Self‐Healing Elastic Electronics: Materials Design, Mechanisms, and Applications

Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device failure. To overcome this issue, researchers have pioneered the field of elastic electronics, incorporating higher mechanical tensile properties o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 34; no. 27
Main Authors Wan, Yi, Li, Xiang‐Chun, Yuan, Haotian, Liu, Daxiong, Lai, Wen‐Yong
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device failure. To overcome this issue, researchers have pioneered the field of elastic electronics, incorporating higher mechanical tensile properties or strain resistance into electronic devices. Elastic materials, especially self‐healing elastomers (SHEs) are regarded as a crucial component in elastic electronics, offering the potential for restoring functionality and prolonging the lifespan of electronic devices. SHEs possess remarkable ability to tolerate significant deformation and utilize intrinsic dynamic chemical bonds to autonomously repair themselves from varying degrees of damage. The acquisition of intrinsic SHEs is key to the development of self‐healing elastic electronics and has attracted global attention. This review offers a comprehensive overview of the current advancements in self‐healing elastic electronics. First, the various self‐healing mechanisms present in elastomeric material systems are summarized. Second, the design strategies for constructing SHEs based on self‐healing mechanisms are reviewed in detail, with a particular emphasis on dynamic covalent and non‐covalent bonds. Subsequently, various optoelectronic applications of SHEs in elastic electronics are summarized. Finally, the challenges and prospects that lie ahead in order to foster further development in this rapidly growing field are outlined. In recent years, significant advancements have been made in self‐healing elastic electronics, including the design of self‐healing elastomers and corresponding elastic optoelectronic devices. Herein, a detailed and comprehensive overview of material design strategies including dynamic covalent/non‐covalent bonds is provided, and various optoelectronic applications including e‐skins, field effect transistors, energy storage devices, perovskite solar cells, and electroluminescent devices.
AbstractList Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device failure. To overcome this issue, researchers have pioneered the field of elastic electronics, incorporating higher mechanical tensile properties or strain resistance into electronic devices. Elastic materials, especially self‐healing elastomers (SHEs) are regarded as a crucial component in elastic electronics, offering the potential for restoring functionality and prolonging the lifespan of electronic devices. SHEs possess remarkable ability to tolerate significant deformation and utilize intrinsic dynamic chemical bonds to autonomously repair themselves from varying degrees of damage. The acquisition of intrinsic SHEs is key to the development of self‐healing elastic electronics and has attracted global attention. This review offers a comprehensive overview of the current advancements in self‐healing elastic electronics. First, the various self‐healing mechanisms present in elastomeric material systems are summarized. Second, the design strategies for constructing SHEs based on self‐healing mechanisms are reviewed in detail, with a particular emphasis on dynamic covalent and non‐covalent bonds. Subsequently, various optoelectronic applications of SHEs in elastic electronics are summarized. Finally, the challenges and prospects that lie ahead in order to foster further development in this rapidly growing field are outlined. In recent years, significant advancements have been made in self‐healing elastic electronics, including the design of self‐healing elastomers and corresponding elastic optoelectronic devices. Herein, a detailed and comprehensive overview of material design strategies including dynamic covalent/non‐covalent bonds is provided, and various optoelectronic applications including e‐skins, field effect transistors, energy storage devices, perovskite solar cells, and electroluminescent devices.
Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device failure. To overcome this issue, researchers have pioneered the field of elastic electronics, incorporating higher mechanical tensile properties or strain resistance into electronic devices. Elastic materials, especially self‐healing elastomers (SHEs) are regarded as a crucial component in elastic electronics, offering the potential for restoring functionality and prolonging the lifespan of electronic devices. SHEs possess remarkable ability to tolerate significant deformation and utilize intrinsic dynamic chemical bonds to autonomously repair themselves from varying degrees of damage. The acquisition of intrinsic SHEs is key to the development of self‐healing elastic electronics and has attracted global attention. This review offers a comprehensive overview of the current advancements in self‐healing elastic electronics. First, the various self‐healing mechanisms present in elastomeric material systems are summarized. Second, the design strategies for constructing SHEs based on self‐healing mechanisms are reviewed in detail, with a particular emphasis on dynamic covalent and non‐covalent bonds. Subsequently, various optoelectronic applications of SHEs in elastic electronics are summarized. Finally, the challenges and prospects that lie ahead in order to foster further development in this rapidly growing field are outlined.
