Challenges and Solutions of Solid‐State Electrolyte Film for Large‐Scale Applications

Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved safety compared to conventional lithium‐ion batteries with liquid electrolytes. Large‐area solid‐state electrolyte (SSE) films with adequate thic...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 14; no. 11
Main Authors Huang, Xiaozhong, Li, Tao, Fan, Weiwei, Xiao, Rui, Cheng, Xin‐Bing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved safety compared to conventional lithium‐ion batteries with liquid electrolytes. Large‐area solid‐state electrolyte (SSE) films with adequate thickness control, improved ionic conductivity, and good interfacial contact can reduce internal resistance, increase the real energy density of batteries, and reduce manufacturing costs. Optimization of SSE properties at the particle scale and large‐scale preparation of SSE films are key to the development of high‐performance solid‐state lithium‐ion batteries and their industrialization. Therefore, this paper provides a comprehensive review of SSE, covering both particle‐level features like the effects of particle size, density, and air stability on the electrochemical performance, as well as four major routes for large‐scale preparation and relevant strategies for structural optimization of SSE films. In addition, the effects of large‐area SSE films on the electrochemical performance of solid‐state batteries and their applications in pouch solid‐state lithium‐ion battery systems are discussed in detail. Finally, the design principles of SSE particles and SSE films are summarized and the development direction of thin SSEs is envisaged. In this paper, the effects of SSE on the electrochemical performance of batteries at the particle scale and optimization strategies, followed by four mainstream and other methods for large‐area preparation of SSE films are introduced. The aim is to provide a comprehensive overview of SSE film design and to promote the development of solid‐state batteries.
AbstractList Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved safety compared to conventional lithium‐ion batteries with liquid electrolytes. Large‐area solid‐state electrolyte (SSE) films with adequate thickness control, improved ionic conductivity, and good interfacial contact can reduce internal resistance, increase the real energy density of batteries, and reduce manufacturing costs. Optimization of SSE properties at the particle scale and large‐scale preparation of SSE films are key to the development of high‐performance solid‐state lithium‐ion batteries and their industrialization. Therefore, this paper provides a comprehensive review of SSE, covering both particle‐level features like the effects of particle size, density, and air stability on the electrochemical performance, as well as four major routes for large‐scale preparation and relevant strategies for structural optimization of SSE films. In addition, the effects of large‐area SSE films on the electrochemical performance of solid‐state batteries and their applications in pouch solid‐state lithium‐ion battery systems are discussed in detail. Finally, the design principles of SSE particles and SSE films are summarized and the development direction of thin SSEs is envisaged.
Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved safety compared to conventional lithium‐ion batteries with liquid electrolytes. Large‐area solid‐state electrolyte (SSE) films with adequate thickness control, improved ionic conductivity, and good interfacial contact can reduce internal resistance, increase the real energy density of batteries, and reduce manufacturing costs. Optimization of SSE properties at the particle scale and large‐scale preparation of SSE films are key to the development of high‐performance solid‐state lithium‐ion batteries and their industrialization. Therefore, this paper provides a comprehensive review of SSE, covering both particle‐level features like the effects of particle size, density, and air stability on the electrochemical performance, as well as four major routes for large‐scale preparation and relevant strategies for structural optimization of SSE films. In addition, the effects of large‐area SSE films on the electrochemical performance of solid‐state batteries and their applications in pouch solid‐state lithium‐ion battery systems are discussed in detail. Finally, the design principles of SSE particles and SSE films are summarized and the development direction of thin SSEs is envisaged. In this paper, the effects of SSE on the electrochemical performance of batteries at the particle scale and optimization strategies, followed by four mainstream and other methods for large‐area preparation of SSE films are introduced. The aim is to provide a comprehensive overview of SSE film design and to promote the development of solid‐state batteries.
Author Huang, Xiaozhong
Xiao, Rui
Fan, Weiwei
Cheng, Xin‐Bing
Li, Tao
Author_xml – sequence: 1
  givenname: Xiaozhong
  surname: Huang
  fullname: Huang, Xiaozhong
  organization: Southeast University
– sequence: 2
  givenname: Tao
  surname: Li
  fullname: Li, Tao
  email: 101012902@seu.edu.cn
  organization: Southeast University
– sequence: 3
  givenname: Weiwei
  surname: Fan
  fullname: Fan, Weiwei
  organization: Southeast University
– sequence: 4
  givenname: Rui
  surname: Xiao
  fullname: Xiao, Rui
  email: ruixiao@seu.edu.cn
  organization: Southeast University
– sequence: 5
  givenname: Xin‐Bing
  orcidid: 0000-0001-7567-1210
  surname: Cheng
  fullname: Cheng, Xin‐Bing
  email: chengxb@seu.edu.cn
  organization: Tianmu Lake Institute of Advanced Energy Storage Technologies
BookMark eNqFkM9Kw0AQxhdRsNZePQc8t-6fpEmOpbQqVD1UD56Wze5s3bLNxt0U6c1H8Bl9EpNGKgjiXOYbmN8M33eGjktXAkIXBI8IxvRKQLkZUUwZZlmCj1CPjEk8HGcxPj5oRk_RIIQ1birOCWash56nL8JaKFcQIlGqaOnstjauDJHT7WDU5_vHshY1RDMLsvbO7ho9N3YTaeejhfAraFeksBBNqsoaKfYHztGJFjbA4Lv30dN89ji9GS4erm-nk8VQMpLiISVSK8GISiEpJEnivNCQAlOSyDwZqzRVGUsETvKUklwXMWSNYUUbqTOVF6yPLru7lXevWwg1X7utL5uXnOZJSjqnfTTqtqR3IXjQvPJmI_yOE8zbBHmbID8k2ADxL0Caeu-s9sLYv7G8w96Mhd0_T_hkdn_3w34BgqmJ_w
CitedBy_id crossref_primary_10_1021_acsaem_4c01134
crossref_primary_10_1002_aenm_202402671
crossref_primary_10_1002_cnl2_183
crossref_primary_10_23919_CHAIN_2024_000011
crossref_primary_10_1002_adfm_202411171
crossref_primary_10_1016_j_cej_2025_159662
crossref_primary_10_1016_j_est_2024_114338
crossref_primary_10_1039_D4NR02114B
crossref_primary_10_1002_smll_202409536
crossref_primary_10_1002_aenm_202403846
crossref_primary_10_1021_acs_jpcc_5c00814
crossref_primary_10_1002_eem2_12831
crossref_primary_10_1016_j_mtener_2025_101801
Cites_doi 10.1021/cr00044a002
10.1016/j.jpowsour.2017.04.014
10.1002/admi.202000425
10.1016/j.ceramint.2015.12.133
10.1002/er.8275
10.1016/j.jpowsour.2013.09.140
10.1016/S0378-7753(01)01013-8
10.1002/aenm.201703644
10.3390/ma14164737
10.1016/j.jallcom.2013.12.100
10.1002/eem2.12280
10.1002/adfm.202303397
10.1021/acsaem.3c00371
10.1016/j.mattod.2022.07.016
10.1016/j.cej.2022.135779
10.1016/j.jpowsour.2012.09.097
10.1016/j.est.2023.107640
10.1016/j.mtener.2021.100841
10.1021/acs.chemmater.1c01837
10.1016/j.ssi.2005.03.023
10.1002/aenm.201601635
10.1016/j.etran.2023.100279
10.1016/j.jpowsour.2015.05.093
10.1016/j.jpowsour.2015.10.053
10.1016/j.ssi.2015.09.010
10.1016/j.jechem.2019.05.015
10.1016/j.ssi.2015.11.019
10.1021/acsenergylett.8b00275
10.1016/0167-2738(86)90130-X
10.1021/ja01004a002
10.1016/j.ensm.2023.03.012
10.1039/D1EE00551K
10.1021/acs.nanolett.2c04140
10.1039/C4FD00143E
10.1021/acs.chemmater.9b00420
10.1002/aenm.201902881
10.5796/electrochemistry.81.428
10.1016/j.ssi.2014.01.046
10.1016/0167-2738(86)90142-6
10.1039/C7RA09081A
10.1016/j.elecom.2011.02.035
10.1016/j.ceramint.2019.04.236
10.3390/ma14071671
10.1021/acsami.2c22562
10.1016/j.ensm.2018.11.011
10.1021/acs.chemmater.7b00944
10.1021/acs.chemmater.9b04764
10.1016/j.mtnano.2019.100048
10.1016/j.electacta.2021.139249
10.1016/j.ensm.2023.01.018
10.1016/0025-5408(76)90077-5
10.1021/ja3110895
10.1016/j.nanoen.2021.106542
10.1016/j.cej.2021.131948
10.1039/D3MA00078H
10.1016/j.jpowsour.2014.04.065
10.1002/anie.201105006
10.1016/j.jnoncrysol.2007.08.058
10.1002/adfm.202101985
10.1016/j.jechem.2022.11.003
10.1039/D1TA04799J
10.1016/j.ceramint.2018.09.133
10.1016/j.apmt.2020.100918
10.1002/anie.201804114
10.1126/sciadv.abc8641
10.1111/j.1151-2916.2002.tb00334.x
10.1080/14786430500038088
10.1021/acsenergylett.1c02261
10.1038/s41570-019-0078-2
10.1016/j.cej.2019.02.148
10.1002/aenm.201902767
10.1016/j.ssi.2010.08.021
10.1016/j.ssi.2019.01.017
10.1016/0167-2738(86)90127-X
10.1021/acsaem.9b01152
10.1002/adma.201707132
10.1016/j.electacta.2018.11.035
10.1039/c3ta10247e
10.1002/aenm.202100836
10.1002/celc.202200156
10.1002/adfm.201910123
10.1016/0013-4686(95)00180-M
10.1021/acsami.8b01805
10.1021/acsami.2c20734
10.1016/j.ensm.2019.07.015
10.1016/j.cej.2023.143159
10.1039/D0TA00517G
10.1002/celc.201402344
10.1007/s11581-017-2035-8
10.1016/0013-4686(95)00392-4
10.1002/eom2.12317
10.1039/C4RA08674K
10.1021/acsaem.9b01111
10.1021/acsaem.2c00713
10.1039/c3ta15090a
10.1007/s41918-022-00149-3
10.1016/j.mtnano.2020.100075
10.1016/j.jnoncrysol.2012.12.044
10.1021/acs.jpclett.7b02880
10.1002/adma.202209114
10.1021/acsenergylett.0c00251
10.1016/j.jallcom.2022.166731
10.1021/acsenergylett.9b01847
10.1002/smtd.202201328
10.1039/C8CC08030E
10.1149/1.2108425
10.1021/acsami.0c00393
10.1002/advs.201700996
10.1002/aenm.202103720
10.1021/acsaem.0c00347
10.1039/C4TA05231E
10.3390/nano9081086
10.1002/eem2.12308
10.1002/ange.19600720407
10.1016/j.ensm.2019.01.007
10.1038/s41560-020-0575-z
10.1038/nature11475
10.1016/0022-1902(67)80301-4
10.1021/acs.inorgchem.1c01748
10.1016/j.jpowsour.2020.228250
10.1016/0165-1633(85)90033-4
10.1016/j.ensm.2021.08.028
10.1016/j.cej.2023.142537
10.1016/j.ssi.2012.01.017
10.1038/nenergy.2016.42
10.1016/j.memsci.2022.120666
10.1007/s10853-013-7226-8
10.1039/C8EE02617C
10.1039/C5EE00058K
10.1016/j.ssi.2015.06.015
10.1016/j.ensm.2022.09.022
10.1038/srep02261
10.1021/acs.chemrev.5b00563
10.1111/j.1151-2916.2002.tb00113.x
10.1039/C6CP03179J
10.1002/batt.202000051
10.1002/adma.201700007
10.1021/acs.nanolett.5b00538
10.1021/acsomega.2c06544
10.1002/anie.201608924
10.1016/j.jpowsour.2016.05.100
10.1021/acsami.1c20480
10.1038/nenergy.2016.30
10.1016/j.ssi.2013.09.005
10.1016/j.ssi.2008.01.055
10.1016/j.electacta.2021.139701
10.1149/2.053207jes
10.1016/0167-2738(92)90442-R
10.1016/j.elecom.2021.107058
10.1016/j.ensm.2018.08.009
10.1038/nmat3066
10.1016/j.ssi.2017.03.010
10.1016/j.cej.2020.125334
10.1016/0013-4686(62)80039-5
10.1149/1.2086749
10.1021/acsenergylett.2c00535
10.1016/j.jechem.2020.12.026
10.1246/cl.130726
10.1016/j.jpowsour.2012.02.031
10.1016/j.elecom.2011.08.014
10.1016/j.jmat.2023.04.011
10.1016/j.jpowsour.2014.08.024
10.1039/D2TA02023H
10.1016/0167-577X(88)90011-0
10.1016/j.ssi.2010.10.013
10.1016/j.mattod.2018.04.004
10.1038/s41578-019-0165-5
10.1039/c0cs00081g
10.1038/srep18053
10.1016/j.jpowsour.2009.06.100
10.1021/acsaem.2c03922
10.1021/jacs.9b08357
10.1039/D1EE03032A
10.1021/acsami.3c02084
10.1016/j.ensm.2022.12.039
10.1016/j.mtener.2022.101034
10.1021/acsami.7b03606
10.1021/acsenergylett.9b00430
10.1016/j.cej.2020.127149
10.1002/aenm.201902783
10.1021/acsami.3c01681
10.1021/acs.jpcc.1c05034
10.1039/c0jm04222f
10.1038/s41565-019-0465-3
10.1038/nchem.2470
10.1016/j.xcrp.2022.101043
10.1021/ic50074a058
10.1002/anie.202214545
10.1016/0013-4686(94)00345-2
10.1080/10667857.2020.1713452
10.1016/j.ssi.2021.115812
10.1149/1945-7111/ac8edc
10.1002/aenm.201800014
10.1002/anie.202302505
10.1007/s11581-021-03941-1
10.1016/j.jpowsour.2019.227579
10.1073/pnas.1600422113
10.1016/j.jcis.2023.06.183
10.1039/C7TA06790A
10.1039/C3EE43357A
10.1002/aenm.202200660
10.1002/aenm.201804004
10.1016/j.ensm.2018.07.008
10.1021/acsami.3c02678
10.1039/B514640B
10.1016/j.ensm.2020.11.038
10.1016/j.ssi.2022.115888
10.1021/acsami.2c06204
10.1016/j.materresbull.2007.08.007
10.1016/j.etran.2022.100211
10.1039/C7QI00737J
10.1021/jacs.7b10864
10.1002/anie.202007621
10.1016/j.ssi.2020.115225
10.1002/aenm.202101612
10.1016/j.powtec.2021.04.050
10.1002/sstr.202200206
10.1021/acs.chemrev.9b00531
10.1016/j.jcis.2023.01.138
10.3390/en15093206
10.1039/C9TA06520B
10.1002/aenm.201903376
10.1016/j.jpowsour.2015.02.015
10.1016/j.xcrp.2020.100301
10.1016/j.nanoen.2017.12.037
10.1016/j.cej.2022.137994
10.1016/j.nanoen.2022.107499
10.1016/0038-1098(93)90841-A
10.1039/C4TA04419C
10.1016/j.jpowsour.2017.11.074
10.1002/aenm.201200932
10.1002/aenm.201901841
10.1016/j.jssc.2009.05.020
10.1016/j.ssi.2004.02.025
10.1021/acsmaterialslett.9b00189
10.1002/aenm.202201991
10.1016/j.jnoncrysol.2005.09.028
10.1016/j.jpowsour.2023.232659
10.1016/j.jpowsour.2018.10.037
10.1039/c3cc00064h
10.1016/j.cej.2022.135106
10.1021/acsami.7b00614
10.1016/j.jpowsour.2013.10.005
10.1021/acs.iecr.3c01643
10.1002/adma.201906221
10.1021/acsomega.0c03453
10.1021/acsami.5b04209
10.1021/ja00905a001
10.1016/j.ceramint.2020.09.047
10.1002/adma.202100921
10.1021/acsami.2c01361
10.1021/acsami.1c21804
10.1002/adma.201000717
10.1088/1468-6996/14/4/043502
10.1016/j.jpowsour.2022.231939
10.1149/2.0951712jes
10.1016/0167-2738(86)90179-7
10.1149/2.1031915jes
10.1016/j.nanoen.2019.05.002
10.1002/aenm.202204028
10.1016/0032-3861(73)90146-8
10.1021/acsami.9b13313
10.1016/j.compositesb.2023.110566
10.1016/j.cej.2021.128508
10.1021/acsenergylett.1c02428
10.1016/j.electacta.2015.08.046
10.1002/anie.201901739
10.1016/j.cej.2021.129710
10.1016/j.jpowsour.2018.11.016
10.1016/j.jechem.2022.01.008
10.1007/s10853-012-6300-y
10.1002/adfm.202300501
10.1038/35104644
10.1016/j.jpowsour.2019.227338
10.1038/srep06916
10.1016/j.apsusc.2018.02.270
10.1021/acsami.1c21951
10.1021/acsami.6b03070
10.1016/j.jpowsour.2014.07.159
10.1016/j.memsci.2021.119952
10.1016/j.nanoen.2016.09.002
10.1016/j.powtec.2016.03.055
10.1016/j.ensm.2022.01.052
10.1126/science.264.5162.1115
10.1016/0378-7753(85)88004-6
10.1002/anie.200701144
10.1021/acsami.2c14087
10.1039/D2RA05782D
10.1039/C6TA02294D
10.1002/aenm.201903422
10.1016/j.ssi.2016.02.002
10.1111/j.1551-2916.2007.01827.x
10.1002/anie.202307255
10.1021/acsami.9b05212
10.1007/s12598-020-01429-x
10.1002/aenm.202102348
10.1016/j.apsusc.2021.151762
10.1039/D2CC02203F
10.1021/ja3091438
10.1021/acs.nanolett.7b00715
10.1039/C5CC00575B
10.1021/acs.jpcc.8b11043
10.1016/j.jallcom.2013.12.191
10.1039/D0EE02714F
10.1002/aenm.201700732
10.1002/adma.202100353
10.1557/PROC-135-3
10.1007/s10853-019-04180-6
10.1007/BF00611256
10.1016/j.ssi.2011.10.022
10.1016/j.etran.2021.100152
10.1039/C7EE01004D
10.1021/ja906529g
10.1088/0022-3727/7/1/327
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202303850
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202303850
AENM202303850
Genre reviewArticle
GrantInformation_xml – fundername: Special fund for carbon peak and carbon neutralization scientific and technological innovation project
  funderid: BE2022031‐3
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20220073
– fundername: National Natural Science Foundation of China
  funderid: 22179070; 92372111; 52276175
– fundername: Fundamental Research Funds for the Central Universities
  funderid: RF1028623157
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3170-21cfda31d7e5bc1549bfe7e3dc1c956d77d835a0597219fb4e8100d29fbf8d9b3
ISSN 1614-6832
IngestDate Fri Jul 25 10:26:04 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Tue Jul 01 01:43:55 EDT 2025
Wed Jan 22 16:14:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3170-21cfda31d7e5bc1549bfe7e3dc1c956d77d835a0597219fb4e8100d29fbf8d9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7567-1210
PQID 2957149103
PQPubID 886389
PageCount 48
ParticipantIDs proquest_journals_2957149103
crossref_primary_10_1002_aenm_202303850
crossref_citationtrail_10_1002_aenm_202303850
wiley_primary_10_1002_aenm_202303850_AENM202303850
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2005; 176
2019; 11
2019; 10
2023; 464
2019; 12
2019; 14
2019; 17
2023; 466
2019; 18
2009; 194
2020; 12
2020; 10
2019; 166
2012 2013; 159 3
1994; 264
2022 2022; 27 374
2002; 85
2019; 22
1974 1967 1960 1962; 7 29 72 7
2016; 42
2008; 354
1986 1986; 18 133
2014 2015; 2 281
2022; 169
2021; 47
2019; 31
2021; 421
2020; 41
2009; 182
2020; 39
2013; 224
2020; 35
2020; 32
1986 1986 1985; 18 18 14
1995; 40
2022; 3
2020; 30
2020; 396
2022; 5
2021; 411
2022; 7
2019; 45
2022; 9
2017; 56
2013; 81
2008; 43
2023; 559
2016; 28
2021; 60
2016; 8
2019; 296
1992 1992; 53 53
2023; 35
2023; 33
2013 2004 1985; 14 85 12
2019; 55
2021; 125
2021; 128
2019; 58
2021 2018; 22 8
2018; 407
2014; 176
2017; 353
2022; 657
2020; 8
2020; 7
2020; 6
2020; 5
2014; 4
2020; 3
2019; 61
2023; 23
1984; 14
2023 2022; 61
2013 2014 2015; 49 4 51
1981 2013 2011 2016; 81 3 10 8
2023; 650
2016; 113
2002; 108
2013 2014 2015 2019 2019 2013; 135 271 293 3 8 42
2014; 7
2018 2020; 323 448
2022; 404
2022; 642
2015; 2
2021; 9
2023; 10
2013; 48
2023; 13
2020 2017 2017 2021; 120 7 7 27
2004; 84
2015; 5
2021; 2
2015; 3
2023; 18
2023; 15
1993; 86
2020; 346
2007
1976 1986; 11 18
2017; 29
2021; 90
2022; 435
2016 2016; 116 1
1833; 123
2012 2017 2012; 206 5 208
2017; 17
2019; 410
2023; 638
2022; 427
2007; 46
2022; 545
2006 1969 1988; 8 7
2018; 57
2022; 450
2013; 1
2023; 77
1963; 85
1973; 14
2012 2001 2010; 488 414 22
2020; 446
2018 2019; 3 123
2014; 258
2022; 575
2018; 46
2018 2017; 5 7
2014; 248
2023; 62
2022; 440
2018; 8
2023; 68
2018; 5
2004; 170
1995 1985; 40 53
2018; 30
2021 2018; 43 54
2021; 397
2019; 7
2019; 9
2019; 4
2023; 58
2023; 55
2005; 351
2023; 56
2021; 387
2019; 2
2019; 1
2014 2018 2017; 248 9 164
2007; 90
2014; 271
2015 2015; 8 7
2016; 285
2022; 100
2022; 12
2022; 14
2019; 333
2022; 15
2022; 10
2022; 11
2014; 265
2018; 10
2017; 304
2021; 407
1990 1996; 137 41
2021; 21
2023; 4
2017 2018 2019 2023; 10 15 22 15
2023; 6
2023; 7
2022 2022 2020; 5 15 59
2016 2016 2016 2020; 324 288 18 467
2022; 69
2019; 367
2009 2011; 131 21
2016 2013; 1 135
2017; 9
2013 2014; 364 591
2022; 378
2021; 35
2021; 31
2021; 33
2012 2016; 47 302
2023; 254
1988; 135
2017 2016 2018 2014; 23 4 444 2
1968; 90
2022; 926
2015; 15
2018; 140
2010 2012; 181 211
2011 2011 2012 2015; 13 13 51 180
2011; 40
2022; 46
2022; 47
2014; 590
2019; 141
2021; 14
2021; 11
2022; 61
2018 2019; 382 45
2022; 58
2022; 59
2022; 53
2013; 253
2008; 179
2011; 182
e_1_2_8_26_3
e_1_2_8_241_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_226_1
e_1_2_8_1_3
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_1_2
e_1_2_8_9_1
e_1_2_8_41_3
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_41_2
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_4
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_230_1
e_1_2_8_230_2
e_1_2_8_230_3
e_1_2_8_253_1
e_1_2_8_38_1
e_1_2_8_15_2
Rösler J. (e_1_2_8_53_1) 2007
e_1_2_8_238_1
e_1_2_8_230_4
e_1_2_8_215_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_30_2
e_1_2_8_76_1
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_25_1
e_1_2_8_25_2
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_2_2
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_2_4
e_1_2_8_2_3
e_1_2_8_110_1
e_1_2_8_40_4
e_1_2_8_40_3
e_1_2_8_171_1
e_1_2_8_40_6
e_1_2_8_63_2
e_1_2_8_40_5
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
Cheng X. B. (e_1_2_8_15_1) 2023
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_98_2
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_28_2
e_1_2_8_243_1
e_1_2_8_220_1
e_1_2_8_7_4
e_1_2_8_228_1
e_1_2_8_205_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_7_3
e_1_2_8_7_2
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_107_3
e_1_2_8_107_4
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_160_1
Iijima T. (e_1_2_8_21_2) 1985; 53
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_55_2
e_1_2_8_32_3
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_32_2
e_1_2_8_107_2
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_27_2
Faraday M. (e_1_2_8_8_1) 1833; 123
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_206_1
e_1_2_8_80_1
e_1_2_8_150_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
e_1_2_8_135_1
e_1_2_8_39_2
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_77_3
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_31_1
e_1_2_8_54_3
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_5_1
Bates J. B. (e_1_2_8_23_1) 1992; 53
e_1_2_8_151_1
e_1_2_8_5_2
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_60_3
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_60_2
e_1_2_8_19_1
e_1_2_8_19_2
e_1_2_8_11_3
e_1_2_8_11_4
e_1_2_8_109_1
e_1_2_8_57_1
e_1_2_8_211_1
e_1_2_8_19_3
e_1_2_8_234_1
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_11_2
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_29_2
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_6_2
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_2
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_56_2
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_94_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_186_1
e_1_2_8_102_2
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_251_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_13_3
e_1_2_8_190_1
e_1_2_8_36_2
e_1_2_8_213_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_149_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_23_2
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_116_1
e_1_2_8_139_1
e_1_2_8_61_2
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_73_4
e_1_2_8_12_1
e_1_2_8_73_3
e_1_2_8_73_2
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
e_1_2_8_188_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 60
  start-page: 162
  year: 2021
  publication-title: J. Energy Chem.
– volume: 15
  year: 2023
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 6608
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 265
  start-page: 40
  year: 2014
  publication-title: J. Power Sources
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 411
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 194
  start-page: 1085
  year: 2009
  publication-title: J. Power Sources
– volume: 10
  year: 2020
  publication-title: Mater. Today Nano
– volume: 35
  start-page: 512
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 56
  start-page: 753
  year: 2017
  publication-title: Angew.Chem. Int. Ed.
– volume: 367
  start-page: 230
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 466
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 435
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 2939
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 182
  start-page: 2046
  year: 2009
  publication-title: J. Solid‐state Chem.
– volume: 650
  start-page: 203
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 176
  start-page: 83
  year: 2014
  publication-title: Faraday Discuss.
– volume: 33
  start-page: 6909
  year: 2021
  publication-title: Chem. Mater.
– volume: 56
  start-page: 300
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 49 4 51
  start-page: 2204 6916 7294
  year: 2013 2014 2015
  publication-title: Chem. Commun. Sci. Rep. Chem. Commun.
– volume: 77
  start-page: 326
  year: 2023
  publication-title: J Energy Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 8587
  year: 2018
  publication-title: Angew.Chem. Int. Ed.
– volume: 85
  start-page: 473
  year: 2002
  publication-title: J Am Ceram Soc
– volume: 9
  year: 2022
  publication-title: ChemElectroChem
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 2668
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 40 53
  start-page: 991 619
  year: 1995 1985
  publication-title: Electrochim. Acta Electrochem Soc Jpn
– volume: 169
  year: 2022
  publication-title: J. Electrochem. Soc.
– volume: 17
  start-page: 204
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 304
  start-page: 85
  year: 2017
  publication-title: Solid‐state Ionics
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 285
  start-page: 112
  year: 2016
  publication-title: Solid‐state Ionics
– volume: 638
  start-page: 908
  year: 2023
  publication-title: J. Colloid Interface Sci.
– volume: 31
  start-page: 3694
  year: 2019
  publication-title: Chem. Mater.
– year: 2007
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 575
  year: 2022
  publication-title: Appl. Surf. Sci.
– volume: 427
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 85
  start-page: 3533
  year: 1963
  publication-title: JACS
– volume: 40
  start-page: 2525
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 14 85 12
  start-page: 1654 391
  year: 2013 2004 1985
  publication-title: Sci. Technol. Adv. Mater. J. Am. Ceram. Soc. Sol. Energy Mater.
– volume: 6
  year: 2023
  publication-title: Energy Environ. Mater.
– volume: 657
  year: 2022
  publication-title: J. Membrane Sci.
– volume: 3
  start-page: 438
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 46
  year: 2022
  publication-title: Int. J. Energy Res.
– volume: 450
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 364 591
  start-page: 57 247
  year: 2013 2014
  publication-title: J. Non‐Cryst. Solids J. Alloys Compd.
– volume: 5 15 59
  start-page: 3 991
  year: 2022 2022 2020
  publication-title: Electrochem. Energy Rev. Energy Environ. Sci. Angew. Chem., Int. Ed.
– volume: 14
  start-page: 2577
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 258
  start-page: 1
  year: 2014
  publication-title: Solid‐state Ionics
– volume: 45
  year: 2019
  publication-title: Ceram. Int.
– volume: 224
  start-page: 225
  year: 2013
  publication-title: J. Power Sources
– volume: 135 271 293 3 8 42
  start-page: 975 342 941 189 1435
  year: 2013 2014 2015 2019 2019 2013
  publication-title: J. Am. Chem. Soc. J. Power Sources J. Power Sources Nat. Rev. Chem. Mater. Today Nano Chem. Lett.
– volume: 41
  start-page: 171
  year: 2020
  publication-title: J Energy Chem
– volume: 23
  start-page: 227
  year: 2023
  publication-title: Nano Lett.
– volume: 8 7
  start-page: 412 1000 205
  year: 2006 1969 1988
  publication-title: Chem. Commun. Inorg. Chem. Mater. Lett.
– volume: 285
  start-page: 6
  year: 2016
  publication-title: Solid‐state Ionics
– volume: 17
  start-page: 266
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 42
  start-page: 5546
  year: 2016
  publication-title: Ceram. Int.
– volume: 47
  start-page: 288
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 421
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 182
  start-page: 116
  year: 2011
  publication-title: Solid‐state Ionics
– volume: 14
  start-page: 589
  year: 1973
  publication-title: Polymer
– volume: 6
  start-page: 4881
  year: 2023
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 718
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 3206
  year: 2022
  publication-title: Energies
– volume: 18
  year: 2023
  publication-title: eTransportation
– volume: 58
  start-page: 7646
  year: 2022
  publication-title: Chem. Commun.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2022
  publication-title: RSC Adv.
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 387
  start-page: 415
  year: 2021
  publication-title: Powder Technol.
– volume: 43
  start-page: 2334
  year: 2008
  publication-title: Mater. Res. Bull.
– volume: 1
  start-page: 354
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 10
  start-page: 134
  year: 2023
  publication-title: J. Materiomics
– volume: 5
  start-page: 229
  year: 2020
  publication-title: Nat. Rev. Mater.
– volume: 86
  start-page: 689
  year: 1993
  publication-title: Solid‐state Commun.
– volume: 1
  start-page: 6320
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 18 133
  start-page: 368 2437
  year: 1986 1986
  publication-title: Solid‐state Ionics J Electrochem Soc
– volume: 14
  start-page: 4737
  year: 2021
  publication-title: Materials
– volume: 488 414 22
  start-page: 294 359 E170
  year: 2012 2001 2010
  publication-title: Nature Nature Adv. Mater.
– volume: 90
  start-page: 223
  year: 1968
  publication-title: JACS
– volume: 29
  start-page: 3785
  year: 2017
  publication-title: Chem. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 22
  start-page: 194
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 113
  start-page: 7094
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 705
  year: 2019
  publication-title: Nat. Nanotechnol.
– volume: 39
  start-page: 743
  year: 2020
  publication-title: Rare Met.
– volume: 22 8
  year: 2021 2018
  publication-title: Appl. Mater. Today Adv. Energy Mater.
– volume: 12
  start-page: 938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 351
  start-page: 3716
  year: 2005
  publication-title: J. Non‐Cryst. Solids
– volume: 5 7
  start-page: 501
  year: 2018 2017
  publication-title: Inorg. Chem. Front. RSC Adv.
– volume: 10
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 271
  start-page: 60
  year: 2014
  publication-title: J. Power Sources
– volume: 108
  start-page: 8
  year: 2002
  publication-title: J. Power Sources
– volume: 84
  start-page: 719
  year: 2004
  publication-title: Philos. Mag. Lett.
– volume: 382 45
  start-page: 190 56
  year: 2018 2019
  publication-title: J. Power Sources Ceram. Int.
– volume: 285
  start-page: 2
  year: 2016
  publication-title: Solid‐state Ionics
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 62
  year: 2023
  publication-title: Ind. Eng. Chem. Res.
– volume: 346
  year: 2020
  publication-title: Solid‐state Ionics
– volume: 17
  start-page: 3182
  year: 2017
  publication-title: Nano Lett.
– volume: 23 4 444 2
  start-page: 2061 8091 10 5095
  year: 2017 2016 2018 2014
  publication-title: Ionics J. Mater. Chem. A Appl. Surf. Sci. J. Mater. Chem. A
– volume: 15
  year: 2023
  publication-title: eTransportation
– volume: 4
  year: 2023
  publication-title: Small Struct.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 404
  year: 2022
  publication-title: Electrochim. Acta
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 353
  start-page: 287
  year: 2017
  publication-title: J. Power Sources
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 2
  start-page: 6542
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 40
  start-page: 2289
  year: 1995
  publication-title: Electrochim. Acta
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 2123
  year: 2021
  publication-title: Ceram. Int.
– volume: 7
  start-page: 1558
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 11
  year: 2022
  publication-title: eTransportation
– volume: 407
  start-page: 31
  year: 2018
  publication-title: J. Power Sources
– volume: 46
  start-page: 7778
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 116 1
  start-page: 140
  year: 2016 2016
  publication-title: Chem. Rev. Nat. Energy
– volume: 100
  year: 2022
  publication-title: Nano Energy
– volume: 69
  start-page: 194
  year: 2022
  publication-title: J Energy Chem.
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 128
  year: 2021
  publication-title: Electrochem. Commun.
– volume: 7
  start-page: 171
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 590
  start-page: 147
  year: 2014
  publication-title: J. Alloys Compd.
– volume: 14
  start-page: 1671
  year: 2021
  publication-title: Materials
– volume: 248 9 164
  start-page: 943 607
  year: 2014 2018 2017
  publication-title: J. Power Sources J. Phys. Chem. Lett. J. Electrochem. Soc.
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 253
  start-page: 76
  year: 2013
  publication-title: Solid‐state Ionics
– volume: 53
  start-page: 937
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 2 281
  start-page: 334
  year: 2014 2015
  publication-title: J. Mater. Chem. A J. Power Sources
– volume: 14
  start-page: 643
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 545
  year: 2022
  publication-title: J. Power Sources
– volume: 90
  start-page: 2802
  year: 2007
  publication-title: J. Am. Ceram. Soc.
– volume: 5
  year: 2020
  publication-title: ACS Omega
– volume: 14
  start-page: 2805
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 61
  year: 2023 2022
  publication-title: Adv. Mater. Chem. Int. Ed.
– volume: 333
  start-page: 45
  year: 2019
  publication-title: Solid‐state Ionics
– volume: 27 374
  year: 2022 2022
  publication-title: Mater. Today Energy Solid‐state Ionics
– volume: 5
  start-page: 5267
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 18 18 14
  start-page: 282 295 13
  year: 1986 1986 1985
  publication-title: Solid‐state Ionics Solid‐state Ionics J. Power Sources
– volume: 354
  start-page: 1475
  year: 2008
  publication-title: J. Non‐Cryst. Solids
– volume: 59
  start-page: 161
  year: 2022
  publication-title: Mater. Today
– volume: 7 29 72 7
  start-page: 194 2453 138 511
  year: 1974 1967 1960 1962
  publication-title: J Phys D Appl Phys J. Inorg. Nucl. Chem. Angew. Chem. Electrochim. Acta
– volume: 2
  start-page: 328
  year: 2015
  publication-title: ChemElectroChem
– volume: 3
  start-page: 596
  year: 2020
  publication-title: Batteries Supercaps.
– volume: 47 302
  start-page: 4428 135
  year: 2012 2016
  publication-title: J. Mater. Sci. J. Power Sources
– volume: 7
  start-page: 1053
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 131 21
  year: 2009 2011
  publication-title: J. Am. Chem. Soc. J. Mater. Chem.
– volume: 48
  start-page: 4137
  year: 2013
  publication-title: J. Mater. Sci.
– volume: 3 123
  start-page: 992 1626
  year: 2018 2019
  publication-title: ACS Energy Lett. J. Phys. Chem. C
– volume: 9
  start-page: 1086
  year: 2019
  publication-title: Nanomaterials
– volume: 248
  start-page: 642
  year: 2014
  publication-title: J. Power Sources
– volume: 43 54
  start-page: 53
  year: 2021 2018
  publication-title: Energy Storage Mater. Chem. Commun.
– volume: 5
  year: 2018
  publication-title: Adv. Sci.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 296
  start-page: 473
  year: 2019
  publication-title: Electrochim. Acta
– volume: 11 18
  start-page: 203 562
  year: 1976 1986
  publication-title: Mat. Res. Bull. Solid‐state Ionics
– volume: 13 13 51 180
  start-page: 509 1373 5798 37
  year: 2011 2011 2012 2015
  publication-title: Electrochem. Commun. Electrochem. Commun. Angew. Chem., Int. Ed. Electrochim. Acta
– volume: 559
  year: 2023
  publication-title: J. Power Sources
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 176
  year: 2018
  publication-title: Nano Energy
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  year: 2022
  publication-title: ACS Omega
– volume: 14
  start-page: 39
  year: 1984
  publication-title: J. Appl. Electrochem.
– volume: 15
  start-page: 3317
  year: 2015
  publication-title: Nano Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 1 135
  start-page: 1167
  year: 2016 2013
  publication-title: Nat. Energy J. Am. Chem. Soc.
– volume: 5
  start-page: 299
  year: 2020
  publication-title: Nat. Energy
– volume: 32
  start-page: 2664
  year: 2020
  publication-title: Chem. Mater.
– volume: 5
  year: 2022
  publication-title: EcoMat.
– volume: 926
  year: 2022
  publication-title: J. Alloys Compd.
– volume: 179
  start-page: 1714
  year: 2008
  publication-title: Solid‐state Ionics
– volume: 407
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 2
  year: 2021
  publication-title: Cell Rep Phys Sci
– volume: 3
  year: 2022
  publication-title: Cell Rep Phys Sci
– volume: 464
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 410
  start-page: 162
  year: 2019
  publication-title: J. Power Sources
– volume: 4
  start-page: 1073
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 447
  year: 2016
  publication-title: Nano Energy
– volume: 3
  start-page: 4708
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 378
  year: 2022
  publication-title: Solid‐state Ionics
– volume: 140
  start-page: 82
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 132
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 206 5 208
  start-page: 28 193
  year: 2012 2017 2012
  publication-title: Solid‐state Ionics J. Mater. Chem. A J. Power Sources
– volume: 170
  start-page: 173
  year: 2004
  publication-title: Solid‐state Ionics
– volume: 53 53
  start-page: 655 647
  year: 1992 1992
  publication-title: Solid‐state Ionics Solid‐state Ionics
– volume: 440
  year: 2022
  publication-title: Chem. Eng. J.
– volume: 68
  year: 2023
  publication-title: J. Energy Storage
– volume: 6
  start-page: 3321
  year: 2023
  publication-title: ACS Appl. Energy Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 159 3
  start-page: 845
  year: 2012 2013
  publication-title: J. Electrochem. Soc. Adv. Energy Mater.
– volume: 14
  start-page: 1195
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8 7
  start-page: 1551
  year: 2015 2015
  publication-title: Energy Environ. Sci. ACS Appl. Mater. Interfaces
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 254
  year: 2023
  publication-title: Composites Part B
– volume: 137 41
  start-page: 1657 1443
  year: 1990 1996
  publication-title: Electrochem. Soc. Electrochim. Acta
– volume: 7
  start-page: 410
  year: 2022
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 3452
  year: 2023
  publication-title: Mater. Adv.
– volume: 264
  start-page: 1115
  year: 1994
  publication-title: Science
– volume: 58
  start-page: 7673
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10 15 22 15
  start-page: 1568 458 50 751
  year: 2017 2018 2019 2023
  publication-title: Energy Environ. Sci. Energy Storage Mater. Mater. Today ACS Appl. Mater. Interfaces
– volume: 81 3 10 8
  start-page: 327 2261 682 426
  year: 1981 2013 2011 2016
  publication-title: Chem. Rev. Sci. Rep. Nat. Mater. Nat Chem
– volume: 7
  year: 2023
  publication-title: Small Meth.
– volume: 176
  start-page: 2355
  year: 2005
  publication-title: Solid‐state Ionics
– volume: 61
  start-page: 52
  year: 2022
  publication-title: Inorg. Chem.
– volume: 90
  year: 2021
  publication-title: Nano Energy
– volume: 323 448
  start-page: 581
  year: 2018 2020
  publication-title: Powder Technol. J. Power Sources
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 120 7 7 27
  start-page: 6783 1393
  year: 2020 2017 2017 2021
  publication-title: Chem. Rev. Adv. Energy Mater. Adv. Energy Mater. Ionics
– volume: 18
  start-page: 59
  year: 2019
  publication-title: Energy Storage Mater.
– volume: 81
  start-page: 428
  year: 2013
  publication-title: Electrochem
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 324 288 18 467
  start-page: 798 229
  year: 2016 2016 2016 2020
  publication-title: J. Power Sources Solid‐state Ionics Phys Chem Chem Phys. J. Power Sources
– volume: 642
  year: 2022
  publication-title: J. Membrane Sci.
– volume: 446
  year: 2020
  publication-title: J. Power Sources
– volume: 61
  start-page: 567
  year: 2019
  publication-title: Nano Energy
– volume: 55
  start-page: 847
  year: 2023
  publication-title: Energy Storage Mater.
– volume: 181 211
  start-page: 1505 42
  year: 2010 2012
  publication-title: Solid‐state Ionics Solid‐state Ionics
– volume: 55
  start-page: 3750
  year: 2019
  publication-title: J. Mater. Sci.
– volume: 397
  year: 2021
  publication-title: Electrochim. Acta.
– volume: 35
  start-page: 572
  year: 2020
  publication-title: Mater. Technol.
– volume: 135
  start-page: 3
  year: 1988
  publication-title: MRS Online Proceedings Library (OPL)
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 123
  start-page: 23
  year: 1833
  publication-title: Phil. Trans. R. Soc. Lond.
– ident: e_1_2_8_7_1
  doi: 10.1021/cr00044a002
– volume: 53
  start-page: 619
  year: 1985
  ident: e_1_2_8_21_2
  publication-title: Electrochem Soc Jpn
– ident: e_1_2_8_236_1
  doi: 10.1016/j.jpowsour.2017.04.014
– ident: e_1_2_8_247_1
  doi: 10.1002/admi.202000425
– ident: e_1_2_8_125_1
  doi: 10.1016/j.ceramint.2015.12.133
– ident: e_1_2_8_175_1
  doi: 10.1002/er.8275
– ident: e_1_2_8_62_1
  doi: 10.1016/j.jpowsour.2013.09.140
– ident: e_1_2_8_96_1
  doi: 10.1016/S0378-7753(01)01013-8
– ident: e_1_2_8_98_2
  doi: 10.1002/aenm.201703644
– ident: e_1_2_8_138_1
  doi: 10.3390/ma14164737
– ident: e_1_2_8_211_1
  doi: 10.1016/j.jallcom.2013.12.100
– ident: e_1_2_8_251_1
  doi: 10.1002/eem2.12280
– ident: e_1_2_8_121_1
  doi: 10.1002/adfm.202303397
– ident: e_1_2_8_189_1
  doi: 10.1021/acsaem.3c00371
– ident: e_1_2_8_246_1
  doi: 10.1016/j.mattod.2022.07.016
– ident: e_1_2_8_191_1
  doi: 10.1016/j.cej.2022.135779
– ident: e_1_2_8_148_1
  doi: 10.1016/j.jpowsour.2012.09.097
– ident: e_1_2_8_200_1
  doi: 10.1016/j.est.2023.107640
– ident: e_1_2_8_228_1
  doi: 10.1016/j.mtener.2021.100841
– ident: e_1_2_8_119_1
  doi: 10.1021/acs.chemmater.1c01837
– ident: e_1_2_8_153_1
  doi: 10.1016/j.ssi.2005.03.023
– ident: e_1_2_8_2_2
  doi: 10.1002/aenm.201601635
– ident: e_1_2_8_17_1
  doi: 10.1016/j.etran.2023.100279
– ident: e_1_2_8_40_3
  doi: 10.1016/j.jpowsour.2015.05.093
– ident: e_1_2_8_61_2
  doi: 10.1016/j.jpowsour.2015.10.053
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ssi.2015.09.010
– ident: e_1_2_8_149_1
  doi: 10.1016/j.jechem.2019.05.015
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ssi.2015.11.019
– ident: e_1_2_8_56_1
  doi: 10.1021/acsenergylett.8b00275
– ident: e_1_2_8_19_2
  doi: 10.1016/0167-2738(86)90130-X
– ident: e_1_2_8_85_1
  doi: 10.1021/ja01004a002
– ident: e_1_2_8_239_1
  doi: 10.1016/j.ensm.2023.03.012
– ident: e_1_2_8_78_1
  doi: 10.1039/D1EE00551K
– ident: e_1_2_8_217_1
  doi: 10.1021/acs.nanolett.2c04140
– ident: e_1_2_8_152_1
  doi: 10.1039/C4FD00143E
– ident: e_1_2_8_92_1
  doi: 10.1021/acs.chemmater.9b00420
– ident: e_1_2_8_57_1
  doi: 10.1002/aenm.201902881
– ident: e_1_2_8_117_1
  doi: 10.5796/electrochemistry.81.428
– ident: e_1_2_8_248_1
  doi: 10.1016/j.ssi.2014.01.046
– ident: e_1_2_8_27_1
  doi: 10.1016/0167-2738(86)90142-6
– ident: e_1_2_8_44_2
  doi: 10.1039/C7RA09081A
– ident: e_1_2_8_73_1
  doi: 10.1016/j.elecom.2011.02.035
– ident: e_1_2_8_133_1
  doi: 10.1016/j.ceramint.2019.04.236
– ident: e_1_2_8_135_1
  doi: 10.3390/ma14071671
– ident: e_1_2_8_226_1
  doi: 10.1021/acsami.2c22562
– ident: e_1_2_8_227_1
  doi: 10.1016/j.ensm.2018.11.011
– ident: e_1_2_8_249_1
  doi: 10.1021/acs.chemmater.7b00944
– ident: e_1_2_8_89_1
  doi: 10.1021/acs.chemmater.9b04764
– ident: e_1_2_8_40_5
  doi: 10.1016/j.mtnano.2019.100048
– ident: e_1_2_8_210_1
  doi: 10.1016/j.electacta.2021.139249
– ident: e_1_2_8_105_1
  doi: 10.1016/j.ensm.2023.01.018
– ident: e_1_2_8_25_1
  doi: 10.1016/0025-5408(76)90077-5
– ident: e_1_2_8_40_1
  doi: 10.1021/ja3110895
– ident: e_1_2_8_101_1
  doi: 10.1016/j.nanoen.2021.106542
– ident: e_1_2_8_241_1
  doi: 10.1016/j.cej.2021.131948
– ident: e_1_2_8_179_1
  doi: 10.1039/D3MA00078H
– ident: e_1_2_8_68_1
  doi: 10.1016/j.jpowsour.2014.04.065
– ident: e_1_2_8_73_3
  doi: 10.1002/anie.201105006
– ident: e_1_2_8_80_1
  doi: 10.1016/j.jnoncrysol.2007.08.058
– ident: e_1_2_8_222_1
  doi: 10.1002/adfm.202101985
– ident: e_1_2_8_166_1
  doi: 10.1016/j.jechem.2022.11.003
– ident: e_1_2_8_97_1
  doi: 10.1039/D1TA04799J
– ident: e_1_2_8_63_2
  doi: 10.1016/j.ceramint.2018.09.133
– ident: e_1_2_8_98_1
  doi: 10.1016/j.apmt.2020.100918
– ident: e_1_2_8_127_1
  doi: 10.1002/anie.201804114
– ident: e_1_2_8_245_1
  doi: 10.1126/sciadv.abc8641
– ident: e_1_2_8_13_2
  doi: 10.1111/j.1151-2916.2002.tb00334.x
– ident: e_1_2_8_52_1
  doi: 10.1080/14786430500038088
– ident: e_1_2_8_34_1
  doi: 10.1021/acsenergylett.1c02261
– ident: e_1_2_8_40_4
  doi: 10.1038/s41570-019-0078-2
– ident: e_1_2_8_171_1
  doi: 10.1016/j.cej.2019.02.148
– ident: e_1_2_8_173_1
  doi: 10.1002/aenm.201902767
– ident: e_1_2_8_39_1
  doi: 10.1016/j.ssi.2010.08.021
– ident: e_1_2_8_103_1
  doi: 10.1016/j.ssi.2019.01.017
– ident: e_1_2_8_19_1
  doi: 10.1016/0167-2738(86)90127-X
– ident: e_1_2_8_145_1
  doi: 10.1021/acsaem.9b01152
– ident: e_1_2_8_242_1
  doi: 10.1002/adma.201707132
– ident: e_1_2_8_45_1
  doi: 10.1016/j.electacta.2018.11.035
– ident: e_1_2_8_95_1
  doi: 10.1039/c3ta10247e
– ident: e_1_2_8_123_1
  doi: 10.1002/aenm.202100836
– ident: e_1_2_8_151_1
  doi: 10.1002/celc.202200156
– ident: e_1_2_8_238_1
  doi: 10.1002/adfm.201910123
– ident: e_1_2_8_22_1
  doi: 10.1016/0013-4686(95)00180-M
– ident: e_1_2_8_46_1
  doi: 10.1021/acsami.8b01805
– ident: e_1_2_8_161_1
  doi: 10.1021/acsami.2c20734
– ident: e_1_2_8_159_1
  doi: 10.1016/j.ensm.2019.07.015
– ident: e_1_2_8_168_1
  doi: 10.1016/j.cej.2023.143159
– ident: e_1_2_8_143_1
  doi: 10.1039/D0TA00517G
– ident: e_1_2_8_31_1
  doi: 10.1002/celc.201402344
– ident: e_1_2_8_41_1
  doi: 10.1007/s11581-017-2035-8
– ident: e_1_2_8_20_2
  doi: 10.1016/0013-4686(95)00392-4
– ident: e_1_2_8_196_1
  doi: 10.1002/eom2.12317
– ident: e_1_2_8_67_1
  doi: 10.1039/C4RA08674K
– ident: e_1_2_8_116_1
  doi: 10.1021/acsaem.9b01111
– ident: e_1_2_8_169_1
  doi: 10.1021/acsaem.2c00713
– ident: e_1_2_8_41_4
  doi: 10.1039/c3ta15090a
– ident: e_1_2_8_77_1
  doi: 10.1007/s41918-022-00149-3
– ident: e_1_2_8_76_1
  doi: 10.1016/j.mtnano.2020.100075
– ident: e_1_2_8_102_1
  doi: 10.1016/j.jnoncrysol.2012.12.044
– ident: e_1_2_8_54_2
  doi: 10.1021/acs.jpclett.7b02880
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.202209114
– ident: e_1_2_8_181_1
  doi: 10.1021/acsenergylett.0c00251
– ident: e_1_2_8_150_1
  doi: 10.1016/j.jallcom.2022.166731
– ident: e_1_2_8_244_1
  doi: 10.1021/acsenergylett.9b01847
– ident: e_1_2_8_253_1
  doi: 10.1002/smtd.202201328
– ident: e_1_2_8_59_2
  doi: 10.1039/C8CC08030E
– ident: e_1_2_8_27_2
  doi: 10.1149/1.2108425
– ident: e_1_2_8_108_1
  doi: 10.1021/acsami.0c00393
– ident: e_1_2_8_162_1
  doi: 10.1002/advs.201700996
– ident: e_1_2_8_184_1
  doi: 10.1002/aenm.202103720
– ident: e_1_2_8_131_1
  doi: 10.1021/acsaem.0c00347
– ident: e_1_2_8_154_1
  doi: 10.1039/C4TA05231E
– ident: e_1_2_8_141_1
  doi: 10.3390/nano9081086
– volume: 123
  start-page: 23
  year: 1833
  ident: e_1_2_8_8_1
  publication-title: Phil. Trans. R. Soc. Lond.
– ident: e_1_2_8_49_1
  doi: 10.1002/eem2.12308
– ident: e_1_2_8_11_3
  doi: 10.1002/ange.19600720407
– ident: e_1_2_8_237_1
  doi: 10.1016/j.ensm.2019.01.007
– ident: e_1_2_8_213_1
  doi: 10.1038/s41560-020-0575-z
– ident: e_1_2_8_1_1
  doi: 10.1038/nature11475
– ident: e_1_2_8_11_2
  doi: 10.1016/0022-1902(67)80301-4
– volume-title: Mechanical Behavior of Engineering Materials: Metals, Ceramics, Polymers, and Composites
  year: 2007
  ident: e_1_2_8_53_1
– ident: e_1_2_8_94_1
  doi: 10.1021/acs.inorgchem.1c01748
– ident: e_1_2_8_107_4
  doi: 10.1016/j.jpowsour.2020.228250
– ident: e_1_2_8_13_3
  doi: 10.1016/0165-1633(85)90033-4
– ident: e_1_2_8_59_1
  doi: 10.1016/j.ensm.2021.08.028
– ident: e_1_2_8_224_1
  doi: 10.1016/j.cej.2023.142537
– ident: e_1_2_8_39_2
  doi: 10.1016/j.ssi.2012.01.017
– ident: e_1_2_8_6_2
  doi: 10.1038/nenergy.2016.42
– ident: e_1_2_8_163_1
  doi: 10.1016/j.memsci.2022.120666
– ident: e_1_2_8_99_1
  doi: 10.1007/s10853-013-7226-8
– ident: e_1_2_8_225_1
  doi: 10.1039/C8EE02617C
– volume: 53
  start-page: 655
  year: 1992
  ident: e_1_2_8_23_1
  publication-title: Solid‐state Ionics
– ident: e_1_2_8_29_1
  doi: 10.1039/C5EE00058K
– ident: e_1_2_8_69_1
  doi: 10.1016/j.ssi.2015.06.015
– ident: e_1_2_8_202_1
  doi: 10.1016/j.ensm.2022.09.022
– ident: e_1_2_8_7_2
  doi: 10.1038/srep02261
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.chemrev.5b00563
– ident: e_1_2_8_71_1
  doi: 10.1111/j.1151-2916.2002.tb00113.x
– ident: e_1_2_8_107_3
  doi: 10.1039/C6CP03179J
– ident: e_1_2_8_214_1
  doi: 10.1002/batt.202000051
– ident: e_1_2_8_4_1
  doi: 10.1002/adma.201700007
– ident: e_1_2_8_234_1
  doi: 10.1021/acs.nanolett.5b00538
– ident: e_1_2_8_136_1
  doi: 10.1021/acsomega.2c06544
– ident: e_1_2_8_70_1
  doi: 10.1002/anie.201608924
– ident: e_1_2_8_107_1
  doi: 10.1016/j.jpowsour.2016.05.100
– ident: e_1_2_8_194_1
  doi: 10.1021/acsami.1c20480
– ident: e_1_2_8_5_1
  doi: 10.1038/nenergy.2016.30
– ident: e_1_2_8_72_1
  doi: 10.1016/j.ssi.2013.09.005
– ident: e_1_2_8_146_1
  doi: 10.1016/j.ssi.2008.01.055
– ident: e_1_2_8_218_1
  doi: 10.1016/j.electacta.2021.139701
– ident: e_1_2_8_55_1
  doi: 10.1149/2.053207jes
– ident: e_1_2_8_23_2
  doi: 10.1016/0167-2738(92)90442-R
– ident: e_1_2_8_156_1
  doi: 10.1016/j.elecom.2021.107058
– ident: e_1_2_8_230_2
  doi: 10.1016/j.ensm.2018.08.009
– ident: e_1_2_8_7_3
  doi: 10.1038/nmat3066
– ident: e_1_2_8_82_1
  doi: 10.1016/j.ssi.2017.03.010
– ident: e_1_2_8_113_1
  doi: 10.1016/j.cej.2020.125334
– ident: e_1_2_8_11_4
  doi: 10.1016/0013-4686(62)80039-5
– ident: e_1_2_8_20_1
  doi: 10.1149/1.2086749
– ident: e_1_2_8_216_1
  doi: 10.1021/acsenergylett.2c00535
– ident: e_1_2_8_219_1
  doi: 10.1016/j.jechem.2020.12.026
– ident: e_1_2_8_40_6
  doi: 10.1246/cl.130726
– ident: e_1_2_8_60_3
  doi: 10.1016/j.jpowsour.2012.02.031
– ident: e_1_2_8_73_2
  doi: 10.1016/j.elecom.2011.08.014
– ident: e_1_2_8_185_1
  doi: 10.1016/j.jmat.2023.04.011
– ident: e_1_2_8_40_2
  doi: 10.1016/j.jpowsour.2014.08.024
– ident: e_1_2_8_174_1
  doi: 10.1039/D2TA02023H
– ident: e_1_2_8_26_3
  doi: 10.1016/0167-577X(88)90011-0
– ident: e_1_2_8_81_1
  doi: 10.1016/j.ssi.2010.10.013
– ident: e_1_2_8_230_3
  doi: 10.1016/j.mattod.2018.04.004
– ident: e_1_2_8_33_1
  doi: 10.1038/s41578-019-0165-5
– ident: e_1_2_8_3_1
  doi: 10.1039/c0cs00081g
– ident: e_1_2_8_134_1
  doi: 10.1038/srep18053
– ident: e_1_2_8_252_1
  doi: 10.1016/j.jpowsour.2009.06.100
– ident: e_1_2_8_206_1
  doi: 10.1021/acsaem.2c03922
– ident: e_1_2_8_104_1
  doi: 10.1021/jacs.9b08357
– ident: e_1_2_8_77_2
  doi: 10.1039/D1EE03032A
– ident: e_1_2_8_176_1
  doi: 10.1021/acsami.3c02084
– ident: e_1_2_8_186_1
  doi: 10.1016/j.ensm.2022.12.039
– ident: e_1_2_8_66_1
  doi: 10.1016/j.mtener.2022.101034
– ident: e_1_2_8_88_1
  doi: 10.1021/acsami.7b03606
– ident: e_1_2_8_233_1
  doi: 10.1021/acsenergylett.9b00430
– ident: e_1_2_8_110_1
  doi: 10.1016/j.cej.2020.127149
– ident: e_1_2_8_157_1
  doi: 10.1002/aenm.201902783
– ident: e_1_2_8_205_1
  doi: 10.1021/acsami.3c01681
– ident: e_1_2_8_93_1
  doi: 10.1021/acs.jpcc.1c05034
– ident: e_1_2_8_28_2
  doi: 10.1039/c0jm04222f
– ident: e_1_2_8_180_1
  doi: 10.1038/s41565-019-0465-3
– ident: e_1_2_8_7_4
  doi: 10.1038/nchem.2470
– ident: e_1_2_8_48_1
  doi: 10.1016/j.xcrp.2022.101043
– ident: e_1_2_8_26_2
  doi: 10.1021/ic50074a058
– ident: e_1_2_8_15_2
  doi: 10.1002/anie.202214545
– ident: e_1_2_8_21_1
  doi: 10.1016/0013-4686(94)00345-2
– ident: e_1_2_8_212_1
  doi: 10.1080/10667857.2020.1713452
– ident: e_1_2_8_66_2
  doi: 10.1016/j.ssi.2021.115812
– ident: e_1_2_8_178_1
  doi: 10.1149/1945-7111/ac8edc
– ident: e_1_2_8_250_1
  doi: 10.1002/aenm.201800014
– ident: e_1_2_8_254_1
  doi: 10.1002/anie.202302505
– ident: e_1_2_8_2_4
  doi: 10.1007/s11581-021-03941-1
– ident: e_1_2_8_36_2
  doi: 10.1016/j.jpowsour.2019.227579
– ident: e_1_2_8_190_1
  doi: 10.1073/pnas.1600422113
– ident: e_1_2_8_167_1
  doi: 10.1016/j.jcis.2023.06.183
– ident: e_1_2_8_60_2
  doi: 10.1039/C7TA06790A
– ident: e_1_2_8_86_1
  doi: 10.1039/C3EE43357A
– ident: e_1_2_8_221_1
  doi: 10.1002/aenm.202200660
– ident: e_1_2_8_51_1
  doi: 10.1002/aenm.201804004
– ident: e_1_2_8_91_1
  doi: 10.1016/j.ensm.2018.07.008
– ident: e_1_2_8_172_1
  doi: 10.1021/acsami.3c02678
– ident: e_1_2_8_26_1
  doi: 10.1039/B514640B
– ident: e_1_2_8_229_1
  doi: 10.1016/j.ensm.2020.11.038
– ident: e_1_2_8_140_1
  doi: 10.1016/j.ssi.2022.115888
– ident: e_1_2_8_187_1
  doi: 10.1021/acsami.2c06204
– ident: e_1_2_8_139_1
  doi: 10.1016/j.materresbull.2007.08.007
– ident: e_1_2_8_14_1
  doi: 10.1016/j.etran.2022.100211
– ident: e_1_2_8_44_1
  doi: 10.1039/C7QI00737J
– ident: e_1_2_8_223_1
  doi: 10.1021/jacs.7b10864
– ident: e_1_2_8_77_3
  doi: 10.1002/anie.202007621
– ident: e_1_2_8_83_1
  doi: 10.1016/j.ssi.2020.115225
– ident: e_1_2_8_199_1
  doi: 10.1002/aenm.202101612
– ident: e_1_2_8_43_1
  doi: 10.1016/j.powtec.2021.04.050
– ident: e_1_2_8_208_1
  doi: 10.1002/sstr.202200206
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.9b00531
– ident: e_1_2_8_183_1
  doi: 10.1016/j.jcis.2023.01.138
– ident: e_1_2_8_120_1
  doi: 10.3390/en15093206
– ident: e_1_2_8_231_1
  doi: 10.1039/C9TA06520B
– ident: e_1_2_8_232_1
  doi: 10.1002/aenm.201903376
– ident: e_1_2_8_30_2
  doi: 10.1016/j.jpowsour.2015.02.015
– ident: e_1_2_8_47_1
  doi: 10.1016/j.xcrp.2020.100301
– ident: e_1_2_8_235_1
  doi: 10.1016/j.nanoen.2017.12.037
– ident: e_1_2_8_198_1
  doi: 10.1016/j.cej.2022.137994
– ident: e_1_2_8_164_1
  doi: 10.1016/j.nanoen.2022.107499
– ident: e_1_2_8_24_1
  doi: 10.1016/0038-1098(93)90841-A
– ident: e_1_2_8_30_1
  doi: 10.1039/C4TA04419C
– ident: e_1_2_8_63_1
  doi: 10.1016/j.jpowsour.2017.11.074
– ident: e_1_2_8_55_2
  doi: 10.1002/aenm.201200932
– ident: e_1_2_8_243_1
  doi: 10.1002/aenm.201901841
– ident: e_1_2_8_128_1
  doi: 10.1016/j.jssc.2009.05.020
– ident: e_1_2_8_147_1
  doi: 10.1016/j.ssi.2004.02.025
– ident: e_1_2_8_195_1
  doi: 10.1021/acsmaterialslett.9b00189
– ident: e_1_2_8_215_1
  doi: 10.1002/aenm.202201991
– ident: e_1_2_8_79_1
  doi: 10.1016/j.jnoncrysol.2005.09.028
– ident: e_1_2_8_109_1
  doi: 10.1016/j.jpowsour.2023.232659
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jpowsour.2018.10.037
– ident: e_1_2_8_32_1
  doi: 10.1039/c3cc00064h
– ident: e_1_2_8_207_1
  doi: 10.1016/j.cej.2022.135106
– ident: e_1_2_8_137_1
  doi: 10.1021/acsami.7b00614
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jpowsour.2013.10.005
– ident: e_1_2_8_188_1
  doi: 10.1021/acs.iecr.3c01643
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201906221
– ident: e_1_2_8_114_1
  doi: 10.1021/acsomega.0c03453
– ident: e_1_2_8_29_2
  doi: 10.1021/acsami.5b04209
– ident: e_1_2_8_84_1
  doi: 10.1021/ja00905a001
– ident: e_1_2_8_132_1
  doi: 10.1016/j.ceramint.2020.09.047
– ident: e_1_2_8_118_1
  doi: 10.1002/adma.202100921
– ident: e_1_2_8_130_1
  doi: 10.1021/acsami.2c01361
– ident: e_1_2_8_177_1
  doi: 10.1021/acsami.1c21804
– ident: e_1_2_8_1_3
  doi: 10.1002/adma.201000717
– ident: e_1_2_8_13_1
  doi: 10.1088/1468-6996/14/4/043502
– ident: e_1_2_8_122_1
  doi: 10.1016/j.jpowsour.2022.231939
– ident: e_1_2_8_54_3
  doi: 10.1149/2.0951712jes
– ident: e_1_2_8_25_2
  doi: 10.1016/0167-2738(86)90179-7
– ident: e_1_2_8_64_1
  doi: 10.1149/2.1031915jes
– ident: e_1_2_8_160_1
  doi: 10.1016/j.nanoen.2019.05.002
– ident: e_1_2_8_220_1
  doi: 10.1002/aenm.202204028
– ident: e_1_2_8_12_1
  doi: 10.1016/0032-3861(73)90146-8
– ident: e_1_2_8_111_1
  doi: 10.1021/acsami.9b13313
– ident: e_1_2_8_193_1
  doi: 10.1016/j.compositesb.2023.110566
– year: 2023
  ident: e_1_2_8_15_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_65_1
  doi: 10.1016/j.cej.2021.128508
– ident: e_1_2_8_106_1
  doi: 10.1021/acsenergylett.1c02428
– ident: e_1_2_8_73_4
  doi: 10.1016/j.electacta.2015.08.046
– ident: e_1_2_8_90_1
  doi: 10.1002/anie.201901739
– ident: e_1_2_8_203_1
  doi: 10.1016/j.cej.2021.129710
– ident: e_1_2_8_112_1
  doi: 10.1016/j.jpowsour.2018.11.016
– ident: e_1_2_8_165_1
  doi: 10.1016/j.jechem.2022.01.008
– ident: e_1_2_8_61_1
  doi: 10.1007/s10853-012-6300-y
– ident: e_1_2_8_240_1
  doi: 10.1002/adfm.202300501
– ident: e_1_2_8_1_2
  doi: 10.1038/35104644
– ident: e_1_2_8_100_1
  doi: 10.1016/j.jpowsour.2019.227338
– ident: e_1_2_8_32_2
  doi: 10.1038/srep06916
– ident: e_1_2_8_41_3
  doi: 10.1016/j.apsusc.2018.02.270
– ident: e_1_2_8_74_1
  doi: 10.1021/acsami.1c21951
– ident: e_1_2_8_126_1
  doi: 10.1021/acsami.6b03070
– ident: e_1_2_8_155_1
  doi: 10.1016/j.jpowsour.2014.07.159
– ident: e_1_2_8_192_1
  doi: 10.1016/j.memsci.2021.119952
– ident: e_1_2_8_50_1
  doi: 10.1016/j.nanoen.2016.09.002
– ident: e_1_2_8_36_1
  doi: 10.1016/j.powtec.2016.03.055
– ident: e_1_2_8_182_1
  doi: 10.1016/j.ensm.2022.01.052
– ident: e_1_2_8_18_1
  doi: 10.1126/science.264.5162.1115
– ident: e_1_2_8_19_3
  doi: 10.1016/0378-7753(85)88004-6
– ident: e_1_2_8_129_1
  doi: 10.1002/anie.200701144
– ident: e_1_2_8_230_4
  doi: 10.1021/acsami.2c14087
– ident: e_1_2_8_144_1
  doi: 10.1039/D2RA05782D
– ident: e_1_2_8_41_2
  doi: 10.1039/C6TA02294D
– ident: e_1_2_8_87_1
  doi: 10.1002/aenm.201903422
– ident: e_1_2_8_107_2
  doi: 10.1016/j.ssi.2016.02.002
– ident: e_1_2_8_142_1
  doi: 10.1111/j.1551-2916.2007.01827.x
– ident: e_1_2_8_201_1
  doi: 10.1002/anie.202307255
– ident: e_1_2_8_170_1
  doi: 10.1021/acsami.9b05212
– ident: e_1_2_8_58_1
  doi: 10.1007/s12598-020-01429-x
– ident: e_1_2_8_115_1
  doi: 10.1002/aenm.202102348
– ident: e_1_2_8_75_1
  doi: 10.1016/j.apsusc.2021.151762
– ident: e_1_2_8_209_1
  doi: 10.1039/D2CC02203F
– ident: e_1_2_8_5_2
  doi: 10.1021/ja3091438
– ident: e_1_2_8_197_1
  doi: 10.1021/acs.nanolett.7b00715
– ident: e_1_2_8_32_3
  doi: 10.1039/C5CC00575B
– ident: e_1_2_8_56_2
  doi: 10.1021/acs.jpcc.8b11043
– ident: e_1_2_8_102_2
  doi: 10.1016/j.jallcom.2013.12.191
– ident: e_1_2_8_158_1
  doi: 10.1039/D0EE02714F
– ident: e_1_2_8_2_3
  doi: 10.1002/aenm.201700732
– ident: e_1_2_8_204_1
  doi: 10.1002/adma.202100353
– ident: e_1_2_8_9_1
  doi: 10.1557/PROC-135-3
– ident: e_1_2_8_124_1
  doi: 10.1007/s10853-019-04180-6
– ident: e_1_2_8_10_1
  doi: 10.1007/BF00611256
– ident: e_1_2_8_60_1
  doi: 10.1016/j.ssi.2011.10.022
– ident: e_1_2_8_255_1
  doi: 10.1016/j.etran.2021.100152
– ident: e_1_2_8_230_1
  doi: 10.1039/C7EE01004D
– ident: e_1_2_8_28_1
  doi: 10.1021/ja906529g
– ident: e_1_2_8_11_1
  doi: 10.1088/0022-3727/7/1/327
SSID ssj0000491033
Score 2.5629938
SecondaryResourceType review_article
Snippet Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms air stability
Electrochemical analysis
Electrolytes
Energy storage
Ion currents
large‐scale preparation
Lithium
Lithium-ion batteries
Molten salt electrolytes
Optimization
pouch cell
Production costs
Solid electrolytes
solid‐state electrolyte
Thickness
Title Challenges and Solutions of Solid‐State Electrolyte Film for Large‐Scale Applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303850
https://www.proquest.com/docview/2957149103
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMECtoDEgdksNdOvT5WJVWF2l5IRThZ-xSW0hjRRIieuHHlN_JLmH16I969WKvN2I53Pnsemv0GoacNrTSjIs9MF4es0k2VMSV1RgRjuSCaKG3ZPk_3js6q14vpYjT6mlQtbdb8hbj85b6Sq2gV5kCvZpfsf2g2XhQmYAz6hSNoGI7_pOOD0Anlwldg-pu5nShL-D-hlMH6lM9nrufN8jOMD7vlua0xPDa14IMg6Ew53zRN5gWe2lAxoNyWQXB33XMO6PD550XH-sv3vbeLpuLHlg3MWR8R41Kvb1X3SXVh0pxmtb7p0nwEqYaCLP8JBYOf7VGftVTpnCNmit_dKsVXkZjgaKB--r47vlimVoZEAKKnkjra2m0i7Sg5_bOs4_2dnZ7E36-hHQLxBhmjnf1XJ8dvYroOAqkiL-12jfB8gQI0Jy-3b7Lt4gxxSxr9WPdlfgvd9HEH3ncguo1GanUH3UjYKO-idwOcMMAJRzjhXmMLp-9fvlkg4QRI2AAJA5CwBZIRMRDCKYTuobPD2fzgKPOdNzJRmk5EpBBasrKQtZpyYVj8uFa1KqUoBATUsq4leO4MXPMaLJ7mlaKwDpLAUFPZ8PI-Gq_6lXqAsNKV5uCGcqFKExxTKsFtalTOOAejTycoC4vVCk9Lb7qjLFtHqE1as7htXNwJehblPzhClt9K7oa1b_1Le9GSZloXVpcTRKw-_nKVdgsfD69y0iN0fXhRdtF4_XGjHoMru-ZPPMx-ANGGmEE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+Solutions+of+Solid%E2%80%90State+Electrolyte+Film+for+Large%E2%80%90Scale+Applications&rft.jtitle=Advanced+energy+materials&rft.au=Huang%2C+Xiaozhong&rft.au=Li%2C+Tao&rft.au=Fan%2C+Weiwei&rft.au=Xiao%2C+Rui&rft.date=2024-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202303850&rft.externalDBID=10.1002%252Faenm.202303850&rft.externalDocID=AENM202303850
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon