Magnetic‐Activated Nanosystem with Liver‐Specific CRISPR Nonviral Vector to Achieve Spatiotemporal Liver Genome Editing as Hepatitis B Therapeutics

Chronic hepatitis B infection remains incurable due to the stable presence of various forms of hepatitis B virus (HBV) genome, especially the HBV covalently closed circular DNA (cccDNA). The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) technology provides a new oppo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 33; no. 7
Main Authors Zhuo, Chenya, Kong, Huiming, Yi, Ke, Chi, Chun‐Wei, Zhang, Jiabing, Chen, Ran, Wang, Haixia, Wu, Caixia, Lao, Yeh‐Hsing, Tao, Yu, Li, Mingqiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chronic hepatitis B infection remains incurable due to the stable presence of various forms of hepatitis B virus (HBV) genome, especially the HBV covalently closed circular DNA (cccDNA). The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) technology provides a new opportunity to potentially cure the HBV infection. However, the efficiency and specificity remain unsatisfactory, especially for nonviral CRISPR/Cas9 delivery. To tackle these, a liver‐specific CRISPR/Cas9 magnetic nanosystem FMNPpAG333/sgXPP is constructed based on fluorinated polyethylenimine‐coated magnetic nanoparticles and liver‐specific ApoE.HCR.hAAT promoter‐driven Cas9‐T2A‐EGFP plasmid with dual sgRNAs. The elaborate system enables magnetic field‐induced spatially specific distribution and hepatocyte‐specific promoter‐driven liver‐specific gene editing. Moreover, this CRISPR/Cas9 magnetic nanosystem is designed to disrupt the two conserved sites in X opening reading frame and Pol opening reading frame of the HBV genome, thereby significantly inactivating the HBV genome without showing off‐target effects. Treatment with FMNPpAG333/sgXPP for 7 days reduces serum HBsAg levels by 76% with a total editing efficiency of ≈20% in the two conserved sites. Collectively, this study demonstrates spatiotemporal liver genome editing as well as the feasibility of applying a nonviral CRISPR/Cas9 vector for HBV treatment, which may open up a new application for CRISPR therapeutics. A liver‐specific CRISPR/Cas9 magnetic nanosystem, FMNPpAG333/sgXPP, can enhance liver accumulation under the magnetic activation and improve the transfection efficiency, while the liver‐specific promoter further confines the Cas9 expression in the hepatocyte, which offers an additional specificity at the cellular level. This nanosystem represents an in vivo spatiotemporal liver genome editing approach as a HBV CRISPR therapeutic.
AbstractList Abstract Chronic hepatitis B infection remains incurable due to the stable presence of various forms of hepatitis B virus (HBV) genome, especially the HBV covalently closed circular DNA (cccDNA). The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) technology provides a new opportunity to potentially cure the HBV infection. However, the efficiency and specificity remain unsatisfactory, especially for nonviral CRISPR/Cas9 delivery. To tackle these, a liver‐specific CRISPR/Cas9 magnetic nanosystem FMNP pAG333/sgXPP is constructed based on fluorinated polyethylenimine‐coated magnetic nanoparticles and liver‐specific ApoE.HCR.hAAT promoter‐driven Cas9‐T2A‐EGFP plasmid with dual sgRNAs. The elaborate system enables magnetic field‐induced spatially specific distribution and hepatocyte‐specific promoter‐driven liver‐specific gene editing. Moreover, this CRISPR/Cas9 magnetic nanosystem is designed to disrupt the two conserved sites in X opening reading frame and Pol opening reading frame of the HBV genome, thereby significantly inactivating the HBV genome without showing off‐target effects. Treatment with FMNP pAG333/sgXPP for 7 days reduces serum HBsAg levels by 76% with a total editing efficiency of ≈20% in the two conserved sites. Collectively, this study demonstrates spatiotemporal liver genome editing as well as the feasibility of applying a nonviral CRISPR/Cas9 vector for HBV treatment, which may open up a new application for CRISPR therapeutics.
Chronic hepatitis B infection remains incurable due to the stable presence of various forms of hepatitis B virus (HBV) genome, especially the HBV covalently closed circular DNA (cccDNA). The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) technology provides a new opportunity to potentially cure the HBV infection. However, the efficiency and specificity remain unsatisfactory, especially for nonviral CRISPR/Cas9 delivery. To tackle these, a liver‐specific CRISPR/Cas9 magnetic nanosystem FMNPpAG333/sgXPP is constructed based on fluorinated polyethylenimine‐coated magnetic nanoparticles and liver‐specific ApoE.HCR.hAAT promoter‐driven Cas9‐T2A‐EGFP plasmid with dual sgRNAs. The elaborate system enables magnetic field‐induced spatially specific distribution and hepatocyte‐specific promoter‐driven liver‐specific gene editing. Moreover, this CRISPR/Cas9 magnetic nanosystem is designed to disrupt the two conserved sites in X opening reading frame and Pol opening reading frame of the HBV genome, thereby significantly inactivating the HBV genome without showing off‐target effects. Treatment with FMNPpAG333/sgXPP for 7 days reduces serum HBsAg levels by 76% with a total editing efficiency of ≈20% in the two conserved sites. Collectively, this study demonstrates spatiotemporal liver genome editing as well as the feasibility of applying a nonviral CRISPR/Cas9 vector for HBV treatment, which may open up a new application for CRISPR therapeutics. A liver‐specific CRISPR/Cas9 magnetic nanosystem, FMNPpAG333/sgXPP, can enhance liver accumulation under the magnetic activation and improve the transfection efficiency, while the liver‐specific promoter further confines the Cas9 expression in the hepatocyte, which offers an additional specificity at the cellular level. This nanosystem represents an in vivo spatiotemporal liver genome editing approach as a HBV CRISPR therapeutic.
Chronic hepatitis B infection remains incurable due to the stable presence of various forms of hepatitis B virus (HBV) genome, especially the HBV covalently closed circular DNA (cccDNA). The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) technology provides a new opportunity to potentially cure the HBV infection. However, the efficiency and specificity remain unsatisfactory, especially for nonviral CRISPR/Cas9 delivery. To tackle these, a liver‐specific CRISPR/Cas9 magnetic nanosystem FMNPpAG333/sgXPP is constructed based on fluorinated polyethylenimine‐coated magnetic nanoparticles and liver‐specific ApoE.HCR.hAAT promoter‐driven Cas9‐T2A‐EGFP plasmid with dual sgRNAs. The elaborate system enables magnetic field‐induced spatially specific distribution and hepatocyte‐specific promoter‐driven liver‐specific gene editing. Moreover, this CRISPR/Cas9 magnetic nanosystem is designed to disrupt the two conserved sites in X opening reading frame and Pol opening reading frame of the HBV genome, thereby significantly inactivating the HBV genome without showing off‐target effects. Treatment with FMNPpAG333/sgXPP for 7 days reduces serum HBsAg levels by 76% with a total editing efficiency of ≈20% in the two conserved sites. Collectively, this study demonstrates spatiotemporal liver genome editing as well as the feasibility of applying a nonviral CRISPR/Cas9 vector for HBV treatment, which may open up a new application for CRISPR therapeutics.
Author Zhuo, Chenya
Tao, Yu
Chi, Chun‐Wei
Wu, Caixia
Chen, Ran
Yi, Ke
Kong, Huiming
Li, Mingqiang
Wang, Haixia
Lao, Yeh‐Hsing
Zhang, Jiabing
Author_xml – sequence: 1
  givenname: Chenya
  surname: Zhuo
  fullname: Zhuo, Chenya
  organization: Sun Yat‐sen University
– sequence: 2
  givenname: Huiming
  surname: Kong
  fullname: Kong, Huiming
  organization: Sun Yat‐sen University
– sequence: 3
  givenname: Ke
  surname: Yi
  fullname: Yi, Ke
  organization: Sun Yat‐sen University
– sequence: 4
  givenname: Chun‐Wei
  surname: Chi
  fullname: Chi, Chun‐Wei
  organization: The State University of New York
– sequence: 5
  givenname: Jiabing
  surname: Zhang
  fullname: Zhang, Jiabing
  organization: Sun Yat‐sen University
– sequence: 6
  givenname: Ran
  surname: Chen
  fullname: Chen, Ran
  organization: Sun Yat‐sen University
– sequence: 7
  givenname: Haixia
  surname: Wang
  fullname: Wang, Haixia
  organization: Sun Yat‐sen University
– sequence: 8
  givenname: Caixia
  surname: Wu
  fullname: Wu, Caixia
  organization: Guangdong Academy of Sciences
– sequence: 9
  givenname: Yeh‐Hsing
  surname: Lao
  fullname: Lao, Yeh‐Hsing
  email: sima@buffalo.edu
  organization: The State University of New York
– sequence: 10
  givenname: Yu
  orcidid: 0000-0001-5087-7474
  surname: Tao
  fullname: Tao, Yu
  email: taoy28@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Liver Disease
– sequence: 11
  givenname: Mingqiang
  surname: Li
  fullname: Li, Mingqiang
  email: limq567@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Liver Disease
BookMark eNqFkMtOAjEUhhujiYBuXTdxDbbTuS4R5ZIAGkHjbtLpnEIJTMe2QNj5CO58P5_EQQwuXZ2z-L7_nPx1dFroAhC6oqRFCfFueC5XLY94HiVxSE5QjYY0bDLixafHnb6eo7q1C0JoFDG_hj5HfFaAU-Lr_aMtnNpwBzke80LbnXWwwlvl5nioNmAqYlKCUFIJ3HkaTB6f8FgXG2X4Er-AcNpgp3FbzBVsAE9K7pSuEkq9B34ScA8KvQJ8nyunihnmFvdhzzll8S2ezsHwEtbVN_YCnUm-tHD5OxvouXs_7fSbw4feoNMeNgWjEWmyBLKAScgy7smEBwkEMmNBzIXIMiFiFkuIc5oRHgYs9H0R-nEOIZM8AR5FGWug60NuafTbGqxLF3ptiupk6kWR77MgoqyiWgdKGG2tAZmWRq242aWUpPvy03356bH8SkgOwlYtYfcPnbbvuqM_9xtZ7Y_f
CitedBy_id crossref_primary_10_1038_s41467_024_46533_z
crossref_primary_10_1039_D3CC05375J
crossref_primary_10_1002_smll_202312153
crossref_primary_10_1002_adma_202300665
crossref_primary_10_1002_anbr_202300132
crossref_primary_10_1002_advs_202308763
crossref_primary_10_1039_D4BM00054D
Cites_doi 10.1126/scitranslmed.aba6322
10.1002/adma.202003537
10.1074/jbc.270.38.22577
10.1038/cr.2017.16
10.1002/anie.202005644
10.1038/s41467-018-03779-8
10.1038/s41565-020-00781-4
10.1021/acsnano.7b07874
10.1007/s00261-016-0680-4
10.1016/j.jconrel.2020.12.013
10.1016/j.devcel.2015.01.032
10.1038/s41598-019-40222-4
10.1016/j.biomaterials.2021.120710
10.1002/anie.202103717
10.1039/C4TB01447B
10.1016/j.omtn.2018.05.006
10.1038/s41551-018-0318-7
10.1038/s41392-021-00645-w
10.1186/s12943-021-01431-6
10.1038/s41392-022-01089-6
10.1038/srep21377
10.1038/nnano.2016.168
10.1016/j.cell.2019.08.052
10.7150/thno.18114
10.1055/s-0033-1345717
10.1016/j.gtc.2020.01.003
10.1126/sciadv.abj0624
10.1038/s41563-019-0385-5
10.1093/bioinformatics/btu048
10.1016/j.biomaterials.2021.120674
10.1038/nature13902
10.1016/j.addr.2020.04.010
10.1002/smll.202005222
10.1002/adfm.202107093
10.1039/C5NR03626G
10.1038/s41575-022-00649-z
10.1002/adfm.202005029
10.1039/D0TB01925A
10.1002/advs.201700540
10.1016/j.mattod.2018.12.003
10.1016/j.talanta.2021.122675
10.1021/acs.chemrev.7b00678
10.1021/acsnano.5b02635
10.1038/gt.2015.2
10.1038/s41565-019-0539-2
10.1002/adma.201901187
10.1021/acsnano.6b07684
10.1038/s41586-022-04845-4
10.1016/j.devcel.2014.07.017
10.1038/nn.4265
10.1007/s12033-018-0145-9
10.1038/s41467-022-30593-0
10.1038/ncomms4053
10.1038/s41563-020-00886-0
10.1038/s41586-022-04857-0
10.1038/s41587-020-0741-7
10.1021/acsnano.5b01320
10.1002/advs.202102051
10.1002/adma.202006003
10.1016/S0021-9258(18)53085-4
10.1126/sciadv.abe2888
10.1126/sciadv.aba2983
10.1093/nar/gky164
10.1021/la104479c
10.1007/s40820-020-00550-x
10.1038/ncomms15594
10.1002/btm2.10152
10.1038/sj.gt.3301624
10.1002/adma.202007473
10.1007/s12274-020-2864-z
10.1021/acsnano.6b04261
10.7150/ijbs.16064
10.1038/s41392-022-01071-2
10.1016/S1525-0016(02)00060-6
10.1021/bm101364f
10.1021/ja0380852
10.1073/pnas.1912220117
10.1016/j.jhep.2022.04.014
10.1016/j.biomaterials.2019.119302
10.1016/j.biomaterials.2019.119464
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202210860
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202210860
ADFM202210860
Genre article
GrantInformation_xml – fundername: Guangdong Provincial Science and Technology Program
– fundername: Talent Introduction Program of Postdoctoral International Exchange Program
  funderid: YJ20200313
– fundername: International Scientific Cooperation
  funderid: 2018A050506035
– fundername: Guangdong Province Basic and Applied Basic Research Foundation
  funderid: 2021A1515110534
– fundername: Science and Technology Program of Guangzhou
  funderid: 202102010225; 202102010217
– fundername: National Natural Science Foundation of China
  funderid: 51903256; 21907113; 22277155; 32001012
– fundername: China Primary Health Care Foundation
  funderid: 2022‐003
– fundername: China Postdoctoral Science Foundation
  funderid: 2021M693662
– fundername: National Key Research and Development Program of China
  funderid: 2019YFA0111300
– fundername: Guangdong Provincial Pearl River Talents Program
  funderid: 2019QN01Y131
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AASGY
AAYXX
ACBWZ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3170-39eb53febba2f9a59e5fb358accbbcc838fe8d1b0a653644c648de63fa9ea77b3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Thu Oct 10 20:03:40 EDT 2024
Fri Aug 23 03:03:48 EDT 2024
Sat Aug 24 01:12:34 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-39eb53febba2f9a59e5fb358accbbcc838fe8d1b0a653644c648de63fa9ea77b3
ORCID 0000-0001-5087-7474
PQID 2774435713
PQPubID 2045204
PageCount 16
ParticipantIDs proquest_journals_2774435713
crossref_primary_10_1002_adfm_202210860
wiley_primary_10_1002_adfm_202210860_ADFM202210860
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2019; 9
2022 2022; 606 13
2021 2021 2021 2019 2021; 20 7 7 3 39
2014; 516
2015 2021 2019 2022; 7 6 14 7
2016 2017 2021; 19 8 33
2002; 9
2021; 168
2015 2014 2017 2019 2018; 3 5 11 31 9
2021 2018 2019 2020; 17 5 26 32
2017; 27
2021 2019; 271 61
2016 2017; 11 11
2020; 15
2019; 223
2011; 12
2021 2021 2020 2022 2019; 31 9 13 7 217
1993; 268
2015; 9
1995; 270
2022 2019; 606 179
2018; 46
2021 2021 2021 2022; 234 60 269 77
2020; 6
2011 2018; 27 118
2020; 5
2021; 33
2013; 33
2003; 7
2015; 22
2021 2019 2020 2020; 20 18 13 30
2016; 41
2020; 117
2016 2021 2021; 12 330 8
2020 2021; 49 13
2018; 12
2003; 126
2014; 30
2021; 60
2016 2015 2014; 6 32 30
2022; 19
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_9_3
e_1_2_8_7_4
e_1_2_8_9_2
e_1_2_8_3_1
e_1_2_8_1_2
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_9_1
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_13_5
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_13_2
e_1_2_8_13_3
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_13_4
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_23_2
e_1_2_8_23_3
e_1_2_8_25_1
e_1_2_8_23_4
e_1_2_8_23_5
e_1_2_8_27_1
e_1_2_8_6_5
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_4_2
e_1_2_8_4_1
e_1_2_8_4_4
e_1_2_8_6_2
e_1_2_8_4_3
e_1_2_8_6_1
e_1_2_8_6_4
e_1_2_8_6_3
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_16_2
e_1_2_8_16_3
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_18_2
e_1_2_8_10_4
e_1_2_8_33_4
e_1_2_8_14_1
e_1_2_8_33_3
e_1_2_8_35_1
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_14_3
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_10_3
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – volume: 9
  start-page: 3928
  year: 2019
  publication-title: Sci. Rep.
– volume: 49 13
  start-page: 215
  year: 2020 2021
  publication-title: Gastroenterol. Clin. North Am. Sci. Transl. Med.
– volume: 17 5 26 32
  start-page: 40
  year: 2021 2018 2019 2020
  publication-title: Small Adv. Sci. Mater. Today Adv. Mater.
– volume: 606 179
  start-page: 1027 561
  year: 2022 2019
  publication-title: Nature Cell
– volume: 12
  start-page: 994
  year: 2018
  publication-title: ACS Nano
– volume: 117
  start-page: 2395
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 7
  start-page: 3090
  year: 2017
  publication-title: Theranostics
– volume: 33
  start-page: 103
  year: 2013
  publication-title: Semin. Liver Dis.
– volume: 606 13
  start-page: 1021 2995
  year: 2022 2022
  publication-title: Nature Nat. Commun.
– volume: 12 330 8
  start-page: 1104 61
  year: 2016 2021 2021
  publication-title: Int. J. Biol. Sci. J. Controlled Release Adv. Sci.
– volume: 27 118
  start-page: 3703 7409
  year: 2011 2018
  publication-title: Langmuir Chem. Rev.
– volume: 12
  start-page: 1032
  year: 2011
  publication-title: Biomacromolecules
– volume: 234 60 269 77
  start-page: 947
  year: 2021 2021 2021 2022
  publication-title: Talanta Angew. Chem. Int. Ed. Biomaterials J Hepatol
– volume: 31 9 13 7 217
  start-page: 94 25 279
  year: 2021 2021 2020 2022 2019
  publication-title: Adv. Funct. Mater. J. Mater. Chem. B Nanomicro Lett. Signal Transduction Targeted Ther. Biomaterials
– volume: 20 18 13 30
  start-page: 701 1124 2399
  year: 2021 2019 2020 2020
  publication-title: Nat. Mater. Nat. Mater. Nano Res. Adv. Funct. Mater.
– volume: 6 32 30
  start-page: 756 625
  year: 2016 2015 2014
  publication-title: Sci. Rep. Dev. Cell Dev. Cell
– volume: 41
  start-page: 444
  year: 2016
  publication-title: Abdom. Radiol.
– volume: 168
  start-page: 158
  year: 2021
  publication-title: Adv. Drug Delivery Rev.
– volume: 271 61
  start-page: 173
  year: 2021 2019
  publication-title: Biomaterials Mol. Biotechnol.
– volume: 270
  year: 1995
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 6655
  year: 2015
  publication-title: ACS Nano
– volume: 15
  start-page: 1043
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 7 6 14 7
  start-page: 238 974 269
  year: 2015 2021 2019 2022
  publication-title: Nanoscale Signal Transduction Targeted Ther. Nat. Nanotechnol. Signal Transduction Targeted Ther.
– volume: 22
  start-page: 404
  year: 2015
  publication-title: Gene Ther.
– volume: 60
  start-page: 8596
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 102
  year: 2002
  publication-title: Gene Ther.
– volume: 46
  year: 2018
  publication-title: Nucleic Acids Res.
– volume: 223
  year: 2019
  publication-title: Biomaterials
– volume: 20 7 7 3 39
  start-page: 126 126 47
  year: 2021 2021 2021 2019 2021
  publication-title: Mol. Cancer Sci. Adv. Sci. Adv. Nat. Biomed. Eng. Nat. Biotechnol.
– volume: 5
  year: 2020
  publication-title: Bioeng. Transl. Med.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 19
  start-page: 727
  year: 2022
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 27
  start-page: 440
  year: 2017
  publication-title: Cell Res.
– volume: 19 8 33
  start-page: 756
  year: 2016 2017 2021
  publication-title: Nat. Neurosci. Nat. Commun. Adv. Mater.
– volume: 12
  start-page: 242
  year: 2018
  publication-title: Mol. Ther. Nucleic Acids
– volume: 9
  start-page: 7085
  year: 2015
  publication-title: ACS Nano
– volume: 126
  start-page: 273
  year: 2003
  publication-title: J. Am. Chem. Soc.
– volume: 516
  start-page: 423
  year: 2014
  publication-title: Nature
– volume: 268
  start-page: 8221
  year: 1993
  publication-title: J. Biol. Chem.
– volume: 3 5 11 31 9
  start-page: 642 3053 95 1377
  year: 2015 2014 2017 2019 2018
  publication-title: J. Mater. Chem. B Nat. Commun. ACS Nano Adv. Mater. Nat. Commun.
– volume: 30
  start-page: 1473
  year: 2014
  publication-title: Bioinformatics
– volume: 11 11
  start-page: 986 3614
  year: 2016 2017
  publication-title: Nat. Nanotechnol. ACS Nano
– volume: 7
  start-page: 375
  year: 2003
  publication-title: Mol. Ther.
– ident: e_1_2_8_3_2
  doi: 10.1126/scitranslmed.aba6322
– ident: e_1_2_8_7_4
  doi: 10.1002/adma.202003537
– ident: e_1_2_8_28_1
  doi: 10.1074/jbc.270.38.22577
– ident: e_1_2_8_8_1
  doi: 10.1038/cr.2017.16
– ident: e_1_2_8_12_1
  doi: 10.1002/anie.202005644
– ident: e_1_2_8_23_5
  doi: 10.1038/s41467-018-03779-8
– ident: e_1_2_8_21_1
  doi: 10.1038/s41565-020-00781-4
– ident: e_1_2_8_11_1
  doi: 10.1021/acsnano.7b07874
– ident: e_1_2_8_15_1
  doi: 10.1007/s00261-016-0680-4
– ident: e_1_2_8_9_2
  doi: 10.1016/j.jconrel.2020.12.013
– ident: e_1_2_8_14_2
  doi: 10.1016/j.devcel.2015.01.032
– ident: e_1_2_8_17_1
  doi: 10.1038/s41598-019-40222-4
– ident: e_1_2_8_18_1
  doi: 10.1016/j.biomaterials.2021.120710
– ident: e_1_2_8_4_2
  doi: 10.1002/anie.202103717
– ident: e_1_2_8_23_1
  doi: 10.1039/C4TB01447B
– ident: e_1_2_8_19_1
  doi: 10.1016/j.omtn.2018.05.006
– ident: e_1_2_8_13_4
  doi: 10.1038/s41551-018-0318-7
– ident: e_1_2_8_10_2
  doi: 10.1038/s41392-021-00645-w
– ident: e_1_2_8_13_1
  doi: 10.1186/s12943-021-01431-6
– ident: e_1_2_8_6_4
  doi: 10.1038/s41392-022-01089-6
– ident: e_1_2_8_14_1
  doi: 10.1038/srep21377
– ident: e_1_2_8_37_1
  doi: 10.1038/nnano.2016.168
– ident: e_1_2_8_1_2
  doi: 10.1016/j.cell.2019.08.052
– ident: e_1_2_8_40_1
  doi: 10.7150/thno.18114
– ident: e_1_2_8_30_1
  doi: 10.1055/s-0033-1345717
– ident: e_1_2_8_3_1
  doi: 10.1016/j.gtc.2020.01.003
– ident: e_1_2_8_13_2
  doi: 10.1126/sciadv.abj0624
– ident: e_1_2_8_33_2
  doi: 10.1038/s41563-019-0385-5
– ident: e_1_2_8_32_1
  doi: 10.1093/bioinformatics/btu048
– ident: e_1_2_8_4_3
  doi: 10.1016/j.biomaterials.2021.120674
– ident: e_1_2_8_24_1
  doi: 10.1038/nature13902
– ident: e_1_2_8_43_1
  doi: 10.1016/j.addr.2020.04.010
– ident: e_1_2_8_7_1
  doi: 10.1002/smll.202005222
– ident: e_1_2_8_6_1
  doi: 10.1002/adfm.202107093
– ident: e_1_2_8_10_1
  doi: 10.1039/C5NR03626G
– ident: e_1_2_8_5_1
  doi: 10.1038/s41575-022-00649-z
– ident: e_1_2_8_33_4
  doi: 10.1002/adfm.202005029
– ident: e_1_2_8_6_2
  doi: 10.1039/D0TB01925A
– ident: e_1_2_8_7_2
  doi: 10.1002/advs.201700540
– ident: e_1_2_8_7_3
  doi: 10.1016/j.mattod.2018.12.003
– ident: e_1_2_8_4_1
  doi: 10.1016/j.talanta.2021.122675
– ident: e_1_2_8_22_2
  doi: 10.1021/acs.chemrev.7b00678
– ident: e_1_2_8_39_1
  doi: 10.1021/acsnano.5b02635
– ident: e_1_2_8_31_1
  doi: 10.1038/gt.2015.2
– ident: e_1_2_8_10_3
  doi: 10.1038/s41565-019-0539-2
– ident: e_1_2_8_23_4
  doi: 10.1002/adma.201901187
– ident: e_1_2_8_37_2
  doi: 10.1021/acsnano.6b07684
– ident: e_1_2_8_2_1
  doi: 10.1038/s41586-022-04845-4
– ident: e_1_2_8_14_3
  doi: 10.1016/j.devcel.2014.07.017
– ident: e_1_2_8_16_1
  doi: 10.1038/nn.4265
– ident: e_1_2_8_18_2
  doi: 10.1007/s12033-018-0145-9
– ident: e_1_2_8_2_2
  doi: 10.1038/s41467-022-30593-0
– ident: e_1_2_8_23_2
  doi: 10.1038/ncomms4053
– ident: e_1_2_8_33_1
  doi: 10.1038/s41563-020-00886-0
– ident: e_1_2_8_1_1
  doi: 10.1038/s41586-022-04857-0
– ident: e_1_2_8_13_5
  doi: 10.1038/s41587-020-0741-7
– ident: e_1_2_8_36_1
  doi: 10.1021/acsnano.5b01320
– ident: e_1_2_8_9_3
  doi: 10.1002/advs.202102051
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.202006003
– ident: e_1_2_8_27_1
  doi: 10.1016/S0021-9258(18)53085-4
– ident: e_1_2_8_13_3
  doi: 10.1126/sciadv.abe2888
– ident: e_1_2_8_38_1
  doi: 10.1126/sciadv.aba2983
– ident: e_1_2_8_41_1
  doi: 10.1093/nar/gky164
– ident: e_1_2_8_22_1
  doi: 10.1021/la104479c
– ident: e_1_2_8_6_3
  doi: 10.1007/s40820-020-00550-x
– ident: e_1_2_8_16_2
  doi: 10.1038/ncomms15594
– ident: e_1_2_8_44_1
  doi: 10.1002/btm2.10152
– ident: e_1_2_8_25_1
  doi: 10.1038/sj.gt.3301624
– ident: e_1_2_8_16_3
  doi: 10.1002/adma.202007473
– ident: e_1_2_8_33_3
  doi: 10.1007/s12274-020-2864-z
– ident: e_1_2_8_23_3
  doi: 10.1021/acsnano.6b04261
– ident: e_1_2_8_9_1
  doi: 10.7150/ijbs.16064
– ident: e_1_2_8_10_4
  doi: 10.1038/s41392-022-01071-2
– ident: e_1_2_8_29_1
  doi: 10.1016/S1525-0016(02)00060-6
– ident: e_1_2_8_26_1
  doi: 10.1021/bm101364f
– ident: e_1_2_8_20_1
  doi: 10.1021/ja0380852
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1912220117
– ident: e_1_2_8_4_4
  doi: 10.1016/j.jhep.2022.04.014
– ident: e_1_2_8_6_5
  doi: 10.1016/j.biomaterials.2019.119302
– ident: e_1_2_8_42_1
  doi: 10.1016/j.biomaterials.2019.119464
SSID ssj0017734
Score 2.5249202
Snippet Chronic hepatitis B infection remains incurable due to the stable presence of various forms of hepatitis B virus (HBV) genome, especially the HBV covalently...
Abstract Chronic hepatitis B infection remains incurable due to the stable presence of various forms of hepatitis B virus (HBV) genome, especially the HBV...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms CRISPR
CRISPR/Cas9
Editing
gene editing
Genetic modification
Genomes
Hepatitis B
hepatitis B virus (HBV)
Interferon
Liver
liver‐specific promoters
magnetic nanosystems
Materials science
Nanoparticles
Polyethyleneimine
Title Magnetic‐Activated Nanosystem with Liver‐Specific CRISPR Nonviral Vector to Achieve Spatiotemporal Liver Genome Editing as Hepatitis B Therapeutics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202210860
https://www.proquest.com/docview/2774435713
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQJzgALUVsoZUPSJwCGztOnONC2W4Ri9Dyo71FtjNuV20TRAIHTjwCt74fT4In3j96QYJjJHuSeDzjz_bMN4TsYHZioiwEUkc8iHJrglRxFkCSG5HqPJSAB_r907h3GR0PxXAui9_zQ0wP3NAyGn-NBq50tT8jDVW5xUxyxrBWEG7akU0PUdFgyh8VJom_Vo5DDPAKhxPWxjbbf9n95ao0g5rzgLVZcbqrRE2-1Qea_N67rfWeuf-PxvE9P7NGVsZwlHb8_PlAFqD4SJbnSArXyb---llgquPTw2PHNNXQIKfOK5eeBZriUS49wfgO16KpZ29Hhh4OfpyfDehpiZl07hVXzfUArUvaMb9GcAf0vAnmHnNj_fES6Hcoyr9Aj_IRxmNTVdEeYLt6VNEDejHLFqs-kcvu0cVhLxiXcwgMx_I2PAUtuAWtFbOpEikIq7mQyhitjZFcWpB5qNsqFtzBNBNHMoeYW5WCShLNN8hiURawSajQAKwNRmgJUcyYRFo551lEbJwwa1tkd6LO7NqzdmSen5llONTZdKhbZHui7WxsvVXGHCZ2MNLt31uENWp7RUrW-dbtT58-v6XTFlnCSvY-IHybLNY3t_DF4Z1af23m9DNRof0i
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1BT9swFLYmdhgcNjaYKAPmw6SdAo0dJ86xA0rZ2gqVgrhFtvO8VdsStIYddtpP4Mb_45fgFzctcJk0jpFsJ7H97M_P3_seIR8wOjFRFgKpIx5EuTVBqjgLIMmNSHUeSkCH_mAY986izxeiYRNiLIzXh5g73NAy6vUaDRwd0nsL1VCVWwwlZwyTBblT-3Nn8wJt82A0V5AKk8RfLMchUrzCi0a3sc32HtZ_uC8twOZ9yFrvOd1XRDdf66km33evKr1r_jwScnzS76ySlzNESjt-Cr0mz6B4Q1bu6RSukZuB-lpgtOPt3-uOqROiQU7dwlx6IWiK3lzaR4qHK1GntLcTQ_dHx6cnIzosMZjOveK8viGgVUk75tsEfgM9rfncM3msH74FegRF-RPoYT5BSjZVU9oDLFdNpvQTHS8Cxqbr5Kx7ON7vBbOMDoHhmOGGp6AFt6C1YjZVIgVhNRdSGaO1MZJLCzIPdVvFgjukZuJI5hBzq1JQSaL5W7JUlAVsECo0AGuDEVpCFDMmUVnOLS4iNq4xa1vkYzOe2aUX7si8RDPLsKuzeVe3yFYz3NnMgKcZc7DYIUl3hG8RVo_bP1rJOgfdwfxp838qvScveuNBP-sfD7-8I8uY2N7zw7fIUvXrCrYd_Kn0Tj3B7wAj7wFR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVQkVBZ8CqoUwr1AqmrtBM7TpzltNPpFDqjatqi2UV-XMMISKpOyoIVn9Ad_8eX4BvPq90gwTKSfZP4-nFs33MuIe-QnZgpB5HUCY8S60yUK84iyKwRubaxBDzQHwzT_mXyfizGKyz-oA-xOHDDkdHM1zjAr6zbX4qGKuuQSc4Y5grym_aHScoZbr-6o4WAVJxl4V45jTHCKx7PZRvbbP9u_bvL0hJrriLWZsnpPSVq_rEh0uTL3k2t98yPezqO__M3z8iTGR6lndCBnpMHUL4gj1dUCjfIr4H6VCLX8ffP245p0qGBpX5aroIMNMWzXHqKAR6-RJPQ3k0MPRydnJ-N6LBCKp1_xcfmfoDWFe2YzxP4DvS8ieaeiWN9DRboMZTVN6BHdoIB2VRNaR-wXD2Z0gN6saSLTV-Sy97RxWE_muVziAzH_DY8By24A60Vc7kSOQinuZDKGK2NkVw6kDbWbZUK7nGaSRNpIeVO5aCyTPNXZK2sStgkVGgA1gYjtIQkZUyirpyfWkRqvDHnWmR37s7iKsh2FEGgmRXY1MWiqVtke-7tYjZ8pwXzoNjjSL-BbxHWuO0vVopOtzdYPG39S6Ud8uis2ytOT4YfXpN1zGofgsO3yVp9fQNvPPap9dume_8BKVUAAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic%E2%80%90Activated+Nanosystem+with+Liver%E2%80%90Specific+CRISPR+Nonviral+Vector+to+Achieve+Spatiotemporal+Liver+Genome+Editing+as+Hepatitis+B+Therapeutics&rft.jtitle=Advanced+functional+materials&rft.au=Zhuo%2C+Chenya&rft.au=Kong%2C+Huiming&rft.au=Yi%2C+Ke&rft.au=Chi%2C+Chun%E2%80%90Wei&rft.date=2023-02-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=33&rft.issue=7&rft_id=info:doi/10.1002%2Fadfm.202210860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202210860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon