K+ Induced Phase Transformation of Layered Titanium Disulfide Boosts Ultrafast Potassium‐Ion Storage
Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS2 is proposed as an attractive anode for K‐DIBs, which achieves a...
Saved in:
Published in | Advanced functional materials Vol. 32; no. 39 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202205330 |
Cover
Abstract | Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS2 is proposed as an attractive anode for K‐DIBs, which achieves a discharge capacity of 91.0 mA h g−1 while being discharged/charged to 2000 cycles in half cells. Interestingly, such a stable capacity is attributed to the mechanism of the K+ induced phase transformation. In situ characterizations and first principles calculations reveal that the inserted K+ acts as pillar between the Ti‐S layers producing the thermodynamically stable K0.25TiS2 phase eventually. The robust K0.25TiS2 phase shows enlarged interlayer space, enhanced electronic conductivity, and lower diffusion barrier that enable highly stable and fast storage of K+. Moreover, a novel K‐DIB based on TiS2 anode and mesocarbon microbead cathode is reported for the first time. The K‐DIB achieves a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and excellent cyclability with 85.8% capacity retention over 1000 discharge/charge at 5000 mA g−1. Such mechanistic research provides new insights into the reaction process of layered sulfides/selenides and will facilitate their application in safe and high‐power K‐DIBs.
A novel potassium dual‐ion battery based on TiS2 anode and mesocarbon microbead cathode is reported, which exhibits a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and an excellent stability at 5000 mA g−1. K0.25TiS2, a phase transformation product induced by K+, shows enlarged interlayer space (8.09 Å), enhanced electronic conductivity, and lower diffusion barrier (0.27 eV) that enables highly stable and fast storage of K+ are revealed. |
---|---|
AbstractList | Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS
2
is proposed as an attractive anode for K‐DIBs, which achieves a discharge capacity of 91.0 mA h g
−1
while being discharged/charged to 2000 cycles in half cells. Interestingly, such a stable capacity is attributed to the mechanism of the K
+
induced phase transformation. In situ characterizations and first principles calculations reveal that the inserted K
+
acts as pillar between the Ti‐S layers producing the thermodynamically stable K
0.25
TiS
2
phase eventually. The robust K
0.25
TiS
2
phase shows enlarged interlayer space, enhanced electronic conductivity, and lower diffusion barrier that enable highly stable and fast storage of K
+
. Moreover, a novel K‐DIB based on TiS
2
anode and mesocarbon microbead cathode is reported for the first time. The K‐DIB achieves a reversible capacity of 75.6 mA h g
−1
at 100 mA g
−1
and excellent cyclability with 85.8% capacity retention over 1000 discharge/charge at 5000 mA g
−1
. Such mechanistic research provides new insights into the reaction process of layered sulfides/selenides and will facilitate their application in safe and high‐power K‐DIBs. Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS2 is proposed as an attractive anode for K‐DIBs, which achieves a discharge capacity of 91.0 mA h g−1 while being discharged/charged to 2000 cycles in half cells. Interestingly, such a stable capacity is attributed to the mechanism of the K+ induced phase transformation. In situ characterizations and first principles calculations reveal that the inserted K+ acts as pillar between the Ti‐S layers producing the thermodynamically stable K0.25TiS2 phase eventually. The robust K0.25TiS2 phase shows enlarged interlayer space, enhanced electronic conductivity, and lower diffusion barrier that enable highly stable and fast storage of K+. Moreover, a novel K‐DIB based on TiS2 anode and mesocarbon microbead cathode is reported for the first time. The K‐DIB achieves a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and excellent cyclability with 85.8% capacity retention over 1000 discharge/charge at 5000 mA g−1. Such mechanistic research provides new insights into the reaction process of layered sulfides/selenides and will facilitate their application in safe and high‐power K‐DIBs. A novel potassium dual‐ion battery based on TiS2 anode and mesocarbon microbead cathode is reported, which exhibits a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and an excellent stability at 5000 mA g−1. K0.25TiS2, a phase transformation product induced by K+, shows enlarged interlayer space (8.09 Å), enhanced electronic conductivity, and lower diffusion barrier (0.27 eV) that enables highly stable and fast storage of K+ are revealed. Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good cyclability anodes for K‐DIBs is still a grand challenge. Herein, layered TiS2 is proposed as an attractive anode for K‐DIBs, which achieves a discharge capacity of 91.0 mA h g−1 while being discharged/charged to 2000 cycles in half cells. Interestingly, such a stable capacity is attributed to the mechanism of the K+ induced phase transformation. In situ characterizations and first principles calculations reveal that the inserted K+ acts as pillar between the Ti‐S layers producing the thermodynamically stable K0.25TiS2 phase eventually. The robust K0.25TiS2 phase shows enlarged interlayer space, enhanced electronic conductivity, and lower diffusion barrier that enable highly stable and fast storage of K+. Moreover, a novel K‐DIB based on TiS2 anode and mesocarbon microbead cathode is reported for the first time. The K‐DIB achieves a reversible capacity of 75.6 mA h g−1 at 100 mA g−1 and excellent cyclability with 85.8% capacity retention over 1000 discharge/charge at 5000 mA g−1. Such mechanistic research provides new insights into the reaction process of layered sulfides/selenides and will facilitate their application in safe and high‐power K‐DIBs. |
Author | Zhang, Xiao Mai, Liqiang Xiong, Ting Wang, Hong Xu, Lin He, Qiu Xiao, Zhitong Wang, Xuanpeng Zhu, Hezhen Zhao, Yan |
Author_xml | – sequence: 1 givenname: Xiao surname: Zhang fullname: Zhang, Xiao organization: Nanyang Technological University – sequence: 2 givenname: Hezhen surname: Zhu fullname: Zhu, Hezhen organization: Wuhan University of Technology – sequence: 3 givenname: Qiu surname: He fullname: He, Qiu organization: Wuhan University of Technology – sequence: 4 givenname: Ting surname: Xiong fullname: Xiong, Ting organization: Nanyang Technological University – sequence: 5 givenname: Xuanpeng surname: Wang fullname: Wang, Xuanpeng email: wxp122525691@whut.edu.cn organization: Wuhan University of Technology – sequence: 6 givenname: Zhitong surname: Xiao fullname: Xiao, Zhitong organization: Wuhan University of Technology – sequence: 7 givenname: Hong surname: Wang fullname: Wang, Hong organization: Wuhan University of Technology – sequence: 8 givenname: Yan surname: Zhao fullname: Zhao, Yan organization: Wuhan University of Technology – sequence: 9 givenname: Lin surname: Xu fullname: Xu, Lin organization: Wuhan University of Technology – sequence: 10 givenname: Liqiang orcidid: 0000-0003-4259-7725 surname: Mai fullname: Mai, Liqiang email: mlq518@whut.edu.cn organization: Wuhan University of Technology |
BookMark | eNqFkNFKwzAUhoNMcE5vvQ54KZ1Jmibt5dycDicO3MC7cpYm2tE2M2mR3fkIPqNPYsdkgiBe5UC-7xz-_xh1KltphM4o6VNC2CVkpuwzwhiJwpAcoC4VVAQhYXFnP9OnI3Ts_YoQKmXIu8jcXeBJlTVKZ3j2Al7juYPKG-tKqHNbYWvwFDbatf_zvIYqb0o8yn1TmDzT-MpaX3u8KGoHBnyNZ7YG71vo8_1j0uqPtXXwrE_QoYHC69Pvt4cW4-v58DaYPtxMhoNpoEIqScASYYBwpZJMC66MWLJI6DhLtDSgONfZEpIlCCo5ixQxShCQcSZ1zKkEHYc9dL7bu3b2tdG-Tle2cVV7MmWSyjhKeChaiu8o5az3TptUtdG2cdsYeZFSkm4bTbeNpvtGW63_S1u7vAS3-VtIdsJbXujNP3Q6GI3vf9wv0LuNkQ |
CitedBy_id | crossref_primary_10_1002_cssc_202201375 crossref_primary_10_1002_adma_202309637 crossref_primary_10_1007_s11426_023_1957_3 crossref_primary_10_1002_adfm_202407452 crossref_primary_10_1007_s12274_023_5438_z crossref_primary_10_1002_adfm_202411082 crossref_primary_10_1002_smll_202311126 crossref_primary_10_1002_adfm_202306550 |
Cites_doi | 10.1039/C8CS00094H 10.1039/C8SC04489A 10.1002/chem.201902899 10.1016/j.ensm.2021.05.013 10.1002/aenm.201803210 10.1039/D1TA02775A 10.1002/batt.202000312 10.1002/adfm.201903496 10.1002/adma.201800804 10.1021/ja400041f 10.1039/D0NR08788B 10.1016/j.ensm.2021.05.045 10.1039/C9NH00211A 10.1021/acsami.9b17635 10.1039/D2TA02517E 10.1021/acs.chemrev.5b00287 10.1021/acsenergylett.7b00529 10.1002/cssc.202100255 10.1016/j.ensm.2017.12.018 10.1039/C9CP04254G 10.1016/j.nanoen.2019.104295 10.1002/cssc.202000578 10.1002/aenm.201903277 10.1002/adma.201702093 10.1002/adfm.202107728 10.1002/aenm.201803865 10.1007/s40820-020-00460-y 10.1002/aenm.201904118 10.1021/acsami.7b15314 10.1016/j.ensm.2019.11.028 10.1016/j.nanoen.2019.06.013 10.1002/adfm.201802473 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202205330 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_202205330 ADFM202205330 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Hubei Province funderid: 2019CFA001; 2020CFB519 – fundername: Sanya Science and Education Innovation Park of Wuhan University of Technology funderid: 2021KF0019; 2020KF0019 – fundername: National Natural Science Foundation of China funderid: 21905218; 51832004 – fundername: Key Research and Development Program of Hubei Province funderid: 2021BAA070 – fundername: Fundamental Research Funds for the Central Universities funderid: 2020IVB034; 2020IVA036 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAHHS AANHP AASGY AAYXX ACBWZ ACCFJ ACRPL ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AIWBW AJBDE ASPBG AVWKF AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3170-296fa04cc9de64cf6b256e8d9e7fac44edba9ba617425c0fc60a78d7e8417ae83 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 03:28:43 EDT 2025 Tue Jul 01 00:30:31 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Wed Aug 20 07:26:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3170-296fa04cc9de64cf6b256e8d9e7fac44edba9ba617425c0fc60a78d7e8417ae83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4259-7725 |
PQID | 2717859436 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2717859436 crossref_citationtrail_10_1002_adfm_202205330 crossref_primary_10_1002_adfm_202205330 wiley_primary_10_1002_adfm_202205330_ADFM202205330 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2019; 9 2018; 28 2019; 4 2021; 4 2017; 2 2019; 10 2019; 12 2020; 13 2017; 29 2020; 12 2020; 10 2018; 47 2021; 14 2021; 13 2021; 31 2019; 62 2015; 115 2019; 21 2019; 25 2020; 26 2019; 29 2013; 135 2018; 30 2020; 67 2022; 10 2018; 12 2021; 41 2018; 10 2021; 40 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 4 start-page: 1201 year: 2021 publication-title: Batteries Supercaps – volume: 41 start-page: 108 year: 2021 publication-title: Energy Storage Mater. – volume: 12 start-page: 1 year: 2020 publication-title: Nano‐Micro Lett. – volume: 13 start-page: 5033 year: 2021 publication-title: Nanoscale – volume: 135 start-page: 5144 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2424 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 13 start-page: 5837 year: 2020 publication-title: ChemSusChem – volume: 10 start-page: 2048 year: 2019 publication-title: Chem. Sci. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 21 year: 2019 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 216 year: 2018 publication-title: Energy Storage Mater. – volume: 4 start-page: 1394 year: 2019 publication-title: Nanoscale Horiz. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 25 year: 2019 publication-title: Chem. Eur. J. – volume: 47 start-page: 3301 year: 2018 publication-title: Chem. Soc. Rev. – volume: 115 year: 2015 publication-title: Chem. Rev. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 550 year: 2020 publication-title: Energy Storage Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1835 year: 2017 publication-title: ACS Energy Lett. – volume: 14 start-page: 1974 year: 2021 publication-title: ChemSusChem – volume: 62 start-page: 853 year: 2019 publication-title: Nano Energy – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 250 year: 2021 publication-title: Energy Storage Mater. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – ident: e_1_2_7_22_1 doi: 10.1039/C8CS00094H – ident: e_1_2_7_16_1 doi: 10.1039/C8SC04489A – ident: e_1_2_7_19_1 doi: 10.1002/chem.201902899 – ident: e_1_2_7_31_1 doi: 10.1016/j.ensm.2021.05.013 – ident: e_1_2_7_27_1 doi: 10.1002/aenm.201803210 – ident: e_1_2_7_3_1 doi: 10.1039/D1TA02775A – ident: e_1_2_7_5_1 doi: 10.1002/batt.202000312 – ident: e_1_2_7_9_1 doi: 10.1002/adfm.201903496 – ident: e_1_2_7_7_1 doi: 10.1002/adma.201800804 – ident: e_1_2_7_26_1 doi: 10.1021/ja400041f – ident: e_1_2_7_21_1 doi: 10.1039/D0NR08788B – ident: e_1_2_7_8_1 doi: 10.1016/j.ensm.2021.05.045 – ident: e_1_2_7_14_1 doi: 10.1039/C9NH00211A – ident: e_1_2_7_17_1 doi: 10.1021/acsami.9b17635 – ident: e_1_2_7_23_1 doi: 10.1039/D2TA02517E – ident: e_1_2_7_18_1 doi: 10.1021/acs.chemrev.5b00287 – ident: e_1_2_7_24_1 doi: 10.1021/acsenergylett.7b00529 – ident: e_1_2_7_6_1 doi: 10.1002/cssc.202100255 – ident: e_1_2_7_25_1 doi: 10.1016/j.ensm.2017.12.018 – ident: e_1_2_7_29_1 doi: 10.1039/C9CP04254G – ident: e_1_2_7_32_1 doi: 10.1016/j.nanoen.2019.104295 – ident: e_1_2_7_4_1 doi: 10.1002/cssc.202000578 – ident: e_1_2_7_12_1 doi: 10.1002/aenm.201903277 – ident: e_1_2_7_1_1 doi: 10.1002/adma.201702093 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.202107728 – ident: e_1_2_7_2_1 doi: 10.1002/aenm.201803865 – ident: e_1_2_7_13_1 doi: 10.1007/s40820-020-00460-y – ident: e_1_2_7_30_1 doi: 10.1002/aenm.201904118 – ident: e_1_2_7_11_1 doi: 10.1021/acsami.7b15314 – ident: e_1_2_7_28_1 doi: 10.1016/j.ensm.2019.11.028 – ident: e_1_2_7_10_1 doi: 10.1016/j.nanoen.2019.06.013 – ident: e_1_2_7_20_1 doi: 10.1002/adfm.201802473 |
SSID | ssj0017734 |
Score | 2.4652717 |
Snippet | Potassium dual‐ion batteries (K‐DIBs) have invoked considerable interest owing to their high safety and power density. However, achieving high‐rate and good... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anodes Diffusion barriers Diffusion rate Discharge First principles Interlayers Ion storage K + induced phase transformations Materials science Nanoparticles Phase transitions Potassium potassium dual‐ion batteries reaction mechanisms Selenides Storage batteries TiS 2 Titanium ultrafast potassium‐ion storage |
Title | K+ Induced Phase Transformation of Layered Titanium Disulfide Boosts Ultrafast Potassium‐Ion Storage |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202205330 https://www.proquest.com/docview/2717859436 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8IwFG8MXvTgfyOKpAcTD2awP6XrjigSVDBEIOG2dF0bicgMGwc9-RH8jH4SXxkMMDEmelm2pK_Z2vdef6_r-z2EzkwqFaBkyxCh6xqEqcDgFckMJiVoh62jIp0o3LqnjR657Vf6S1n8KT9EtuGmLWPqr7WB8yAuL0hDeah0JrlOFIWYHJyw5VBNnl97yPijLNdNfytTSx_wsvpz1kbTLq-Kr65KC6i5DFinK059G_H5u6YHTZ5KkyQoibdvNI7_-ZgdtDWDo7ia6s8uWpOjPbS5RFK4j9TdBdYFPoQMcfsRFj3cXQK70QhHCjf5q675ibsDwJqDyTOuDeLJUA1CiS-jKE5i3BsmY654nOB2lABgh0af7x83IN6BqB-c2gHq1a-7Vw1jVp3BEI6uVmN7VHGTCOGFkhKhaADoSbLQk67ighAZBtwLOCAkcAvCVIKa3GWhKxmxXC6Zc4hyo2gkjxDWBDqgSnBVDiEeYxxwvwdd2YQTbsk8Muaz44sZdbmuoDH0U9Jl29fj52fjl0fnWfuXlLTjx5aF-WT7M-ONfRtCXFbxiEPzyJ7O2i-9-NVavZU9Hf9F6ARt6Pv09FoB5ZLxRJ4C3EmCIlqv1lrNTnGq2l9LMflY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB4VeigcaClUBALdA1IPlRPb2djrIyVEoflR1CYSN2u93lUjQoywc4ATj8Az9kk6E8dOUqmq1F4s2Zpd2Tuzu9-sZ74BOLc9bRAlO5aKfd_iwkSWbGphCa3ROlzyiihRuD_wOmP-9aZZRBNSLkzOD1EeuNHMWKzXNMHpQLq-Yg2VsaFUcsoURad8C15zRBvkf7W-lQxSju_nP5Y9h0K8nJuCt9F265vtN_elFdhch6yLPaf9FqLibfNQk9vaPItq6uk3Isf_-px3sLdEpOwiN6F9eKVn72F3jafwAEz3M6MaH0rHbPgD9z02WsO7yYwlhvXkI5X9ZKMJws3J_I61Jul8aiaxZl-SJM1SNp5mD9LINGPDJEPMjkI_n1-usfl3dPxxXTuEcftqdNmxlgUaLNWggjVu4Blpc6WCWHtcGS9CAKVFHGjfSMW5jiMZRBJBEq4MyjbKs6UvYl8L7vhSi8YH2J4lM30EjDh00JrwahqcB0JIhP4BduVyyaWjK2AV6gnVkr2cimhMw5x32Q1p_MJy_CrwqZS_z3k7_ihZLbQdLudvGrro5YpmwBteBdyF2v7SS3jRavfLu-N_afQR3nRG_V7Yux50T2CHnufBbFXYzh7m-hTRTxadLez7FxEE--M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bS8MwFMcPXkD0wbs4r3kQfJBq22Vp-qjO4Z2hG-ytpLngcK5iuwd98iP4Gf0knqxbnYII-lJoSUqbnCS_0-b8D8COy7RBSvYcqYLAodzEjqho7nCt0Tp86xXZQOGra3bapOetSmskij_Xhyg-uNmR0Z-v7QB_VObgUzRUKGMjyW2gKPrk4zBJGeKExaKbQkDKC4L8vzLz7A4vrzWUbXT9g6_1vy5Ln6w5Sqz9Jac2B2L4sPlOk_v9Xhbvy5dvOo7_eZt5mB3wKDnMDWgBxnR3EWZGVAqXwFzsEZvhQ2pF6ne46pHGCO0mXZIYcimebdJP0mgjbLZ7D6TaTnsd01aaHCVJmqWk2cmehBFpRupJhsSOhd5f386w-i26_TirLUOzdtI4PnUG6RkcWbbpavyQGeFSKUOlGZWGxYhPmqtQB0ZISrWKRRgLRCScF6RrJHNFwFWgOfUCoXl5BSa6SVevArEKOmhLeDRlSkPOBYJ_iLfyqaDC0yVwhr0TyYF2uU2h0Yly1WU_su0XFe1Xgt2i_GOu2vFjyY1hZ0eD0ZtGPvq4vBLSMiuB3--1X-4SHVZrV8XZ2l8qbcNUvVqLLs-uL9Zh2l7Od7JtwET21NObiD5ZvNW37g8d6vqS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=K+%2B+Induced+Phase+Transformation+of+Layered+Titanium+Disulfide+Boosts+Ultrafast+Potassium%E2%80%90Ion+Storage&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Xiao&rft.au=Zhu%2C+Hezhen&rft.au=He%2C+Qiu&rft.au=Xiong%2C+Ting&rft.date=2022-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=32&rft.issue=39&rft_id=info:doi/10.1002%2Fadfm.202205330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_202205330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |