227616
10.1016/j.cej.2021.130203
10.1039/D0CS00059K
10.1016/j.cclet.2017.10.024
10.1039/C9CS00890J
10.1016/j.cej.2021.129161
10.1021/acsaem.1c00155
10.1016/j.carbon.2020.09.003
10.1021/acs.analchem.9b05372
10.1002/aenm.201904199
10.1002/smll.202006002
10.1016/j.cej.2021.128750
10.1016/j.cej.2019.123890
10.1016/j.est.2021.102618
10.1016/j.cej.2020.126031
10.1039/b925176f
10.1016/j.jallcom.2021.161945
10.1039/c3ta13361c
10.1021/jacs.0c00054
10.1016/j.nanoen.2016.07.020
10.1002/adma.201806931
10.1002/advs.201800750
10.1002/adfm.202101194
10.1039/D0CS00017E
10.1002/adfm.202000842
10.1021/acscentsci.6b00220
10.1021/acsnano.5b00184
10.1002/anie.201711169
10.1038/s41467-020-18427-3
10.1016/j.nanoen.2021.106007
10.1039/D1MH01882E
10.1021/acs.chemmater.5b01623
10.1021/ja409421d
10.1016/j.jcis.2021.06.004
10.1016/j.ensm.2020.11.035
10.1021/acsami.9b17847
10.1039/D1TA04313G
10.1016/j.carbon.2019.07.095
10.1016/j.nanoen.2021.106633
10.1039/C9TA00076C
10.1016/j.cej.2021.129693
10.1016/j.est.2020.101602
10.1002/aenm.201600969
10.1038/s41563-020-0747-z
10.1021/acs.chemrev.9b00466
10.1002/smll.201703419
10.1021/acsnano.0c01056
10.1021/acs.chemrev.0c00170
10.1002/ange.201711169
10.1016/j.jmst.2020.05.002
10.1016/j.est.2020.101652
10.1039/D1TC03856G
10.1021/acsami.9b22081
10.1016/j.ensm.2020.07.001
10.1021/acsami.8b21696
10.1021/acsami.0c16959
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/celc.202200340
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2196-0216
EndPage n/a
ExternalDocumentID 10_1002_celc_202200340
CELC202200340
Genre article
GrantInformation_xml – fundername: Science and Technology Commission of Shanghai
  funderid: 22010500400
– fundername: Innovation Program of Shanghai Municipal Education Commission
  funderid: 2019-01-07-00-09-E00021
– fundername: Innovative research team of high-level local universities in Shanghai
– fundername: National Natural Science Foundation of China
  funderid: 52073170
GroupedDBID 0R~
1OC
24P
33P
8-1
AAESR
AAHHS
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAYXX
ABJNI
ADMLS
CITATION
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-c3170-6bb1fb5467c690c31d0f523eff505883bdb4323329a9773cae51cea5d23b6efe3
ISSN 2196-0216
IngestDate Fri Jul 25 11:55:49 EDT 2025
Tue Jul 01 01:11:12 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
Sat Aug 24 00:54:51 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3170-6bb1fb5467c690c31d0f523eff505883bdb4323329a9773cae51cea5d23b6efe3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3489-7672
PQID 2706929920
PQPubID 2034587
PageCount 9
ParticipantIDs proquest_journals_2706929920
crossref_citationtrail_10_1002_celc_202200340
crossref_primary_10_1002_celc_202200340
wiley_primary_10_1002_celc_202200340_CELC202200340
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 26, 2022
PublicationDateYYYYMMDD 2022-08-26
PublicationDate_xml – month: 08
  year: 2022
  text: August 26, 2022
  day: 26
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemElectroChem
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2022; 891
2013; 1
2020; 120
2019; 11
2017; 46
2021; 602
2020; 401
2020; 14
2020; 12
2020; 11
2020; 10
2020; 54
2020; 449
2020; 19
2021; 35
2010; 20
2018; 8
2020; 4
2021; 31
2018; 5
2020; 450
2018 2018; 57 130
2021; 39
2021; 116
2020; 92
2020; 49
2016; 42
2021; 85
2019; 154
2021; 9
2019; 7
2019; 9
2021; 4
2018; 140
2019; 31
2021; 420
2017; 28
2020; 142
2021; 423
2020; 384
2020; 381
2022; 91
2016; 94
2020; 32
2015; 9
2016; 361
2021; 417
2016; 6
2015; 27
2016; 2
2020; 31
2020; 30
2021; 412
2021; 17
2022; 9
2018; 115
2015; 275
2020; 392
2021; 171
2013; 135
2022; 2
2016; 27
2018; 14
e_1_2_8_28_1
e_1_2_8_49_2
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
Lu S. Y. (e_1_2_8_17_1) 2018; 8
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_4_1
Nan J. X. (e_1_2_8_34_1) 2019; 9
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 49
  start-page: 2291
  year: 2020
  end-page: 2302
  publication-title: Chem. Soc. Rev.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 401
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 3729
  year: 2010
  end-page: 3735
  publication-title: J. Mater. Chem.
– volume: 27
  start-page: 5314
  year: 2015
  end-page: 5323
  publication-title: Chem. Mater.
– volume: 27
  start-page: 377
  year: 2016
  end-page: 389
  publication-title: Nano Energy
– volume: 2
  start-page: 667
  year: 2016
  end-page: 673
  publication-title: ACS Cent. Sci.
– volume: 91
  year: 2022
  publication-title: Nano Energy
– volume: 28
  start-page: 2269
  year: 2017
  end-page: 2273
  publication-title: Chin. Chem. Lett.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 449
  year: 2020
  publication-title: J. Power Sources
– volume: 85
  year: 2021
  publication-title: Nano Energy
– volume: 602
  start-page: 131
  year: 2021
  end-page: 145
  publication-title: J. Colloid Interface Sci.
– volume: 46
  start-page: 6816
  year: 2017
  end-page: 6854
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 13120
  year: 2013
  end-page: 13127
  publication-title: J. Mater. Chem. A
– volume: 450
  year: 2020
  publication-title: J. Power Sources.
– volume: 57 130
  start-page: 7992 8124
  year: 2018 2018
  end-page: 7996 8128
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 39
  year: 2021
  publication-title: J. Energy Storage
– volume: 35
  start-page: 630
  year: 2021
  end-page: 660
  publication-title: Energy Storage Mater.
– volume: 142
  start-page: 4862
  year: 2020
  end-page: 4871
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 45805
  year: 2019
  end-page: 45817
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 4712
  year: 2020
  publication-title: Nat. Commun.
– volume: 49
  start-page: 3565
  year: 2020
  end-page: 3604
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 16821
  year: 2013
  end-page: 16824
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 7661
  year: 2019
  end-page: 7665
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 10479
  year: 2020
  end-page: 10489
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 54791
  year: 2020
  end-page: 54797
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 5416
  year: 2019
  end-page: 5425
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 10941
  year: 2018
  end-page: 10945
  publication-title: J. Am. Chem. Soc.
– volume: 54
  start-page: 144
  year: 2020
  end-page: 159
  publication-title: J. Mater. Sci. Technol.
– volume: 417
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 412
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 31
  year: 2020
  publication-title: J. Energy Storage
– volume: 381
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 8419
  year: 2016
  end-page: 8424
  publication-title: Ceram. Int.
– volume: 275
  start-page: 399
  year: 2015
  end-page: 407
  publication-title: J. Power Sources
– volume: 392
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 49
  start-page: 3005
  year: 2020
  end-page: 3039
  publication-title: Chem. Soc. Rev.
– volume: 2
  start-page: 542
  year: 2022
  end-page: 548
  publication-title: J. Mater. Chem. C
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 92
  start-page: 3354
  year: 2020
  end-page: 3360
  publication-title: Anal. Chem.
– volume: 154
  start-page: 292
  year: 2019
  end-page: 300
  publication-title: Carbon
– volume: 17
  year: 2021
  publication-title: Small
– volume: 423
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 3178
  year: 2015
  end-page: 3183
  publication-title: ACS Nano
– volume: 120
  start-page: 6738
  year: 2020
  end-page: 6782
  publication-title: Chem. Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 361
  start-page: 57
  year: 2016
  end-page: 62
  publication-title: Appl. Surf. Sci.
– volume: 120
  start-page: 2811
  year: 2020
  end-page: 2878
  publication-title: Chem. Rev.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 384
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 4916
  year: 2020
  end-page: 4924
  publication-title: ACS Nano
– volume: 32
  start-page: 448
  year: 2020
  end-page: 457
  publication-title: Energy Storage Mater.
– volume: 9
  start-page: 16824
  year: 2021
  end-page: 16833
  publication-title: J. Mater. Chem.
– volume: 4
  year: 2020
  publication-title: Small Methods
– volume: 19
  start-page: 1151
  year: 2020
  end-page: 1163
  publication-title: Nat. Mater.
– volume: 4
  start-page: 4519
  year: 2021
  end-page: 4529
  publication-title: ACS Appl. Energ. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 116
  year: 2021
  publication-title: Diamond Relat. Mater.
– volume: 9
  start-page: 1708
  year: 2022
  end-page: 1716
  publication-title: Mater. Horiz.
– volume: 94
  start-page: 132
  year: 2016
  end-page: 138
  publication-title: Mater. Des.
– volume: 171
  start-page: 248
  year: 2021
  end-page: 256
  publication-title: Carbon
– volume: 891
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 9
  year: 2019
  publication-title: Small
– volume: 115
  start-page: 172
  year: 2018
  end-page: 179
  publication-title: J. Phys. Chem. Solids
– volume: 420
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 1902085
  year: 2019
  ident: e_1_2_8_34_1
  publication-title: Small
– ident: e_1_2_8_47_1
  doi: 10.1016/j.jpcs.2017.12.039
– ident: e_1_2_8_53_1
  doi: 10.1016/j.cej.2019.122640
– ident: e_1_2_8_60_1
  doi: 10.1016/j.apsusc.2015.11.171
– ident: e_1_2_8_62_1
  doi: 10.1016/j.cej.2019.123373
– ident: e_1_2_8_44_1
  doi: 10.1016/j.matdes.2016.01.026
– ident: e_1_2_8_67_1
  doi: 10.1002/aenm.201803665
– ident: e_1_2_8_23_1
  doi: 10.1021/jacs.8b06460
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ceramint.2016.02.059
– ident: e_1_2_8_51_1
  doi: 10.1002/smtd.202000434
– ident: e_1_2_8_65_1
  doi: 10.1016/j.diamond.2021.108447
– ident: e_1_2_8_22_1
  doi: 10.1039/C7CS00205J
– ident: e_1_2_8_58_1
  doi: 10.1016/j.jpowsour.2014.10.183
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jpowsour.2019.227506
– ident: e_1_2_8_55_1
  doi: 10.1016/j.jpowsour.2019.227616
– ident: e_1_2_8_66_1
  doi: 10.1016/j.cej.2021.130203
– ident: e_1_2_8_6_1
  doi: 10.1039/D0CS00059K
– ident: e_1_2_8_27_1
  doi: 10.1016/j.cclet.2017.10.024
– volume: 8
  start-page: 1086931
  year: 2018
  ident: e_1_2_8_17_1
  publication-title: Adv. Energy Mater.
– ident: e_1_2_8_21_1
  doi: 10.1039/C9CS00890J
– ident: e_1_2_8_46_1
  doi: 10.1016/j.cej.2021.129161
– ident: e_1_2_8_59_1
  doi: 10.1021/acsaem.1c00155
– ident: e_1_2_8_52_1
  doi: 10.1016/j.carbon.2020.09.003
– ident: e_1_2_8_69_1
  doi: 10.1021/acs.analchem.9b05372
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.201904199
– ident: e_1_2_8_10_1
  doi: 10.1002/smll.202006002
– ident: e_1_2_8_63_1
  doi: 10.1016/j.cej.2021.128750
– ident: e_1_2_8_61_1
  doi: 10.1016/j.cej.2019.123890
– ident: e_1_2_8_24_1
  doi: 10.1016/j.est.2021.102618
– ident: e_1_2_8_57_1
  doi: 10.1016/j.cej.2020.126031
– ident: e_1_2_8_14_1
  doi: 10.1039/b925176f
– ident: e_1_2_8_41_1
  doi: 10.1016/j.jallcom.2021.161945
– ident: e_1_2_8_18_1
  doi: 10.1039/c3ta13361c
– ident: e_1_2_8_40_1
  doi: 10.1021/jacs.0c00054
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nanoen.2016.07.020
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.201806931
– ident: e_1_2_8_36_1
  doi: 10.1002/advs.201800750
– ident: e_1_2_8_30_1
  doi: 10.1002/adfm.202101194
– ident: e_1_2_8_19_1
  doi: 10.1039/D0CS00017E
– ident: e_1_2_8_33_1
  doi: 10.1002/adfm.202000842
– ident: e_1_2_8_26_1
  doi: 10.1021/acscentsci.6b00220
– ident: e_1_2_8_29_1
  doi: 10.1021/acsnano.5b00184
– ident: e_1_2_8_49_1
  doi: 10.1002/anie.201711169
– ident: e_1_2_8_50_1
  doi: 10.1038/s41467-020-18427-3
– ident: e_1_2_8_32_1
  doi: 10.1016/j.nanoen.2021.106007
– ident: e_1_2_8_39_1
  doi: 10.1039/D1MH01882E
– ident: e_1_2_8_35_1
  doi: 10.1021/acs.chemmater.5b01623
– ident: e_1_2_8_45_1
  doi: 10.1021/ja409421d
– ident: e_1_2_8_42_1
  doi: 10.1016/j.jcis.2021.06.004
– ident: e_1_2_8_54_1
  doi: 10.1016/j.ensm.2020.11.035
– ident: e_1_2_8_64_1
  doi: 10.1021/acsami.9b17847
– ident: e_1_2_8_25_1
  doi: 10.1039/D1TA04313G
– ident: e_1_2_8_2_1
  doi: 10.1016/j.carbon.2019.07.095
– ident: e_1_2_8_56_1
  doi: 10.1016/j.nanoen.2021.106633
– ident: e_1_2_8_38_1
  doi: 10.1039/C9TA00076C
– ident: e_1_2_8_68_1
  doi: 10.1016/j.cej.2021.129693
– ident: e_1_2_8_12_1
  doi: 10.1016/j.est.2020.101602
– ident: e_1_2_8_37_1
  doi: 10.1002/aenm.201600969
– ident: e_1_2_8_4_1
  doi: 10.1038/s41563-020-0747-z
– ident: e_1_2_8_1_1
  doi: 10.1021/acs.chemrev.9b00466
– ident: e_1_2_8_31_1
  doi: 10.1002/smll.201703419
– ident: e_1_2_8_11_1
  doi: 10.1021/acsnano.0c01056
– ident: e_1_2_8_9_1
  doi: 10.1021/acs.chemrev.0c00170
– ident: e_1_2_8_49_2
  doi: 10.1002/ange.201711169
– ident: e_1_2_8_43_1
  doi: 10.1016/j.jmst.2020.05.002
– ident: e_1_2_8_5_1
  doi: 10.1016/j.est.2020.101652
– ident: e_1_2_8_3_1
  doi: 10.1039/D1TC03856G
– ident: e_1_2_8_15_1
  doi: 10.1021/acsami.9b22081
– ident: e_1_2_8_28_1
  doi: 10.1016/j.ensm.2020.07.001
– ident: e_1_2_8_70_1
  doi: 10.1021/acsami.8b21696
– ident: e_1_2_8_13_1
  doi: 10.1021/acsami.0c16959
SSID ssj0001105386
Score 2.4211657
Snippet Heterostructures based on covalent organic frameworks (COFs) and conductive materials have attracted more attentions to effectively apply COF‐related materials...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anthraquinones
Capacitance
Covalence
covalent organic frameworks
Electrodes
Energy storage
heterostructure; Mxene
Heterostructures
MXenes
Nanostructure
redox mechanism
Storage systems
Supercapacitors
Title Covalent‐Induced Heterostructure of Covalent‐Organic Frameworks and MXene as Advanced Electrodes with Motivated Pseudocapacitance Performance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcelc.202200340
https://www.proquest.com/docview/2706929920
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wCXFb9ilwX5gMQp4NhJSI5V6KpC7VJEK_UW2bEjVlo1K7XlwIkXQIJX5EmYiZ043V1-L1FqWyOl82U843wzQ8hzWanQRKkKWCwZBCjaBDJkWaCiNJaRZjCPycmzs2SyjN6u4tVg8LXHWtpt1cvy8415Jf-jVRgDvWKW7D9othMKA3AP-oUraBiuf6XjvAZpeLrXMhawEQd-0J8gyaW2tWHxCwFyLq6utVmYJbqulp5lqzXPVmD9sPvMqGUHjG2nHG1cJtzMtkSDmfnG7DRshhB3n2-b3IO5z0Pou71YlsCJwduO9GOspXkPGP0oa3-4b4cnEjn9fnjX7BfS7bXIIjrvnmbeZGt96h9iQPzLQJOJ32Cus4T6VFDT2EOwrciXtqmZrfHO-hhNbtwTbI3Z0lxgxUqOZDxbIGq_-PbZu-J0OZ0Wi_FqcYsccIg6-JAcjN7Mph_8oR14oyJN2uKfjL_aF7vv3PiIpR_3NI7L4i45dBEHHVn43CMDs75Pbudto78H5HsLjR9fvjkA0SsAonVFe6scdKiHDgXo0AY6VG5oCx3qoUMROrSDDr0GHdqDzkOyPB0v8kngOnUEpcDORYlSYaVi2HTLJGMwplkVc2GqChzsNBVKq0hwIXgmId4QpTRxWBoZay5UYiojHpHhul6bx4QaASaCp4nRpYokk5lmGdiZNNU6BLH8iATtX1yUrow9dlO5KGwBbl6gSopOJUfkRbf-0hZw-eXKk1ZjhXvJNwV_zRKIIDIO07zR4h-kFPl4mne_jn8v8wm549-GEzIErZqn4ORu1TMHvZ-hOK2F
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kHvQiPrE-9yB4Ct3sJjE5ltBStS0erBQvYR8TEEorRu_-BP2L_hJnmqStBxE8JjvZQ2Zn55th5hvGLnRufAhi44lQCwxQHHjaF4lngjjUgRO4Ts3Jg2HUGwU347CuJqRemJIfYpFwI8uY39dk4JSQbi1ZQy1MiINQUnlVgFH7OkGbuMHW2w-jx9Ey0YIIQs0nPqJxUsGtH9XkjUK2fm7y0zktEecqbp07nu4226oQI2-XKt5hazDdZRtpPahtj32mMzwu6Dy-3j9oEocFx3tU5TIryWHfXoDPcr4iVTZgWt6tK7MKrqeOD8Z48XFd8HZVGMA75ZAcBwWnhC0flNPQcOWugDeHfhBD7qdXEuZ3yxaEfTbqdu7TnldNWvCsoskzkTF-bkK8NC1Gy_jOiRwjVMhzBEhxrIwzgZJKyUQjXlRWQ-hb0KGTykSQgzpgjelsCoeMg0IVyzgCZ02ghU6cSPCcxLFzPm4rm8yrf3FmKxpymoYxyUoCZZmRSrKFSprsciH_XBJw_Cp5UmssqwyxyOSViBABJhKX5VyLf-ySpZ1-ung6-s9H52yjdz_oZ_3r4e0x26T3lIWW0QlroN7hFGHMqzmrDuo3jVPusA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF7EgnoRn1itugfBU-hmN4nJscSWqm3pwUrxEvYxAaG0xbR3f4L-RX-Js03Sx0EEj8lO9pCZ2flmmfmGkBuZKhe8UDnMlwwTFAOOdFnkKC_0pWcYrtvm5G4vaA-8x6E_XOviz_khlhdu1jMW57V18KlJ6yvSUA0jS0HIbXWVh0l7xVLloV1XGi-D18HqngUBhFgMfETftPW2blByNzJe39xkMzatAOc6bF3EndYB2S8AI23kGj4kWzA-IrtxOaftmHzFE7QWjB3fH592EIcGQ9u2yGWSc8PO34FOUromlfdfatoqC7MyKseGdod47lGZ0UZRF0Cb-YwcAxm197W0mw9Dw5V-BnODYRAz7reZFab9VQfCCRm0ms9x2ykGLTha2MEzgVJuqnw8MzUmy_jOsBQTVEhTxEdhKJRRnuBC8EgiXBRagu9qkL7hQgWQgjgl2-PJGM4IBYEa5mEARitPMhkZFqGZhKExLm7Lq8Qpf3GiCxZyOwxjlOT8yTyxKkmWKqmS26X8NOff-FWyVmosKfwwS_gdCxAARhyX-UKLf-ySxM1OvHw6_89H12Snf99KOg-9pwuyZ1_bO2ge1Mg2qh0uEcTM1FVhpz8h5-3Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covalent%E2%80%90Induced+Heterostructure+of+Covalent%E2%80%90Organic+Frameworks+and+MXene+as+Advanced+Electrodes+with+Motivated+Pseudocapacitance+Performance&rft.jtitle=ChemElectroChem&rft.au=Geng%2C+Qianhao&rft.au=Wang%2C+Haichao&rft.au=Wu%2C+Yang&rft.au=Li%E2%80%90Ping+Lv&rft.date=2022-08-26&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2196-0216&rft.volume=9&rft.issue=16&rft_id=info:doi/10.1002%2Fcelc.202200340&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-0216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-0216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-0216&client=summon