Author Liu, Daxiong
Lai, Wen‐Yong
Yuan, Haotian
Wan, Yi
Li, Xiang‐Chun
Author_xml – sequence: 1
  givenname: Yi
  surname: Wan
  fullname: Wan, Yi
  organization: Nanjing University of Posts & Telecommunications
– sequence: 2
  givenname: Xiang‐Chun
  surname: Li
  fullname: Li, Xiang‐Chun
  organization: Nanjing University of Posts & Telecommunications
– sequence: 3
  givenname: Haotian
  surname: Yuan
  fullname: Yuan, Haotian
  organization: Nanjing University of Posts & Telecommunications
– sequence: 4
  givenname: Daxiong
  surname: Liu
  fullname: Liu, Daxiong
  organization: Nanjing University of Posts & Telecommunications
– sequence: 5
  givenname: Wen‐Yong
  orcidid: 0000-0003-2381-1570
  surname: Lai
  fullname: Lai, Wen‐Yong
  email: iamwylai@njupt.edu.cn
  organization: Nanjing University of Posts & Telecommunications
BookMark eNqFkEtLAzEUhYNUsK1uXQ-4bWseTcZxV_qwQovgA9yFTOampkwzYzKldOdP8Df6S5xaqSCIq3sX57v3nNNCDVc4QOic4B7BmF6qzKx6FFNGBOf4CDWJIKLLML1qHHbyfIJaISwxJnHM-k10_wC5-Xh7n4LKrVtE41yFyup6gq584awO19FcVeCtykM0gmAXrhPNQb8oZ8MqdCLlsmhQlrnVqrKFC6fo2NRaOPuebfQ0GT8Op93Z3c3tcDDrakZiXJsx3Jg-TzERMRU6E0A1YCZ4plIwGYhU8DTJspSBYDTBmmouElrn4yZhlLXRxf5u6YvXNYRKLou1d_VLyXDMMWO8zthG_b1K-yIED0ZqW30ZrbyyuSRY7tqTu_bkob0a6_3CSm9Xym__BpI9sLE5bP9Ry8FoMv9hPwFOa4UF
CitedBy_id crossref_primary_10_1016_j_compscitech_2025_111159
crossref_primary_10_3390_bioengineering11040358
crossref_primary_10_3390_f15050836
crossref_primary_10_1016_j_mtphys_2024_101448
crossref_primary_10_1016_j_ensm_2024_103766
crossref_primary_10_3390_biomimetics9050273
crossref_primary_10_1002_pen_26940
crossref_primary_10_1016_j_mser_2024_100830
crossref_primary_10_1021_acs_macromol_4c02781
crossref_primary_10_1021_polymscitech_4c00022
crossref_primary_10_1016_j_cej_2024_151163
crossref_primary_10_1039_D4CS00541D
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1002_adma_202420008
Cites_doi 10.1038/nchem.2492
10.1021/ma402471c
10.1002/adma.201302962
10.1002/adma.201901519
10.1002/adfm.201300469
10.1038/s41467-023-40340-8
10.1002/adma.201704738
10.1038/s42004-018-0011-5
10.1002/adma.201201928
10.1038/s41467-019-10569-3
10.1038/nature09963
10.1038/nenergy.2017.102
10.1002/anie.201003888
10.1016/j.eurpolymj.2020.109651
10.1002/adma.201805536
10.1002/adma.201605099
10.1021/ja306287s
10.1021/ma2001492
10.1038/s41565-019-0407-0
10.1021/cm4040616
10.1002/adma.202300340
10.1021/acsami.0c23155
10.1021/ja5097094
10.3390/ijms23094757
10.1021/acsami.5b05041
10.1021/ma00220a012
10.1002/inf2.12410
10.1002/smtd.202100676
10.1002/anie.200904435
10.1002/adma.201203865
10.1002/aenm.201401826
10.1038/nature06669
10.1038/s41563-019-0548-4
10.1038/ncomms15684
10.1002/pi.4646
10.1002/adma.201602332
10.1038/ncomms10228
10.1002/adfm.201701061
10.1126/science.adc9998
10.1021/acs.nanolett.1c03832
10.1002/adma.201305682
10.1021/acs.accounts.8b00488
10.3390/molecules27061961
10.1016/j.reactfunctpolym.2020.104807
10.1002/marc.202100768
10.1021/acsami.9b10771
10.1002/adma.201503661
10.1039/C9TA03775F
10.1098/rsif.2006.0202
10.1002/adma.201405864
10.1002/adfm.201400299
10.1021/jacs.5b03551
10.1038/s41467-020-16831-3
10.1021/acsami.6b05941
10.1021/ma100365n
10.1016/j.joule.2019.06.011
10.1021/ma500286d
10.1039/c3py00086a
10.1002/ange.201913893
10.1021/acsami.1c06419
10.1021/acs.macromol.3c00088
10.1002/adma.201504187
10.1063/5.0083278
10.1002/adma.201705145
10.1002/ange.201805206
10.1039/C8TC02828A
10.1038/s41928-022-00874-z
10.1063/5.0117252
10.1021/acsnano.5b01602
10.1016/j.polymer.2019.121912
10.1002/ange.202213749
10.1039/D2TC03822F
10.1038/nmat2891
10.1002/adma.201904029
10.1002/adma.201304991
10.1002/anie.202003813
10.1002/marc.201600428
10.1021/acs.macromol.0c00428
10.1002/ange.201003888
10.1021/acsnano.0c01908
10.1002/adma.201801435
10.1021/am301879z
10.1021/ma2015134
10.1016/j.polymer.2017.05.060
10.1002/adma.201605325
10.1126/science.1120411
10.1002/adfm.202101303
10.3390/polym15173527
10.1126/science.abp8873
10.1002/advs.202105146
10.1002/advs.202102275
10.1021/ma201440v
10.1002/marc.201700110
10.1021/cr9411785
10.1038/s41928-019-0235-0
10.1038/nnano.2012.192
10.1039/C6PY01499B
10.1016/j.nanoen.2021.106465
10.1002/adma.201604973
10.1002/anie.201607951
10.1002/adma.202305630
10.1002/smll.201801189
10.1021/acsomega.2c00580
10.1039/C6TC05346G
10.1039/D3CC01208E
10.1039/C5TA01915J
10.1021/acsanm.8b00756
10.1002/adma.202300230
10.1039/c2py20265d
10.1039/C8TA11353J
10.1002/adfm.201906683
10.1021/acsnano.2c07004
10.1002/adma.201601242
10.1038/ncomms4218
10.1021/acs.chemmater.7b03291
10.3390/ma16093499
10.1021/acsami.9b00626
10.1002/adfm.201907139
10.1002/smll.202205817
10.1002/anie.202112673
10.1039/C7PY00448F
10.1002/smll.201803939
10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C
10.1021/acsmacrolett.3c00055
10.1039/C5CS00174A
10.1016/j.progpolymsci.2013.08.001
10.1021/acsnano.0c04158
10.1038/nprot.2017.157
10.1021/ma300966m
10.1038/s41467-021-27370-w
10.1002/adma.201504104
10.1021/ja5093437
10.1002/adma.202200682
10.3390/ma15051661
10.1002/marc.202200164
10.1088/1361-665X/acbe23
10.1021/jacs.5b01601
10.3390/polym13152522
10.1016/j.cej.2022.135824
10.3390/molecules28166049
10.1021/nl203903z
10.1021/acsomega.1c00462
10.1126/science.abo6631
10.1038/s41578-020-0202-4
10.1002/advs.201500169
10.1038/nmat4474
10.1002/anie.202014299
10.1016/j.reactfunctpolym.2020.104482
10.1021/acs.macromol.5b00210
10.1021/jacs.6b02428
10.1002/macp.201200712
10.1021/ma900835y
10.1039/C8MH01624K
10.1002/adma.201706846
10.1126/sciadv.abl5511
10.1039/C7CS00819H
10.1002/adfm.201906603
10.1002/adma.201301513
10.1002/adfm.201501117
10.1021/ja104446r
10.1039/D0MH00535E
10.1002/adma.201901402
10.1016/j.joule.2019.07.023
10.1038/s41928-023-00966-4
10.1038/s41578-018-0065-0
10.1002/adma.202209906
10.1002/adma.202203193
10.1021/acs.macromol.9b02305
10.1021/acsami.2c14907
10.1016/j.progpolymsci.2015.07.002
10.1021/acsami.2c05570
10.1038/nature25494
10.1038/s41565-022-01246-6
10.1016/j.apsusc.2018.05.159
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202316550
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202316550
ADFM202316550
Genre reviewArticle
GrantInformation_xml – fundername: Leading Talent of Technological Innovation of National Ten‐Thousands Talents Program of China
– fundername: NUPT Scientific Foundation
  funderid: NY220152
– fundername: National Key Research and Development Program of China
  funderid: 2023YFB3608904
– fundername: National Natural Science Foundation of China
  funderid: 21835003; 62005126; 61704077
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BE2019120
– fundername: Postdoctoral Science Foundation of Jiangsu Province
  funderid: 1701135B
– fundername: Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province
  funderid: 2023FE002
– fundername: Innovation Project of Jiangsu Province
  funderid: KYCX185_0850
– fundername: Program for Jiangsu Specially‐Appointed Professor
  funderid: RK030STP15001
– fundername: State Key Laboratory of Organic Electronics and Information Displays
  funderid: GZR2022010022
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c3170-30f5ff45b016726cd6e2ce0365dabefde6b65b9ddb3e63290c2c56922315f9323
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sat Jul 26 03:29:39 EDT 2025
Tue Jul 01 00:30:57 EDT 2025
Thu Apr 24 22:53:59 EDT 2025
Wed Jan 22 17:18:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-30f5ff45b016726cd6e2ce0365dabefde6b65b9ddb3e63290c2c56922315f9323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2381-1570
PQID 3075033577
PQPubID 2045204
PageCount 29
ParticipantIDs proquest_journals_3075033577
crossref_citationtrail_10_1002_adfm_202316550
crossref_primary_10_1002_adfm_202316550
wiley_primary_10_1002_adfm_202316550_ADFM202316550
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 4
2019; 11
2019; 10
2019; 15
2019; 14
2022; 23
2014; 26
2020; 14
2014; 24
2020; 11
2022; 22
2012; 12
2016; 37
2022; 27
2014; 136
2020; 19
2011; 472
2018; 6
2022; 440
2012; 134
2015; 137
2021; 159
2000; 12
2018; 1
2005; 105
2018; 455
2022; 34
2018; 30
2007; 4
2012; 24
2011; 123
2019; 7
2019; 4
2019; 3
2019; 6
2023; 56
2019; 31
2019; 2
2023; 59
2020; 148
2014; 47
2016; 15
2019; 183
2010; 43
2016; 7
1990; 23
2020; 30
2022; 5
2022; 7
2022; 8
2013; 214
2019; 48
2022; 9
2022; 14
2022; 15
2022; 10
2016; 28
2021; 60
2012; 45
2016; 8
2022; 16
2022; 17
2018; 14
2018; 13
2017; 5
2023; 32
2017; 8
2023; 35
2013; 25
2017; 2
2009; 42
2023; 5
2013; 23
2020; 59
2020; 129
2011; 10
2023; 1
2014; 63
2009; 48
2022; 377
2022; 378
2020; 7
2018; 130
2015; 48
2020; 5
2014; 5
2021; 31
2015; 49
2023; 28
2020; 53
2017; 38
2020; 132
2023; 135
2015; 44
2023; 379
2017; 120
2015; 2
2021; 8
2021; 6
2021; 5
2023; 14
2015; 5
2021; 89
2023; 12
2015; 3
2023; 15
2005; 310
2017; 27
2023; 16
2023; 19
2017; 29
2022; 43
2015; 9
2015; 7
2016; 55
2021; 13
2015; 25
2015; 27
2012; 3
2021; 12
2013; 38
2023
2022; 61
2018; 555
2011; 50
2010; 132
2011; 44
2018; 52
2016; 138
2012; 7
2012; 4
2008; 451
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Cao F. (e_1_2_8_172_1) 2022; 14
Wang L. (e_1_2_8_122_1) 2023
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
Wang Y. (e_1_2_8_34_1) 2023
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_152_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_171_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_63_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_156_1
e_1_2_8_18_1
Qian X. (e_1_2_8_173_1) 2022; 22
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
Chen Y. (e_1_2_8_67_1) 2012; 4
e_1_2_8_94_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_163_1
e_1_2_8_98_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_176_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_80_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_150_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_61_1
e_1_2_8_135_1
e_1_2_8_177_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_142_1
e_1_2_8_161_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_127_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_146_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 59
  start-page: 7259
  year: 2023
  publication-title: Chem. Commun.
– volume: 6
  start-page: 9319
  year: 2021
  publication-title: ACS Omega
– volume: 37
  start-page: 1667
  year: 2016
  publication-title: Macromol. Rapid Commun.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 159
  year: 2021
  publication-title: React. Funct. Polym.
– volume: 3
  start-page: 3084
  year: 2012
  publication-title: Polym. Chem.
– volume: 5
  start-page: 2202
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 1
  start-page: 349
  year: 2023
  publication-title: Nat. Electron.
– volume: 2
  start-page: 144
  year: 2019
  publication-title: Nat. Electron.
– volume: 27
  start-page: 7740
  year: 2015
  publication-title: Adv. Mater.
– volume: 22
  start-page: 973
  year: 2022
  publication-title: Nano Lett.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– year: 2023
  publication-title: Adv. Mater.
– volume: 5
  start-page: 881
  year: 2022
  publication-title: Nat. Electron.
– volume: 10
  start-page: 14
  year: 2011
  publication-title: Nat. Mater.
– volume: 15
  start-page: 3527
  year: 2023
  publication-title: Polymers
– volume: 89
  year: 2021
  publication-title: Nano Energy
– volume: 50
  start-page: 1660
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 25
  start-page: 3295
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 2522
  year: 2021
  publication-title: Polymers
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 14
  start-page: 9066
  year: 2020
  publication-title: ACS Nano
– volume: 214
  start-page: 1636
  year: 2013
  publication-title: Macromol. Chem. Phys.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 25
  start-page: 5785
  year: 2013
  publication-title: Adv. Mater.
– volume: 137
  start-page: 6492
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 130
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 377
  start-page: 531
  year: 2022
  publication-title: Science
– volume: 4
  start-page: 4902
  year: 2013
  publication-title: Polym. Chem.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 8850
  year: 2017
  publication-title: Chem. Mater.
– volume: 28
  start-page: 4490
  year: 2016
  publication-title: Adv. Mater.
– volume: 47
  start-page: 1981
  year: 2014
  publication-title: Macromolecules
– volume: 3
  start-page: 1850
  year: 2019
  publication-title: Joule
– volume: 28
  start-page: 8277
  year: 2016
  publication-title: Adv. Mater.
– volume: 26
  start-page: 3638
  year: 2014
  publication-title: Adv. Mater.
– volume: 310
  start-page: 1166
  year: 2005
  publication-title: Science
– volume: 148
  year: 2020
  publication-title: React. Funct. Polym.
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 4030
  year: 2020
  publication-title: Macromolecules
– volume: 7
  start-page: 7278
  year: 2016
  publication-title: Polym. Chem.
– volume: 379
  start-page: 795
  year: 2023
  publication-title: Science
– volume: 44
  start-page: 6241
  year: 2011
  publication-title: Macromolecules
– volume: 9
  year: 2022
  publication-title: Appl. Phys. Rev.
– volume: 129
  year: 2020
  publication-title: Eur. Polym. J.
– volume: 44
  start-page: 5181
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 55
  year: 2016
  publication-title: Angew. Chem. Int. Ed.
– volume: 45
  start-page: 7599
  year: 2012
  publication-title: Macromolecules
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 132
  start-page: 5316
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 3349
  year: 2015
  publication-title: Adv. Mater.
– volume: 137
  start-page: 4846
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 3975
  year: 2012
  publication-title: Adv. Mater.
– volume: 38
  start-page: 1961
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 4
  start-page: 4
  year: 2019
  publication-title: Nat. Rev. Mater.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1806
  year: 2012
  publication-title: Nano Lett.
– volume: 60
  start-page: 4289
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 467
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2022
  publication-title: ACS Omega
– volume: 38
  year: 2017
  publication-title: Macromol. Rapid Commun.
– volume: 25
  start-page: 1634
  year: 2013
  publication-title: Adv. Mater.
– volume: 43
  start-page: 4133
  year: 2010
  publication-title: Macromolecules
– volume: 23
  start-page: 4757
  year: 2022
  publication-title: Int. J. Mol. Sci.
– volume: 8
  start-page: 618
  year: 2016
  publication-title: Nat. Chem.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 17
  start-page: 1265
  year: 2022
  publication-title: Nat. Nanotech.
– volume: 6
  start-page: 996
  year: 2019
  publication-title: Mater. Horiz.
– volume: 63
  start-page: 1400
  year: 2014
  publication-title: Polym. Int.
– volume: 7
  start-page: 6773
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 451
  start-page: 977
  year: 2008
  publication-title: Nature
– volume: 120
  start-page: 189
  year: 2017
  publication-title: Polymer
– volume: 555
  start-page: 83
  year: 2018
  publication-title: Nature
– volume: 7
  start-page: 2882
  year: 2020
  publication-title: Mater. Horiz.
– volume: 13
  start-page: 681
  year: 2018
  publication-title: Nat. Protoc.
– volume: 5
  year: 2023
  publication-title: InfoMat
– volume: 3
  start-page: 2205
  year: 2019
  publication-title: Joule
– volume: 49
  start-page: 175
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 44
  start-page: 2536
  year: 2011
  publication-title: Macromolecules
– volume: 12
  start-page: 874
  year: 2000
  publication-title: Adv. Mater.
– volume: 14
  start-page: 6107
  year: 2020
  publication-title: ACS Nano
– volume: 13
  start-page: 6720
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 2547
  year: 2014
  publication-title: Adv. Mater.
– volume: 43
  year: 2022
  publication-title: Macromol. Rapid Commun.
– volume: 132
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 3616
  year: 2018
  publication-title: ACS Appl. Nano Mater.
– volume: 48
  start-page: 3229
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 1661
  year: 2022
  publication-title: Materials
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 440
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 6280
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 123
  start-page: 1698
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 1961
  year: 2022
  publication-title: Molecules
– volume: 47
  start-page: 2010
  year: 2014
  publication-title: Macromolecules
– volume: 22
  start-page: 4246
  year: 2022
  publication-title: ACS Nano
– volume: 1
  start-page: 1
  year: 2018
  publication-title: Coummun. Chem.
– volume: 12
  start-page: 7038
  year: 2021
  publication-title: Nat. Commun.
– volume: 5
  year: 2014
  publication-title: Nat. Commun.
– volume: 52
  start-page: 63
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 135
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 45
  start-page: 142
  year: 2012
  publication-title: Macromolecules
– volume: 11
  year: 2020
  publication-title: Nat. Commun.
– volume: 2
  year: 2015
  publication-title: Adv. Sci.
– volume: 19
  year: 2023
  publication-title: Small
– year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 5
  start-page: 562
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 7
  start-page: 825
  year: 2012
  publication-title: Nat. Nanotech.
– volume: 378
  start-page: 637
  year: 2022
  publication-title: Science
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 48
  start-page: 8721
  year: 2009
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 3499
  year: 2023
  publication-title: Materials
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 13
  year: 2016
  publication-title: Nat. Mater.
– volume: 4
  start-page: 359
  year: 2007
  publication-title: J. R. Soc. Interface
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. C
– volume: 16
  year: 2022
  publication-title: ACS Nano
– volume: 42
  start-page: 5614
  year: 2009
  publication-title: Macromolecules
– volume: 59
  year: 2020
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 2676
  year: 2019
  publication-title: Nat. Commun.
– volume: 32
  year: 2023
  publication-title: Smart Mater. Struct.
– year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 6049
  year: 2023
  publication-title: Molecules
– volume: 28
  start-page: 7646
  year: 2016
  publication-title: Adv. Mater.
– volume: 25
  start-page: 4912
  year: 2013
  publication-title: Adv. Mater.
– volume: 23
  start-page: 4098
  year: 1990
  publication-title: Macromolecules
– volume: 15
  year: 2019
  publication-title: Small
– volume: 9
  start-page: 6242
  year: 2015
  publication-title: ACS Nano
– volume: 14
  start-page: 6107
  year: 2022
  publication-title: Nano Lett.
– volume: 26
  start-page: 2038
  year: 2014
  publication-title: Chem. Mater.
– volume: 138
  start-page: 6020
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 138
  year: 2016
  publication-title: Adv. Mater.
– volume: 183
  year: 2019
  publication-title: Polymer
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 14
  start-page: 4712
  year: 2023
  publication-title: Nat. Commun.
– volume: 8
  start-page: 3641
  year: 2017
  publication-title: Polym. Chem.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 105
  start-page: 213
  year: 2005
  publication-title: Chem. Rev.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 24
  start-page: 5261
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 475
  year: 2023
  publication-title: ACS Macro Lett.
– volume: 455
  start-page: 318
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 48
  start-page: 2098
  year: 2015
  publication-title: Macromolecules
– volume: 14
  start-page: 579
  year: 2019
  publication-title: Nat. Nanotech.
– volume: 7
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 23
  start-page: 4921
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 19
  start-page: 182
  year: 2020
  publication-title: Nat. Mater.
– volume: 56
  start-page: 3345
  year: 2023
  publication-title: Macromolecules
– volume: 53
  start-page: 1024
  year: 2020
  publication-title: Macromolecules
– volume: 472
  start-page: 334
  year: 2011
  publication-title: Nature
– ident: e_1_2_8_71_1
  doi: 10.1038/nchem.2492
– ident: e_1_2_8_90_1
  doi: 10.1021/ma402471c
– ident: e_1_2_8_118_1
  doi: 10.1002/adma.201302962
– ident: e_1_2_8_161_1
  doi: 10.1002/adma.201901519
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201300469
– ident: e_1_2_8_132_1
  doi: 10.1038/s41467-023-40340-8
– ident: e_1_2_8_1_1
  doi: 10.1002/adma.201704738
– ident: e_1_2_8_134_1
  doi: 10.1038/s42004-018-0011-5
– ident: e_1_2_8_100_1
  doi: 10.1002/adma.201201928
– ident: e_1_2_8_180_1
  doi: 10.1038/s41467-019-10569-3
– ident: e_1_2_8_127_1
  doi: 10.1038/nature09963
– ident: e_1_2_8_165_1
  doi: 10.1038/nenergy.2017.102
– ident: e_1_2_8_58_1
  doi: 10.1002/anie.201003888
– ident: e_1_2_8_29_1
  doi: 10.1016/j.eurpolymj.2020.109651
– ident: e_1_2_8_154_1
  doi: 10.1002/adma.201805536
– ident: e_1_2_8_73_1
  doi: 10.1002/adma.201605099
– ident: e_1_2_8_60_1
  doi: 10.1021/ja306287s
– ident: e_1_2_8_93_1
  doi: 10.1021/ma2001492
– ident: e_1_2_8_148_1
  doi: 10.1038/s41565-019-0407-0
– ident: e_1_2_8_98_1
  doi: 10.1021/cm4040616
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202300340
– ident: e_1_2_8_81_1
  doi: 10.1021/acsami.0c23155
– year: 2023
  ident: e_1_2_8_122_1
  publication-title: Angew. Chem., Int. Ed.
– ident: e_1_2_8_72_1
  doi: 10.1021/ja5097094
– ident: e_1_2_8_38_1
  doi: 10.3390/ijms23094757
– ident: e_1_2_8_74_1
  doi: 10.1021/acsami.5b05041
– ident: e_1_2_8_133_1
  doi: 10.1021/ma00220a012
– ident: e_1_2_8_70_1
  doi: 10.1021/ja5097094
– ident: e_1_2_8_24_1
  doi: 10.1002/inf2.12410
– ident: e_1_2_8_45_1
  doi: 10.1002/smtd.202100676
– ident: e_1_2_8_105_1
  doi: 10.1002/anie.200904435
– ident: e_1_2_8_128_1
  doi: 10.1002/adma.201203865
– ident: e_1_2_8_152_1
  doi: 10.1002/aenm.201401826
– ident: e_1_2_8_117_1
  doi: 10.1038/nature06669
– ident: e_1_2_8_53_1
  doi: 10.1038/s41563-019-0548-4
– ident: e_1_2_8_169_1
  doi: 10.1038/ncomms15684
– ident: e_1_2_8_104_1
  doi: 10.1002/pi.4646
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.201602332
– ident: e_1_2_8_51_1
  doi: 10.1038/ncomms10228
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.201701061
– ident: e_1_2_8_10_1
  doi: 10.1126/science.adc9998
– ident: e_1_2_8_149_1
  doi: 10.1021/acs.nanolett.1c03832
– ident: e_1_2_8_48_1
  doi: 10.1002/adma.201305682
– ident: e_1_2_8_123_1
  doi: 10.1021/acs.accounts.8b00488
– ident: e_1_2_8_57_1
  doi: 10.3390/molecules27061961
– ident: e_1_2_8_108_1
  doi: 10.1016/j.reactfunctpolym.2020.104807
– ident: e_1_2_8_83_1
  doi: 10.1002/marc.202100768
– ident: e_1_2_8_170_1
  doi: 10.1021/acsami.9b10771
– ident: e_1_2_8_59_1
  doi: 10.1002/adma.201503661
– ident: e_1_2_8_145_1
  doi: 10.1039/C9TA03775F
– ident: e_1_2_8_146_1
  doi: 10.1098/rsif.2006.0202
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201405864
– ident: e_1_2_8_91_1
  doi: 10.1002/adfm.201400299
– ident: e_1_2_8_66_1
  doi: 10.1021/jacs.5b03551
– ident: e_1_2_8_162_1
  doi: 10.1038/s41467-020-16831-3
– ident: e_1_2_8_75_1
  doi: 10.1021/acsami.6b05941
– ident: e_1_2_8_96_1
  doi: 10.1021/ma100365n
– ident: e_1_2_8_160_1
  doi: 10.1016/j.joule.2019.06.011
– ident: e_1_2_8_124_1
  doi: 10.1021/ma500286d
– ident: e_1_2_8_77_1
  doi: 10.1039/c3py00086a
– ident: e_1_2_8_136_1
  doi: 10.1002/ange.201913893
– ident: e_1_2_8_177_1
  doi: 10.1021/acsami.1c06419
– ident: e_1_2_8_126_1
  doi: 10.1021/acs.macromol.3c00088
– ident: e_1_2_8_166_1
  doi: 10.1002/adma.201504187
– ident: e_1_2_8_5_1
  doi: 10.1063/5.0083278
– ident: e_1_2_8_101_1
  doi: 10.1002/adma.201705145
– ident: e_1_2_8_114_1
  doi: 10.1002/ange.201805206
– ident: e_1_2_8_54_1
  doi: 10.1039/C8TC02828A
– ident: e_1_2_8_17_1
  doi: 10.1038/s41928-022-00874-z
– ident: e_1_2_8_7_1
  doi: 10.1063/5.0117252
– ident: e_1_2_8_49_1
  doi: 10.1021/acsnano.5b01602
– ident: e_1_2_8_115_1
  doi: 10.1016/j.polymer.2019.121912
– ident: e_1_2_8_22_1
  doi: 10.1002/ange.202213749
– ident: e_1_2_8_35_1
  doi: 10.1039/D2TC03822F
– ident: e_1_2_8_65_1
  doi: 10.1038/nmat2891
– ident: e_1_2_8_141_1
  doi: 10.1002/adma.201904029
– ident: e_1_2_8_135_1
  doi: 10.1002/adma.201304991
– ident: e_1_2_8_163_1
  doi: 10.1002/anie.202003813
– ident: e_1_2_8_76_1
  doi: 10.1002/marc.201600428
– ident: e_1_2_8_174_1
  doi: 10.1021/acs.macromol.0c00428
– ident: e_1_2_8_99_1
  doi: 10.1002/ange.201003888
– ident: e_1_2_8_171_1
  doi: 10.1021/acsnano.0c01908
– ident: e_1_2_8_130_1
  doi: 10.1002/adma.201801435
– ident: e_1_2_8_97_1
  doi: 10.1021/am301879z
– ident: e_1_2_8_94_1
  doi: 10.1021/ma2015134
– ident: e_1_2_8_62_1
  doi: 10.1016/j.polymer.2017.05.060
– ident: e_1_2_8_78_1
  doi: 10.1002/adma.201605325
– ident: e_1_2_8_110_1
  doi: 10.1126/science.1120411
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.202300340
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202101303
– ident: e_1_2_8_86_1
  doi: 10.3390/polym15173527
– ident: e_1_2_8_159_1
  doi: 10.1126/science.abp8873
– ident: e_1_2_8_19_1
  doi: 10.1002/advs.202105146
– ident: e_1_2_8_121_1
  doi: 10.1002/advs.202102275
– ident: e_1_2_8_139_1
  doi: 10.1021/ma201440v
– ident: e_1_2_8_61_1
  doi: 10.1002/marc.201700110
– ident: e_1_2_8_137_1
  doi: 10.1021/cr9411785
– ident: e_1_2_8_31_1
  doi: 10.1038/s41928-019-0235-0
– ident: e_1_2_8_43_1
  doi: 10.1038/nnano.2012.192
– ident: e_1_2_8_92_1
  doi: 10.1039/C6PY01499B
– ident: e_1_2_8_8_1
  doi: 10.1016/j.nanoen.2021.106465
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201604973
– ident: e_1_2_8_50_1
  doi: 10.1002/anie.201607951
– ident: e_1_2_8_20_1
  doi: 10.1002/adma.202305630
– ident: e_1_2_8_151_1
  doi: 10.1002/smll.201801189
– ident: e_1_2_8_46_1
  doi: 10.1021/acsomega.2c00580
– ident: e_1_2_8_167_1
  doi: 10.1039/C6TC05346G
– ident: e_1_2_8_40_1
  doi: 10.1039/D3CC01208E
– ident: e_1_2_8_140_1
  doi: 10.1039/C5TA01915J
– ident: e_1_2_8_147_1
  doi: 10.1021/acsanm.8b00756
– ident: e_1_2_8_26_1
  doi: 10.1002/adma.202300230
– ident: e_1_2_8_116_1
  doi: 10.1039/c2py20265d
– ident: e_1_2_8_142_1
  doi: 10.1039/C8TA11353J
– ident: e_1_2_8_176_1
  doi: 10.1002/adfm.201906683
– ident: e_1_2_8_84_1
  doi: 10.1021/acsnano.2c07004
– ident: e_1_2_8_63_1
  doi: 10.1002/adma.201601242
– ident: e_1_2_8_107_1
  doi: 10.1038/ncomms4218
– year: 2023
  ident: e_1_2_8_34_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_125_1
  doi: 10.1021/acs.chemmater.7b03291
– ident: e_1_2_8_32_1
  doi: 10.3390/ma16093499
– ident: e_1_2_8_79_1
  doi: 10.1021/acsami.9b00626
– ident: e_1_2_8_68_1
  doi: 10.1002/adfm.201907139
– ident: e_1_2_8_178_1
  doi: 10.1002/smll.202205817
– ident: e_1_2_8_52_1
  doi: 10.1002/anie.202112673
– ident: e_1_2_8_102_1
  doi: 10.1039/C7PY00448F
– ident: e_1_2_8_150_1
  doi: 10.1002/smll.201803939
– ident: e_1_2_8_113_1
  doi: 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C
– volume: 4
  start-page: 467
  year: 2012
  ident: e_1_2_8_67_1
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 6107
  year: 2022
  ident: e_1_2_8_172_1
  publication-title: Nano Lett.
– ident: e_1_2_8_82_1
  doi: 10.1021/acsmacrolett.3c00055
– ident: e_1_2_8_155_1
  doi: 10.1039/C5CS00174A
– ident: e_1_2_8_28_1
  doi: 10.1016/j.progpolymsci.2013.08.001
– ident: e_1_2_8_42_1
  doi: 10.1021/acsnano.0c04158
– ident: e_1_2_8_168_1
  doi: 10.1038/nprot.2017.157
– ident: e_1_2_8_138_1
  doi: 10.1021/ma300966m
– ident: e_1_2_8_164_1
  doi: 10.1038/s41467-021-27370-w
– ident: e_1_2_8_23_1
  doi: 10.1002/adma.201504104
– ident: e_1_2_8_106_1
  doi: 10.1021/ja5093437
– ident: e_1_2_8_47_1
  doi: 10.1002/adma.202200682
– ident: e_1_2_8_44_1
  doi: 10.3390/ma15051661
– ident: e_1_2_8_39_1
  doi: 10.1002/marc.202200164
– ident: e_1_2_8_88_1
  doi: 10.1088/1361-665X/acbe23
– ident: e_1_2_8_119_1
  doi: 10.1021/jacs.5b01601
– ident: e_1_2_8_87_1
  doi: 10.3390/polym13152522
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cej.2022.135824
– ident: e_1_2_8_41_1
  doi: 10.3390/molecules28166049
– ident: e_1_2_8_156_1
  doi: 10.1021/nl203903z
– ident: e_1_2_8_69_1
  doi: 10.1021/acsomega.1c00462
– ident: e_1_2_8_16_1
  doi: 10.1126/science.abo6631
– ident: e_1_2_8_27_1
  doi: 10.1038/s41578-020-0202-4
– ident: e_1_2_8_18_1
  doi: 10.1002/advs.201500169
– ident: e_1_2_8_80_1
  doi: 10.1038/nmat4474
– ident: e_1_2_8_85_1
  doi: 10.1002/anie.202014299
– ident: e_1_2_8_144_1
  doi: 10.1016/j.reactfunctpolym.2020.104482
– ident: e_1_2_8_111_1
  doi: 10.1021/acs.macromol.5b00210
– ident: e_1_2_8_129_1
  doi: 10.1021/jacs.6b02428
– ident: e_1_2_8_56_1
  doi: 10.1002/macp.201200712
– ident: e_1_2_8_109_1
  doi: 10.1021/ma900835y
– volume: 22
  start-page: 4246
  year: 2022
  ident: e_1_2_8_173_1
  publication-title: ACS Nano
– ident: e_1_2_8_112_1
  doi: 10.1039/C8MH01624K
– ident: e_1_2_8_120_1
  doi: 10.1002/adma.201706846
– ident: e_1_2_8_9_1
  doi: 10.1126/sciadv.abl5511
– ident: e_1_2_8_3_1
  doi: 10.1039/C7CS00819H
– ident: e_1_2_8_25_1
  doi: 10.1002/adfm.201906603
– ident: e_1_2_8_89_1
  doi: 10.1002/adma.201301513
– ident: e_1_2_8_95_1
  doi: 10.1002/adfm.201501117
– ident: e_1_2_8_143_1
  doi: 10.1021/ja104446r
– ident: e_1_2_8_36_1
  doi: 10.1039/D0MH00535E
– ident: e_1_2_8_131_1
  doi: 10.1002/adma.201901402
– ident: e_1_2_8_158_1
  doi: 10.1016/j.joule.2019.07.023
– ident: e_1_2_8_181_1
  doi: 10.1038/s41928-023-00966-4
– ident: e_1_2_8_157_1
  doi: 10.1038/s41578-018-0065-0
– ident: e_1_2_8_11_1
  doi: 10.1002/adma.202209906
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202203193
– ident: e_1_2_8_153_1
  doi: 10.1021/acs.macromol.9b02305
– ident: e_1_2_8_6_1
  doi: 10.1021/acsami.2c14907
– ident: e_1_2_8_33_1
  doi: 10.1016/j.progpolymsci.2015.07.002
– ident: e_1_2_8_37_1
  doi: 10.1021/acsami.2c05570
– ident: e_1_2_8_179_1
  doi: 10.1038/nature25494
– ident: e_1_2_8_175_1
  doi: 10.1038/s41565-022-01246-6
– ident: e_1_2_8_103_1
  doi: 10.1016/j.apsusc.2018.05.159
SSID ssj0017734
Score 2.5575595
SecondaryResourceType review_article
Snippet Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chemical bonds
Covalent bonds
Damage
Deformation resistance
elastic electronics
Elastomers
Electronic devices
Electronics
Fatigue failure
Healing
optoelectronic devices
Optoelectronics
self‐healing elastic electronics
self‐healing elastomers
self‐healing mechanisms
Strain
Tensile properties
Title Self‐Healing Elastic Electronics: Materials Design, Mechanisms, and Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202316550
https://www.proquest.com/docview/3075033577
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRhRKlQGJpWmbOHYwW0VbVYgwtFTqFvkpIUpBJF2Y-An8Rn4JdpykKRJCgikP2ZZjn-3vcnffAXBOCWc0JNzFjCutoAju0g4RboiIpNDzlMgUxegODyfBzRRNK1H8lh-i_OFmVka2X5sFTlnSXpKGUqFMJLnGJxhlSrtx2DKoaFTyR3lhaM3K2DMOXt60YG3s-O3V6qun0hJqVgFrduIMdgAt-modTR5bi5S1-Ns3Gsf_fMwu2M7hqNO18rMH1uR8H2xVSAoPwGgsZ-rz_cMELOkXTl_jbV1aX4sEOsmVE9HUirLTy1xCmk4kTUzxQ_KUNB06F063Yik_BJNB__566OaZGFwOTWYa2FFIqQAxE7TgYy6w9E2iMYwEZVIJiRlGjAjBoMTQJx3uc4SJhh4eUhohwiOwPn-ey2PgMBVCSCjx9Y4f6CaIopTLwGhmWpoueQ24xUzEPKcpN9kyZrElWPZjM1ZxOVY1cFGWf7EEHT-WrBcTG-cLNYmhNeSiMKwBP5uhX1qJu71BVD6d_KXSKdjU94F1-q2D9fR1Ic80tElZA2x0e9HtuJGJ8RdC1fLy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1EokAGJhZQmjh3MVlGqAk0HHlK3yE8JUQqi6cLET-A38kvwxU1akBASTFGss5XYZ_s7--47hA44k4LHTPpUSGMNFCV9XmfKjwnTHAeBUbmhmHRp-y667JHCmxBiYRw_RHngBjMjX69hgsOB9PGENZQrA6HkFqBQAlb7HKT1Bvr85nXJIBXEsbtYpgG4eAW9grexHh5_rf91X5qAzWnImu85rWUkiq91riYPtVEmavL1G5Hjv35nBS2NEanXcCq0imb0YA0tTvEUrqPrG903H2_vELNkC7xzC7mttH0WOXSGp17CM6fNXjP3CjnyEg1hxffDx-GRxwfKa0xdlm-gu9b57VnbHydj8CWG5DS4bogxEREQtxBSqagOIdcYJYoLbZSmghLBlBJYUxyyugwlocyij4AYCxLxJpodPA30FvKEiTFmnIV20Y9sE8xwLnUExplVqBNZQX4xFKkcM5VDwox-6jiWwxT6Ki37qoIOS_lnx9Hxo2S1GNl0PFeHKXZ3uSSOKyjMh-iXVtJGs5WUb9t_qbSP5tu3SSftXHSvdtCCLY-cD3AVzWYvI71rkU4m9nJd_gTRDPV6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzid2gfBl3VrmyY1vg23MS8bMh3sreQK4pzDdS8--RP8jf4Sk2btNkEEfSoNJ6FNTpLvJOd8B4BTSjijEeEuZlxpA0Vwl3pEuBEikkLfVyI1FNsd3OqF133Un4vit_wQ-YGbmRnpem0m-Eio6ow0lAplIsk1PsHIGO3LIfaISd5Q7-YEUn4U2Xtl7BsPL7-f0TZ6QXWx_uK2NMOa84g13XKaG4BmH2s9TZ4qk4RV-Ns3Hsf__M0mWJ_iUadmFWgLLMnhNlibYyncAd17OVCf7x8mYkkXOA0NuLW0fmYZdMYXTpsmVpedeuoTUnba0gQVP46fx2WHDoVTm7sq3wW9ZuPhsuVOUzG4HJrUNNBTSKkQMRO1EGAusAxMpjGMBGVSCYkZRowIwaDEMCAeDzjCRGMPHykNEeEeKAxfhnIfOExFEBJKAr3kh7oJoijlMjSmmVanc14EbjYSMZ_ylJt0GYPYMiwHsemrOO-rIjjL5UeWoeNHyVI2sPF0po5jaG9yURQVQZCO0C-txLV6s52_Hfyl0glYuas349urzs0hWNXFoXUALoFC8jqRRxrmJOw41eQv9b30KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Healing+Elastic+Electronics%3A+Materials+Design%2C+Mechanisms%2C+and+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Wan%2C+Yi&rft.au=Li%2C+Xiang%E2%80%90Chun&rft.au=Yuan%2C+Haotian&rft.au=Liu%2C+Daxiong&rft.date=2024-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202316550&rft.externalDBID=10.1002%252Fadfm.202316550&rft.externalDocID=ADFM202316550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon