Self‐Healing Elastic Electronics: Materials Design, Mechanisms, and Applications
Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device failure. To overcome this issue, researchers have pioneered the field of elastic electronics, incorporating higher mechanical tensile properties o...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 27 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device failure. To overcome this issue, researchers have pioneered the field of elastic electronics, incorporating higher mechanical tensile properties or strain resistance into electronic devices. Elastic materials, especially self‐healing elastomers (SHEs) are regarded as a crucial component in elastic electronics, offering the potential for restoring functionality and prolonging the lifespan of electronic devices. SHEs possess remarkable ability to tolerate significant deformation and utilize intrinsic dynamic chemical bonds to autonomously repair themselves from varying degrees of damage. The acquisition of intrinsic SHEs is key to the development of self‐healing elastic electronics and has attracted global attention. This review offers a comprehensive overview of the current advancements in self‐healing elastic electronics. First, the various self‐healing mechanisms present in elastomeric material systems are summarized. Second, the design strategies for constructing SHEs based on self‐healing mechanisms are reviewed in detail, with a particular emphasis on dynamic covalent and non‐covalent bonds. Subsequently, various optoelectronic applications of SHEs in elastic electronics are summarized. Finally, the challenges and prospects that lie ahead in order to foster further development in this rapidly growing field are outlined.
In recent years, significant advancements have been made in self‐healing elastic electronics, including the design of self‐healing elastomers and corresponding elastic optoelectronic devices. Herein, a detailed and comprehensive overview of material design strategies including dynamic covalent/non‐covalent bonds is provided, and various optoelectronic applications including e‐skins, field effect transistors, energy storage devices, perovskite solar cells, and electroluminescent devices. |
---|---|
AbstractList | Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device failure. To overcome this issue, researchers have pioneered the field of elastic electronics, incorporating higher mechanical tensile properties or strain resistance into electronic devices. Elastic materials, especially self‐healing elastomers (SHEs) are regarded as a crucial component in elastic electronics, offering the potential for restoring functionality and prolonging the lifespan of electronic devices. SHEs possess remarkable ability to tolerate significant deformation and utilize intrinsic dynamic chemical bonds to autonomously repair themselves from varying degrees of damage. The acquisition of intrinsic SHEs is key to the development of self‐healing elastic electronics and has attracted global attention. This review offers a comprehensive overview of the current advancements in self‐healing elastic electronics. First, the various self‐healing mechanisms present in elastomeric material systems are summarized. Second, the design strategies for constructing SHEs based on self‐healing mechanisms are reviewed in detail, with a particular emphasis on dynamic covalent and non‐covalent bonds. Subsequently, various optoelectronic applications of SHEs in elastic electronics are summarized. Finally, the challenges and prospects that lie ahead in order to foster further development in this rapidly growing field are outlined.
In recent years, significant advancements have been made in self‐healing elastic electronics, including the design of self‐healing elastomers and corresponding elastic optoelectronic devices. Herein, a detailed and comprehensive overview of material design strategies including dynamic covalent/non‐covalent bonds is provided, and various optoelectronic applications including e‐skins, field effect transistors, energy storage devices, perovskite solar cells, and electroluminescent devices. Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device failure. To overcome this issue, researchers have pioneered the field of elastic electronics, incorporating higher mechanical tensile properties or strain resistance into electronic devices. Elastic materials, especially self‐healing elastomers (SHEs) are regarded as a crucial component in elastic electronics, offering the potential for restoring functionality and prolonging the lifespan of electronic devices. SHEs possess remarkable ability to tolerate significant deformation and utilize intrinsic dynamic chemical bonds to autonomously repair themselves from varying degrees of damage. The acquisition of intrinsic SHEs is key to the development of self‐healing elastic electronics and has attracted global attention. This review offers a comprehensive overview of the current advancements in self‐healing elastic electronics. First, the various self‐healing mechanisms present in elastomeric material systems are summarized. Second, the design strategies for constructing SHEs based on self‐healing mechanisms are reviewed in detail, with a particular emphasis on dynamic covalent and non‐covalent bonds. Subsequently, various optoelectronic applications of SHEs in elastic electronics are summarized. Finally, the challenges and prospects that lie ahead in order to foster further development in this rapidly growing field are outlined. |
Author | Liu, Daxiong Lai, Wen‐Yong Yuan, Haotian Wan, Yi Li, Xiang‐Chun |
Author_xml | – sequence: 1 givenname: Yi surname: Wan fullname: Wan, Yi organization: Nanjing University of Posts & Telecommunications – sequence: 2 givenname: Xiang‐Chun surname: Li fullname: Li, Xiang‐Chun organization: Nanjing University of Posts & Telecommunications – sequence: 3 givenname: Haotian surname: Yuan fullname: Yuan, Haotian organization: Nanjing University of Posts & Telecommunications – sequence: 4 givenname: Daxiong surname: Liu fullname: Liu, Daxiong organization: Nanjing University of Posts & Telecommunications – sequence: 5 givenname: Wen‐Yong orcidid: 0000-0003-2381-1570 surname: Lai fullname: Lai, Wen‐Yong email: iamwylai@njupt.edu.cn organization: Nanjing University of Posts & Telecommunications |
BookMark | eNqFkEtLAzEUhYNUsK1uXQ-4bWseTcZxV_qwQovgA9yFTOampkwzYzKldOdP8Df6S5xaqSCIq3sX57v3nNNCDVc4QOic4B7BmF6qzKx6FFNGBOf4CDWJIKLLML1qHHbyfIJaISwxJnHM-k10_wC5-Xh7n4LKrVtE41yFyup6gq584awO19FcVeCtykM0gmAXrhPNQb8oZ8MqdCLlsmhQlrnVqrKFC6fo2NRaOPuebfQ0GT8Op93Z3c3tcDDrakZiXJsx3Jg-TzERMRU6E0A1YCZ4plIwGYhU8DTJspSBYDTBmmouElrn4yZhlLXRxf5u6YvXNYRKLou1d_VLyXDMMWO8zthG_b1K-yIED0ZqW30ZrbyyuSRY7tqTu_bkob0a6_3CSm9Xym__BpI9sLE5bP9Ry8FoMv9hPwFOa4UF |
CitedBy_id | crossref_primary_10_1016_j_compscitech_2025_111159 crossref_primary_10_3390_bioengineering11040358 crossref_primary_10_3390_f15050836 crossref_primary_10_1016_j_mtphys_2024_101448 crossref_primary_10_1016_j_ensm_2024_103766 crossref_primary_10_3390_biomimetics9050273 crossref_primary_10_1002_pen_26940 crossref_primary_10_1016_j_mser_2024_100830 crossref_primary_10_1021_acs_macromol_4c02781 crossref_primary_10_1021_polymscitech_4c00022 crossref_primary_10_1016_j_cej_2024_151163 crossref_primary_10_1039_D4CS00541D crossref_primary_10_1002_adfm_202412389 crossref_primary_10_1002_adma_202420008 |
Cites_doi | 10.1038/nchem.2492 10.1021/ma402471c 10.1002/adma.201302962 10.1002/adma.201901519 10.1002/adfm.201300469 10.1038/s41467-023-40340-8 10.1002/adma.201704738 10.1038/s42004-018-0011-5 10.1002/adma.201201928 10.1038/s41467-019-10569-3 10.1038/nature09963 10.1038/nenergy.2017.102 10.1002/anie.201003888 10.1016/j.eurpolymj.2020.109651 10.1002/adma.201805536 10.1002/adma.201605099 10.1021/ja306287s 10.1021/ma2001492 10.1038/s41565-019-0407-0 10.1021/cm4040616 10.1002/adma.202300340 10.1021/acsami.0c23155 10.1021/ja5097094 10.3390/ijms23094757 10.1021/acsami.5b05041 10.1021/ma00220a012 10.1002/inf2.12410 10.1002/smtd.202100676 10.1002/anie.200904435 10.1002/adma.201203865 10.1002/aenm.201401826 10.1038/nature06669 10.1038/s41563-019-0548-4 10.1038/ncomms15684 10.1002/pi.4646 10.1002/adma.201602332 10.1038/ncomms10228 10.1002/adfm.201701061 10.1126/science.adc9998 10.1021/acs.nanolett.1c03832 10.1002/adma.201305682 10.1021/acs.accounts.8b00488 10.3390/molecules27061961 10.1016/j.reactfunctpolym.2020.104807 10.1002/marc.202100768 10.1021/acsami.9b10771 10.1002/adma.201503661 10.1039/C9TA03775F 10.1098/rsif.2006.0202 10.1002/adma.201405864 10.1002/adfm.201400299 10.1021/jacs.5b03551 10.1038/s41467-020-16831-3 10.1021/acsami.6b05941 10.1021/ma100365n 10.1016/j.joule.2019.06.011 10.1021/ma500286d 10.1039/c3py00086a 10.1002/ange.201913893 10.1021/acsami.1c06419 10.1021/acs.macromol.3c00088 10.1002/adma.201504187 10.1063/5.0083278 10.1002/adma.201705145 10.1002/ange.201805206 10.1039/C8TC02828A 10.1038/s41928-022-00874-z 10.1063/5.0117252 10.1021/acsnano.5b01602 10.1016/j.polymer.2019.121912 10.1002/ange.202213749 10.1039/D2TC03822F 10.1038/nmat2891 10.1002/adma.201904029 10.1002/adma.201304991 10.1002/anie.202003813 10.1002/marc.201600428 10.1021/acs.macromol.0c00428 10.1002/ange.201003888 10.1021/acsnano.0c01908 10.1002/adma.201801435 10.1021/am301879z 10.1021/ma2015134 10.1016/j.polymer.2017.05.060 10.1002/adma.201605325 10.1126/science.1120411 10.1002/adfm.202101303 10.3390/polym15173527 10.1126/science.abp8873 10.1002/advs.202105146 10.1002/advs.202102275 10.1021/ma201440v 10.1002/marc.201700110 10.1021/cr9411785 10.1038/s41928-019-0235-0 10.1038/nnano.2012.192 10.1039/C6PY01499B 10.1016/j.nanoen.2021.106465 10.1002/adma.201604973 10.1002/anie.201607951 10.1002/adma.202305630 10.1002/smll.201801189 10.1021/acsomega.2c00580 10.1039/C6TC05346G 10.1039/D3CC01208E 10.1039/C5TA01915J 10.1021/acsanm.8b00756 10.1002/adma.202300230 10.1039/c2py20265d 10.1039/C8TA11353J 10.1002/adfm.201906683 10.1021/acsnano.2c07004 10.1002/adma.201601242 10.1038/ncomms4218 10.1021/acs.chemmater.7b03291 10.3390/ma16093499 10.1021/acsami.9b00626 10.1002/adfm.201907139 10.1002/smll.202205817 10.1002/anie.202112673 10.1039/C7PY00448F 10.1002/smll.201803939 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C 10.1021/acsmacrolett.3c00055 10.1039/C5CS00174A 10.1016/j.progpolymsci.2013.08.001 10.1021/acsnano.0c04158 10.1038/nprot.2017.157 10.1021/ma300966m 10.1038/s41467-021-27370-w 10.1002/adma.201504104 10.1021/ja5093437 10.1002/adma.202200682 10.3390/ma15051661 10.1002/marc.202200164 10.1088/1361-665X/acbe23 10.1021/jacs.5b01601 10.3390/polym13152522 10.1016/j.cej.2022.135824 10.3390/molecules28166049 10.1021/nl203903z 10.1021/acsomega.1c00462 10.1126/science.abo6631 10.1038/s41578-020-0202-4 10.1002/advs.201500169 10.1038/nmat4474 10.1002/anie.202014299 10.1016/j.reactfunctpolym.2020.104482 10.1021/acs.macromol.5b00210 10.1021/jacs.6b02428 10.1002/macp.201200712 10.1021/ma900835y 10.1039/C8MH01624K 10.1002/adma.201706846 10.1126/sciadv.abl5511 10.1039/C7CS00819H 10.1002/adfm.201906603 10.1002/adma.201301513 10.1002/adfm.201501117 10.1021/ja104446r 10.1039/D0MH00535E 10.1002/adma.201901402 10.1016/j.joule.2019.07.023 10.1038/s41928-023-00966-4 10.1038/s41578-018-0065-0 10.1002/adma.202209906 10.1002/adma.202203193 10.1021/acs.macromol.9b02305 10.1021/acsami.2c14907 10.1016/j.progpolymsci.2015.07.002 10.1021/acsami.2c05570 10.1038/nature25494 10.1038/s41565-022-01246-6 10.1016/j.apsusc.2018.05.159 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202316550 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202316550 ADFM202316550 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Leading Talent of Technological Innovation of National Ten‐Thousands Talents Program of China – fundername: NUPT Scientific Foundation funderid: NY220152 – fundername: National Key Research and Development Program of China funderid: 2023YFB3608904 – fundername: National Natural Science Foundation of China funderid: 21835003; 62005126; 61704077 – fundername: Natural Science Foundation of Jiangsu Province funderid: BE2019120 – fundername: Postdoctoral Science Foundation of Jiangsu Province funderid: 1701135B – fundername: Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province funderid: 2023FE002 – fundername: Innovation Project of Jiangsu Province funderid: KYCX185_0850 – fundername: Program for Jiangsu Specially‐Appointed Professor funderid: RK030STP15001 – fundername: State Key Laboratory of Organic Electronics and Information Displays funderid: GZR2022010022 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c3170-30f5ff45b016726cd6e2ce0365dabefde6b65b9ddb3e63290c2c56922315f9323 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sat Jul 26 03:29:39 EDT 2025 Tue Jul 01 00:30:57 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Jan 22 17:18:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3170-30f5ff45b016726cd6e2ce0365dabefde6b65b9ddb3e63290c2c56922315f9323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2381-1570 |
PQID | 3075033577 |
PQPubID | 2045204 |
PageCount | 29 |
ParticipantIDs | proquest_journals_3075033577 crossref_citationtrail_10_1002_adfm_202316550 crossref_primary_10_1002_adfm_202316550 wiley_primary_10_1002_adfm_202316550_ADFM202316550 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 4 2019; 11 2019; 10 2019; 15 2019; 14 2022; 23 2014; 26 2020; 14 2014; 24 2020; 11 2022; 22 2012; 12 2016; 37 2022; 27 2014; 136 2020; 19 2011; 472 2018; 6 2022; 440 2012; 134 2015; 137 2021; 159 2000; 12 2018; 1 2005; 105 2018; 455 2022; 34 2018; 30 2007; 4 2012; 24 2011; 123 2019; 7 2019; 4 2019; 3 2019; 6 2023; 56 2019; 31 2019; 2 2023; 59 2020; 148 2014; 47 2016; 15 2019; 183 2010; 43 2016; 7 1990; 23 2020; 30 2022; 5 2022; 7 2022; 8 2013; 214 2019; 48 2022; 9 2022; 14 2022; 15 2022; 10 2016; 28 2021; 60 2012; 45 2016; 8 2022; 16 2022; 17 2018; 14 2018; 13 2017; 5 2023; 32 2017; 8 2023; 35 2013; 25 2017; 2 2009; 42 2023; 5 2013; 23 2020; 59 2020; 129 2011; 10 2023; 1 2014; 63 2009; 48 2022; 377 2022; 378 2020; 7 2018; 130 2015; 48 2020; 5 2014; 5 2021; 31 2015; 49 2023; 28 2020; 53 2017; 38 2020; 132 2023; 135 2015; 44 2023; 379 2017; 120 2015; 2 2021; 8 2021; 6 2021; 5 2023; 14 2015; 5 2021; 89 2023; 12 2015; 3 2023; 15 2005; 310 2017; 27 2023; 16 2023; 19 2017; 29 2022; 43 2015; 9 2015; 7 2016; 55 2021; 13 2015; 25 2015; 27 2012; 3 2021; 12 2013; 38 2023 2022; 61 2018; 555 2011; 50 2010; 132 2011; 44 2018; 52 2016; 138 2012; 7 2012; 4 2008; 451 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Cao F. (e_1_2_8_172_1) 2022; 14 Wang L. (e_1_2_8_122_1) 2023 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 Wang Y. (e_1_2_8_34_1) 2023 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_152_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_171_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_63_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_156_1 e_1_2_8_18_1 Qian X. (e_1_2_8_173_1) 2022; 22 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 Chen Y. (e_1_2_8_67_1) 2012; 4 e_1_2_8_94_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_163_1 e_1_2_8_98_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_176_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_80_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_150_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_61_1 e_1_2_8_135_1 e_1_2_8_177_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_142_1 e_1_2_8_161_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_127_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_146_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 7259 year: 2023 publication-title: Chem. Commun. – volume: 6 start-page: 9319 year: 2021 publication-title: ACS Omega – volume: 37 start-page: 1667 year: 2016 publication-title: Macromol. Rapid Commun. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 159 year: 2021 publication-title: React. Funct. Polym. – volume: 3 start-page: 3084 year: 2012 publication-title: Polym. Chem. – volume: 5 start-page: 2202 year: 2017 publication-title: J. Mater. Chem. C – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2018 publication-title: J. Mater. Chem. C – volume: 1 start-page: 349 year: 2023 publication-title: Nat. Electron. – volume: 2 start-page: 144 year: 2019 publication-title: Nat. Electron. – volume: 27 start-page: 7740 year: 2015 publication-title: Adv. Mater. – volume: 22 start-page: 973 year: 2022 publication-title: Nano Lett. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – year: 2023 publication-title: Adv. Mater. – volume: 5 start-page: 881 year: 2022 publication-title: Nat. Electron. – volume: 10 start-page: 14 year: 2011 publication-title: Nat. Mater. – volume: 15 start-page: 3527 year: 2023 publication-title: Polymers – volume: 89 year: 2021 publication-title: Nano Energy – volume: 50 start-page: 1660 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 25 start-page: 3295 year: 2015 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2522 year: 2021 publication-title: Polymers – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 14 start-page: 9066 year: 2020 publication-title: ACS Nano – volume: 214 start-page: 1636 year: 2013 publication-title: Macromol. Chem. Phys. – volume: 14 year: 2018 publication-title: Small – volume: 25 start-page: 5785 year: 2013 publication-title: Adv. Mater. – volume: 137 start-page: 6492 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 130 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 377 start-page: 531 year: 2022 publication-title: Science – volume: 4 start-page: 4902 year: 2013 publication-title: Polym. Chem. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 8850 year: 2017 publication-title: Chem. Mater. – volume: 28 start-page: 4490 year: 2016 publication-title: Adv. Mater. – volume: 47 start-page: 1981 year: 2014 publication-title: Macromolecules – volume: 3 start-page: 1850 year: 2019 publication-title: Joule – volume: 28 start-page: 8277 year: 2016 publication-title: Adv. Mater. – volume: 26 start-page: 3638 year: 2014 publication-title: Adv. Mater. – volume: 310 start-page: 1166 year: 2005 publication-title: Science – volume: 148 year: 2020 publication-title: React. Funct. Polym. – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 53 start-page: 4030 year: 2020 publication-title: Macromolecules – volume: 7 start-page: 7278 year: 2016 publication-title: Polym. Chem. – volume: 379 start-page: 795 year: 2023 publication-title: Science – volume: 44 start-page: 6241 year: 2011 publication-title: Macromolecules – volume: 9 year: 2022 publication-title: Appl. Phys. Rev. – volume: 129 year: 2020 publication-title: Eur. Polym. J. – volume: 44 start-page: 5181 year: 2015 publication-title: Chem. Soc. Rev. – volume: 55 year: 2016 publication-title: Angew. Chem. Int. Ed. – volume: 45 start-page: 7599 year: 2012 publication-title: Macromolecules – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 132 start-page: 5316 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 3349 year: 2015 publication-title: Adv. Mater. – volume: 137 start-page: 4846 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 3975 year: 2012 publication-title: Adv. Mater. – volume: 38 start-page: 1961 year: 2013 publication-title: Prog. Polym. Sci. – volume: 4 start-page: 4 year: 2019 publication-title: Nat. Rev. Mater. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1806 year: 2012 publication-title: Nano Lett. – volume: 60 start-page: 4289 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 467 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2022 publication-title: ACS Omega – volume: 38 year: 2017 publication-title: Macromol. Rapid Commun. – volume: 25 start-page: 1634 year: 2013 publication-title: Adv. Mater. – volume: 43 start-page: 4133 year: 2010 publication-title: Macromolecules – volume: 23 start-page: 4757 year: 2022 publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 618 year: 2016 publication-title: Nat. Chem. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 year: 2021 publication-title: Small Methods – volume: 17 start-page: 1265 year: 2022 publication-title: Nat. Nanotech. – volume: 6 start-page: 996 year: 2019 publication-title: Mater. Horiz. – volume: 63 start-page: 1400 year: 2014 publication-title: Polym. Int. – volume: 7 start-page: 6773 year: 2019 publication-title: J. Mater. Chem. A – volume: 451 start-page: 977 year: 2008 publication-title: Nature – volume: 120 start-page: 189 year: 2017 publication-title: Polymer – volume: 555 start-page: 83 year: 2018 publication-title: Nature – volume: 7 start-page: 2882 year: 2020 publication-title: Mater. Horiz. – volume: 13 start-page: 681 year: 2018 publication-title: Nat. Protoc. – volume: 5 year: 2023 publication-title: InfoMat – volume: 3 start-page: 2205 year: 2019 publication-title: Joule – volume: 49 start-page: 175 year: 2015 publication-title: Prog. Polym. Sci. – volume: 44 start-page: 2536 year: 2011 publication-title: Macromolecules – volume: 12 start-page: 874 year: 2000 publication-title: Adv. Mater. – volume: 14 start-page: 6107 year: 2020 publication-title: ACS Nano – volume: 13 start-page: 6720 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 2547 year: 2014 publication-title: Adv. Mater. – volume: 43 year: 2022 publication-title: Macromol. Rapid Commun. – volume: 132 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 3616 year: 2018 publication-title: ACS Appl. Nano Mater. – volume: 48 start-page: 3229 year: 2019 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 1661 year: 2022 publication-title: Materials – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 440 year: 2022 publication-title: Chem. Eng. J. – volume: 4 start-page: 6280 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 123 start-page: 1698 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 1961 year: 2022 publication-title: Molecules – volume: 47 start-page: 2010 year: 2014 publication-title: Macromolecules – volume: 22 start-page: 4246 year: 2022 publication-title: ACS Nano – volume: 1 start-page: 1 year: 2018 publication-title: Coummun. Chem. – volume: 12 start-page: 7038 year: 2021 publication-title: Nat. Commun. – volume: 5 year: 2014 publication-title: Nat. Commun. – volume: 52 start-page: 63 year: 2018 publication-title: Acc. Chem. Res. – volume: 135 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 45 start-page: 142 year: 2012 publication-title: Macromolecules – volume: 11 year: 2020 publication-title: Nat. Commun. – volume: 2 year: 2015 publication-title: Adv. Sci. – volume: 19 year: 2023 publication-title: Small – year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 5 start-page: 562 year: 2020 publication-title: Nat. Rev. Mater. – volume: 7 start-page: 825 year: 2012 publication-title: Nat. Nanotech. – volume: 378 start-page: 637 year: 2022 publication-title: Science – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 48 start-page: 8721 year: 2009 publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 3499 year: 2023 publication-title: Materials – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 13 year: 2016 publication-title: Nat. Mater. – volume: 4 start-page: 359 year: 2007 publication-title: J. R. Soc. Interface – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 10 year: 2022 publication-title: J. Mater. Chem. C – volume: 16 year: 2022 publication-title: ACS Nano – volume: 42 start-page: 5614 year: 2009 publication-title: Macromolecules – volume: 59 year: 2020 publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2676 year: 2019 publication-title: Nat. Commun. – volume: 32 year: 2023 publication-title: Smart Mater. Struct. – year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 6049 year: 2023 publication-title: Molecules – volume: 28 start-page: 7646 year: 2016 publication-title: Adv. Mater. – volume: 25 start-page: 4912 year: 2013 publication-title: Adv. Mater. – volume: 23 start-page: 4098 year: 1990 publication-title: Macromolecules – volume: 15 year: 2019 publication-title: Small – volume: 9 start-page: 6242 year: 2015 publication-title: ACS Nano – volume: 14 start-page: 6107 year: 2022 publication-title: Nano Lett. – volume: 26 start-page: 2038 year: 2014 publication-title: Chem. Mater. – volume: 138 start-page: 6020 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 138 year: 2016 publication-title: Adv. Mater. – volume: 183 year: 2019 publication-title: Polymer – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 14 start-page: 4712 year: 2023 publication-title: Nat. Commun. – volume: 8 start-page: 3641 year: 2017 publication-title: Polym. Chem. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 105 start-page: 213 year: 2005 publication-title: Chem. Rev. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 24 start-page: 5261 year: 2014 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 475 year: 2023 publication-title: ACS Macro Lett. – volume: 455 start-page: 318 year: 2018 publication-title: Appl. Surf. Sci. – volume: 48 start-page: 2098 year: 2015 publication-title: Macromolecules – volume: 14 start-page: 579 year: 2019 publication-title: Nat. Nanotech. – volume: 7 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 23 start-page: 4921 year: 2013 publication-title: Adv. Funct. Mater. – volume: 19 start-page: 182 year: 2020 publication-title: Nat. Mater. – volume: 56 start-page: 3345 year: 2023 publication-title: Macromolecules – volume: 53 start-page: 1024 year: 2020 publication-title: Macromolecules – volume: 472 start-page: 334 year: 2011 publication-title: Nature – ident: e_1_2_8_71_1 doi: 10.1038/nchem.2492 – ident: e_1_2_8_90_1 doi: 10.1021/ma402471c – ident: e_1_2_8_118_1 doi: 10.1002/adma.201302962 – ident: e_1_2_8_161_1 doi: 10.1002/adma.201901519 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201300469 – ident: e_1_2_8_132_1 doi: 10.1038/s41467-023-40340-8 – ident: e_1_2_8_1_1 doi: 10.1002/adma.201704738 – ident: e_1_2_8_134_1 doi: 10.1038/s42004-018-0011-5 – ident: e_1_2_8_100_1 doi: 10.1002/adma.201201928 – ident: e_1_2_8_180_1 doi: 10.1038/s41467-019-10569-3 – ident: e_1_2_8_127_1 doi: 10.1038/nature09963 – ident: e_1_2_8_165_1 doi: 10.1038/nenergy.2017.102 – ident: e_1_2_8_58_1 doi: 10.1002/anie.201003888 – ident: e_1_2_8_29_1 doi: 10.1016/j.eurpolymj.2020.109651 – ident: e_1_2_8_154_1 doi: 10.1002/adma.201805536 – ident: e_1_2_8_73_1 doi: 10.1002/adma.201605099 – ident: e_1_2_8_60_1 doi: 10.1021/ja306287s – ident: e_1_2_8_93_1 doi: 10.1021/ma2001492 – ident: e_1_2_8_148_1 doi: 10.1038/s41565-019-0407-0 – ident: e_1_2_8_98_1 doi: 10.1021/cm4040616 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202300340 – ident: e_1_2_8_81_1 doi: 10.1021/acsami.0c23155 – year: 2023 ident: e_1_2_8_122_1 publication-title: Angew. Chem., Int. Ed. – ident: e_1_2_8_72_1 doi: 10.1021/ja5097094 – ident: e_1_2_8_38_1 doi: 10.3390/ijms23094757 – ident: e_1_2_8_74_1 doi: 10.1021/acsami.5b05041 – ident: e_1_2_8_133_1 doi: 10.1021/ma00220a012 – ident: e_1_2_8_70_1 doi: 10.1021/ja5097094 – ident: e_1_2_8_24_1 doi: 10.1002/inf2.12410 – ident: e_1_2_8_45_1 doi: 10.1002/smtd.202100676 – ident: e_1_2_8_105_1 doi: 10.1002/anie.200904435 – ident: e_1_2_8_128_1 doi: 10.1002/adma.201203865 – ident: e_1_2_8_152_1 doi: 10.1002/aenm.201401826 – ident: e_1_2_8_117_1 doi: 10.1038/nature06669 – ident: e_1_2_8_53_1 doi: 10.1038/s41563-019-0548-4 – ident: e_1_2_8_169_1 doi: 10.1038/ncomms15684 – ident: e_1_2_8_104_1 doi: 10.1002/pi.4646 – ident: e_1_2_8_64_1 doi: 10.1002/adma.201602332 – ident: e_1_2_8_51_1 doi: 10.1038/ncomms10228 – ident: e_1_2_8_4_1 doi: 10.1002/adfm.201701061 – ident: e_1_2_8_10_1 doi: 10.1126/science.adc9998 – ident: e_1_2_8_149_1 doi: 10.1021/acs.nanolett.1c03832 – ident: e_1_2_8_48_1 doi: 10.1002/adma.201305682 – ident: e_1_2_8_123_1 doi: 10.1021/acs.accounts.8b00488 – ident: e_1_2_8_57_1 doi: 10.3390/molecules27061961 – ident: e_1_2_8_108_1 doi: 10.1016/j.reactfunctpolym.2020.104807 – ident: e_1_2_8_83_1 doi: 10.1002/marc.202100768 – ident: e_1_2_8_170_1 doi: 10.1021/acsami.9b10771 – ident: e_1_2_8_59_1 doi: 10.1002/adma.201503661 – ident: e_1_2_8_145_1 doi: 10.1039/C9TA03775F – ident: e_1_2_8_146_1 doi: 10.1098/rsif.2006.0202 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201405864 – ident: e_1_2_8_91_1 doi: 10.1002/adfm.201400299 – ident: e_1_2_8_66_1 doi: 10.1021/jacs.5b03551 – ident: e_1_2_8_162_1 doi: 10.1038/s41467-020-16831-3 – ident: e_1_2_8_75_1 doi: 10.1021/acsami.6b05941 – ident: e_1_2_8_96_1 doi: 10.1021/ma100365n – ident: e_1_2_8_160_1 doi: 10.1016/j.joule.2019.06.011 – ident: e_1_2_8_124_1 doi: 10.1021/ma500286d – ident: e_1_2_8_77_1 doi: 10.1039/c3py00086a – ident: e_1_2_8_136_1 doi: 10.1002/ange.201913893 – ident: e_1_2_8_177_1 doi: 10.1021/acsami.1c06419 – ident: e_1_2_8_126_1 doi: 10.1021/acs.macromol.3c00088 – ident: e_1_2_8_166_1 doi: 10.1002/adma.201504187 – ident: e_1_2_8_5_1 doi: 10.1063/5.0083278 – ident: e_1_2_8_101_1 doi: 10.1002/adma.201705145 – ident: e_1_2_8_114_1 doi: 10.1002/ange.201805206 – ident: e_1_2_8_54_1 doi: 10.1039/C8TC02828A – ident: e_1_2_8_17_1 doi: 10.1038/s41928-022-00874-z – ident: e_1_2_8_7_1 doi: 10.1063/5.0117252 – ident: e_1_2_8_49_1 doi: 10.1021/acsnano.5b01602 – ident: e_1_2_8_115_1 doi: 10.1016/j.polymer.2019.121912 – ident: e_1_2_8_22_1 doi: 10.1002/ange.202213749 – ident: e_1_2_8_35_1 doi: 10.1039/D2TC03822F – ident: e_1_2_8_65_1 doi: 10.1038/nmat2891 – ident: e_1_2_8_141_1 doi: 10.1002/adma.201904029 – ident: e_1_2_8_135_1 doi: 10.1002/adma.201304991 – ident: e_1_2_8_163_1 doi: 10.1002/anie.202003813 – ident: e_1_2_8_76_1 doi: 10.1002/marc.201600428 – ident: e_1_2_8_174_1 doi: 10.1021/acs.macromol.0c00428 – ident: e_1_2_8_99_1 doi: 10.1002/ange.201003888 – ident: e_1_2_8_171_1 doi: 10.1021/acsnano.0c01908 – ident: e_1_2_8_130_1 doi: 10.1002/adma.201801435 – ident: e_1_2_8_97_1 doi: 10.1021/am301879z – ident: e_1_2_8_94_1 doi: 10.1021/ma2015134 – ident: e_1_2_8_62_1 doi: 10.1016/j.polymer.2017.05.060 – ident: e_1_2_8_78_1 doi: 10.1002/adma.201605325 – ident: e_1_2_8_110_1 doi: 10.1126/science.1120411 – ident: e_1_2_8_21_1 doi: 10.1002/adma.202300340 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202101303 – ident: e_1_2_8_86_1 doi: 10.3390/polym15173527 – ident: e_1_2_8_159_1 doi: 10.1126/science.abp8873 – ident: e_1_2_8_19_1 doi: 10.1002/advs.202105146 – ident: e_1_2_8_121_1 doi: 10.1002/advs.202102275 – ident: e_1_2_8_139_1 doi: 10.1021/ma201440v – ident: e_1_2_8_61_1 doi: 10.1002/marc.201700110 – ident: e_1_2_8_137_1 doi: 10.1021/cr9411785 – ident: e_1_2_8_31_1 doi: 10.1038/s41928-019-0235-0 – ident: e_1_2_8_43_1 doi: 10.1038/nnano.2012.192 – ident: e_1_2_8_92_1 doi: 10.1039/C6PY01499B – ident: e_1_2_8_8_1 doi: 10.1016/j.nanoen.2021.106465 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201604973 – ident: e_1_2_8_50_1 doi: 10.1002/anie.201607951 – ident: e_1_2_8_20_1 doi: 10.1002/adma.202305630 – ident: e_1_2_8_151_1 doi: 10.1002/smll.201801189 – ident: e_1_2_8_46_1 doi: 10.1021/acsomega.2c00580 – ident: e_1_2_8_167_1 doi: 10.1039/C6TC05346G – ident: e_1_2_8_40_1 doi: 10.1039/D3CC01208E – ident: e_1_2_8_140_1 doi: 10.1039/C5TA01915J – ident: e_1_2_8_147_1 doi: 10.1021/acsanm.8b00756 – ident: e_1_2_8_26_1 doi: 10.1002/adma.202300230 – ident: e_1_2_8_116_1 doi: 10.1039/c2py20265d – ident: e_1_2_8_142_1 doi: 10.1039/C8TA11353J – ident: e_1_2_8_176_1 doi: 10.1002/adfm.201906683 – ident: e_1_2_8_84_1 doi: 10.1021/acsnano.2c07004 – ident: e_1_2_8_63_1 doi: 10.1002/adma.201601242 – ident: e_1_2_8_107_1 doi: 10.1038/ncomms4218 – year: 2023 ident: e_1_2_8_34_1 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_8_125_1 doi: 10.1021/acs.chemmater.7b03291 – ident: e_1_2_8_32_1 doi: 10.3390/ma16093499 – ident: e_1_2_8_79_1 doi: 10.1021/acsami.9b00626 – ident: e_1_2_8_68_1 doi: 10.1002/adfm.201907139 – ident: e_1_2_8_178_1 doi: 10.1002/smll.202205817 – ident: e_1_2_8_52_1 doi: 10.1002/anie.202112673 – ident: e_1_2_8_102_1 doi: 10.1039/C7PY00448F – ident: e_1_2_8_150_1 doi: 10.1002/smll.201803939 – ident: e_1_2_8_113_1 doi: 10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.0.CO;2-C – volume: 4 start-page: 467 year: 2012 ident: e_1_2_8_67_1 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 6107 year: 2022 ident: e_1_2_8_172_1 publication-title: Nano Lett. – ident: e_1_2_8_82_1 doi: 10.1021/acsmacrolett.3c00055 – ident: e_1_2_8_155_1 doi: 10.1039/C5CS00174A – ident: e_1_2_8_28_1 doi: 10.1016/j.progpolymsci.2013.08.001 – ident: e_1_2_8_42_1 doi: 10.1021/acsnano.0c04158 – ident: e_1_2_8_168_1 doi: 10.1038/nprot.2017.157 – ident: e_1_2_8_138_1 doi: 10.1021/ma300966m – ident: e_1_2_8_164_1 doi: 10.1038/s41467-021-27370-w – ident: e_1_2_8_23_1 doi: 10.1002/adma.201504104 – ident: e_1_2_8_106_1 doi: 10.1021/ja5093437 – ident: e_1_2_8_47_1 doi: 10.1002/adma.202200682 – ident: e_1_2_8_44_1 doi: 10.3390/ma15051661 – ident: e_1_2_8_39_1 doi: 10.1002/marc.202200164 – ident: e_1_2_8_88_1 doi: 10.1088/1361-665X/acbe23 – ident: e_1_2_8_119_1 doi: 10.1021/jacs.5b01601 – ident: e_1_2_8_87_1 doi: 10.3390/polym13152522 – ident: e_1_2_8_15_1 doi: 10.1016/j.cej.2022.135824 – ident: e_1_2_8_41_1 doi: 10.3390/molecules28166049 – ident: e_1_2_8_156_1 doi: 10.1021/nl203903z – ident: e_1_2_8_69_1 doi: 10.1021/acsomega.1c00462 – ident: e_1_2_8_16_1 doi: 10.1126/science.abo6631 – ident: e_1_2_8_27_1 doi: 10.1038/s41578-020-0202-4 – ident: e_1_2_8_18_1 doi: 10.1002/advs.201500169 – ident: e_1_2_8_80_1 doi: 10.1038/nmat4474 – ident: e_1_2_8_85_1 doi: 10.1002/anie.202014299 – ident: e_1_2_8_144_1 doi: 10.1016/j.reactfunctpolym.2020.104482 – ident: e_1_2_8_111_1 doi: 10.1021/acs.macromol.5b00210 – ident: e_1_2_8_129_1 doi: 10.1021/jacs.6b02428 – ident: e_1_2_8_56_1 doi: 10.1002/macp.201200712 – ident: e_1_2_8_109_1 doi: 10.1021/ma900835y – volume: 22 start-page: 4246 year: 2022 ident: e_1_2_8_173_1 publication-title: ACS Nano – ident: e_1_2_8_112_1 doi: 10.1039/C8MH01624K – ident: e_1_2_8_120_1 doi: 10.1002/adma.201706846 – ident: e_1_2_8_9_1 doi: 10.1126/sciadv.abl5511 – ident: e_1_2_8_3_1 doi: 10.1039/C7CS00819H – ident: e_1_2_8_25_1 doi: 10.1002/adfm.201906603 – ident: e_1_2_8_89_1 doi: 10.1002/adma.201301513 – ident: e_1_2_8_95_1 doi: 10.1002/adfm.201501117 – ident: e_1_2_8_143_1 doi: 10.1021/ja104446r – ident: e_1_2_8_36_1 doi: 10.1039/D0MH00535E – ident: e_1_2_8_131_1 doi: 10.1002/adma.201901402 – ident: e_1_2_8_158_1 doi: 10.1016/j.joule.2019.07.023 – ident: e_1_2_8_181_1 doi: 10.1038/s41928-023-00966-4 – ident: e_1_2_8_157_1 doi: 10.1038/s41578-018-0065-0 – ident: e_1_2_8_11_1 doi: 10.1002/adma.202209906 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202203193 – ident: e_1_2_8_153_1 doi: 10.1021/acs.macromol.9b02305 – ident: e_1_2_8_6_1 doi: 10.1021/acsami.2c14907 – ident: e_1_2_8_33_1 doi: 10.1016/j.progpolymsci.2015.07.002 – ident: e_1_2_8_37_1 doi: 10.1021/acsami.2c05570 – ident: e_1_2_8_179_1 doi: 10.1038/nature25494 – ident: e_1_2_8_175_1 doi: 10.1038/s41565-022-01246-6 – ident: e_1_2_8_103_1 doi: 10.1016/j.apsusc.2018.05.159 |
SSID | ssj0017734 |
Score | 2.5575595 |
SecondaryResourceType | review_article |
Snippet | Traditional electronic devices inevitably undergo degradation over time due to deformation, fatigue, or mechanical damage, ultimately resulting in device... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chemical bonds Covalent bonds Damage Deformation resistance elastic electronics Elastomers Electronic devices Electronics Fatigue failure Healing optoelectronic devices Optoelectronics self‐healing elastic electronics self‐healing elastomers self‐healing mechanisms Strain Tensile properties |
Title | Self‐Healing Elastic Electronics: Materials Design, Mechanisms, and Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202316550 https://www.proquest.com/docview/3075033577 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQLDDwRhRKlQGJpWmbOHYwW0VbVYgwtFTqFvkpIUpBJF2Y-An8Rn4JdpykKRJCgikP2ZZjn-3vcnffAXBOCWc0JNzFjCutoAju0g4RboiIpNDzlMgUxegODyfBzRRNK1H8lh-i_OFmVka2X5sFTlnSXpKGUqFMJLnGJxhlSrtx2DKoaFTyR3lhaM3K2DMOXt60YG3s-O3V6qun0hJqVgFrduIMdgAt-modTR5bi5S1-Ns3Gsf_fMwu2M7hqNO18rMH1uR8H2xVSAoPwGgsZ-rz_cMELOkXTl_jbV1aX4sEOsmVE9HUirLTy1xCmk4kTUzxQ_KUNB06F063Yik_BJNB__566OaZGFwOTWYa2FFIqQAxE7TgYy6w9E2iMYwEZVIJiRlGjAjBoMTQJx3uc4SJhh4eUhohwiOwPn-ey2PgMBVCSCjx9Y4f6CaIopTLwGhmWpoueQ24xUzEPKcpN9kyZrElWPZjM1ZxOVY1cFGWf7EEHT-WrBcTG-cLNYmhNeSiMKwBP5uhX1qJu71BVD6d_KXSKdjU94F1-q2D9fR1Ic80tElZA2x0e9HtuJGJ8RdC1fLy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG1EokAGJhZQmjh3MVlGqAk0HHlK3yE8JUQqi6cLET-A38kvwxU1akBASTFGss5XYZ_s7--47hA44k4LHTPpUSGMNFCV9XmfKjwnTHAeBUbmhmHRp-y667JHCmxBiYRw_RHngBjMjX69hgsOB9PGENZQrA6HkFqBQAlb7HKT1Bvr85nXJIBXEsbtYpgG4eAW9grexHh5_rf91X5qAzWnImu85rWUkiq91riYPtVEmavL1G5Hjv35nBS2NEanXcCq0imb0YA0tTvEUrqPrG903H2_vELNkC7xzC7mttH0WOXSGp17CM6fNXjP3CjnyEg1hxffDx-GRxwfKa0xdlm-gu9b57VnbHydj8CWG5DS4bogxEREQtxBSqagOIdcYJYoLbZSmghLBlBJYUxyyugwlocyij4AYCxLxJpodPA30FvKEiTFmnIV20Y9sE8xwLnUExplVqBNZQX4xFKkcM5VDwox-6jiWwxT6Ki37qoIOS_lnx9Hxo2S1GNl0PFeHKXZ3uSSOKyjMh-iXVtJGs5WUb9t_qbSP5tu3SSftXHSvdtCCLY-cD3AVzWYvI71rkU4m9nJd_gTRDPV6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA4yQfTBuzid2gfBl3VrmyY1vg23MS8bMh3sreQK4pzDdS8--RP8jf4Sk2btNkEEfSoNJ6FNTpLvJOd8B4BTSjijEeEuZlxpA0Vwl3pEuBEikkLfVyI1FNsd3OqF133Un4vit_wQ-YGbmRnpem0m-Eio6ow0lAplIsk1PsHIGO3LIfaISd5Q7-YEUn4U2Xtl7BsPL7-f0TZ6QXWx_uK2NMOa84g13XKaG4BmH2s9TZ4qk4RV-Ns3Hsf__M0mWJ_iUadmFWgLLMnhNlibYyncAd17OVCf7x8mYkkXOA0NuLW0fmYZdMYXTpsmVpedeuoTUnba0gQVP46fx2WHDoVTm7sq3wW9ZuPhsuVOUzG4HJrUNNBTSKkQMRO1EGAusAxMpjGMBGVSCYkZRowIwaDEMCAeDzjCRGMPHykNEeEeKAxfhnIfOExFEBJKAr3kh7oJoijlMjSmmVanc14EbjYSMZ_ylJt0GYPYMiwHsemrOO-rIjjL5UeWoeNHyVI2sPF0po5jaG9yURQVQZCO0C-txLV6s52_Hfyl0glYuas349urzs0hWNXFoXUALoFC8jqRRxrmJOw41eQv9b30KQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90Healing+Elastic+Electronics%3A+Materials+Design%2C+Mechanisms%2C+and+Applications&rft.jtitle=Advanced+functional+materials&rft.au=Wan%2C+Yi&rft.au=Li%2C+Xiang%E2%80%90Chun&rft.au=Yuan%2C+Haotian&rft.au=Liu%2C+Daxiong&rft.date=2024-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=34&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202316550&rft.externalDBID=10.1002%252Fadfm.202316550&rft.externalDocID=ADFM202316550 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |