K+ Induced Phase Transformation of Layered Titanium Disulfide Boosts Ultrafast Potassium‐Ion Storage

Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS2 is proposed as an attractive anode for K‐DIBs, which achieves a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 32; no. 39
Main Authors Zhang, Xiao, Zhu, Hezhen, He, Qiu, Xiong, Ting, Wang, Xuanpeng, Xiao, Zhitong, Wang, Hong, Zhao, Yan, Xu, Lin, Mai, Liqiang
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.202205330

Cover

Abstract Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS2 is proposed as an attractive anode for K‐DIBs, which achieves a discharge capacity of 91.0 mA h g−1 while being discharged/charged to 2000 cycles in half cells. Interestingly, such a stable capacity is attributed to the mechanism of the K+ induced phase transformation. In situ characterizations and first principles calculations reveal that the inserted K+ acts as pillar between the Ti‐S layers producing the thermodynamically stable K0.25TiS2 phase eventually. The robust K0.25TiS2 phase shows enlarged interlayer space, enhanced electronic conductivity, and lower diffusion barrier that enable highly stable and fast storage of K+. Moreover, a novel K‐DIB based on TiS2 anode and mesocarbon microbead cathode is reported for the first time. The K‐DIB achieves a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and excellent cyclability with 85.8% capacity retention over 1000 discharge/charge at 5000 mA g−1. Such mechanistic research provides new insights into the reaction process of layered sulfides/selenides and will facilitate their application in safe and high‐power K‐DIBs. A novel potassium dual‐ion battery based on TiS2 anode and mesocarbon microbead cathode is reported, which exhibits a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and an excellent stability at 5000 mA g−1. K0.25TiS2, a phase transformation product induced by K+, shows enlarged interlayer space (8.09 Å), enhanced electronic conductivity, and lower diffusion barrier (0.27 eV) that enables highly stable and fast storage of K+ are revealed.
AbstractList Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS 2 is proposed as an attractive anode for K‐DIBs, which achieves a discharge capacity of 91.0 mA h g −1 while being discharged/charged to 2000 cycles in half cells. Interestingly, such a stable capacity is attributed to the mechanism of the K + induced phase transformation. In situ characterizations and first principles calculations reveal that the inserted K + acts as pillar between the Ti‐S layers producing the thermodynamically stable K 0.25 TiS 2 phase eventually. The robust K 0.25 TiS 2 phase shows enlarged interlayer space, enhanced electronic conductivity, and lower diffusion barrier that enable highly stable and fast storage of K + . Moreover, a novel K‐DIB based on TiS 2 anode and mesocarbon microbead cathode is reported for the first time. The K‐DIB achieves a reversible capacity of 75.6 mA h g −1 at 100 mA g −1 and excellent cyclability with 85.8% capacity retention over 1000 discharge/charge at 5000 mA g −1 . Such mechanistic research provides new insights into the reaction process of layered sulfides/selenides and will facilitate their application in safe and high‐power K‐DIBs.
Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS2 is proposed as an attractive anode for K‐DIBs, which achieves a discharge capacity of 91.0 mA h g−1 while being discharged/charged to 2000 cycles in half cells. Interestingly, such a stable capacity is attributed to the mechanism of the K+ induced phase transformation. In situ characterizations and first principles calculations reveal that the inserted K+ acts as pillar between the Ti‐S layers producing the thermodynamically stable K0.25TiS2 phase eventually. The robust K0.25TiS2 phase shows enlarged interlayer space, enhanced electronic conductivity, and lower diffusion barrier that enable highly stable and fast storage of K+. Moreover, a novel K‐DIB based on TiS2 anode and mesocarbon microbead cathode is reported for the first time. The K‐DIB achieves a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and excellent cyclability with 85.8% capacity retention over 1000 discharge/charge at 5000 mA g−1. Such mechanistic research provides new insights into the reaction process of layered sulfides/selenides and will facilitate their application in safe and high‐power K‐DIBs. A novel potassium dual‐ion battery based on TiS2 anode and mesocarbon microbead cathode is reported, which exhibits a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and an excellent stability at 5000 mA g−1. K0.25TiS2, a phase transformation product induced by K+, shows enlarged interlayer space (8.09 Å), enhanced electronic conductivity, and lower diffusion barrier (0.27 eV) that enables highly stable and fast storage of K+ are revealed.
Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS2 is proposed as an attractive anode for K‐DIBs, which achieves a discharge capacity of 91.0 mA h g−1 while being discharged/charged to 2000 cycles in half cells. Interestingly, such a stable capacity is attributed to the mechanism of the K+ induced phase transformation. In situ characterizations and first principles calculations reveal that the inserted K+ acts as pillar between the Ti‐S layers producing the thermodynamically stable K0.25TiS2 phase eventually. The robust K0.25TiS2 phase shows enlarged interlayer space, enhanced electronic conductivity, and lower diffusion barrier that enable highly stable and fast storage of K+. Moreover, a novel K‐DIB based on TiS2 anode and mesocarbon microbead cathode is reported for the first time. The K‐DIB achieves a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and excellent cyclability with 85.8% capacity retention over 1000 discharge/charge at 5000 mA g−1. Such mechanistic research provides new insights into the reaction process of layered sulfides/selenides and will facilitate their application in safe and high‐power K‐DIBs.
Author Zhang, Xiao
Mai, Liqiang
Xiong, Ting
Wang, Hong
Xu, Lin
He, Qiu
Xiao, Zhitong
Wang, Xuanpeng
Zhu, Hezhen
Zhao, Yan
Author_xml – sequence: 1
  givenname: Xiao
  surname: Zhang
  fullname: Zhang, Xiao
  organization: Nanyang Technological University
– sequence: 2
  givenname: Hezhen
  surname: Zhu
  fullname: Zhu, Hezhen
  organization: Wuhan University of Technology
– sequence: 3
  givenname: Qiu
  surname: He
  fullname: He, Qiu
  organization: Wuhan University of Technology
– sequence: 4
  givenname: Ting
  surname: Xiong
  fullname: Xiong, Ting
  organization: Nanyang Technological University
– sequence: 5
  givenname: Xuanpeng
  surname: Wang
  fullname: Wang, Xuanpeng
  email: wxp122525691@whut.edu.cn
  organization: Wuhan University of Technology
– sequence: 6
  givenname: Zhitong
  surname: Xiao
  fullname: Xiao, Zhitong
  organization: Wuhan University of Technology
– sequence: 7
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: Wuhan University of Technology
– sequence: 8
  givenname: Yan
  surname: Zhao
  fullname: Zhao, Yan
  organization: Wuhan University of Technology
– sequence: 9
  givenname: Lin
  surname: Xu
  fullname: Xu, Lin
  organization: Wuhan University of Technology
– sequence: 10
  givenname: Liqiang
  orcidid: 0000-0003-4259-7725
  surname: Mai
  fullname: Mai, Liqiang
  email: mlq518@whut.edu.cn
  organization: Wuhan University of Technology
BookMark eNqFkNFKwzAUhoNMcE5vvQ54KZ1Jmibt5dycDicO3MC7cpYm2tE2M2mR3fkIPqNPYsdkgiBe5UC-7xz-_xh1KltphM4o6VNC2CVkpuwzwhiJwpAcoC4VVAQhYXFnP9OnI3Ts_YoQKmXIu8jcXeBJlTVKZ3j2Al7juYPKG-tKqHNbYWvwFDbatf_zvIYqb0o8yn1TmDzT-MpaX3u8KGoHBnyNZ7YG71vo8_1j0uqPtXXwrE_QoYHC69Pvt4cW4-v58DaYPtxMhoNpoEIqScASYYBwpZJMC66MWLJI6DhLtDSgONfZEpIlCCo5ixQxShCQcSZ1zKkEHYc9dL7bu3b2tdG-Tle2cVV7MmWSyjhKeChaiu8o5az3TptUtdG2cdsYeZFSkm4bTbeNpvtGW63_S1u7vAS3-VtIdsJbXujNP3Q6GI3vf9wv0LuNkQ
CitedBy_id crossref_primary_10_1002_cssc_202201375
crossref_primary_10_1002_adma_202309637
crossref_primary_10_1007_s11426_023_1957_3
crossref_primary_10_1002_adfm_202407452
crossref_primary_10_1007_s12274_023_5438_z
crossref_primary_10_1002_adfm_202411082
crossref_primary_10_1002_smll_202311126
crossref_primary_10_1002_adfm_202306550
Cites_doi 10.1039/C8CS00094H
10.1039/C8SC04489A
10.1002/chem.201902899
10.1016/j.ensm.2021.05.013
10.1002/aenm.201803210
10.1039/D1TA02775A
10.1002/batt.202000312
10.1002/adfm.201903496
10.1002/adma.201800804
10.1021/ja400041f
10.1039/D0NR08788B
10.1016/j.ensm.2021.05.045
10.1039/C9NH00211A
10.1021/acsami.9b17635
10.1039/D2TA02517E
10.1021/acs.chemrev.5b00287
10.1021/acsenergylett.7b00529
10.1002/cssc.202100255
10.1016/j.ensm.2017.12.018
10.1039/C9CP04254G
10.1016/j.nanoen.2019.104295
10.1002/cssc.202000578
10.1002/aenm.201903277
10.1002/adma.201702093
10.1002/adfm.202107728
10.1002/aenm.201803865
10.1007/s40820-020-00460-y
10.1002/aenm.201904118
10.1021/acsami.7b15314
10.1016/j.ensm.2019.11.028
10.1016/j.nanoen.2019.06.013
10.1002/adfm.201802473
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202205330
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_202205330
ADFM202205330
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Hubei Province
  funderid: 2019CFA001; 2020CFB519
– fundername: Sanya Science and Education Innovation Park of Wuhan University of Technology
  funderid: 2021KF0019; 2020KF0019
– fundername: National Natural Science Foundation of China
  funderid: 21905218; 51832004
– fundername: Key Research and Development Program of Hubei Province
  funderid: 2021BAA070
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2020IVB034; 2020IVA036
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AAHHS
AANHP
AASGY
AAYXX
ACBWZ
ACCFJ
ACRPL
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3170-296fa04cc9de64cf6b256e8d9e7fac44edba9ba617425c0fc60a78d7e8417ae83
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 03:28:43 EDT 2025
Tue Jul 01 00:30:31 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Wed Aug 20 07:26:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3170-296fa04cc9de64cf6b256e8d9e7fac44edba9ba617425c0fc60a78d7e8417ae83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4259-7725
PQID 2717859436
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2717859436
crossref_citationtrail_10_1002_adfm_202205330
crossref_primary_10_1002_adfm_202205330
wiley_primary_10_1002_adfm_202205330_ADFM202205330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 9
2018; 28
2019; 4
2021; 4
2017; 2
2019; 10
2019; 12
2020; 13
2017; 29
2020; 12
2020; 10
2018; 47
2021; 14
2021; 13
2021; 31
2019; 62
2015; 115
2019; 21
2019; 25
2020; 26
2019; 29
2013; 135
2018; 30
2020; 67
2022; 10
2018; 12
2021; 41
2018; 10
2021; 40
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 1201
  year: 2021
  publication-title: Batteries Supercaps
– volume: 41
  start-page: 108
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 12
  start-page: 1
  year: 2020
  publication-title: Nano‐Micro Lett.
– volume: 13
  start-page: 5033
  year: 2021
  publication-title: Nanoscale
– volume: 135
  start-page: 5144
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2424
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  start-page: 5837
  year: 2020
  publication-title: ChemSusChem
– volume: 10
  start-page: 2048
  year: 2019
  publication-title: Chem. Sci.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 21
  year: 2019
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 216
  year: 2018
  publication-title: Energy Storage Mater.
– volume: 4
  start-page: 1394
  year: 2019
  publication-title: Nanoscale Horiz.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 25
  year: 2019
  publication-title: Chem. Eur. J.
– volume: 47
  start-page: 3301
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 115
  year: 2015
  publication-title: Chem. Rev.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 550
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1835
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 14
  start-page: 1974
  year: 2021
  publication-title: ChemSusChem
– volume: 62
  start-page: 853
  year: 2019
  publication-title: Nano Energy
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 250
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– ident: e_1_2_7_22_1
  doi: 10.1039/C8CS00094H
– ident: e_1_2_7_16_1
  doi: 10.1039/C8SC04489A
– ident: e_1_2_7_19_1
  doi: 10.1002/chem.201902899
– ident: e_1_2_7_31_1
  doi: 10.1016/j.ensm.2021.05.013
– ident: e_1_2_7_27_1
  doi: 10.1002/aenm.201803210
– ident: e_1_2_7_3_1
  doi: 10.1039/D1TA02775A
– ident: e_1_2_7_5_1
  doi: 10.1002/batt.202000312
– ident: e_1_2_7_9_1
  doi: 10.1002/adfm.201903496
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.201800804
– ident: e_1_2_7_26_1
  doi: 10.1021/ja400041f
– ident: e_1_2_7_21_1
  doi: 10.1039/D0NR08788B
– ident: e_1_2_7_8_1
  doi: 10.1016/j.ensm.2021.05.045
– ident: e_1_2_7_14_1
  doi: 10.1039/C9NH00211A
– ident: e_1_2_7_17_1
  doi: 10.1021/acsami.9b17635
– ident: e_1_2_7_23_1
  doi: 10.1039/D2TA02517E
– ident: e_1_2_7_18_1
  doi: 10.1021/acs.chemrev.5b00287
– ident: e_1_2_7_24_1
  doi: 10.1021/acsenergylett.7b00529
– ident: e_1_2_7_6_1
  doi: 10.1002/cssc.202100255
– ident: e_1_2_7_25_1
  doi: 10.1016/j.ensm.2017.12.018
– ident: e_1_2_7_29_1
  doi: 10.1039/C9CP04254G
– ident: e_1_2_7_32_1
  doi: 10.1016/j.nanoen.2019.104295
– ident: e_1_2_7_4_1
  doi: 10.1002/cssc.202000578
– ident: e_1_2_7_12_1
  doi: 10.1002/aenm.201903277
– ident: e_1_2_7_1_1
  doi: 10.1002/adma.201702093
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.202107728
– ident: e_1_2_7_2_1
  doi: 10.1002/aenm.201803865
– ident: e_1_2_7_13_1
  doi: 10.1007/s40820-020-00460-y
– ident: e_1_2_7_30_1
  doi: 10.1002/aenm.201904118
– ident: e_1_2_7_11_1
  doi: 10.1021/acsami.7b15314
– ident: e_1_2_7_28_1
  doi: 10.1016/j.ensm.2019.11.028
– ident: e_1_2_7_10_1
  doi: 10.1016/j.nanoen.2019.06.013
– ident: e_1_2_7_20_1
  doi: 10.1002/adfm.201802473
SSID ssj0017734
Score 2.4652717
Snippet Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Anodes
Diffusion barriers
Diffusion rate
Discharge
First principles
Interlayers
Ion storage
K + induced phase transformations
Materials science
Nanoparticles
Phase transitions
Potassium
potassium dual‐ion batteries
reaction mechanisms
Selenides
Storage batteries
TiS 2
Titanium
ultrafast potassium‐ion storage
Title K+ Induced Phase Transformation of Layered Titanium Disulfide Boosts Ultrafast Potassium‐Ion Storage
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202205330
https://www.proquest.com/docview/2717859436
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8IwFG8MXvTgfyOKpAcTD2awP6XrjigSVDBEIOG2dF0bicgMGwc9-RH8jH4SXxkMMDEmelm2pK_Z2vdef6_r-z2EzkwqFaBkyxCh6xqEqcDgFckMJiVoh62jIp0o3LqnjR657Vf6S1n8KT9EtuGmLWPqr7WB8yAuL0hDeah0JrlOFIWYHJyw5VBNnl97yPijLNdNfytTSx_wsvpz1kbTLq-Kr65KC6i5DFinK059G_H5u6YHTZ5KkyQoibdvNI7_-ZgdtDWDo7ia6s8uWpOjPbS5RFK4j9TdBdYFPoQMcfsRFj3cXQK70QhHCjf5q675ibsDwJqDyTOuDeLJUA1CiS-jKE5i3BsmY654nOB2lABgh0af7x83IN6BqB-c2gHq1a-7Vw1jVp3BEI6uVmN7VHGTCOGFkhKhaADoSbLQk67ighAZBtwLOCAkcAvCVIKa3GWhKxmxXC6Zc4hyo2gkjxDWBDqgSnBVDiEeYxxwvwdd2YQTbsk8Muaz44sZdbmuoDH0U9Jl29fj52fjl0fnWfuXlLTjx5aF-WT7M-ONfRtCXFbxiEPzyJ7O2i-9-NVavZU9Hf9F6ARt6Pv09FoB5ZLxRJ4C3EmCIlqv1lrNTnGq2l9LMflY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4VeigcaClUBALdA1IPlRPb2djrIyVEoflR1CYSN2u93lUjQoywc4ATj8Az9kk6E8dOUqmq1F4s2Zpd2Tuzu9-sZ74BOLc9bRAlO5aKfd_iwkSWbGphCa3ROlzyiihRuD_wOmP-9aZZRBNSLkzOD1EeuNHMWKzXNMHpQLq-Yg2VsaFUcsoURad8C15zRBvkf7W-lQxSju_nP5Y9h0K8nJuCt9F265vtN_elFdhch6yLPaf9FqLibfNQk9vaPItq6uk3Isf_-px3sLdEpOwiN6F9eKVn72F3jafwAEz3M6MaH0rHbPgD9z02WsO7yYwlhvXkI5X9ZKMJws3J_I61Jul8aiaxZl-SJM1SNp5mD9LINGPDJEPMjkI_n1-usfl3dPxxXTuEcftqdNmxlgUaLNWggjVu4Blpc6WCWHtcGS9CAKVFHGjfSMW5jiMZRBJBEq4MyjbKs6UvYl8L7vhSi8YH2J4lM30EjDh00JrwahqcB0JIhP4BduVyyaWjK2AV6gnVkr2cimhMw5x32Q1p_MJy_CrwqZS_z3k7_ihZLbQdLudvGrro5YpmwBteBdyF2v7SS3jRavfLu-N_afQR3nRG_V7Yux50T2CHnufBbFXYzh7m-hTRTxadLez7FxEE--M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPXkD0wbs4r3kQfJBq22Vp-qjO4Z2hG-ytpLngcK5iuwd98iP4Gf0knqxbnYII-lJoSUqbnCS_0-b8D8COy7RBSvYcqYLAodzEjqho7nCt0Tp86xXZQOGra3bapOetSmskij_Xhyg-uNmR0Z-v7QB_VObgUzRUKGMjyW2gKPrk4zBJGeKExaKbQkDKC4L8vzLz7A4vrzWUbXT9g6_1vy5Ln6w5Sqz9Jac2B2L4sPlOk_v9Xhbvy5dvOo7_eZt5mB3wKDnMDWgBxnR3EWZGVAqXwFzsEZvhQ2pF6ne46pHGCO0mXZIYcimebdJP0mgjbLZ7D6TaTnsd01aaHCVJmqWk2cmehBFpRupJhsSOhd5f386w-i26_TirLUOzdtI4PnUG6RkcWbbpavyQGeFSKUOlGZWGxYhPmqtQB0ZISrWKRRgLRCScF6RrJHNFwFWgOfUCoXl5BSa6SVevArEKOmhLeDRlSkPOBYJ_iLfyqaDC0yVwhr0TyYF2uU2h0Yly1WU_su0XFe1Xgt2i_GOu2vFjyY1hZ0eD0ZtGPvq4vBLSMiuB3--1X-4SHVZrV8XZ2l8qbcNUvVqLLs-uL9Zh2l7Od7JtwET21NObiD5ZvNW37g8d6vqS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K+%2B+Induced+Phase+Transformation+of+Layered+Titanium+Disulfide+Boosts+Ultrafast+Potassium%E2%80%90Ion+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Xiao&rft.au=Zhu%2C+Hezhen&rft.au=He%2C+Qiu&rft.au=Xiong%2C+Ting&rft.date=2022-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=39&rft_id=info:doi/10.1002%2Fadfm.202205330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202205330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon