Challenges and Solutions of Solid‐State Electrolyte Film for Large‐Scale Applications
Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved safety compared to conventional lithium‐ion batteries with liquid electrolytes. Large‐area solid‐state electrolyte (SSE) films with adequate thic...
Saved in:
Published in | Advanced energy materials Vol. 14; no. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved safety compared to conventional lithium‐ion batteries with liquid electrolytes. Large‐area solid‐state electrolyte (SSE) films with adequate thickness control, improved ionic conductivity, and good interfacial contact can reduce internal resistance, increase the real energy density of batteries, and reduce manufacturing costs. Optimization of SSE properties at the particle scale and large‐scale preparation of SSE films are key to the development of high‐performance solid‐state lithium‐ion batteries and their industrialization. Therefore, this paper provides a comprehensive review of SSE, covering both particle‐level features like the effects of particle size, density, and air stability on the electrochemical performance, as well as four major routes for large‐scale preparation and relevant strategies for structural optimization of SSE films. In addition, the effects of large‐area SSE films on the electrochemical performance of solid‐state batteries and their applications in pouch solid‐state lithium‐ion battery systems are discussed in detail. Finally, the design principles of SSE particles and SSE films are summarized and the development direction of thin SSEs is envisaged.
In this paper, the effects of SSE on the electrochemical performance of batteries at the particle scale and optimization strategies, followed by four mainstream and other methods for large‐area preparation of SSE films are introduced. The aim is to provide a comprehensive overview of SSE film design and to promote the development of solid‐state batteries. |
---|---|
AbstractList | Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved safety compared to conventional lithium‐ion batteries with liquid electrolytes. Large‐area solid‐state electrolyte (SSE) films with adequate thickness control, improved ionic conductivity, and good interfacial contact can reduce internal resistance, increase the real energy density of batteries, and reduce manufacturing costs. Optimization of SSE properties at the particle scale and large‐scale preparation of SSE films are key to the development of high‐performance solid‐state lithium‐ion batteries and their industrialization. Therefore, this paper provides a comprehensive review of SSE, covering both particle‐level features like the effects of particle size, density, and air stability on the electrochemical performance, as well as four major routes for large‐scale preparation and relevant strategies for structural optimization of SSE films. In addition, the effects of large‐area SSE films on the electrochemical performance of solid‐state batteries and their applications in pouch solid‐state lithium‐ion battery systems are discussed in detail. Finally, the design principles of SSE particles and SSE films are summarized and the development direction of thin SSEs is envisaged. Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved safety compared to conventional lithium‐ion batteries with liquid electrolytes. Large‐area solid‐state electrolyte (SSE) films with adequate thickness control, improved ionic conductivity, and good interfacial contact can reduce internal resistance, increase the real energy density of batteries, and reduce manufacturing costs. Optimization of SSE properties at the particle scale and large‐scale preparation of SSE films are key to the development of high‐performance solid‐state lithium‐ion batteries and their industrialization. Therefore, this paper provides a comprehensive review of SSE, covering both particle‐level features like the effects of particle size, density, and air stability on the electrochemical performance, as well as four major routes for large‐scale preparation and relevant strategies for structural optimization of SSE films. In addition, the effects of large‐area SSE films on the electrochemical performance of solid‐state batteries and their applications in pouch solid‐state lithium‐ion battery systems are discussed in detail. Finally, the design principles of SSE particles and SSE films are summarized and the development direction of thin SSEs is envisaged. In this paper, the effects of SSE on the electrochemical performance of batteries at the particle scale and optimization strategies, followed by four mainstream and other methods for large‐area preparation of SSE films are introduced. The aim is to provide a comprehensive overview of SSE film design and to promote the development of solid‐state batteries. |
Author | Huang, Xiaozhong Xiao, Rui Fan, Weiwei Cheng, Xin‐Bing Li, Tao |
Author_xml | – sequence: 1 givenname: Xiaozhong surname: Huang fullname: Huang, Xiaozhong organization: Southeast University – sequence: 2 givenname: Tao surname: Li fullname: Li, Tao email: 101012902@seu.edu.cn organization: Southeast University – sequence: 3 givenname: Weiwei surname: Fan fullname: Fan, Weiwei organization: Southeast University – sequence: 4 givenname: Rui surname: Xiao fullname: Xiao, Rui email: ruixiao@seu.edu.cn organization: Southeast University – sequence: 5 givenname: Xin‐Bing orcidid: 0000-0001-7567-1210 surname: Cheng fullname: Cheng, Xin‐Bing email: chengxb@seu.edu.cn organization: Tianmu Lake Institute of Advanced Energy Storage Technologies |
BookMark | eNqFkM9Kw0AQxhdRsNZePQc8t-6fpEmOpbQqVD1UD56Wze5s3bLNxt0U6c1H8Bl9EpNGKgjiXOYbmN8M33eGjktXAkIXBI8IxvRKQLkZUUwZZlmCj1CPjEk8HGcxPj5oRk_RIIQ1birOCWash56nL8JaKFcQIlGqaOnstjauDJHT7WDU5_vHshY1RDMLsvbO7ho9N3YTaeejhfAraFeksBBNqsoaKfYHztGJFjbA4Lv30dN89ji9GS4erm-nk8VQMpLiISVSK8GISiEpJEnivNCQAlOSyDwZqzRVGUsETvKUklwXMWSNYUUbqTOVF6yPLru7lXevWwg1X7utL5uXnOZJSjqnfTTqtqR3IXjQvPJmI_yOE8zbBHmbID8k2ADxL0Caeu-s9sLYv7G8w96Mhd0_T_hkdn_3w34BgqmJ_w |
CitedBy_id | crossref_primary_10_1021_acsaem_4c01134 crossref_primary_10_1002_aenm_202402671 crossref_primary_10_1002_cnl2_183 crossref_primary_10_23919_CHAIN_2024_000011 crossref_primary_10_1002_adfm_202411171 crossref_primary_10_1016_j_cej_2025_159662 crossref_primary_10_1016_j_est_2024_114338 crossref_primary_10_1039_D4NR02114B crossref_primary_10_1002_smll_202409536 crossref_primary_10_1002_aenm_202403846 crossref_primary_10_1021_acs_jpcc_5c00814 crossref_primary_10_1002_eem2_12831 crossref_primary_10_1016_j_mtener_2025_101801 |
Cites_doi | 10.1021/cr00044a002 10.1016/j.jpowsour.2017.04.014 10.1002/admi.202000425 10.1016/j.ceramint.2015.12.133 10.1002/er.8275 10.1016/j.jpowsour.2013.09.140 10.1016/S0378-7753(01)01013-8 10.1002/aenm.201703644 10.3390/ma14164737 10.1016/j.jallcom.2013.12.100 10.1002/eem2.12280 10.1002/adfm.202303397 10.1021/acsaem.3c00371 10.1016/j.mattod.2022.07.016 10.1016/j.cej.2022.135779 10.1016/j.jpowsour.2012.09.097 10.1016/j.est.2023.107640 10.1016/j.mtener.2021.100841 10.1021/acs.chemmater.1c01837 10.1016/j.ssi.2005.03.023 10.1002/aenm.201601635 10.1016/j.etran.2023.100279 10.1016/j.jpowsour.2015.05.093 10.1016/j.jpowsour.2015.10.053 10.1016/j.ssi.2015.09.010 10.1016/j.jechem.2019.05.015 10.1016/j.ssi.2015.11.019 10.1021/acsenergylett.8b00275 10.1016/0167-2738(86)90130-X 10.1021/ja01004a002 10.1016/j.ensm.2023.03.012 10.1039/D1EE00551K 10.1021/acs.nanolett.2c04140 10.1039/C4FD00143E 10.1021/acs.chemmater.9b00420 10.1002/aenm.201902881 10.5796/electrochemistry.81.428 10.1016/j.ssi.2014.01.046 10.1016/0167-2738(86)90142-6 10.1039/C7RA09081A 10.1016/j.elecom.2011.02.035 10.1016/j.ceramint.2019.04.236 10.3390/ma14071671 10.1021/acsami.2c22562 10.1016/j.ensm.2018.11.011 10.1021/acs.chemmater.7b00944 10.1021/acs.chemmater.9b04764 10.1016/j.mtnano.2019.100048 10.1016/j.electacta.2021.139249 10.1016/j.ensm.2023.01.018 10.1016/0025-5408(76)90077-5 10.1021/ja3110895 10.1016/j.nanoen.2021.106542 10.1016/j.cej.2021.131948 10.1039/D3MA00078H 10.1016/j.jpowsour.2014.04.065 10.1002/anie.201105006 10.1016/j.jnoncrysol.2007.08.058 10.1002/adfm.202101985 10.1016/j.jechem.2022.11.003 10.1039/D1TA04799J 10.1016/j.ceramint.2018.09.133 10.1016/j.apmt.2020.100918 10.1002/anie.201804114 10.1126/sciadv.abc8641 10.1111/j.1151-2916.2002.tb00334.x 10.1080/14786430500038088 10.1021/acsenergylett.1c02261 10.1038/s41570-019-0078-2 10.1016/j.cej.2019.02.148 10.1002/aenm.201902767 10.1016/j.ssi.2010.08.021 10.1016/j.ssi.2019.01.017 10.1016/0167-2738(86)90127-X 10.1021/acsaem.9b01152 10.1002/adma.201707132 10.1016/j.electacta.2018.11.035 10.1039/c3ta10247e 10.1002/aenm.202100836 10.1002/celc.202200156 10.1002/adfm.201910123 10.1016/0013-4686(95)00180-M 10.1021/acsami.8b01805 10.1021/acsami.2c20734 10.1016/j.ensm.2019.07.015 10.1016/j.cej.2023.143159 10.1039/D0TA00517G 10.1002/celc.201402344 10.1007/s11581-017-2035-8 10.1016/0013-4686(95)00392-4 10.1002/eom2.12317 10.1039/C4RA08674K 10.1021/acsaem.9b01111 10.1021/acsaem.2c00713 10.1039/c3ta15090a 10.1007/s41918-022-00149-3 10.1016/j.mtnano.2020.100075 10.1016/j.jnoncrysol.2012.12.044 10.1021/acs.jpclett.7b02880 10.1002/adma.202209114 10.1021/acsenergylett.0c00251 10.1016/j.jallcom.2022.166731 10.1021/acsenergylett.9b01847 10.1002/smtd.202201328 10.1039/C8CC08030E 10.1149/1.2108425 10.1021/acsami.0c00393 10.1002/advs.201700996 10.1002/aenm.202103720 10.1021/acsaem.0c00347 10.1039/C4TA05231E 10.3390/nano9081086 10.1002/eem2.12308 10.1002/ange.19600720407 10.1016/j.ensm.2019.01.007 10.1038/s41560-020-0575-z 10.1038/nature11475 10.1016/0022-1902(67)80301-4 10.1021/acs.inorgchem.1c01748 10.1016/j.jpowsour.2020.228250 10.1016/0165-1633(85)90033-4 10.1016/j.ensm.2021.08.028 10.1016/j.cej.2023.142537 10.1016/j.ssi.2012.01.017 10.1038/nenergy.2016.42 10.1016/j.memsci.2022.120666 10.1007/s10853-013-7226-8 10.1039/C8EE02617C 10.1039/C5EE00058K 10.1016/j.ssi.2015.06.015 10.1016/j.ensm.2022.09.022 10.1038/srep02261 10.1021/acs.chemrev.5b00563 10.1111/j.1151-2916.2002.tb00113.x 10.1039/C6CP03179J 10.1002/batt.202000051 10.1002/adma.201700007 10.1021/acs.nanolett.5b00538 10.1021/acsomega.2c06544 10.1002/anie.201608924 10.1016/j.jpowsour.2016.05.100 10.1021/acsami.1c20480 10.1038/nenergy.2016.30 10.1016/j.ssi.2013.09.005 10.1016/j.ssi.2008.01.055 10.1016/j.electacta.2021.139701 10.1149/2.053207jes 10.1016/0167-2738(92)90442-R 10.1016/j.elecom.2021.107058 10.1016/j.ensm.2018.08.009 10.1038/nmat3066 10.1016/j.ssi.2017.03.010 10.1016/j.cej.2020.125334 10.1016/0013-4686(62)80039-5 10.1149/1.2086749 10.1021/acsenergylett.2c00535 10.1016/j.jechem.2020.12.026 10.1246/cl.130726 10.1016/j.jpowsour.2012.02.031 10.1016/j.elecom.2011.08.014 10.1016/j.jmat.2023.04.011 10.1016/j.jpowsour.2014.08.024 10.1039/D2TA02023H 10.1016/0167-577X(88)90011-0 10.1016/j.ssi.2010.10.013 10.1016/j.mattod.2018.04.004 10.1038/s41578-019-0165-5 10.1039/c0cs00081g 10.1038/srep18053 10.1016/j.jpowsour.2009.06.100 10.1021/acsaem.2c03922 10.1021/jacs.9b08357 10.1039/D1EE03032A 10.1021/acsami.3c02084 10.1016/j.ensm.2022.12.039 10.1016/j.mtener.2022.101034 10.1021/acsami.7b03606 10.1021/acsenergylett.9b00430 10.1016/j.cej.2020.127149 10.1002/aenm.201902783 10.1021/acsami.3c01681 10.1021/acs.jpcc.1c05034 10.1039/c0jm04222f 10.1038/s41565-019-0465-3 10.1038/nchem.2470 10.1016/j.xcrp.2022.101043 10.1021/ic50074a058 10.1002/anie.202214545 10.1016/0013-4686(94)00345-2 10.1080/10667857.2020.1713452 10.1016/j.ssi.2021.115812 10.1149/1945-7111/ac8edc 10.1002/aenm.201800014 10.1002/anie.202302505 10.1007/s11581-021-03941-1 10.1016/j.jpowsour.2019.227579 10.1073/pnas.1600422113 10.1016/j.jcis.2023.06.183 10.1039/C7TA06790A 10.1039/C3EE43357A 10.1002/aenm.202200660 10.1002/aenm.201804004 10.1016/j.ensm.2018.07.008 10.1021/acsami.3c02678 10.1039/B514640B 10.1016/j.ensm.2020.11.038 10.1016/j.ssi.2022.115888 10.1021/acsami.2c06204 10.1016/j.materresbull.2007.08.007 10.1016/j.etran.2022.100211 10.1039/C7QI00737J 10.1021/jacs.7b10864 10.1002/anie.202007621 10.1016/j.ssi.2020.115225 10.1002/aenm.202101612 10.1016/j.powtec.2021.04.050 10.1002/sstr.202200206 10.1021/acs.chemrev.9b00531 10.1016/j.jcis.2023.01.138 10.3390/en15093206 10.1039/C9TA06520B 10.1002/aenm.201903376 10.1016/j.jpowsour.2015.02.015 10.1016/j.xcrp.2020.100301 10.1016/j.nanoen.2017.12.037 10.1016/j.cej.2022.137994 10.1016/j.nanoen.2022.107499 10.1016/0038-1098(93)90841-A 10.1039/C4TA04419C 10.1016/j.jpowsour.2017.11.074 10.1002/aenm.201200932 10.1002/aenm.201901841 10.1016/j.jssc.2009.05.020 10.1016/j.ssi.2004.02.025 10.1021/acsmaterialslett.9b00189 10.1002/aenm.202201991 10.1016/j.jnoncrysol.2005.09.028 10.1016/j.jpowsour.2023.232659 10.1016/j.jpowsour.2018.10.037 10.1039/c3cc00064h 10.1016/j.cej.2022.135106 10.1021/acsami.7b00614 10.1016/j.jpowsour.2013.10.005 10.1021/acs.iecr.3c01643 10.1002/adma.201906221 10.1021/acsomega.0c03453 10.1021/acsami.5b04209 10.1021/ja00905a001 10.1016/j.ceramint.2020.09.047 10.1002/adma.202100921 10.1021/acsami.2c01361 10.1021/acsami.1c21804 10.1002/adma.201000717 10.1088/1468-6996/14/4/043502 10.1016/j.jpowsour.2022.231939 10.1149/2.0951712jes 10.1016/0167-2738(86)90179-7 10.1149/2.1031915jes 10.1016/j.nanoen.2019.05.002 10.1002/aenm.202204028 10.1016/0032-3861(73)90146-8 10.1021/acsami.9b13313 10.1016/j.compositesb.2023.110566 10.1016/j.cej.2021.128508 10.1021/acsenergylett.1c02428 10.1016/j.electacta.2015.08.046 10.1002/anie.201901739 10.1016/j.cej.2021.129710 10.1016/j.jpowsour.2018.11.016 10.1016/j.jechem.2022.01.008 10.1007/s10853-012-6300-y 10.1002/adfm.202300501 10.1038/35104644 10.1016/j.jpowsour.2019.227338 10.1038/srep06916 10.1016/j.apsusc.2018.02.270 10.1021/acsami.1c21951 10.1021/acsami.6b03070 10.1016/j.jpowsour.2014.07.159 10.1016/j.memsci.2021.119952 10.1016/j.nanoen.2016.09.002 10.1016/j.powtec.2016.03.055 10.1016/j.ensm.2022.01.052 10.1126/science.264.5162.1115 10.1016/0378-7753(85)88004-6 10.1002/anie.200701144 10.1021/acsami.2c14087 10.1039/D2RA05782D 10.1039/C6TA02294D 10.1002/aenm.201903422 10.1016/j.ssi.2016.02.002 10.1111/j.1551-2916.2007.01827.x 10.1002/anie.202307255 10.1021/acsami.9b05212 10.1007/s12598-020-01429-x 10.1002/aenm.202102348 10.1016/j.apsusc.2021.151762 10.1039/D2CC02203F 10.1021/ja3091438 10.1021/acs.nanolett.7b00715 10.1039/C5CC00575B 10.1021/acs.jpcc.8b11043 10.1016/j.jallcom.2013.12.191 10.1039/D0EE02714F 10.1002/aenm.201700732 10.1002/adma.202100353 10.1557/PROC-135-3 10.1007/s10853-019-04180-6 10.1007/BF00611256 10.1016/j.ssi.2011.10.022 10.1016/j.etran.2021.100152 10.1039/C7EE01004D 10.1021/ja906529g 10.1088/0022-3727/7/1/327 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202303850 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202303850 AENM202303850 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Special fund for carbon peak and carbon neutralization scientific and technological innovation project funderid: BE2022031‐3 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20220073 – fundername: National Natural Science Foundation of China funderid: 22179070; 92372111; 52276175 – fundername: Fundamental Research Funds for the Central Universities funderid: RF1028623157 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3170-21cfda31d7e5bc1549bfe7e3dc1c956d77d835a0597219fb4e8100d29fbf8d9b3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 10:26:04 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Tue Jul 01 01:43:55 EDT 2025 Wed Jan 22 16:14:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3170-21cfda31d7e5bc1549bfe7e3dc1c956d77d835a0597219fb4e8100d29fbf8d9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7567-1210 |
PQID | 2957149103 |
PQPubID | 886389 |
PageCount | 48 |
ParticipantIDs | proquest_journals_2957149103 crossref_primary_10_1002_aenm_202303850 crossref_citationtrail_10_1002_aenm_202303850 wiley_primary_10_1002_aenm_202303850_AENM202303850 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2005; 176 2019; 11 2019; 10 2023; 464 2019; 12 2019; 14 2019; 17 2023; 466 2019; 18 2009; 194 2020; 12 2020; 10 2019; 166 2012 2013; 159 3 1994; 264 2022 2022; 27 374 2002; 85 2019; 22 1974 1967 1960 1962; 7 29 72 7 2016; 42 2008; 354 1986 1986; 18 133 2014 2015; 2 281 2022; 169 2021; 47 2019; 31 2021; 421 2020; 41 2009; 182 2020; 39 2013; 224 2020; 35 2020; 32 1986 1986 1985; 18 18 14 1995; 40 2022; 3 2020; 30 2020; 396 2022; 5 2021; 411 2022; 7 2019; 45 2022; 9 2017; 56 2013; 81 2008; 43 2023; 559 2016; 28 2021; 60 2016; 8 2019; 296 1992 1992; 53 53 2023; 35 2023; 33 2013 2004 1985; 14 85 12 2019; 55 2021; 125 2021; 128 2019; 58 2021 2018; 22 8 2018; 407 2014; 176 2017; 353 2022; 657 2020; 8 2020; 7 2020; 6 2020; 5 2014; 4 2020; 3 2019; 61 2023; 23 1984; 14 2023 2022; 61 2013 2014 2015; 49 4 51 1981 2013 2011 2016; 81 3 10 8 2023; 650 2016; 113 2002; 108 2013 2014 2015 2019 2019 2013; 135 271 293 3 8 42 2014; 7 2018 2020; 323 448 2022; 404 2022; 642 2015; 2 2021; 9 2023; 10 2013; 48 2023; 13 2020 2017 2017 2021; 120 7 7 27 2004; 84 2015; 5 2021; 2 2015; 3 2023; 18 2023; 15 1993; 86 2020; 346 2007 1976 1986; 11 18 2017; 29 2021; 90 2022; 435 2016 2016; 116 1 1833; 123 2012 2017 2012; 206 5 208 2017; 17 2019; 410 2023; 638 2022; 427 2007; 46 2022; 545 2006 1969 1988; 8 7 2018; 57 2022; 450 2013; 1 2023; 77 1963; 85 1973; 14 2012 2001 2010; 488 414 22 2020; 446 2018 2019; 3 123 2014; 258 2022; 575 2018; 46 2018 2017; 5 7 2014; 248 2023; 62 2022; 440 2018; 8 2023; 68 2018; 5 2004; 170 1995 1985; 40 53 2018; 30 2021 2018; 43 54 2021; 397 2019; 7 2019; 9 2019; 4 2023; 58 2023; 55 2005; 351 2023; 56 2021; 387 2019; 2 2019; 1 2014 2018 2017; 248 9 164 2007; 90 2014; 271 2015 2015; 8 7 2016; 285 2022; 100 2022; 12 2022; 14 2019; 333 2022; 15 2022; 10 2022; 11 2014; 265 2018; 10 2017; 304 2021; 407 1990 1996; 137 41 2021; 21 2023; 4 2017 2018 2019 2023; 10 15 22 15 2023; 6 2023; 7 2022 2022 2020; 5 15 59 2016 2016 2016 2020; 324 288 18 467 2022; 69 2019; 367 2009 2011; 131 21 2016 2013; 1 135 2017; 9 2013 2014; 364 591 2022; 378 2021; 35 2021; 31 2021; 33 2012 2016; 47 302 2023; 254 1988; 135 2017 2016 2018 2014; 23 4 444 2 1968; 90 2022; 926 2015; 15 2018; 140 2010 2012; 181 211 2011 2011 2012 2015; 13 13 51 180 2011; 40 2022; 46 2022; 47 2014; 590 2019; 141 2021; 14 2021; 11 2022; 61 2018 2019; 382 45 2022; 58 2022; 59 2022; 53 2013; 253 2008; 179 2011; 182 e_1_2_8_26_3 e_1_2_8_241_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_226_1 e_1_2_8_1_3 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_1_2 e_1_2_8_9_1 e_1_2_8_41_3 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_41_2 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_4 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_230_1 e_1_2_8_230_2 e_1_2_8_230_3 e_1_2_8_253_1 e_1_2_8_38_1 e_1_2_8_15_2 Rösler J. (e_1_2_8_53_1) 2007 e_1_2_8_238_1 e_1_2_8_230_4 e_1_2_8_215_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_30_2 e_1_2_8_76_1 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_25_1 e_1_2_8_25_2 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_2 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_2_4 e_1_2_8_2_3 e_1_2_8_110_1 e_1_2_8_40_4 e_1_2_8_40_3 e_1_2_8_171_1 e_1_2_8_40_6 e_1_2_8_63_2 e_1_2_8_40_5 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_2 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 Cheng X. B. (e_1_2_8_15_1) 2023 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_98_2 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_243_1 e_1_2_8_220_1 e_1_2_8_7_4 e_1_2_8_228_1 e_1_2_8_205_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_7_3 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_107_3 e_1_2_8_107_4 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_160_1 Iijima T. (e_1_2_8_21_2) 1985; 53 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_55_2 e_1_2_8_32_3 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_32_2 e_1_2_8_107_2 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_27_2 Faraday M. (e_1_2_8_8_1) 1833; 123 e_1_2_8_221_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_206_1 e_1_2_8_80_1 e_1_2_8_150_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 e_1_2_8_135_1 e_1_2_8_39_2 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_77_3 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_31_1 e_1_2_8_54_3 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_5_1 Bates J. B. (e_1_2_8_23_1) 1992; 53 e_1_2_8_151_1 e_1_2_8_5_2 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_60_3 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_60_2 e_1_2_8_19_1 e_1_2_8_19_2 e_1_2_8_11_3 e_1_2_8_11_4 e_1_2_8_109_1 e_1_2_8_57_1 e_1_2_8_211_1 e_1_2_8_19_3 e_1_2_8_234_1 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_11_2 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_6_2 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_2 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_56_2 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_94_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_186_1 e_1_2_8_102_2 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_251_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_13_3 e_1_2_8_190_1 e_1_2_8_36_2 e_1_2_8_213_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_149_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_23_2 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_116_1 e_1_2_8_139_1 e_1_2_8_61_2 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_73_4 e_1_2_8_12_1 e_1_2_8_73_3 e_1_2_8_73_2 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 e_1_2_8_188_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 60 start-page: 162 year: 2021 publication-title: J. Energy Chem. – volume: 15 year: 2023 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 6608 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 265 start-page: 40 year: 2014 publication-title: J. Power Sources – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 411 year: 2021 publication-title: Chem. Eng. J. – volume: 194 start-page: 1085 year: 2009 publication-title: J. Power Sources – volume: 10 year: 2020 publication-title: Mater. Today Nano – volume: 35 start-page: 512 year: 2021 publication-title: Energy Storage Mater. – volume: 56 start-page: 753 year: 2017 publication-title: Angew.Chem. Int. Ed. – volume: 367 start-page: 230 year: 2019 publication-title: Chem. Eng. J. – volume: 466 year: 2023 publication-title: Chem. Eng. J. – volume: 435 year: 2022 publication-title: Chem. Eng. J. – volume: 14 start-page: 2939 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 182 start-page: 2046 year: 2009 publication-title: J. Solid‐state Chem. – volume: 650 start-page: 203 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 176 start-page: 83 year: 2014 publication-title: Faraday Discuss. – volume: 33 start-page: 6909 year: 2021 publication-title: Chem. Mater. – volume: 56 start-page: 300 year: 2023 publication-title: Energy Storage Mater. – volume: 49 4 51 start-page: 2204 6916 7294 year: 2013 2014 2015 publication-title: Chem. Commun. Sci. Rep. Chem. Commun. – volume: 77 start-page: 326 year: 2023 publication-title: J Energy Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 57 start-page: 8587 year: 2018 publication-title: Angew.Chem. Int. Ed. – volume: 85 start-page: 473 year: 2002 publication-title: J Am Ceram Soc – volume: 9 year: 2022 publication-title: ChemElectroChem – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 4 start-page: 2668 year: 2019 publication-title: ACS Energy Lett. – volume: 40 53 start-page: 991 619 year: 1995 1985 publication-title: Electrochim. Acta Electrochem Soc Jpn – volume: 169 year: 2022 publication-title: J. Electrochem. Soc. – volume: 17 start-page: 204 year: 2019 publication-title: Energy Storage Mater. – volume: 304 start-page: 85 year: 2017 publication-title: Solid‐state Ionics – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 285 start-page: 112 year: 2016 publication-title: Solid‐state Ionics – volume: 638 start-page: 908 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 31 start-page: 3694 year: 2019 publication-title: Chem. Mater. – year: 2007 – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 575 year: 2022 publication-title: Appl. Surf. Sci. – volume: 427 year: 2022 publication-title: Chem. Eng. J. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 85 start-page: 3533 year: 1963 publication-title: JACS – volume: 40 start-page: 2525 year: 2011 publication-title: Chem. Soc. Rev. – volume: 14 85 12 start-page: 1654 391 year: 2013 2004 1985 publication-title: Sci. Technol. Adv. Mater. J. Am. Ceram. Soc. Sol. Energy Mater. – volume: 6 year: 2023 publication-title: Energy Environ. Mater. – volume: 657 year: 2022 publication-title: J. Membrane Sci. – volume: 3 start-page: 438 year: 2015 publication-title: J. Mater. Chem. A – volume: 46 year: 2022 publication-title: Int. J. Energy Res. – volume: 450 year: 2022 publication-title: Chem. Eng. J. – volume: 364 591 start-page: 57 247 year: 2013 2014 publication-title: J. Non‐Cryst. Solids J. Alloys Compd. – volume: 5 15 59 start-page: 3 991 year: 2022 2022 2020 publication-title: Electrochem. Energy Rev. Energy Environ. Sci. Angew. Chem., Int. Ed. – volume: 14 start-page: 2577 year: 2021 publication-title: Energy Environ. Sci. – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 258 start-page: 1 year: 2014 publication-title: Solid‐state Ionics – volume: 45 year: 2019 publication-title: Ceram. Int. – volume: 224 start-page: 225 year: 2013 publication-title: J. Power Sources – volume: 135 271 293 3 8 42 start-page: 975 342 941 189 1435 year: 2013 2014 2015 2019 2019 2013 publication-title: J. Am. Chem. Soc. J. Power Sources J. Power Sources Nat. Rev. Chem. Mater. Today Nano Chem. Lett. – volume: 41 start-page: 171 year: 2020 publication-title: J Energy Chem – volume: 23 start-page: 227 year: 2023 publication-title: Nano Lett. – volume: 8 7 start-page: 412 1000 205 year: 2006 1969 1988 publication-title: Chem. Commun. Inorg. Chem. Mater. Lett. – volume: 285 start-page: 6 year: 2016 publication-title: Solid‐state Ionics – volume: 17 start-page: 266 year: 2019 publication-title: Energy Storage Mater. – volume: 42 start-page: 5546 year: 2016 publication-title: Ceram. Int. – volume: 47 start-page: 288 year: 2022 publication-title: Energy Storage Mater. – volume: 421 year: 2021 publication-title: Chem. Eng. J. – volume: 182 start-page: 116 year: 2011 publication-title: Solid‐state Ionics – volume: 14 start-page: 589 year: 1973 publication-title: Polymer – volume: 6 start-page: 4881 year: 2023 publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 718 year: 2020 publication-title: ACS Energy Lett. – volume: 15 start-page: 3206 year: 2022 publication-title: Energies – volume: 18 year: 2023 publication-title: eTransportation – volume: 58 start-page: 7646 year: 2022 publication-title: Chem. Commun. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 12 year: 2022 publication-title: RSC Adv. – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 387 start-page: 415 year: 2021 publication-title: Powder Technol. – volume: 43 start-page: 2334 year: 2008 publication-title: Mater. Res. Bull. – volume: 1 start-page: 354 year: 2019 publication-title: ACS Mater. Lett. – volume: 10 start-page: 134 year: 2023 publication-title: J. Materiomics – volume: 5 start-page: 229 year: 2020 publication-title: Nat. Rev. Mater. – volume: 86 start-page: 689 year: 1993 publication-title: Solid‐state Commun. – volume: 1 start-page: 6320 year: 2013 publication-title: J. Mater. Chem. A – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 18 133 start-page: 368 2437 year: 1986 1986 publication-title: Solid‐state Ionics J Electrochem Soc – volume: 14 start-page: 4737 year: 2021 publication-title: Materials – volume: 488 414 22 start-page: 294 359 E170 year: 2012 2001 2010 publication-title: Nature Nature Adv. Mater. – volume: 90 start-page: 223 year: 1968 publication-title: JACS – volume: 29 start-page: 3785 year: 2017 publication-title: Chem. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 22 start-page: 194 year: 2019 publication-title: Energy Storage Mater. – volume: 113 start-page: 7094 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 705 year: 2019 publication-title: Nat. Nanotechnol. – volume: 39 start-page: 743 year: 2020 publication-title: Rare Met. – volume: 22 8 year: 2021 2018 publication-title: Appl. Mater. Today Adv. Energy Mater. – volume: 12 start-page: 938 year: 2019 publication-title: Energy Environ. Sci. – volume: 351 start-page: 3716 year: 2005 publication-title: J. Non‐Cryst. Solids – volume: 5 7 start-page: 501 year: 2018 2017 publication-title: Inorg. Chem. Front. RSC Adv. – volume: 10 year: 2019 publication-title: Adv. Energy Mater. – volume: 271 start-page: 60 year: 2014 publication-title: J. Power Sources – volume: 108 start-page: 8 year: 2002 publication-title: J. Power Sources – volume: 84 start-page: 719 year: 2004 publication-title: Philos. Mag. Lett. – volume: 382 45 start-page: 190 56 year: 2018 2019 publication-title: J. Power Sources Ceram. Int. – volume: 285 start-page: 2 year: 2016 publication-title: Solid‐state Ionics – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 62 year: 2023 publication-title: Ind. Eng. Chem. Res. – volume: 346 year: 2020 publication-title: Solid‐state Ionics – volume: 17 start-page: 3182 year: 2017 publication-title: Nano Lett. – volume: 23 4 444 2 start-page: 2061 8091 10 5095 year: 2017 2016 2018 2014 publication-title: Ionics J. Mater. Chem. A Appl. Surf. Sci. J. Mater. Chem. A – volume: 15 year: 2023 publication-title: eTransportation – volume: 4 year: 2023 publication-title: Small Struct. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 404 year: 2022 publication-title: Electrochim. Acta – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 353 start-page: 287 year: 2017 publication-title: J. Power Sources – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 2 start-page: 6542 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 40 start-page: 2289 year: 1995 publication-title: Electrochim. Acta – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 2123 year: 2021 publication-title: Ceram. Int. – volume: 7 start-page: 1558 year: 2022 publication-title: ACS Energy Lett. – volume: 11 year: 2022 publication-title: eTransportation – volume: 407 start-page: 31 year: 2018 publication-title: J. Power Sources – volume: 46 start-page: 7778 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 116 1 start-page: 140 year: 2016 2016 publication-title: Chem. Rev. Nat. Energy – volume: 100 year: 2022 publication-title: Nano Energy – volume: 69 start-page: 194 year: 2022 publication-title: J Energy Chem. – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – volume: 8 year: 2020 publication-title: J. Mater. Chem. A – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 128 year: 2021 publication-title: Electrochem. Commun. – volume: 7 start-page: 171 year: 2022 publication-title: ACS Energy Lett. – volume: 590 start-page: 147 year: 2014 publication-title: J. Alloys Compd. – volume: 14 start-page: 1671 year: 2021 publication-title: Materials – volume: 248 9 164 start-page: 943 607 year: 2014 2018 2017 publication-title: J. Power Sources J. Phys. Chem. Lett. J. Electrochem. Soc. – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 253 start-page: 76 year: 2013 publication-title: Solid‐state Ionics – volume: 53 start-page: 937 year: 2022 publication-title: Energy Storage Mater. – volume: 2 281 start-page: 334 year: 2014 2015 publication-title: J. Mater. Chem. A J. Power Sources – volume: 14 start-page: 643 year: 2021 publication-title: Energy Environ. Sci. – volume: 545 year: 2022 publication-title: J. Power Sources – volume: 90 start-page: 2802 year: 2007 publication-title: J. Am. Ceram. Soc. – volume: 5 year: 2020 publication-title: ACS Omega – volume: 14 start-page: 2805 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 61 year: 2023 2022 publication-title: Adv. Mater. Chem. Int. Ed. – volume: 333 start-page: 45 year: 2019 publication-title: Solid‐state Ionics – volume: 27 374 year: 2022 2022 publication-title: Mater. Today Energy Solid‐state Ionics – volume: 5 start-page: 5267 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 18 18 14 start-page: 282 295 13 year: 1986 1986 1985 publication-title: Solid‐state Ionics Solid‐state Ionics J. Power Sources – volume: 354 start-page: 1475 year: 2008 publication-title: J. Non‐Cryst. Solids – volume: 59 start-page: 161 year: 2022 publication-title: Mater. Today – volume: 7 29 72 7 start-page: 194 2453 138 511 year: 1974 1967 1960 1962 publication-title: J Phys D Appl Phys J. Inorg. Nucl. Chem. Angew. Chem. Electrochim. Acta – volume: 2 start-page: 328 year: 2015 publication-title: ChemElectroChem – volume: 3 start-page: 596 year: 2020 publication-title: Batteries Supercaps. – volume: 47 302 start-page: 4428 135 year: 2012 2016 publication-title: J. Mater. Sci. J. Power Sources – volume: 7 start-page: 1053 year: 2014 publication-title: Energy Environ. Sci. – volume: 131 21 year: 2009 2011 publication-title: J. Am. Chem. Soc. J. Mater. Chem. – volume: 48 start-page: 4137 year: 2013 publication-title: J. Mater. Sci. – volume: 3 123 start-page: 992 1626 year: 2018 2019 publication-title: ACS Energy Lett. J. Phys. Chem. C – volume: 9 start-page: 1086 year: 2019 publication-title: Nanomaterials – volume: 248 start-page: 642 year: 2014 publication-title: J. Power Sources – volume: 43 54 start-page: 53 year: 2021 2018 publication-title: Energy Storage Mater. Chem. Commun. – volume: 5 year: 2018 publication-title: Adv. Sci. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 296 start-page: 473 year: 2019 publication-title: Electrochim. Acta – volume: 11 18 start-page: 203 562 year: 1976 1986 publication-title: Mat. Res. Bull. Solid‐state Ionics – volume: 13 13 51 180 start-page: 509 1373 5798 37 year: 2011 2011 2012 2015 publication-title: Electrochem. Commun. Electrochem. Commun. Angew. Chem., Int. Ed. Electrochim. Acta – volume: 559 year: 2023 publication-title: J. Power Sources – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 46 start-page: 176 year: 2018 publication-title: Nano Energy – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 7 year: 2022 publication-title: ACS Omega – volume: 14 start-page: 39 year: 1984 publication-title: J. Appl. Electrochem. – volume: 15 start-page: 3317 year: 2015 publication-title: Nano Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 1 135 start-page: 1167 year: 2016 2013 publication-title: Nat. Energy J. Am. Chem. Soc. – volume: 5 start-page: 299 year: 2020 publication-title: Nat. Energy – volume: 32 start-page: 2664 year: 2020 publication-title: Chem. Mater. – volume: 5 year: 2022 publication-title: EcoMat. – volume: 926 year: 2022 publication-title: J. Alloys Compd. – volume: 179 start-page: 1714 year: 2008 publication-title: Solid‐state Ionics – volume: 407 year: 2021 publication-title: Chem. Eng. J. – volume: 2 year: 2021 publication-title: Cell Rep Phys Sci – volume: 3 year: 2022 publication-title: Cell Rep Phys Sci – volume: 464 year: 2023 publication-title: Chem. Eng. J. – volume: 410 start-page: 162 year: 2019 publication-title: J. Power Sources – volume: 4 start-page: 1073 year: 2019 publication-title: ACS Energy Lett. – volume: 28 start-page: 447 year: 2016 publication-title: Nano Energy – volume: 3 start-page: 4708 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 378 year: 2022 publication-title: Solid‐state Ionics – volume: 140 start-page: 82 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 132 year: 2023 publication-title: Energy Storage Mater. – volume: 206 5 208 start-page: 28 193 year: 2012 2017 2012 publication-title: Solid‐state Ionics J. Mater. Chem. A J. Power Sources – volume: 170 start-page: 173 year: 2004 publication-title: Solid‐state Ionics – volume: 53 53 start-page: 655 647 year: 1992 1992 publication-title: Solid‐state Ionics Solid‐state Ionics – volume: 440 year: 2022 publication-title: Chem. Eng. J. – volume: 68 year: 2023 publication-title: J. Energy Storage – volume: 6 start-page: 3321 year: 2023 publication-title: ACS Appl. Energy Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 159 3 start-page: 845 year: 2012 2013 publication-title: J. Electrochem. Soc. Adv. Energy Mater. – volume: 14 start-page: 1195 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 8 7 start-page: 1551 year: 2015 2015 publication-title: Energy Environ. Sci. ACS Appl. Mater. Interfaces – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 254 year: 2023 publication-title: Composites Part B – volume: 137 41 start-page: 1657 1443 year: 1990 1996 publication-title: Electrochem. Soc. Electrochim. Acta – volume: 7 start-page: 410 year: 2022 publication-title: ACS Energy Lett. – volume: 4 start-page: 3452 year: 2023 publication-title: Mater. Adv. – volume: 264 start-page: 1115 year: 1994 publication-title: Science – volume: 58 start-page: 7673 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 15 22 15 start-page: 1568 458 50 751 year: 2017 2018 2019 2023 publication-title: Energy Environ. Sci. Energy Storage Mater. Mater. Today ACS Appl. Mater. Interfaces – volume: 81 3 10 8 start-page: 327 2261 682 426 year: 1981 2013 2011 2016 publication-title: Chem. Rev. Sci. Rep. Nat. Mater. Nat Chem – volume: 7 year: 2023 publication-title: Small Meth. – volume: 176 start-page: 2355 year: 2005 publication-title: Solid‐state Ionics – volume: 61 start-page: 52 year: 2022 publication-title: Inorg. Chem. – volume: 90 year: 2021 publication-title: Nano Energy – volume: 323 448 start-page: 581 year: 2018 2020 publication-title: Powder Technol. J. Power Sources – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 21 year: 2021 publication-title: Mater. Today Energy – volume: 120 7 7 27 start-page: 6783 1393 year: 2020 2017 2017 2021 publication-title: Chem. Rev. Adv. Energy Mater. Adv. Energy Mater. Ionics – volume: 18 start-page: 59 year: 2019 publication-title: Energy Storage Mater. – volume: 81 start-page: 428 year: 2013 publication-title: Electrochem – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 324 288 18 467 start-page: 798 229 year: 2016 2016 2016 2020 publication-title: J. Power Sources Solid‐state Ionics Phys Chem Chem Phys. J. Power Sources – volume: 642 year: 2022 publication-title: J. Membrane Sci. – volume: 446 year: 2020 publication-title: J. Power Sources – volume: 61 start-page: 567 year: 2019 publication-title: Nano Energy – volume: 55 start-page: 847 year: 2023 publication-title: Energy Storage Mater. – volume: 181 211 start-page: 1505 42 year: 2010 2012 publication-title: Solid‐state Ionics Solid‐state Ionics – volume: 55 start-page: 3750 year: 2019 publication-title: J. Mater. Sci. – volume: 397 year: 2021 publication-title: Electrochim. Acta. – volume: 35 start-page: 572 year: 2020 publication-title: Mater. Technol. – volume: 135 start-page: 3 year: 1988 publication-title: MRS Online Proceedings Library (OPL) – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 123 start-page: 23 year: 1833 publication-title: Phil. Trans. R. Soc. Lond. – ident: e_1_2_8_7_1 doi: 10.1021/cr00044a002 – volume: 53 start-page: 619 year: 1985 ident: e_1_2_8_21_2 publication-title: Electrochem Soc Jpn – ident: e_1_2_8_236_1 doi: 10.1016/j.jpowsour.2017.04.014 – ident: e_1_2_8_247_1 doi: 10.1002/admi.202000425 – ident: e_1_2_8_125_1 doi: 10.1016/j.ceramint.2015.12.133 – ident: e_1_2_8_175_1 doi: 10.1002/er.8275 – ident: e_1_2_8_62_1 doi: 10.1016/j.jpowsour.2013.09.140 – ident: e_1_2_8_96_1 doi: 10.1016/S0378-7753(01)01013-8 – ident: e_1_2_8_98_2 doi: 10.1002/aenm.201703644 – ident: e_1_2_8_138_1 doi: 10.3390/ma14164737 – ident: e_1_2_8_211_1 doi: 10.1016/j.jallcom.2013.12.100 – ident: e_1_2_8_251_1 doi: 10.1002/eem2.12280 – ident: e_1_2_8_121_1 doi: 10.1002/adfm.202303397 – ident: e_1_2_8_189_1 doi: 10.1021/acsaem.3c00371 – ident: e_1_2_8_246_1 doi: 10.1016/j.mattod.2022.07.016 – ident: e_1_2_8_191_1 doi: 10.1016/j.cej.2022.135779 – ident: e_1_2_8_148_1 doi: 10.1016/j.jpowsour.2012.09.097 – ident: e_1_2_8_200_1 doi: 10.1016/j.est.2023.107640 – ident: e_1_2_8_228_1 doi: 10.1016/j.mtener.2021.100841 – ident: e_1_2_8_119_1 doi: 10.1021/acs.chemmater.1c01837 – ident: e_1_2_8_153_1 doi: 10.1016/j.ssi.2005.03.023 – ident: e_1_2_8_2_2 doi: 10.1002/aenm.201601635 – ident: e_1_2_8_17_1 doi: 10.1016/j.etran.2023.100279 – ident: e_1_2_8_40_3 doi: 10.1016/j.jpowsour.2015.05.093 – ident: e_1_2_8_61_2 doi: 10.1016/j.jpowsour.2015.10.053 – ident: e_1_2_8_37_1 doi: 10.1016/j.ssi.2015.09.010 – ident: e_1_2_8_149_1 doi: 10.1016/j.jechem.2019.05.015 – ident: e_1_2_8_42_1 doi: 10.1016/j.ssi.2015.11.019 – ident: e_1_2_8_56_1 doi: 10.1021/acsenergylett.8b00275 – ident: e_1_2_8_19_2 doi: 10.1016/0167-2738(86)90130-X – ident: e_1_2_8_85_1 doi: 10.1021/ja01004a002 – ident: e_1_2_8_239_1 doi: 10.1016/j.ensm.2023.03.012 – ident: e_1_2_8_78_1 doi: 10.1039/D1EE00551K – ident: e_1_2_8_217_1 doi: 10.1021/acs.nanolett.2c04140 – ident: e_1_2_8_152_1 doi: 10.1039/C4FD00143E – ident: e_1_2_8_92_1 doi: 10.1021/acs.chemmater.9b00420 – ident: e_1_2_8_57_1 doi: 10.1002/aenm.201902881 – ident: e_1_2_8_117_1 doi: 10.5796/electrochemistry.81.428 – ident: e_1_2_8_248_1 doi: 10.1016/j.ssi.2014.01.046 – ident: e_1_2_8_27_1 doi: 10.1016/0167-2738(86)90142-6 – ident: e_1_2_8_44_2 doi: 10.1039/C7RA09081A – ident: e_1_2_8_73_1 doi: 10.1016/j.elecom.2011.02.035 – ident: e_1_2_8_133_1 doi: 10.1016/j.ceramint.2019.04.236 – ident: e_1_2_8_135_1 doi: 10.3390/ma14071671 – ident: e_1_2_8_226_1 doi: 10.1021/acsami.2c22562 – ident: e_1_2_8_227_1 doi: 10.1016/j.ensm.2018.11.011 – ident: e_1_2_8_249_1 doi: 10.1021/acs.chemmater.7b00944 – ident: e_1_2_8_89_1 doi: 10.1021/acs.chemmater.9b04764 – ident: e_1_2_8_40_5 doi: 10.1016/j.mtnano.2019.100048 – ident: e_1_2_8_210_1 doi: 10.1016/j.electacta.2021.139249 – ident: e_1_2_8_105_1 doi: 10.1016/j.ensm.2023.01.018 – ident: e_1_2_8_25_1 doi: 10.1016/0025-5408(76)90077-5 – ident: e_1_2_8_40_1 doi: 10.1021/ja3110895 – ident: e_1_2_8_101_1 doi: 10.1016/j.nanoen.2021.106542 – ident: e_1_2_8_241_1 doi: 10.1016/j.cej.2021.131948 – ident: e_1_2_8_179_1 doi: 10.1039/D3MA00078H – ident: e_1_2_8_68_1 doi: 10.1016/j.jpowsour.2014.04.065 – ident: e_1_2_8_73_3 doi: 10.1002/anie.201105006 – ident: e_1_2_8_80_1 doi: 10.1016/j.jnoncrysol.2007.08.058 – ident: e_1_2_8_222_1 doi: 10.1002/adfm.202101985 – ident: e_1_2_8_166_1 doi: 10.1016/j.jechem.2022.11.003 – ident: e_1_2_8_97_1 doi: 10.1039/D1TA04799J – ident: e_1_2_8_63_2 doi: 10.1016/j.ceramint.2018.09.133 – ident: e_1_2_8_98_1 doi: 10.1016/j.apmt.2020.100918 – ident: e_1_2_8_127_1 doi: 10.1002/anie.201804114 – ident: e_1_2_8_245_1 doi: 10.1126/sciadv.abc8641 – ident: e_1_2_8_13_2 doi: 10.1111/j.1151-2916.2002.tb00334.x – ident: e_1_2_8_52_1 doi: 10.1080/14786430500038088 – ident: e_1_2_8_34_1 doi: 10.1021/acsenergylett.1c02261 – ident: e_1_2_8_40_4 doi: 10.1038/s41570-019-0078-2 – ident: e_1_2_8_171_1 doi: 10.1016/j.cej.2019.02.148 – ident: e_1_2_8_173_1 doi: 10.1002/aenm.201902767 – ident: e_1_2_8_39_1 doi: 10.1016/j.ssi.2010.08.021 – ident: e_1_2_8_103_1 doi: 10.1016/j.ssi.2019.01.017 – ident: e_1_2_8_19_1 doi: 10.1016/0167-2738(86)90127-X – ident: e_1_2_8_145_1 doi: 10.1021/acsaem.9b01152 – ident: e_1_2_8_242_1 doi: 10.1002/adma.201707132 – ident: e_1_2_8_45_1 doi: 10.1016/j.electacta.2018.11.035 – ident: e_1_2_8_95_1 doi: 10.1039/c3ta10247e – ident: e_1_2_8_123_1 doi: 10.1002/aenm.202100836 – ident: e_1_2_8_151_1 doi: 10.1002/celc.202200156 – ident: e_1_2_8_238_1 doi: 10.1002/adfm.201910123 – ident: e_1_2_8_22_1 doi: 10.1016/0013-4686(95)00180-M – ident: e_1_2_8_46_1 doi: 10.1021/acsami.8b01805 – ident: e_1_2_8_161_1 doi: 10.1021/acsami.2c20734 – ident: e_1_2_8_159_1 doi: 10.1016/j.ensm.2019.07.015 – ident: e_1_2_8_168_1 doi: 10.1016/j.cej.2023.143159 – ident: e_1_2_8_143_1 doi: 10.1039/D0TA00517G – ident: e_1_2_8_31_1 doi: 10.1002/celc.201402344 – ident: e_1_2_8_41_1 doi: 10.1007/s11581-017-2035-8 – ident: e_1_2_8_20_2 doi: 10.1016/0013-4686(95)00392-4 – ident: e_1_2_8_196_1 doi: 10.1002/eom2.12317 – ident: e_1_2_8_67_1 doi: 10.1039/C4RA08674K – ident: e_1_2_8_116_1 doi: 10.1021/acsaem.9b01111 – ident: e_1_2_8_169_1 doi: 10.1021/acsaem.2c00713 – ident: e_1_2_8_41_4 doi: 10.1039/c3ta15090a – ident: e_1_2_8_77_1 doi: 10.1007/s41918-022-00149-3 – ident: e_1_2_8_76_1 doi: 10.1016/j.mtnano.2020.100075 – ident: e_1_2_8_102_1 doi: 10.1016/j.jnoncrysol.2012.12.044 – ident: e_1_2_8_54_2 doi: 10.1021/acs.jpclett.7b02880 – ident: e_1_2_8_16_1 doi: 10.1002/adma.202209114 – ident: e_1_2_8_181_1 doi: 10.1021/acsenergylett.0c00251 – ident: e_1_2_8_150_1 doi: 10.1016/j.jallcom.2022.166731 – ident: e_1_2_8_244_1 doi: 10.1021/acsenergylett.9b01847 – ident: e_1_2_8_253_1 doi: 10.1002/smtd.202201328 – ident: e_1_2_8_59_2 doi: 10.1039/C8CC08030E – ident: e_1_2_8_27_2 doi: 10.1149/1.2108425 – ident: e_1_2_8_108_1 doi: 10.1021/acsami.0c00393 – ident: e_1_2_8_162_1 doi: 10.1002/advs.201700996 – ident: e_1_2_8_184_1 doi: 10.1002/aenm.202103720 – ident: e_1_2_8_131_1 doi: 10.1021/acsaem.0c00347 – ident: e_1_2_8_154_1 doi: 10.1039/C4TA05231E – ident: e_1_2_8_141_1 doi: 10.3390/nano9081086 – volume: 123 start-page: 23 year: 1833 ident: e_1_2_8_8_1 publication-title: Phil. Trans. R. Soc. Lond. – ident: e_1_2_8_49_1 doi: 10.1002/eem2.12308 – ident: e_1_2_8_11_3 doi: 10.1002/ange.19600720407 – ident: e_1_2_8_237_1 doi: 10.1016/j.ensm.2019.01.007 – ident: e_1_2_8_213_1 doi: 10.1038/s41560-020-0575-z – ident: e_1_2_8_1_1 doi: 10.1038/nature11475 – ident: e_1_2_8_11_2 doi: 10.1016/0022-1902(67)80301-4 – volume-title: Mechanical Behavior of Engineering Materials: Metals, Ceramics, Polymers, and Composites year: 2007 ident: e_1_2_8_53_1 – ident: e_1_2_8_94_1 doi: 10.1021/acs.inorgchem.1c01748 – ident: e_1_2_8_107_4 doi: 10.1016/j.jpowsour.2020.228250 – ident: e_1_2_8_13_3 doi: 10.1016/0165-1633(85)90033-4 – ident: e_1_2_8_59_1 doi: 10.1016/j.ensm.2021.08.028 – ident: e_1_2_8_224_1 doi: 10.1016/j.cej.2023.142537 – ident: e_1_2_8_39_2 doi: 10.1016/j.ssi.2012.01.017 – ident: e_1_2_8_6_2 doi: 10.1038/nenergy.2016.42 – ident: e_1_2_8_163_1 doi: 10.1016/j.memsci.2022.120666 – ident: e_1_2_8_99_1 doi: 10.1007/s10853-013-7226-8 – ident: e_1_2_8_225_1 doi: 10.1039/C8EE02617C – volume: 53 start-page: 655 year: 1992 ident: e_1_2_8_23_1 publication-title: Solid‐state Ionics – ident: e_1_2_8_29_1 doi: 10.1039/C5EE00058K – ident: e_1_2_8_69_1 doi: 10.1016/j.ssi.2015.06.015 – ident: e_1_2_8_202_1 doi: 10.1016/j.ensm.2022.09.022 – ident: e_1_2_8_7_2 doi: 10.1038/srep02261 – ident: e_1_2_8_6_1 doi: 10.1021/acs.chemrev.5b00563 – ident: e_1_2_8_71_1 doi: 10.1111/j.1151-2916.2002.tb00113.x – ident: e_1_2_8_107_3 doi: 10.1039/C6CP03179J – ident: e_1_2_8_214_1 doi: 10.1002/batt.202000051 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201700007 – ident: e_1_2_8_234_1 doi: 10.1021/acs.nanolett.5b00538 – ident: e_1_2_8_136_1 doi: 10.1021/acsomega.2c06544 – ident: e_1_2_8_70_1 doi: 10.1002/anie.201608924 – ident: e_1_2_8_107_1 doi: 10.1016/j.jpowsour.2016.05.100 – ident: e_1_2_8_194_1 doi: 10.1021/acsami.1c20480 – ident: e_1_2_8_5_1 doi: 10.1038/nenergy.2016.30 – ident: e_1_2_8_72_1 doi: 10.1016/j.ssi.2013.09.005 – ident: e_1_2_8_146_1 doi: 10.1016/j.ssi.2008.01.055 – ident: e_1_2_8_218_1 doi: 10.1016/j.electacta.2021.139701 – ident: e_1_2_8_55_1 doi: 10.1149/2.053207jes – ident: e_1_2_8_23_2 doi: 10.1016/0167-2738(92)90442-R – ident: e_1_2_8_156_1 doi: 10.1016/j.elecom.2021.107058 – ident: e_1_2_8_230_2 doi: 10.1016/j.ensm.2018.08.009 – ident: e_1_2_8_7_3 doi: 10.1038/nmat3066 – ident: e_1_2_8_82_1 doi: 10.1016/j.ssi.2017.03.010 – ident: e_1_2_8_113_1 doi: 10.1016/j.cej.2020.125334 – ident: e_1_2_8_11_4 doi: 10.1016/0013-4686(62)80039-5 – ident: e_1_2_8_20_1 doi: 10.1149/1.2086749 – ident: e_1_2_8_216_1 doi: 10.1021/acsenergylett.2c00535 – ident: e_1_2_8_219_1 doi: 10.1016/j.jechem.2020.12.026 – ident: e_1_2_8_40_6 doi: 10.1246/cl.130726 – ident: e_1_2_8_60_3 doi: 10.1016/j.jpowsour.2012.02.031 – ident: e_1_2_8_73_2 doi: 10.1016/j.elecom.2011.08.014 – ident: e_1_2_8_185_1 doi: 10.1016/j.jmat.2023.04.011 – ident: e_1_2_8_40_2 doi: 10.1016/j.jpowsour.2014.08.024 – ident: e_1_2_8_174_1 doi: 10.1039/D2TA02023H – ident: e_1_2_8_26_3 doi: 10.1016/0167-577X(88)90011-0 – ident: e_1_2_8_81_1 doi: 10.1016/j.ssi.2010.10.013 – ident: e_1_2_8_230_3 doi: 10.1016/j.mattod.2018.04.004 – ident: e_1_2_8_33_1 doi: 10.1038/s41578-019-0165-5 – ident: e_1_2_8_3_1 doi: 10.1039/c0cs00081g – ident: e_1_2_8_134_1 doi: 10.1038/srep18053 – ident: e_1_2_8_252_1 doi: 10.1016/j.jpowsour.2009.06.100 – ident: e_1_2_8_206_1 doi: 10.1021/acsaem.2c03922 – ident: e_1_2_8_104_1 doi: 10.1021/jacs.9b08357 – ident: e_1_2_8_77_2 doi: 10.1039/D1EE03032A – ident: e_1_2_8_176_1 doi: 10.1021/acsami.3c02084 – ident: e_1_2_8_186_1 doi: 10.1016/j.ensm.2022.12.039 – ident: e_1_2_8_66_1 doi: 10.1016/j.mtener.2022.101034 – ident: e_1_2_8_88_1 doi: 10.1021/acsami.7b03606 – ident: e_1_2_8_233_1 doi: 10.1021/acsenergylett.9b00430 – ident: e_1_2_8_110_1 doi: 10.1016/j.cej.2020.127149 – ident: e_1_2_8_157_1 doi: 10.1002/aenm.201902783 – ident: e_1_2_8_205_1 doi: 10.1021/acsami.3c01681 – ident: e_1_2_8_93_1 doi: 10.1021/acs.jpcc.1c05034 – ident: e_1_2_8_28_2 doi: 10.1039/c0jm04222f – ident: e_1_2_8_180_1 doi: 10.1038/s41565-019-0465-3 – ident: e_1_2_8_7_4 doi: 10.1038/nchem.2470 – ident: e_1_2_8_48_1 doi: 10.1016/j.xcrp.2022.101043 – ident: e_1_2_8_26_2 doi: 10.1021/ic50074a058 – ident: e_1_2_8_15_2 doi: 10.1002/anie.202214545 – ident: e_1_2_8_21_1 doi: 10.1016/0013-4686(94)00345-2 – ident: e_1_2_8_212_1 doi: 10.1080/10667857.2020.1713452 – ident: e_1_2_8_66_2 doi: 10.1016/j.ssi.2021.115812 – ident: e_1_2_8_178_1 doi: 10.1149/1945-7111/ac8edc – ident: e_1_2_8_250_1 doi: 10.1002/aenm.201800014 – ident: e_1_2_8_254_1 doi: 10.1002/anie.202302505 – ident: e_1_2_8_2_4 doi: 10.1007/s11581-021-03941-1 – ident: e_1_2_8_36_2 doi: 10.1016/j.jpowsour.2019.227579 – ident: e_1_2_8_190_1 doi: 10.1073/pnas.1600422113 – ident: e_1_2_8_167_1 doi: 10.1016/j.jcis.2023.06.183 – ident: e_1_2_8_60_2 doi: 10.1039/C7TA06790A – ident: e_1_2_8_86_1 doi: 10.1039/C3EE43357A – ident: e_1_2_8_221_1 doi: 10.1002/aenm.202200660 – ident: e_1_2_8_51_1 doi: 10.1002/aenm.201804004 – ident: e_1_2_8_91_1 doi: 10.1016/j.ensm.2018.07.008 – ident: e_1_2_8_172_1 doi: 10.1021/acsami.3c02678 – ident: e_1_2_8_26_1 doi: 10.1039/B514640B – ident: e_1_2_8_229_1 doi: 10.1016/j.ensm.2020.11.038 – ident: e_1_2_8_140_1 doi: 10.1016/j.ssi.2022.115888 – ident: e_1_2_8_187_1 doi: 10.1021/acsami.2c06204 – ident: e_1_2_8_139_1 doi: 10.1016/j.materresbull.2007.08.007 – ident: e_1_2_8_14_1 doi: 10.1016/j.etran.2022.100211 – ident: e_1_2_8_44_1 doi: 10.1039/C7QI00737J – ident: e_1_2_8_223_1 doi: 10.1021/jacs.7b10864 – ident: e_1_2_8_77_3 doi: 10.1002/anie.202007621 – ident: e_1_2_8_83_1 doi: 10.1016/j.ssi.2020.115225 – ident: e_1_2_8_199_1 doi: 10.1002/aenm.202101612 – ident: e_1_2_8_43_1 doi: 10.1016/j.powtec.2021.04.050 – ident: e_1_2_8_208_1 doi: 10.1002/sstr.202200206 – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.9b00531 – ident: e_1_2_8_183_1 doi: 10.1016/j.jcis.2023.01.138 – ident: e_1_2_8_120_1 doi: 10.3390/en15093206 – ident: e_1_2_8_231_1 doi: 10.1039/C9TA06520B – ident: e_1_2_8_232_1 doi: 10.1002/aenm.201903376 – ident: e_1_2_8_30_2 doi: 10.1016/j.jpowsour.2015.02.015 – ident: e_1_2_8_47_1 doi: 10.1016/j.xcrp.2020.100301 – ident: e_1_2_8_235_1 doi: 10.1016/j.nanoen.2017.12.037 – ident: e_1_2_8_198_1 doi: 10.1016/j.cej.2022.137994 – ident: e_1_2_8_164_1 doi: 10.1016/j.nanoen.2022.107499 – ident: e_1_2_8_24_1 doi: 10.1016/0038-1098(93)90841-A – ident: e_1_2_8_30_1 doi: 10.1039/C4TA04419C – ident: e_1_2_8_63_1 doi: 10.1016/j.jpowsour.2017.11.074 – ident: e_1_2_8_55_2 doi: 10.1002/aenm.201200932 – ident: e_1_2_8_243_1 doi: 10.1002/aenm.201901841 – ident: e_1_2_8_128_1 doi: 10.1016/j.jssc.2009.05.020 – ident: e_1_2_8_147_1 doi: 10.1016/j.ssi.2004.02.025 – ident: e_1_2_8_195_1 doi: 10.1021/acsmaterialslett.9b00189 – ident: e_1_2_8_215_1 doi: 10.1002/aenm.202201991 – ident: e_1_2_8_79_1 doi: 10.1016/j.jnoncrysol.2005.09.028 – ident: e_1_2_8_109_1 doi: 10.1016/j.jpowsour.2023.232659 – ident: e_1_2_8_38_1 doi: 10.1016/j.jpowsour.2018.10.037 – ident: e_1_2_8_32_1 doi: 10.1039/c3cc00064h – ident: e_1_2_8_207_1 doi: 10.1016/j.cej.2022.135106 – ident: e_1_2_8_137_1 doi: 10.1021/acsami.7b00614 – ident: e_1_2_8_54_1 doi: 10.1016/j.jpowsour.2013.10.005 – ident: e_1_2_8_188_1 doi: 10.1021/acs.iecr.3c01643 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201906221 – ident: e_1_2_8_114_1 doi: 10.1021/acsomega.0c03453 – ident: e_1_2_8_29_2 doi: 10.1021/acsami.5b04209 – ident: e_1_2_8_84_1 doi: 10.1021/ja00905a001 – ident: e_1_2_8_132_1 doi: 10.1016/j.ceramint.2020.09.047 – ident: e_1_2_8_118_1 doi: 10.1002/adma.202100921 – ident: e_1_2_8_130_1 doi: 10.1021/acsami.2c01361 – ident: e_1_2_8_177_1 doi: 10.1021/acsami.1c21804 – ident: e_1_2_8_1_3 doi: 10.1002/adma.201000717 – ident: e_1_2_8_13_1 doi: 10.1088/1468-6996/14/4/043502 – ident: e_1_2_8_122_1 doi: 10.1016/j.jpowsour.2022.231939 – ident: e_1_2_8_54_3 doi: 10.1149/2.0951712jes – ident: e_1_2_8_25_2 doi: 10.1016/0167-2738(86)90179-7 – ident: e_1_2_8_64_1 doi: 10.1149/2.1031915jes – ident: e_1_2_8_160_1 doi: 10.1016/j.nanoen.2019.05.002 – ident: e_1_2_8_220_1 doi: 10.1002/aenm.202204028 – ident: e_1_2_8_12_1 doi: 10.1016/0032-3861(73)90146-8 – ident: e_1_2_8_111_1 doi: 10.1021/acsami.9b13313 – ident: e_1_2_8_193_1 doi: 10.1016/j.compositesb.2023.110566 – year: 2023 ident: e_1_2_8_15_1 publication-title: Adv. Mater. – ident: e_1_2_8_65_1 doi: 10.1016/j.cej.2021.128508 – ident: e_1_2_8_106_1 doi: 10.1021/acsenergylett.1c02428 – ident: e_1_2_8_73_4 doi: 10.1016/j.electacta.2015.08.046 – ident: e_1_2_8_90_1 doi: 10.1002/anie.201901739 – ident: e_1_2_8_203_1 doi: 10.1016/j.cej.2021.129710 – ident: e_1_2_8_112_1 doi: 10.1016/j.jpowsour.2018.11.016 – ident: e_1_2_8_165_1 doi: 10.1016/j.jechem.2022.01.008 – ident: e_1_2_8_61_1 doi: 10.1007/s10853-012-6300-y – ident: e_1_2_8_240_1 doi: 10.1002/adfm.202300501 – ident: e_1_2_8_1_2 doi: 10.1038/35104644 – ident: e_1_2_8_100_1 doi: 10.1016/j.jpowsour.2019.227338 – ident: e_1_2_8_32_2 doi: 10.1038/srep06916 – ident: e_1_2_8_41_3 doi: 10.1016/j.apsusc.2018.02.270 – ident: e_1_2_8_74_1 doi: 10.1021/acsami.1c21951 – ident: e_1_2_8_126_1 doi: 10.1021/acsami.6b03070 – ident: e_1_2_8_155_1 doi: 10.1016/j.jpowsour.2014.07.159 – ident: e_1_2_8_192_1 doi: 10.1016/j.memsci.2021.119952 – ident: e_1_2_8_50_1 doi: 10.1016/j.nanoen.2016.09.002 – ident: e_1_2_8_36_1 doi: 10.1016/j.powtec.2016.03.055 – ident: e_1_2_8_182_1 doi: 10.1016/j.ensm.2022.01.052 – ident: e_1_2_8_18_1 doi: 10.1126/science.264.5162.1115 – ident: e_1_2_8_19_3 doi: 10.1016/0378-7753(85)88004-6 – ident: e_1_2_8_129_1 doi: 10.1002/anie.200701144 – ident: e_1_2_8_230_4 doi: 10.1021/acsami.2c14087 – ident: e_1_2_8_144_1 doi: 10.1039/D2RA05782D – ident: e_1_2_8_41_2 doi: 10.1039/C6TA02294D – ident: e_1_2_8_87_1 doi: 10.1002/aenm.201903422 – ident: e_1_2_8_107_2 doi: 10.1016/j.ssi.2016.02.002 – ident: e_1_2_8_142_1 doi: 10.1111/j.1551-2916.2007.01827.x – ident: e_1_2_8_201_1 doi: 10.1002/anie.202307255 – ident: e_1_2_8_170_1 doi: 10.1021/acsami.9b05212 – ident: e_1_2_8_58_1 doi: 10.1007/s12598-020-01429-x – ident: e_1_2_8_115_1 doi: 10.1002/aenm.202102348 – ident: e_1_2_8_75_1 doi: 10.1016/j.apsusc.2021.151762 – ident: e_1_2_8_209_1 doi: 10.1039/D2CC02203F – ident: e_1_2_8_5_2 doi: 10.1021/ja3091438 – ident: e_1_2_8_197_1 doi: 10.1021/acs.nanolett.7b00715 – ident: e_1_2_8_32_3 doi: 10.1039/C5CC00575B – ident: e_1_2_8_56_2 doi: 10.1021/acs.jpcc.8b11043 – ident: e_1_2_8_102_2 doi: 10.1016/j.jallcom.2013.12.191 – ident: e_1_2_8_158_1 doi: 10.1039/D0EE02714F – ident: e_1_2_8_2_3 doi: 10.1002/aenm.201700732 – ident: e_1_2_8_204_1 doi: 10.1002/adma.202100353 – ident: e_1_2_8_9_1 doi: 10.1557/PROC-135-3 – ident: e_1_2_8_124_1 doi: 10.1007/s10853-019-04180-6 – ident: e_1_2_8_10_1 doi: 10.1007/BF00611256 – ident: e_1_2_8_60_1 doi: 10.1016/j.ssi.2011.10.022 – ident: e_1_2_8_255_1 doi: 10.1016/j.etran.2021.100152 – ident: e_1_2_8_230_1 doi: 10.1039/C7EE01004D – ident: e_1_2_8_28_1 doi: 10.1021/ja906529g – ident: e_1_2_8_11_1 doi: 10.1088/0022-3727/7/1/327 |
SSID | ssj0000491033 |
Score | 2.5629938 |
SecondaryResourceType | review_article |
Snippet | Solid‐state lithium‐ion batteries are widely accepted as the promising next‐generation energy storage technology due to higher energy density and improved... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | air stability Electrochemical analysis Electrolytes Energy storage Ion currents large‐scale preparation Lithium Lithium-ion batteries Molten salt electrolytes Optimization pouch cell Production costs Solid electrolytes solid‐state electrolyte Thickness |
Title | Challenges and Solutions of Solid‐State Electrolyte Film for Large‐Scale Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202303850 https://www.proquest.com/docview/2957149103 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMECtoDEgdksNdOvT5WJVWF2l5IRThZ-xSW0hjRRIieuHHlN_JLmH16I969WKvN2I53Pnsemv0GoacNrTSjIs9MF4es0k2VMSV1RgRjuSCaKG3ZPk_3js6q14vpYjT6mlQtbdb8hbj85b6Sq2gV5kCvZpfsf2g2XhQmYAz6hSNoGI7_pOOD0Anlwldg-pu5nShL-D-hlMH6lM9nrufN8jOMD7vlua0xPDa14IMg6Ew53zRN5gWe2lAxoNyWQXB33XMO6PD550XH-sv3vbeLpuLHlg3MWR8R41Kvb1X3SXVh0pxmtb7p0nwEqYaCLP8JBYOf7VGftVTpnCNmit_dKsVXkZjgaKB--r47vlimVoZEAKKnkjra2m0i7Sg5_bOs4_2dnZ7E36-hHQLxBhmjnf1XJ8dvYroOAqkiL-12jfB8gQI0Jy-3b7Lt4gxxSxr9WPdlfgvd9HEH3ncguo1GanUH3UjYKO-idwOcMMAJRzjhXmMLp-9fvlkg4QRI2AAJA5CwBZIRMRDCKYTuobPD2fzgKPOdNzJRmk5EpBBasrKQtZpyYVj8uFa1KqUoBATUsq4leO4MXPMaLJ7mlaKwDpLAUFPZ8PI-Gq_6lXqAsNKV5uCGcqFKExxTKsFtalTOOAejTycoC4vVCk9Lb7qjLFtHqE1as7htXNwJehblPzhClt9K7oa1b_1Le9GSZloXVpcTRKw-_nKVdgsfD69y0iN0fXhRdtF4_XGjHoMru-ZPPMx-ANGGmEE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Challenges+and+Solutions+of+Solid%E2%80%90State+Electrolyte+Film+for+Large%E2%80%90Scale+Applications&rft.jtitle=Advanced+energy+materials&rft.au=Huang%2C+Xiaozhong&rft.au=Li%2C+Tao&rft.au=Fan%2C+Weiwei&rft.au=Xiao%2C+Rui&rft.date=2024-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=14&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202303850&rft.externalDBID=10.1002%252Faenm.202303850&rft.externalDocID=AENM202303850 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |